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Abstract We present techniques to parallelize membership tests for Deterministic Finite Automata
(DFAs). Our method searches arbitrary regular expressions by matching multiple bytes in parallel
using speculation. We partition the input string into chunks, match chunks in parallel, and combine
the matching results. Our parallel matching algorithm exploits structural DFA properties to minimize
the speculative overhead. Unlike previous approaches, our speculation is failure-free, i.e., (1) sequential
semantics are maintained, and (2) speed-downs are avoided altogether. On architectures with a SIMD
gather-operation for indexed memory loads, our matching operation is fully vectorized. The proposed
load-balancing scheme uses an off-line profiling step to determine the matching capacity of each par-
ticipating processor. Based on matching capacities, DFA matches are load-balanced on inhomogeneous
parallel architectures such as cloud computing environments.

We evaluated our speculative DFA membership test for a representative set of benchmarks from
the Perl-compatible Regular Expression (PCRE) library [34] and the PROSITE [35] protein database.
Evaluation was conducted on a 4 CPU (40 cores) shared-memory node of the Intel Academic Program
Manycore Testing Lab (Intel MTL), on the Intel AVX2 SDE simulator for 8-way fully vectorized
SIMD execution, and on a 20-node (288 cores) cluster on the Amazon EC2 computing cloud. Obtained

speedups are on the order of O(1 + |P |−1
|Q| · γ ), where |P | denotes the number of processors or SIMD

units, |Q| denotes the number of DFA states, and 0 < γ ≤ 1 represents a statically computed DFA
property. For all observed cases, we found that 0.02 < γ < 0.47. Actual speedups range from 2.3x to
38.8x for up to 512 DFA states for PCRE, and between 1.3x and 19.9x for up to 1288 DFA states for
PROSITE on a 40-core MTL node. Speedups on the EC2 computing cloud range from 5.0x to 65.8x
for PCRE, and from 5.0x to 138.5x for PROSITE. Speedups of our C-based DFA matcher over the
Perl-based ScanProsite scan tool [39] range from 559.3x to 15079.7x on a 40-core MTL node. We show
the scalability of our approach for input-sizes of up to 10GB.

Keywords DFA membership test · parallel pattern matching · parallel regular expression matching ·
speculative parallelization · multicores

1 Introduction

Locating a string within a larger text has applications with text editing, compiler front-ends and
web browsers, scripting languages, file-search (grep), command-processors, databases, Internet search
engines, computer security, and DNA sequence analysis. Regular expressions allow the specification
of a potentially infinite set of strings (or patterns) to search for. A standard technique to perform
regular expression matching is to convert a regular expression to a DFA and run the DFA on the input
text. DFA-based regular expression matching has robust, linear performance in the size of the input.
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Algorithm 1: Sequential DFA matching
Input : transition function δ, input string Str, start state q0, set of final states F

Output: true if input is matched, false otherwise
1 state ← q0
2 for i← 0 to |Str| − 1 do

3 state ← δ(state,Str[i])

4 if state ∈ F then

5 return true; // input matched

6 return false

However, practical DFA implementations are inherently sequential as the matching result of an input
character is dependent on the matching result of the previous characters. Related to DFA matching
on parallel architectures, considerable research effort has been recently spent [29,47,19,23,28,40].

To speed up DFA matching on parallel architectures, we propose to use speculation. With our
method, the input string is divided into chunks. Chunks are processed in parallel using sequential DFA
matching. For all but the first chunk, the starting state is unknown.

The core contribution of our method is to exploit structural properties of DFAs to bound the set
of initial states the DFA may assume at the beginning of each chunk. Each chunk will be matched for
its reduced set of possible initial states. By introducing such a limited amount of redundant matching
computation for all but the first chunk, our DFA matching algorithm avoids speed-downs altogether
(i.e., the speculation is failure-free [30]). To achieve load-balancing, the input string is partitioned non-
uniformly according to processor capacity and work to be performed for each chunk. These properties
open up the opportunity for an entire new class of parallel DFA matching algorithms. We present the
time complexity of our matching algorithms, and we conduct an extensive experimental evaluation
on SIMD, shared-memory multicore and cloud computing environments. For experiments, we employ
regular expressions from the PCRE Library [34] and from the PROSITE protein pattern database [35].
We show the scalability of our approach for input-sizes of up to 10GB.

