Int J Parallel Prog (2010) 38:341-360
DOI 10.1007/s10766-010-0140-7

Comparison of OpenMP 3.0 and Other Task Parallel
Frameworks on Unbalanced Task Graphs

Stephen L. Olivier - Jan F. Prins

Received: 27 April 2010 / Accepted: 27 April 2010 / Published online: 1 June 2010
© Springer Science+Business Media, LLC 2010

Abstract The UTS benchmark is used to evaluate the expression and performance
of task parallelism in OpenMP 3.0 as implemented in a number of recently released
compilers and run-time systems. UTS performs parallel search of an irregular and
unpredictable search space, as arises, e.g., in combinatorial optimization problems.
As such UTS presents a highly unbalanced task graph that challenges scheduling,
load balancing, termination detection, and task coarsening strategies. Expressiveness
and scalability are compared for OpenMP 3.0, Cilk, Cilk++, Intel Thread Building
Blocks, as well as an OpenMP implementation of the benchmark without tasks that
performs all scheduling, load balancing, and termination detection explicitly. Current
OpenMP 3.0 run time implementations generally exhibit poor behavior on the UTS
benchmark. We identify inadequate load balancing strategies and overhead costs as
primary factors contributing to poor performance and scalability.

Keywords Task parallelism - Run time systems - Load balancing -
Performance evaluation - OpenMP

1 Introduction

The recent addition of task parallelism support to OpenMP 3.0 [1] offers improved
means for application programmers to achieve performance and productivity on shared
memory platforms such as multi-core processors. However, efficient execution of task

S. L. Olivier (&) - J. F. Prins

Department of Computer Science, University of North Carolina at Chapel Hill, CB 3175,
Chapel Hill, NC 27599, USA

e-mail: olivier@unc.edu

J. F. Prins
e-mail: prins@unc.edu

@ Springer

342 Int J Parallel Prog (2010) 38:341-360

parallelism requires support from compilers and run time systems. Design decisions
for those systems include choosing strategies for task scheduling and load-balancing,
as well as minimizing overhead costs.

Evaluating the efficiency of run time systems is difficult; the applications they
support vary widely. Among the most challenging are those based on unpredictable
and irregular computation. The Unbalanced Tree Search (UTS) benchmark [2] repre-
sents a class of such applications requiring continuous load balance to achieve parallel
speedup. In this paper, we compare the performance and scalability of the UTS bench-
mark on several different OpenMP 3.0 compiler and run time implementations (Intel
icc 11, gec 4.4, Mercurium 1.2, SunStudio 12). For comparison we also examine
the performance of the UTS benchmark using Cilk [3], Intel Cilk++ [4], Intel Thread
Building Blocks [5]. We also compare with an OpenMP implementation without tasks
that performs all scheduling, load balancing, and termination detection explicitly [6].
Throughout this paper we will refer to the latter as the custom parallel implementation.
Additional experiments focus on comparing overhead costs. The primary contribution
of the paper is an analysis of the experimental results for a set of compilers that support
task parallelism.

UTS presents a stress test to the load balancing capabilities of the run time sys-
tem, providing insight into OpenMP 3.0 implementations. It is not intended as a
negative general assessment of such implementations; several more balanced and
predictable task parallel applications have been shown to scale using OpenMP 3.0
tasks [7].

This paper extends work initially presented in [8]. It is organized as follows: Sect. 2
outlines background and related work on run time support for task parallelism. Sec-
tion 3 describes the UTS benchmark. Section 4 presents the experimental results and
analysis. We conclude in Sect. 5 with some recommendations based on our findings.

2 Background and Related Work

Many theoretical and practical issues of task parallel languages and their run time
implementations were explored during the development of earlier task parallel pro-
gramming models, such as Cilk [3,9]. The issues can be viewed in the framework
of the dynamically unfolding task graph in which nodes represent tasks and edges
represent completion dependencies.

The scheduling strategy determines which ready tasks to execute next on avail-
able processing resources. The load balancing strategy keeps all processors supplied
with work throughout execution. Scheduling is typically decentralized to minimize
contention and locking costs that limit scalability of centralized schedulers. However
decentralized scheduling increases the complexity of load balancing when a local
scheduler runs out of tasks, determining readiness of other tasks, and determining
global completion of all tasks.

To decrease task execution overheads, various coarsening strategies are followed
to aggregate multiple tasks together, or to execute serial versions of tasks that elide
synchronization support and interaction with the runtime system when not needed.

@ Springer

Int J Parallel Prog (2010) 38:341-360 343

However such coarsening may have negative impact on load balancing and availabil-
ity of parallel work.

Cilk scheduling uses a work-first scheduling strategy coupled with a randomized
work stealing load balancing strategy shown to be optimal [10]. A lazy task crea-
tion approach, developed for parallel implementations of functional languages [11],
makes parallel slack accessible while avoiding overhead costs until more parallelism
is actually needed. The compiler creates a fast and a slow clone for each task in a
Cilk program. Local execution always begins via execution of the fast clone, which
replaces task creation with procedure invocation. An idle processor may steal a sus-
pended parent invocation from the execution stack, converting it to the slow clone for
parallel execution.

In OpenMP task support, “cutoff”” methods to limit overheads were proposed in [12].
When cutoff thresholds are exceeded, new tasks are serialized. One proposed cutoff
method, max-level, is based on the number of ancestors, i.e. the level of recursion for
divide-and-conquer programs. Another is based on the number of tasks in the system,
specified as some factor k times the number of parallel execution threads. The study
in [12] finds that performance is often poor when no cutoff is used and that differ-
ent cutoff strategies are best for different applications. Adaptive Task Cutoff (ATC)
is a scheme to select the cutoff at runtime based on profiling data collected early in
the program’s execution [13]. In experiments, performance with ATC is similar to
performance with manually specified optimal cutoffs. However, both leave room for
improvement on unbalanced task graphs.