The paper is organized as follows. In Section 2, we introduce background material. In Section 3,
we discuss a motivating example for our speculative DFA matching algorithms. In Section 4, we in-
troduce our algorithms and their complexity with respect to speedup and costs. Section 5 shows three
implementations for SIMD, shared-memory multicore and cloud-computing environments. Section 6
contains experimental results. We discuss the related work in Section 7 and draw our conclusions in
Section 8.

2 Background

2.1 Finite Automata

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings over Σ. Cardinality |Σ|
denotes the number of characters in Σ. A language over Σ is any subset of Σ∗. The symbol ∅ denotes
the empty language and the symbol λ denotes the null string. A finite automaton A is specified by a
tuple (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → 2Q is a
transition function, q0 ∈ Q is the start state and F ⊆ Q is a set of final states. We define A to be a DFA
if δ is a transition function of Q ×Σ → Q and δ(q, a) is a singleton set for any q ∈ Q and a ∈ Σ. Let
|Q| be the number of states in Q. We extend transition function δ to δ∗: δ∗(q, ua) = p ⇔ δ∗(q, u) = q′,
δ(q′, a) = p, a ∈ Σ, u ∈ Σ∗. We assume that a DFA has a unique error (or sink) state qe.

An input string Str over Σ is accepted by DFA A if the DFA contains a labeled path from q0 to a
final state such that this path reads Str. We call this path an accepting path. Then, the language L(A)
of A is the set of all strings spelled out by accepting paths in A.

The DFA membership test determines whether a string is contained in the language of a DFA. The
DFA membership test is conducted by computing δ∗(q0, Str) and checking whether the result is a final
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q0start q1

qe

a

b

c

c a, b

a, b, c

Str = aaaaaaabcccc

(a) (b)

Fig. 1 Example DFA including the error state qe (a) and 12-symbol input string (b).

state. Algorithm 1 denotes the sequential DFA matching algorithm. As a notational convention, we
denote the symbol in the i th position of the input string by Str[i].

2.2 Amazon EC2 Infrastructure

The Amazon Elastic Computing Cloud (EC2) allows users to rent virtual computing nodes on which to
run applications. EC2 is very popular among researchers and companies in need of instant and scalable
computing power. Amazon EC2 provides resizable compute capacity where users pay on an hourly basis
for launched (i.e., up-and-running) virtual nodes. By using virtualized resources, a computing cloud
can serve a much broader user base with the same set of physical resources. Amazon EC2 virtual
computing nodes are virtual machines running on top of a variant of the Xen hypervisor. To create a
virtual machine, EC2 provides machine images which contain a pre-configured operating system plus
application software. Users can adapt machine images prior to deployment. The launch of a machine
image creates a so-called instance, which is a copy of the machine image executing as a virtual server
in the cloud. To provide a unit of measure for the compute capacities of instances, Amazon introduced
so-called EC2 Compute Units (CUs), which are claimed to provide the equivalent CPU capacity of a
1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor [3]. Because there exist many such CPU models
in the market, the exact processor capacity equivalent to one CU is not entirely clear. Instance types
are grouped into nine families, which differ in their processor, I/O, memory and network capacities.
Instances are described in [3]; the instances employed in this paper are outlined in Section 5. To create
a cluster of EC2 instances, the user requires the launch of one or more instances, for which the instance
type and the machine image must be specified. The user can specify any machine image that has been
registered with Amazon, including Amazon’s or the user’s own images. Once instances are booted,
they are accessible as computing nodes via ssh. A maximum of 20 instances can be used concurrently,
but this limit may be increased upon user request [4].

3 Overview

The core idea behind our speculative DFA matching method is to divide the input into several chunks
and process them in parallel. As a motivating example we consider the DFA depicted in Fig. 1. This
DFA accepts strings which contain zero or more occurrences of the symbol a, followed by exactly one
occurrence of symbol b, followed by zero or more occurrences of symbol c. For the exposition of this
motivating example we have included the DFA’s error state qe and its adjacent transitions, which are
depicted in gray. The DFA’s alphabet is Σ = {a, b, c}, and we consider the 12-symbol input string from
Fig. 1(b).

Assuming that it takes on the order of one time-unit to process one character from the input
string, Algorithm 1 will spend 12 time units for the sequential membership test. This is denoted by
the following notation, were a processor p0 matches the input string from Fig. 1(b). The DFA is in
state q0 initially.
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a a a a a a a b c c c c

p0: q0

Fig. 2 Notation: example input matched by processor p0 starting in DFA state q0.

To parallelize the membership test for three processors, the input string from Fig. 2 can be parti-
tioned into three chunks of four symbols each, and assigned to processors p0, p1 and p2 as follows.

c0 c1 c2

a a a a a a a b c c c c

p0: q0 p1: q0, q1 p2: q0, q1

Fig. 3 Dividing the input into equal-sized chunks.

Because the DFA will initially be in start state q0, the first chunk (c0) needs to be matched for
q0 only. For all subsequent chunks, the DFA state at the beginning of the chunk is initially unknown.
Hence, we use speculative computations to match subsequent chunks for all states the DFA may assume.
We will discuss in Section 4 how the amount of speculative computations can be kept to a minimum.
For our motivating example, we assume the DFA to be in either state q0 or q1 at the beginning of
chunks c1 and c2. As depicted by the partition from Fig. 3, processor p0 will match chunk c0 for
state q0, whereas processors p1 and p2 will match their assigned chunks for both q0 and q1. To match
a chunk for a given state, a variation of the matching loop (lines 1–3) of Algorithm 1 is employed.

After processors p0, p1 and p2 have processed their assigned chunks in parallel, the results from
the individual chunks need to be combined to derive the overall result of the matching computation.
Combining proceeds from the first to the last chunk by propagating the resulting DFA state from the
previous chunk as the initial state for the following chunk. According to Fig. 1, the DFA from our
motivating example will be in state q0 after matching chunk c0. State q0 is propagated as the initial
state for chunk c1. Processor p1 has matched chunk c1 for both possible initial states, i.e., q0 and q1,
from which we obtain that state q0 at the beginning of chunk c1 takes the DFA to state q1 at the end
of chunk c1. Likewise, the matching result for chunk c2 is now applied to derive state q1 as the final
DFA state.

To compute the speedup over sequential DFA matching, we note that processor p0 processes 4 input
characters, whereas processors p1 and p2 match the assigned chunks twice, for a total of 8 characters
per processor. The resulting speedup is thus 12

8 or 1.5 (Combining the matching results will induce
slight additional costs on the order of the number of chunks, as we will consider in Section 4).

c0 c1 c2

a a a a a a a b c c c c

p0: q0 p1: q0, q1 p2: q0, q1

Fig. 4 Balanced input partition according to the number of states matched by a processor.

An input partition that accounts for the work imbalance between the initial and all subsequent
chunks is depicted in Fig. 4. Because processors p1 and p2 match chunks for two states each, their chunks
are only half the size of the chunk assigned to processor p0. All processors now process 6 characters
each, resulting in a balanced load and a 2x speedup over sequential matching.

By considering the structure of DFAs, the amount of redundant, speculative computation can be
reduced. For the DFA in Fig. 1, we observe that for each alphabet character x ∈ Σ = {a, b, c}, there
is only one DFA state (except the error state qe) with an incoming transition labeled x. Thus, this
particular DFA has the structural property that for any given character x ∈ Σ, the DFA state after
matching character x is known a-priory to be either the error state or the state with the incoming
transition labeled x.
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a a a a

c0

p0: q0

a a a b

c1

p1: q0

c c c c

c2

p2: q1

Fig. 5 Balanced input partition considering one symbol reverse lookahead.