Iterative chunking coarsens the granularity of tasks generated in loops [14]. Aggre-
gation is implemented through compiler transformations. Experiments show mixed
results, as some improvements are in the noise compared to overheads of the run time
system.

Intel’s “workqueuing” model was a proprietary extension of OpenMP for task par-
allelism [15]. In addition to the task construct, a taskq construct defined queues
of tasks explicitly. A noteworthy feature was support for reductions among the results
of tasks in a task queue. Early evaluations of OpenMP tasking made comparisons to
Intel workqueuing, showing similar performance on a suite of seven applications [16].

An extension of the Nanos Mercurium research compiler and run time [16] has
served as the prototype compiler and run time for OpenMP task support. An eval-
uation of scheduling strategies for tasks using Nanos is presented in [12]. That
study concluded that in situations where each task is tied, i.e. fixed to the thread
on which it first executes (though possibly different from the thread executing
its parent task), breadth-first schedulers perform best. They found that programs
using untied tasks, i.e. tasks allowed to migrate between threads when resuming after
suspension, perform better using work-first schedulers. A task should be tied if the
programmer wishes to disallow migration of that task during its execution, e.g. if it
requires that successive accesses to a threadprivate variable be to the same thread’s
copy of that variable. Otherwise, untied tasks may be used for greater scheduling
flexibility.

Several production compilers have now incorporated OpenMP task support. IBM’s
implementation for their Power XLC compilers is presented in [17]. The recent ver-
sion 4.4 release of the GNU compilers [18] includes the first production open-source

@ Springer

344 Int J Parallel Prog (2010) 38:341-360

implementation of OpenMP tasks. Commercial compilers are typically closed source,
underscoring the need for challenging benchmarks for black-box evaluation.

In addition to OpenMP 3.0, there are currently several other task parallel languages
and libraries available to developers, Microsoft Task Parallel Library [19] for Win-
dows, Intel Thread Bulding Blocks (TBB) [5], and Intel Cilk++ [4], a younger sibling
of Cilk based on C++ rather than C. We will use TBB and Cilk++, along with Cilk,
as comparison points for our performance evaluation with OpenMP 3.0.

3 The UTS Benchmark

The UTS problem [2] is to count the nodes in an implicitly defined tree: any subtree in
the tree can be generated completely from the description of its root. The number of
children of a node is a function of the node’s description; in our current study a node
can only have zero or m = 8 children. The description of each child is obtained by
an evaluation of the SHA-1 cryptographic hash function [20] on the parent descrip-
tion together with the child index. In this fashion, the UTS search trees are implicitly
generated in the search process but nodes need not be retained throughout the search.
Load balancing of UTS is particularly challenging since the distribution of sub-
tree sizes follows a power law. While the variance in subtree sizes is enormous, the
expected subtree size is identical at all nodes in the tree, so there is no advantage to
be gained by stealing one node over another. For the purpose of evaluating run time
load-balancing support, the UTS trees are a particularly challenging adversary.

3.1 OpenMP Implementations of UTS

We have developed three implementations of UTS in OpenMP. Two implementations
use the task parallel support in OpenMP 3.0, while the third explicitly implements
load balancing between threads in an OpenMP parallel region.

3.1.1 Task Parallel Implementation

To implement UTS using task parallelism, we let the exploration of each node be a
task, allowing the underlying run time system to perform load balancing as needed.
Each task consists of a function that returns the count of nodes in the subtree rooted at
its node, recursively creating tasks to count the subtrees rooted at each of its children.
In order to correctly accumulate the results, the partialcount array is maintained
in the function to hold the result of the subtasks. The function must then stay on the
stack and wait for all descendent tasks to complete using a taskwait statement
before manually combining the results to arrive at the sum to return. A sketch of the
implementation follows below:

long Generate_and_Traverse (Node* parentNode,

int childNumber) {
Node currentNode = generatelD (parentNode, childNumber) ;
int numChildren = mwith prob g, O with prob 1-q

@ Springer

Int J Parallel Prog (2010) 38:341-360 345

long partialCount [numChildren], nodeCount = 1;

for (i = 0; i < numChildren; i++) {
#pragma omp task untied firstprivate(i)
partialCount[i] = Generate_and_Traverse (currentNode,

i);

}

#pragma omp taskwait

for (i = 0; i < numChildren; i++)
nodeCount += partialCount[i];

return nodeCount;

It is safe to use untied tasks here because task suspension and migration do not
impact correctness of this implementation.

3.1.2 Task Parallel Implementation With Threadprivate Storage

We devised an alternate task parallel OpenMP implementation that maintains per-
thread (threadprivate in OpenMP parlance) partial results which are combined in O(p)
time only at the end of the computation.

void Generate_and_Traverse (Node* parentNode, int childNumber) {
Node currentNode = generatelD(parentNode, childNumber) ;
nodeCount++; // threadprivate, combined at termination
int numChildren = m with prob q, 0 with prob I-q
for (i = 0; 1 < numChildren; i++) {
#pragma omp task firstprivate(i)
Generate_and_Traverse (currentNode, 1);

Execution is started by creating a parallel region, with a threadprivate counter for
the number of nodes counted by each thread. Within the parallel region a single thread
creates tasks to count the subtrees below the root. All threads synchronize at a barrier
when all tasks are complete.

We also observed correct results and similar performance when this implementa-
tion is modified to use untied tasks. It is technically unsafe to use untied tasks, since
a task could migrate amid the update to nodeCount.

3.1.3 Customized Parallel Implementation With Explicit Load Balancing

Unlike the task parallel implementation of UTS, the customized parallel implemen-
tation described in [2] using OpenMP 2.0 explicitly specifies choices for the order of
traversal (depth-first), load balancing technique (work stealing), aggregation of work,
and termination detection. A sketch of the implementation follows below:

@ Springer

346 Int J Parallel Prog (2010) 38:341-360

void Generate_and_Traverse (nodeStack* stack) {
#pragma omp parallel
while (1) {
if (empty(stack)) {
... steal work from other threads or terminate

}
currentNode = pop(stack) ;
nodeCount++; //threadprivate, values are combined at end
int numChildren = m with prob g, 0 with prob 1-q
for (1 = 0; 1 < numChildren; i++) {
childNode = generateID(currentNode, 1i);
push (stack, childNode) ;

Execution is started with the root node on the nodeStack of one thread; all other
threads start with an empty stack. Note that the single parallel region manages load
balancing among threads, termination detection, and the actual tree traversal. The
elided work-stealing code is not trivial; for details see [6].

3.2 Implementations in Other Task Parallel Frameworks

Let us consider the implementation of UTS in other task parallel languages and
libraries, first in terms of the how the implementation is expressed, and later, in Sect. 4,
in terms of performance and scalability. Recall the two different task parallel imple-
mentations from Sect. 3.1: The implementation without threadprivate (Sect. 3.1.1)
requires explicit level-wise synchronization and per-task accumulation of partial
results, while the implementation with threadprivate (Sect. 3.1.2) does not. These
differences also arise when comparing other task parallel frameworks, as we shall see.

3.2.1 Cilk Implementation

We created a Cilk implementation of UTS which is close to the OpenMP 3.0 task
implementation without threadprivate storage. It differs mainly in its use of a Cilk
inlet in the search function to accumulate partial results for the tree node count as
spawned functions return. The Cilk runtime handles the required synchronization to
update the count.

cilk long Generate_and_Traverse (Node* parentNode,
int childNumber) {
long nodeCount = 1;
inlet void accumulate (long result) {
count += result;

@ Springer

Int J Parallel Prog (2010) 38:341-360 347

Node currentNode = generatelD(parentNode, childNumber) ;
int numChildren = m with prob g, 0 with prob 1-q

for (i = 0; i < numChildren; i++)
accumulate (spawn Generate_and_Traverse (currentNode,
i));
sync;

return count;

Execution is started by creating tasks to explore the children of the root node,
followed by a sync statement.

3.2.2 Cilk++ Implementation

Cilk++ provides reduction facilities through objects called reducers. Synchronization
for safe concurrent access to the reducer object is managed by the Cilk++ run time, as
explained in detail in [21]. The ci1lk_sync is required only because Cilk++ does not

provide a construct to wait on all tasks, a facility provided in OpenMP by the barrier
construct.

cilk: :hyperobject<cilk: :reducer_opadd<long> > nodeCount;

void Generate_and_Traverse (Node* parentNode,
int childNumber) {
Node currentNode = generatelD (parentNode, childNumber) ;
nodeCount () ++;
int numChildren = m with prob g, 0 with prob 1-q
for (i = 0; i < numChildren; i++)
cilk_spawn Generate_and_Traverse (currentNode, 1i);
cilk_sync;

Execution is started by creating tasks to explore the children of the root node,
followed by a cilk_sync statement.

3.2.3 Thread Building Blocks Implementation

Our final comparison point in the evaluation is an Intel Thread Building Blocks (TBB)
implementation. TBB requires the declaration of a new class extending the task class,
and the creation of task object instances. A member function executes the work of
the task. As in the task paralle]l OpenMP implementation, partial results must be col-

lected and summed manually. Level-wise synchronization is required via the function
wait_for_all().

@ Springer

348 Int J Parallel Prog (2010) 38:341-360

class Generate_and_Traverse: public task {
public:
Node *parentNode;
int childNumber;
long* const nodeCount;
Generate_and_Traverse (Node *parentNode_,
int childNumber_, long* nodeCount_)
parentNode (parentNode_), childNumber (childNumber_),
nodeCount (nodeCount_) {}
task* execute() {
long partialCount [numChildren];
parTreeSearchTask* tArr[numChildren];
Node currentNode = generatelD (parentNode, childNumber) ;

int numChildren = mwith prob q, 0 with prob 1-q
for (i = 0; 1 < numChildren; i++) {
partialCount[i] = 1;
tArr[i] = new(allocate_child())

Generate_and_Traverse
(currentNode, childNumber, &partialCount([il]);
spawn (*tArr[i]) ;
}
set_ref count (numChildren+1) ;
wait_for_all();
for (i = 0; i < numChildren; i++)
*nodeCount += partialCount[i];

Execution is started by creating tasks to explore the children of the root node,
followed by a wait_for_all() and final summation.

3.3 Code Comparison Summary
Table 1 summarizes the comparison of the different task parallel implementations.

Note the similarity between the implementations using OpenMP tasks without thread-
private and Intel TBB. Inlets and reducers make Cilk and Cilk++ easy platforms for

Table 1 Comparison of task parallel UTS implementations

OpenMP tasks OpenMP tasks Cilk Intel Cilk++ Intel TBB
without with threadprivate
threadprivate

Explicit level-wise Yes No Yes Yes Yes
syncronization
Accumulation of Yes No No No Yes

partial results

@ Springer

Int J Parallel Prog (2010) 38:341-360 349

UTS, while the need for task objects and significant task management make UTS
implementation in TBB cumbersome. Beyond the perspective of our benchmark,
OpenMP differs from the other languages and libraries in terms of memory model and
data scoping rules, contributing some overheads seen in our evaluation (Sect. 4.2.1). As
a tradeoff, these features benefit a host of other applications not covered in this paper.