A processor can exploit this structural DFA property by performing a reverse lookahead to deter-
mine the last character from the previous chunk. From this character the DFA state at the beginning
of the current chunk can be derived. In Fig. 5, the reverse lookahead for our motivating example is
shown. Reverse lookahead characters are shaded in gray. Character a is the lookahead character in
chunk c0; only DFA state q0 from Fig. 1 has an incoming transition labeled a, thus the DFA must be
in state q0 at the beginning of chunk c1. Likewise, the DFA must be in state q1 at the beginning of
chunk c2, because state q1 is the only DFA state with an incoming transition labeled b (the lookahead
character of chunk c1). Note that for these considerations the error state qe can be ignored, because
once a DFA has reached the error state, it will stay there (e.g., see Fig. 1). Thus, to compute the DFA
matching result it is unnecessary to process the remaining input characters once the error state has
been reached.

Because now all processors have to match only a single state per chunk, the chunks are of equal
size. For three processors, we achieve a speedup of 3x over sequential matching for the motivating
example.

It should be noted that in the general case the structure of DFAs will be less ideal, i.e., there will be
more than one state with incoming transitions labeled by a particular input character. Consequently,
each chunk will have to be matched for more than one DFA state. We will develop a measure for
the suitability of a DFA for this type of speculative parallelization in Section 4. Our analysis of the
time-complexity of this method shows that for |P | > 1, a speedup is achievable in general. This has
been confirmed by our experimental evaluations on SIMD, shared-memory multicore, and the Amazon
EC2 cloud-computing environments. We will discuss the trade-offs that come with multi-character
reverse lookahead, and we will incorporate inhomogeneous compute capacities of processors to resolve
load imbalances. This is essential to effectively utilize heterogeneous multicore architectures, and to
overcome the performance variability of nodes reported with cloud computing environments [41,5].

4 Speculative DFA Matching

Our speculative DFA matching approach is a general method, which allows a variety of algorithms
that differ with respect to the underlying hardware platform and the incorporation of structural DFA
properties. We start this section with the formalization of our basic speculative DFA matching example
from Section 3. We then present our approach to exploit structural DFA properties to speed up parallel,
speculative DFA matching. Section 5 contains variants tailored for SIMD, shared memory multicores
and cloud computing environments.

4.1 The Basic Speculative DFA Matching Algorithm

Our parallel DFA membership test consists of the following four steps; the first step is only required
on platforms with processors of inhomogeneous performance.

1. Offline profiling to determine the DFA matching capacity of each participating processor,
2. partitioning the input string into chunks such that the utilization of the parallel architecture is

maximized,
3. performing the matching process on chunks in parallel such that redundant computations are

minimized, and
4. merging partial results across chunks to derive the overall result of the matching computation.
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q0start

q1

q2

q3

a

b

b

a

b

a

(a)

Str = bababbababbababbaaabbababbbaabbaaaba

(b)

Fig. 6 Example DFA (a) and input string with 36 symbols (b).

Processor mk wk L0 ·wk Input character range

p0 50 1.5 28.8 0–27
p1 25 0.75 3.6 28–31
p2 25 0.75 3.6 32–35

Table 1 Computation of chunk sizes for Fig. 6 and three processors of non-uniform processing capacities.

Offline Profiling: For environments with inhomogeneous compute capacities, our offline profil-
ing step determines the DFA matching capacities of all participating processors. This information is
required to partition work equally among processors and thus balance the load. With heterogeneous
multicore hardware architectures such as the Cell BE [16], offline profiling must be conducted only
once to determine the performance of all types of processor cores provided by the architecture. With
cloud computing environments such as the Amazon EC2 cloud [3], users only have limited control on
the allocation of cloud computing nodes. Moreover, the performance of cloud computing nodes has
been found to differ significantly, which is by a large extent attributed to variations in the employed
hardware platforms [41,5]. To compensate for the performance variations between cloud computing
nodes, offline profiling will be conducted at cluster startup time. Profiling cluster nodes in parallel
takes only on the order of milliseconds, which makes the overhead from profiling negligible compared
to the substantial cluster startup times on EC2 (on the order of minutes by our own experience and
also reported in [33]).