4 Experimental Evaluation

We evaluate OpenMP task support by running UTS and related experiments on an
Opteron SMP system. The Opteron system consists of eight dual-core AMD Opteron
8220 processors running at 2.8 Ghz, with IMB cache per core.

We installed the Intel icc 11.0 compiler, SunStudio 12 with Ceres C 5.10, and gcc
4.4.0. We also installed the Mercurium 1.2.1 research compiler with Nanos 4.1.2 run
time. Since Nanos does not yet natively support the x86-64 architecture, we built and
used the compiler for 32-bit IA32. We used cilk 5.4.6 for comparison with the OpenMP
implementations on both machines, using the gcc 4.3 compiler as a back end. On the
Opteron, we also used Intel Cilk++ 1.0 (based on gcc 4.2.4) and Intel Thread Building
Blocks 2.2 (compiled and used with Intel icc 11.0), The -O3 option (or equivalent)
is always used. Unless otherwise noted, reported results represent the average of 10
trials.

For a few results in Sect. 4.4 of the paper, we used an SGI Altix using Intel icc and
Mercurium. Details for that system are presented in that section.

4.1 Sequential and Parallel Performance on UTS

Table 2 shows sequential performance for UTS on the Opteron SMP system; the exe-
cution rate represents the number of tree nodes explored per unit time. We use tree 73
from [2], a 4.1 million node tree with extreme imbalance. This tree is used in experi-
ments throughout the paper. Results in Table 2 are for our most efficient task parallel
serial implementation, similar to the task implementation without threadprivate in that
results are passed as return values. No OpenMP or other parallel directives are used
or enabled in the serial implementation, and it is faster than those in [8].

Figure 1 shows the speedup gained on the task parallel implementations using
OpenMP 3.0, Cilk, Cilk++, and TBB, as measured against the sequential performance
data given in Table 2. Reported gcc and Sun OpenMP results are from the implementa-
tion with threadprivate; results for the implementation without threadprivate are very
similar: We observe no speedup from Sun Studio and gcc. Cilk, Cilk++, and TBB out-
perform the Intel OpenMP task implementation, and all three show improved speedup

Table 2 Sequential performance on the Opteron SMP (Millions of tree nodes explored per second)

Implementation Intel icc 11.0 Sun Ceres 5.10 gec 4.4.0 Mercurium 1.2.1

Serial Rate 3.78 3.57 3.35 2.05

@ Springer

350 Int J Parallel Prog (2010) 38:341-360

16
Il Sun without threadprivate
1“4 m gcc without threadprivate
[l Intel without threadprivate
12 +— M Intel with threadprivate
E Cilk
g_ 10 +— dintel TBB
S M Intel Cilk++
3
Q 8
n
6
4
2
0 .
1 2 4 8 16

Threads

Fig.1 UTS using several task implementations on OpenMP 3.0, Cilk, Thread Building Blocks, and Cilk++:
Speedup on 16-way Opteron SMP. See Fig. 8 and Sect. 4.4 for results using the Nanos run time for
OpenMP 3.0

16

14

12

Speedup

1 2 4 8 16
Threads

Hintel MSun Mgcc4.4

Fig. 2 UTS using custom OpenMP parallel implementation without tasks: speedup on 16-way Opteron
SMP. Work stealing granularity is a user-supplied parameter. The optimal value (64 tree nodes transferred
per steal operation) was determined by manual tuning and used in these experiments

as up to 16 cores are used. The Intel Cilk++ implementation ran to completion only
with 16 threads due to limitations on the number of nested tasks.! No task parallel
implementation averaged more than 9X speedup. Figure 2 shows the speedup, up to
11X, using the customized parallel implementation with manual load balancing.

' We have confirmed with the developers of Cilk++ that this is not a fundamental limitation of the Cilk++
run time and that future releases could increase the number of possible nested tasks or even allow the user
to set this limit through a parameter to the run time.

@ Springer

Int J Parallel Prog (2010) 38:341-360 351

4.2 Analysis of Performance

Two factors leading to poor performance are overhead costs and load imbalance. There
is a fundamental tradeoff between them, since load balancing operations incur over-
head costs. Though all run time implementations are forced to deal with that tradeoff,
clever ones minimize both to the extent possible. Poor implementations show both
crippling overheads and poor load balance.

4.2.1 Overhead Costs

Even when only a single thread is used, there are some overhead costs incurred
using OpenMP. For task parallel implementations of UTS, single thread effi-
ciency ranges from 45 to 88%. Overhead costs are not unique to the schedul-
ing of tasks, though more pronounced. For OpenMP single thread execution of a
loop of 4M iterations each performing one SHA-1 hash, scheduled dynamically
one iteration per chunk, efficiency ranges from 92% to 97% versus sequential
execution.

To quantify the scaling of overhead costs in the OpenMP task run times,
we instrumented UTS to record the amount of time spent on work (calculating
SHA-1 hashes). To minimize perturbation from the timing calls, we increased the
amount of computation by performing 100 SHA-1 hash evaluations of each node.
Figure 3 presents the percent of total time spent on overheads (time not spent on
SHA-1 calculations). Overhead costs grow sharply in the gcc implementation, dwarf-
ing the time spent on work. The Sun implementation also suffers from high over-
heads, reaching over 20% of the total run time. Overheads grow slowly from 2%
to 4% in the Intel run time. Note that we increased the granularity of computa-
tion 100-fold, so overheads on the original fine-grained problem is much higher
still.

90

80

70

60
50 A

40

30

Percent of Total Time

20

10

1 2 4 8 16
Number of Threads

Bintel ESun Mgcc

Fig. 3 Overheads (time not calculating SHA-1 hash) on UTS using 100 repetitions of the SHA-1 hash per
tree node

@ Springer

352 Int J Parallel Prog (2010) 38:341-360

4.2.2 Load Imbalance

Now we consider the critical issue of load imbalance. To investigate the number of
load balancing operations, we modified UTS to record the number of tasks that start
on a different thread than the thread they were generated from or that migrate when
suspended and subsequently resumed. Figure 4 shows the results of our experiments
using the same 4.1 M node tree (T3), indicating nearly 450k load balancing operations
performed by the Intel and Sun run times per trial using 8 threads. That comprises
11% of the 4.1 M tasks generated. In contrast, gcc only performs 68k load balancing
operations. By running trials of the UTS task parallel OpenMP implementation both
with all untied tasks and with all tied tasks, we have confirmed that load balancing
operations occur before initial execution of the task. We do not observe task migra-
tions as enabled by the untied keyword as determined by querying the thread number
at multiple points during each task’s execution. This is not the case for the Nanos run
time (Sect. 4.4). Performance is also unaffected by the use of tied vs. untied.

Given the substantial number of load balancing operations performed, we investi-
gated whether they are actually successful in eliminating load imbalance. To that end,
we recorded the number of nodes explored at each thread, shown in Fig. 5. Note that
since ten trials were performed at each thread count, there are 10 data points shown
for trials on one thread, 20 shown for trials on two threads, etc. The results for the Intel
implementation (a) show good load balance, as roughly the same number of nodes
(4.1M divided by the number of threads) are explored on each thread. With the Sun
implementation, load balance is poor and worsens as more threads are used. Imbalance
is poorer still with gcc.

Even if overhead costs were zero, speedup would be limited by load imbalance.
The total running time of the program is at least the work time of the thread that
does the most work. Since each task in UTS performs the same amount of work, one
SHA-1 hash operation, we can easily determine that efficiency e is limited to the ratio
of average work per thread to maximum work per thread. The lost efficiency (1 — e)
for the different OpenMP task implementations is shown in Fig. 6. Poor load balance
by the Sun and gcc implementations severely limits scalability. Consider the 16-thread
case: neither implementation can achieve greater than 40% efficiency even if overhead

Fig.4 Number of tasks started 500000
on different threads from their 450000
parent tasks or migrating during 400000
task execution, indicating load 350000

balancing efforts. 4.1 M tasks are
performed in each program
execution

300000
250000
200000 4
150000 A
100000
50000 4
04

Tasks

2 4 8 16
Number of Threads

Eintel ESun Mgcc

@ Springer

Int J Parallel Prog (2010) 38:341-360

353

Fig. 5 UTS on Opteron SMP:
Number of nodes explored at
each thread. a Intel icc. b Sun.
cgec 44

(a)
10000000
[
1000000 [wwsmsna
0
T
2 o e
100000 1
10000
1 thread 8 threads
= 2 threads = 16 threads
« 4 threads
(b)
10000000
[EE.
1000000 {4445, L
0 . . x »
()] o A = -
o T B B
EE T ST L
100000 1% = AT LA L vy
-~ -~ CF
10000
1 thread 8 threads
= 2 threads * 16 threads
« 4 threads
(©)
10000000
1000000 1
[7) (3
()]
b
[}
4
100000 A
10000

1 thread 8 threads
= 2 threads * 16 threads
+ 4 threads

@ Springer

354 Int J Parallel Prog (2010) 38:341-360

Fig. 6 UTS on Opteron: lost 70
efficiency due to load imbalance 60

50

40

30 1

20

10

Percent Lost Efficiency (1-e)

2 4 8 16
Number of Threads

Eintel @Sun Mgcc

costs were nonexistent. On the other hand, inefficiency in the Intel implementation
cannot be blamed on load imbalance.

4.3 Potential for Aggregation

The custom parallel implementation reduces overhead costs chiefly by aggregating
work. Threads do not steal nodes one at at time, but rather in chunks whose size is
specified as a parameter. A similar method could be applied within an OpenMP run
time, allowing chunks of tasks to be moved between threads at a time.

To test possible overhead reduction from aggregation, we designed an experiment
in which 4M SHA-1 hashes are performed independently. To parallelize we use a
loop nest in which the outer for loop generates tasks. Each task executes a loop of
k SHA-1 hashes. So k represents an aggregation factor. Since the outer forall has
4M/k iterations equally distributed by static scheduling, there should be little or no
load balancing. Thus, performance measurements should represent a lower bound on
the size of k needed to overcome overhead costs. Figure 7 shows speedup for aggrega-
tion of k = 1 to 1000000 run using the Intel implementation. (Results for the gcc 4.4
and Sun compilers are very similar and omitted for lack of space.) Speedup reaches a
plateau at k = 50. We could conclude that for our tree search, enough tasks should be
moved at each load balancing operation to yield 50 tree nodes for exploration. Notice
that for 8 and 16 threads, performance degrades when k is too high, showing that too
much aggregation leads to load imbalance, i.e. when the total number of tasks is a
small non-integral multiple of the number of threads.