To account for performance variations, we introduce a weight factor wk, which denotes the processor
capacity of a processor pk, normalized by the average processor capacity of the system. On each
processor pk, our profiler performs several partial sequential DFA matching runs for a predetermined
number of input symbols on a given benchmark DFA. From the median of the obtained execution times,
we compute the number of symbols mk matched by processor pk per microsecond. The processor’s
weight factor wk is then computed as

wk = mk ·





1

|P |
·

∑

0≤i<|P |

mi





−1

. (1)

Columns “mk” and “wk” of Table 1 contain example matching capacities and corresponding weights
for a system of three processors. We will apply processor weights to partition the input string into
chunks as follows.

Input Partitioning: We observed already with our motivating example from Fig. 3 that parti-
tioning the input into equal-sized chunks will result in load-imbalance: because for the first chunk the
initial DFA state is known to be q0, the first chunk needs to be matched only once. All other chunks
must be matched for all possible initial states of the chunk , i.e., |Q| times, in the worst case. In what
follows, we will derive a partition of the input Str into |P | chunks, assuming that all except the first
chunk need to be matched for |Q| states. In Section 4.2, we will exploit structural DFA properties to
reduce the number of states to be matched per chunk.

Intuitively, because processor p0 has to match chunk c0 only once, it can process a larger portion of
the input Str than the processors assigned to subsequent chunks. (This was observed already in Fig. 4,
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where chunk sizes were adjusted such that all processors processed the same number of characters
from the input.) The objective of our optimization is to determine chunk sizes in such a way that
the processing times for all chunks are equal. The purpose of the following equations is to compute a
partition of the input into chunks ci, 0 ≤ i < |P |, where chunk ci is a sequence of symbols from the
input allocated to processor pi.

Let Li denote the length of chunk ci when 0 ≤ i < |P |, and n be the length of the input Str. Let us
further assume that matching of a character from the input takes constant time. Processor p0 matches
chunk c0 from starting state q0. All other chunks need to be matched for all possible initial states. To
keep work among processors balanced, chunk c0 must be |Q| times longer than the other chunks, i.e.,
it must hold that

Li =
L0

|Q|
, for 1 ≤ i < |P |. (2)

The lengths of all chunks must add up to n, namely
∑

0≤i<|P |

Li = n. (3)

If processors have non-uniform processing capacity, we incorporate weight factors from Eq. (1), such
that weighted chunk sizes must add up to n.

∑

0≤i<|P |

Liwi = n. (4)

Finally we solve the unknown L0 by substituting corresponding parts of Eq. (2) and (1) in Eq. (4),
i.e.,

L0 =
n · |Q|

w0 · |Q|+
∑

1≤i<|P | wi

. (5)

The start and end positions for each chunk ck, 0 ≤ k < |P |, are computed by the following equations.
(Note that for k = 1, the range for the sum over L0wi is 0.)

StartPos(ck) =







0, for k = 0,
⌊

L0w0 +
1
|Q|

∑

1≤i<k L0wi

⌋

otherwise
(6)

EndPos(ck) =







n− 1, for k = |P | − 1,

⌊L0w0 +
1
|Q|

∑

1≤i≤k L0wi⌋ − 1, otherwise
(7)

An example DFA and an input string of length n = 36 are presented in Fig. 6. The corresponding
chunk sizes for three processors with different processing capacities are depicted in Table 1. We observe
by Eq. (5) that the length L0 of chunk c0 is 19.2 characters, and the weighted length according to
processor weight w0 is 28.8 characters. From Eq. (2) we observe that the remaining chunks are four
times shorter than chunk c0, because they have to be matched for |Q| = 4 states. The weighted lengths
of chunks c1 and c2 are thus 3.6 characters each. The rightmost column of Table 1 depicts the character
ranges of the input as they have been assigned to each chunk.