4.4 Scheduling Strategies and Cutoffs

As mentioned in Sect. 2, the Mercurium compiler and Nanos run time offer a wide
spectrum of runtime strategies for task parallelism. There are breadth-first schedul-
ers with FIFO or LIFO access, and work-first schedulers with FIFO or LIFO local
access and FIFO or LIFO remote access for stealing. There is also a “Cilk-like”” work-
first scheduler in which an idle remote thread attempts to steal the parent task of a

@ Springer

Int J Parallel Prog (2010) 38:341-360 355

Fig.7 Work aggregated into 16
tasks. Speedup on Opteron SMP 14
using the Intel OpenMP tasks 12
implementation. Results are S 10
similar using the gcc 4.4 and B s
Sun compilers, though slightly 2 6
poorer at the lower aggregation Doy 3
levels 2L~ 5 =8 58—8-8 o= 54
L . L il L 1l L . L il L L
0 1 10 100 1000 10000 100000 1e+06

Aggregation (Hash operations/task)

16 threads ——+— 2threads —=—
8threads ——<— 1 thread
4 threads —x—

currently running task. In addition, the option is provided to serialize tasks beyond a
cutoff threshold, a set level of the task hierarchy (maxlevel) or a certain number of
total tasks (maxtasks). Note that a maxtasks cutoff is imposed in the gcc 4.4 OpenMP
3.0 implementation, but the limit is generous at 64 times the number of threads.
Figure 8 shows the results of running UTS using two threads in Nanos with vari-
ous scheduling strategies and varying values for the maxtasks and maxlevel cutoff
strategies. See Table 3 for a description of the scheduling strategies represented.
The breadth-first methods fail due to lack of memory when the maxlevel cutoff is
used. There are 2000 tree nodes at the level just below the root, resulting in a high

Fig. 8 UTS speedup on (a)

Opteron SMP using two threads 1.4

with different scheduling and o 1o
. .] b

cutoff strategies in Nanos. Note S

that “cilk” denotes the Cilk-style o 1

scheduling option in Nanos, not o 08

the Cilk compiler. a Maxtasks 0.6
cutoff. b Maxlevel cutoff

maxtasks
cilk —+—— wfll
W oo bff -~
Wl ek bfl - @
wflf &

(b)
1.
o
=}
e}
Q
(9]
o
w
1 10 100
maxlevel
cilk —+—— wilf &
wiff ¢ will
WFfl ook

@ Springer

356 Int J Parallel Prog (2010) 38:341-360

Table 3 Nanos scheduling
strategies. For more details
see [12]

Name Description

witf ‘Work-first with FIFO local queue access, FIFO remote queue
access

wifl ‘Work-first with FIFO local queue access, LIFO remote queue
access

wilf Work-first with LIFO local queue access, FIFO remote queue
access

will ‘Work-first with LIFO local queue access, LIFO remote queue
access

cilk WIIf with priority to steal parent of current task
bff Breadth-first with FIFO task pool access
bfl Breadth-first with LIFO task pool access

number of simultaneous tasks in the breadth-first regime. As shown in the graphs, we
did not observe good speedup using Nanos regardless of the strategies used. Though
not shown, experiments confirm no further speedup using four threads. Unlike the
other OpenMP 3.0 run times, we do observe migrations of untied tasks during task
execution using Nanos; work-first schedulers migrate untied tasks quite frequently, as
expected.

Limiting the number of tasks in the system (maxtasks cutoff) may not allow enough
parallel slack for the continuous load balancing required. At the higher end of the range
we tested in our experiments, there should be enough parallel slack but overhead costs
are dragging down performance. Cutting off a few levels below the root (maxlevel
cutoff) leaves highly unbalanced work, since the vast majority of the nodes are deeper
in the tree, and UTS trees are imbalanced everywhere. Such a cutoff is poorly suited to
UTS. For T3, just a few percent of the nodes three levels below the root subtend over
95% of the tree. Adaptive Task Cutoff [13] would offer little improvement, since it
uses profiling to predict good cutoff settings early in execution. UTS is unpredictable:
the size of the subtree at each node is unknown before it is explored and variation in
subtree size is extreme.

We also repeated aggregation experiments from Sect. 4.3 using Nanos. Figure 9
shows speedup using the cilk-like scheduling strategy with no cutoffs imposed. Results

Fig. 9 Work aggregated into 16 —

tasks. Speedup on Opteron SMP 14 L

using Cilk-style scheduling in o 121

Nanos. Results are similar using 3 10

other work-first scheduling o 8

strategies (% 6
4t , k
2 s 55— 885—885—a4
0 il

== T L L L P - P - Ll L
1 10 100 1000 10000 100000 1e+06
Aggregation (Hash operations/task)

16 threads ——+— 2threads —=—
8threads — < 1 thread
4 threads —x—

@ Springer

Int J Parallel Prog (2010) 38:341-360 357

Intel icc ——+—
Nanos wfff ——<—
Nanos wiffl —x—
Nanos wilf —=—
Nanos wfll

Nanos cilk —2—
Nanos bff

Nanos bfl ——<«—

Speedup

T L T L T L T L L
100 1000 10000 100000 1e+06
Aggregation (Hash operations/task)

Fig. 10 Work aggregated into tasks. Speedup on an SGI Altix for 4M hash operations performed; work
generated evenly upon two threads. The various Nanos scheduling strategies are used without cutoffs, and
Intel icc is shown for comparison. Note that “cilk” denotes the Cilk-style scheduling option in Nanos, not
the Cilk compiler

for other work-first schedulers is similar. Notice that compared to the results from the
same experiment using Intel compiler (Fig. 7), speedup is much poorer at lower levels
of aggregation with Nanos. Whereas speedup at 10 hash operations per second is about
13X with 16 threads using the Intel compiler, Nanos speedup is less than 1X.