Matching of Chunks: Algorithm 2 depicts our basic speculative DFA matching procedure. We
employ the notation introduced in [19] to denote a mapping of possible initial states to possible last

active states of a chunk. This mapping is required to store a chunk’s matching results for all possible
initial states. After matching chunks in parallel, the computed mappings will be used to derive the
overall DFA matching result. Formally, this mapping is defined as a vector

Li = [l0, l1, . . . , l|Q|−1],

where 0 ≤ i < |P | and lj ∈ Q for all 0 ≤ j < |Q|. Let element lj of Li denote the last active state,
assuming that processor pi starts in state qj and processes the DFA membership test on chunk ci, i.e.,
δ∗(qj , ci) = lj .
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As an example, we consider chunk c2 from Fig. 3 and the DFA from Fig. 1. Chunk c2 will be
matched for the possible initial states q0 and q1, with the resulting last active states qe and q1 and
the result vector L2 = [qe, q1]. The meaning of vector L2 is that if the DFA assumes state q0 at the
beginning of chunk c2, then it will be in state qe after matching chunk c2. If the DFA assumes state q1
at the beginning of chunk c2, then it will be in state q1 after matching chunk c2.

Our basic speculative DFA matching procedure employs Eqs. (6) and (7) to derive the start and
end position of each chunk (lines 4–5 of Algorithm 2). The algorithm distinguishes between the first
input chunk (lines 6–8) and all subsequent chunks (lines 9–12). According to our partitioning scheme,
chunk c0 is only matched for the start state q0 (lines 7–8). For all subsequent chunks ci, all possible DFA
states are matched and stored in vector Li. Chunk sizes are chosen according to processor weights and
the number of states to be matched with each chunk. The goal of this partitioning is to load-balance
the DFA matching to effectively utilize the underlying parallel hardware platform. We will discuss in
Section 4.4 that our partitioning scheme makes this speculation failure–free. The output of Algorithm 2
is the set of vectors Li, where each vector describes the possible last states according to the possible
initial states of a given chunk.

Algorithm 2: Basic speculative DFA matching
Input : δ, Q, Σ, P , Str = c0c1 . . . c|P |−1

Output: vector Li for each chunk ci
1 for i← 0 to |P | − 1 do in parallel

2 for j ← 0 to |Q| − 1 do

3 Li[j]← j ; // initialize vector Li

4 Start← StartPos(ci)
5 End← EndPos(ci)
6 if i = 0 then // chunk c0
7 for k ← Start to End do

8 L0[0]← δ(L0[0],Str[k])

9 else // chunks c1 . . . c|P |−1

10 foreach j ∈ Q do

11 for k ← Start to End do

12 Li[j]← δ(Li[j],Str[k])

Merging of Partial Results: After matching chunks in parallel, each processor pi has constructed
a mapping Li of possible initial states to last active states. To finish the DFA run, the partial results
computed for chunks ci need to be combined to determine the last active state for the DFA-run over
the whole input string Str = c0c1 . . . c|P |−1. Chunk c0 is the only chunk for which we know the initial
state of the automaton, i.e., q0. We use this information to apply the mappings Li sequentially to
derive the last active state as follows (it should be noted that index 0 of the L[. . .] mapping is the
index of the start state q0):

last active state = L|P |−1[L|P |−2[. . .L0[0] . . .]]. (8)

It has been shown in [19] how a binary reduction (see [27]) can be used to parallelize this computation.
A binary reduction uses a combining operation on two maps Li and Lj to derive the combined map Li,j

as depicted in Eq. (9).

Li,j =











Lj [Li[0]]
Lj [Li[1]]

...
Lj [Li[|Q| − 1]]











(9)

The reduction step above can be performed repeatedly in parallel to combine maps until we finally ar-
rive at the map L0,|P |−1 which represents the overall effect of a DFA. In particular, the value L0,|P |−1[0]
will be the last active state of a DFA’s run on the input Str.

The work in [19] does not provide an evaluation of the relative merits of sequential vs. parallel
merging of L-vectors. In particular, the details of the employed parallel reduction algorithm are not
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specified. We conducted experiments on a 40-core shared memory node of the Intel MTL using a binary
tree for the parallel reduction to find that the computation associated with the merging of L-vectors
is not large enough to justify the overhead of a parallel reduction. Especially the overhead from the
synchronization required between each of the O(log2(|P |)) reduction steps is costly.