Since the breadth-first methods struggle with memory constraints on the Opteron
SMP, we tried the aggregation tests on another platform: an SGI Altix with lightweight
thread support on the Nanos-supported 64-bit IA64 architecture. The Altix consists
of 128 Intel Itanium2 processors running at 1.6 Ghz, each with 256kB of L2 cache
and 6MB of L3 cache. We installed the Mecurium 1.2.1 research compiler with Nanos
4.1.2 run time and the Intel icc 11.0 compiler. Even using the breadth-first schedulers
and no cutoffs, the tasks are able to complete without exhausting memory. Figure 10
shows experiments performed on two threads of the Altix. The Intel implementation
outperforms Nanos at fine-grained aggregation levels. Among the Nanos scheduling
options, the work-first methods are best.

4.5 The if() Clause

The OpenMP task model allows the programmer to specify conditions for task seri-
alization using the if{() clause. To evaluate its impact, we used the if{) clause in a
modified version of our task parallel implementation so that n% percent of the tree
nodes are explored in place while the rest are explored in new tasks. We varied n
exponentially from less than 0.01% to 100%. Figure 11 shows the results on the
Opteron SMP using the Intel compiler. Using the if{) clause to limit the number of
tasks actually reduces speedup. The if{) clause reduces available parallelism and limits
the scheduling options of the run time, which can be detrimental for a problem such
as UTS.

5 Conclusions

Explicit task parallelism provided in OpenMP 3.0 enables easier expression of unbal-
anced applications as can be seen from the simplicity and clarity of the task parallel

@ Springer

358 Int J Parallel Prog (2010) 38:341-360

Fig. 11 UTS Speedup on
Opteron SMP using the Intel
OpenMP 3.0 task
implementation with
user-defined inlining specified
using the iff) clause

Ll) AR 1
1 10 100

Percent of Tasks Executed In Place (if() clause false)

Speedup
O - N WhHOUU O N
T
Il

16 threads ——+— 2threads —=—
8 threads 1 thread
4 threads —x—

UTS implementations. However, there is clearly room for further improvement in
performance for applications with challenging demands such as UTS.

Our experiments suggest that efficient OpenMP 3.0 run time support for very unbal-
anced task graphs remains an open problem. Among the implementations tested, only
the Intel compiler shows good load balancing on UTS. Its overheads are also lower than
other implementations, but still not low enough to yield ideal speedup. Cilk, Cilk++,
and TBB outperform all OpenMP 3.0 task parallel implementations; design decisions
made in their development should be examined closely when building the next gen-
eration of OpenMP task run time systems. A key feature of Cilk is its on-demand
conversion of serial functions (fast clone) to concurrent (slow clone) execution. The
“Cilk-style” scheduling option in Nanos follows the work stealing strategy of Cilk,
but decides before task execution whether to inline a task or spawn it for concurrent
execution.

We cannot be sure of the scheduling mechanisms used in the commercial OpenMP
3.0 implementations. The gcc 4.4 implementation uses a task queue and maintains
several global data structures, including current and total task counts. Contention for
these is a likely contributor to overheads seen in our experiments. Another problematic
feature of the gcc OpenMP 3.0 implementation is its use of barrier wake operations
upon new task creation to enable idle threads to return for more work. These opera-
tions are too frequent in an applications such as UTS that generate work irregularly.
Even with an efficient barrier implementation, they may account for significant costs.
A notable feature of TBB is its use of low-level primitives for thread management and
synchronization, and Cilk++ offers the helpful reducer construct.

Experiments using several different scheduling strategies with cutoffs also show
poor performance. Unbalanced problems such as UTS are not well suited to cutoffs
because they make it difficult to keep enough parallel slack available. Aggregation of
work should be considered for efficient load balancing with reduced overhead costs.
Further work is needed to determine other ways in which OpenMP 3.0 run time systems
could potentially be improved and whether additional information could be provided
to enable better performance.

While the UTS benchmark is useful as a benchmarking and diagnostic tool for run
time systems, many of the same problems it uncovers do impact real world applica-

@ Springer

Int J Parallel Prog (2010) 38:341-360 359

tions. These include evaluation of amino acid combinations for protein design [22],
subspace clustering for knowledge discovery [23], and the Quadratic Assignment
Problem (QAP) at the heart of transportation optimization. We reiterate that several
applications with less extreme imbalance and unpredictability have been shown to
scale using OpenMP 3.0 tasks [7]. Some features of the OpenMP memory model and
data scoping rules that differ from the other task parallel languages and contribute to
overheads are beneficial to those applications.

Evaluation on a wider range of applications is needed to determine the shared
impact of the compiler and run time issues that UTS has uncovered. One issue that we
have not addressed in our experiments is locality. UTS models applications in which
a task only requires a small amount data from its parent and no other external data.
Given the NUMA layout of memory between chips, scheduling decisions should be
informed by explicit knowledge of locality. If, as in many multicore designs, cores on
the same chip share a cache, it will also be advantageous to co-schedule tasks with the
same working set onto threads running on cores in the same chip. In future work we
consider applications with more demanding data requirements, including applications
such as adaptive fast multipole n-body, collision detection, and sorting.

Acknowledgements Stephen Olivier is funded by a National Defense Science and Engineering Graduate
Fellowship. The Opteron SMP used in this paper is a part of the BASS cluster funded by the National
Institutes of Health, award number NIH 1S10RR023069-01. We are grateful for helpful comments from
Alejandro Duran and the reviewers.

References

—_

OpenMP Architecture Review Board: OpenMP API, Version 3.0 (May 2008)

2. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.W.: UTS: An unbalanced
tree search benchmark. In: Almasi, G., Cascaval, C., Wu, P, (eds.) Proceedings of LCPC 2006. vol.
4382 of LNCS., pp. 235-250. Springer (2007)

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 multithreaded language.
In: Proceedings 1998 SIGPLAN Conf. Prog. Lang. Design Impl. (PLDI *98), pp. 212-223 (1998)

4. Intel Corp.: Intel Cilk++ SDK. http://software.intel.com/en-us/articles/intel-cilk/

5. Kukanov, A., Voss, M.: The foundations for scalable multi-core software in intel threading building
blocks. Intel Technol J 11(4) (November 2007)

6. Olivier, S., Prins, J.: Scalable dynamic load balancing using UPC. In: ICPP ’08: Proceedings of 37th
Intl. Conf. on Par. Processing, pp. 123-131. IEEE (Sept. 2008)

7. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguadé, E.: Barcelona OpenMP Tasks Suite: a set
of benchmarks targeting the exploitation of task parallelism in OpenMP. In: Proceedings of 38th Intl.
Conf. on Par. Processing (ICPP’09), pp. 124—131. IEEE Computer Society, Vienna, Austria (September
2009)

8. Olivier, S.L., Prins, J.F.: Evaluating OpenMP 3.0 run time systems on unbalanced task graphs.
In: IWOMP ’09: Proceedings 5th International Workshop on OpenMP, pp. 63-78. Springer-Verlag,
Berlin, Heidelberg (2009)

9. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk: An efficient multi-
threaded runtime system. In: PPoPP ’95: Proceedings of 5Sth ACM SIGPLAN symp. Princ. Pract. Par.
Prog. (1995)

10. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work stealing. In: Proceedings
of 35th Ann. Symp. Found. Comp. Sci., pp. 356-368. (Nov. 1994)

11. Mohr, E., Kranz, D.A., Robert, H., Halstead, J.: Lazy task creation: a technique for increasing the

granularity of parallel programs. In: LFP *90: Proceedings 1990 ACM Conf. on LISP and Functional

Prog., pp. 185-197. ACM, New York, NY, USA (1990)

@ Springer

http://software.intel.com/en-us/articles/intel-cilk/

360 Int J Parallel Prog (2010) 38:341-360

12. Duran, A., Corbalén, J., Ayguadé, E.: Evaluation of OpenMP task scheduling strategies. In: Eigenmann,
R., de Supinski, B.R., (eds.) IWOMP ’08. Vol. 5004 of LNCS., pp. 100-110. Springer (2008)

13. Duran, A., Corbaldn, J., Ayguadé, E.: An adaptive cut-off for task parallelism. In: SC08: ACM/IEEE
Supercomputing 2008, Piscataway, pp. 1-11. IEEE Press, NJ, USA (2008)

14. Ibanez, R.F.: Task chunking of iterative constructions in OpenMP 3.0. In: First Workshop on Execution
Environments for Distributed Computing. (July 2007)

15. Su, E., Tian, X., Girkar, M., Haab, G., Shah, S., Petersen, P.: Compiler support of the workqueuing
execution model for Intel SMP architectures. In: European Workshop on OpenMP (EWOMP’02).
(2002)

16. Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., Teruel, X.: An experimental evaluation of the
new OpenMP tasking model. In: Adve, V.S., Garzardn, M.J., Petersen, P., (eds.) LCPC. vol. 5234 of
LNCS., pp. 63-77. Springer (2007)

17. Teruel, X., Unnikrishnan, P., Martorell, X., Ayguadé, E., Silvera, R., Zhang, G., Tiotto, E.: Open-
MP tasks in IBM XL compilers. In: CASCON ’08: Proc. 2008 Conf. of Center for Adv. Studies on
Collaborative Research, pp. 207-221. ACM (2008)

18. Free Software Foundation Inc.: GCC, The GNU Compiler Collection. http://www.gnu.org/software/
gcc/

19. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. SIGPLAN Notices:
OOPSLA’09 44(10), 227-242 (2009)

20. Eastlake, D., Jones, P.: US secure hash algorithm 1 (SHA-1). RFC 3174, Internet Engineering Task
Force (September 2001)

21. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other Cilk++ hyperobjects. In:
Proc. SPAA 09, ACM Press (August 2009)

22. Baker, D.: Proteins by design. The Scientist, 26-32 (July 2006)

23. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimen-
sional data. Data Min. Knowl. Discov. 11(1), 5-33 (2005)

@ Springer

http://www.gnu.org/software/gcc/
http://www.gnu.org/software/gcc/

	Comparison of OpenMP 3.0 and Other Task Parallel Frameworks on Unbalanced Task Graphs
	Abstract
	1 Introduction
	2 Background and Related Work
	3 The UTS Benchmark
	3.1 OpenMP Implementations of UTS
	3.1.1 Task Parallel Implementation
	3.1.2 Task Parallel Implementation With Threadprivate Storage
	3.1.3 Customized Parallel Implementation With Explicit Load Balancing

	3.2 Implementations in Other Task Parallel Frameworks
	3.2.1 Cilk Implementation
	3.2.2 Cilk++ Implementation
	3.2.3 Thread Building Blocks Implementation

	3.3 Code Comparison Summary

	4 Experimental Evaluation
	4.1 Sequential and Parallel Performance on UTS
	4.2 Analysis of Performance
	4.2.1 Overhead Costs
	4.2.2 Load Imbalance

	4.3 Potential for Aggregation
	4.4 Scheduling Strategies and Cutoffs
	4.5 The if() Clause

	5 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