Moreover, the overhead becomes significant if communication cost between nodes are introduced
such as with cloud computers. We describe our findings on the overheads of intra-node and inter-
node communication with the EC2 computing cloud in detail in Section 5. Section 5 introduces a new
L-vector merging technique to cope with the overhead on cloud computers.

In short, we applied the sequential merging from Eq. (8) with shared-memory multicore archi-
tectures and a new hierarchical merging technique for cloud computing architectures, which will be
explained in Section 5.

4.2 Optimizations Based on Structural DFA Properties

The amount of work associated with a given chunk is determined by (1) the length of the chunk, and
(2) the number of DFA states for which the chunk needs to be matched. In the following, we will
distinguish between the initial chunk c0, and subsequent chunks ci, i > 0. Before matching the initial
chunk c0, the DFA will be in the starting state q0, thus chunk c0 only needs to be matched for q0.
Prior to the matching of subsequent chunks, the DFA may assume any state in the general case, thus
subsequent chunks need to be matched |Q| times (see, e.g., the motivating example in Fig. 3). In this
section we will exploit structural properties of DFAs to deduce a potentially smaller number Imax ≤ |Q|
of states which is the upper bound of initial states for all subsequent chunks.

The best case, i.e., Imax = 1, has already been observed with our motivating example DFA from
Fig. 1. For each character σ ∈ Σ of this DFA, it holds that there is only one state targeted by a
transition labeled σ. Irrespective of the particular input character σ, the DFA can only assume a single
state after matching character σ. (As mentioned previously, for these considerations we may safely
disregard the error state qe, because from the error state no other state is reachable; thus, a DFA that
reached the error state will stay there.) If there is only one possible DFA state after matching an input
character, it follows that the DFA can only be in one state after matching the last character prior
to each subsequent chunk. Thus the DFA can only be in one possible state at the beginning of each
subsequent chunk, and we have Imax = 1.

In the general case, values for Imax can range between 1 and |Q|. In the remainder of this section,
we will investigate how to deduce this Imax value for a particular DFA, and how this information
can be incorporated with our speculative DFA matching algorithm. We will consider real-world DFAs
from PCRE and PROSITE to find that for all considered DFAs it holds that Imax < |Q|, and that
this property can be used to improve DFA matching performance. We have already observed with the
input partition in Fig. 5 that reducing the number of initial states of subsequent chunks enables us
to increase the sizes of subsequent chunks. Larger subsequent chunks will reduce the size of the initial
chunk c0 in turn. Because we adjust chunk sizes such that all chunks will be processed in the same
amount of time, reducing the size of the initial chunk c0 will reduce the overall execution time of the
matching process. The overarching reason for this performance improvement is that the reduction of
potential initial states reduces the total number of symbols that have to be matched per chunk.

This can be formalized as follows. Let Imax denote the maximum number of possible initial states
that the DFA may assume at the start over all subsequent chunks. This maximum can be different for
each chunk, depending on the last character of the preceding chunk. We assume that for Imax we pick
the maximum value out of all possible sets of initial states over all chunks. If Imax < |Q|, then the
length L0 of chunk c0 reduces by Eq. (5):

L0 =
n · Imax

w0 · Imax +
∑

1≤i<|P | wi

<
n · |Q|

w0 · |Q|+
∑

1≤i<|P | wi

. (10)

To deduce the maximum value for Imax, we eliminate states that can never be the initial state
for a given chunk. For each character σ ∈ Σ, a DFA will contain a number of states that have an
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incoming transition labeled σ. Thus, if the last character of a chunk’s preceding chunk is σ, then only
the states with an incoming transition labeled σ need to be matched. We call the last input character
of a chunk’s preceding chunk the reverse lookahead symbol. The number of states to be matched for a
reverse lookahead symbol σ ∈ Σ is a static property of a DFA. It will range between 1 and |Q|. The
maximum number of states to be matched over any reverse lookahead symbol constitutes an upper
bound on Imax, i.e., an upper bound on the number of states to be matched for any subsequent chunk.
Because Imax is a static DFA property, we can use it to partition the input into chunks according to
Eq. (10). At run-time, a processor will use the reverse lookahead symbol to determine the initial states
to be matched for its assigned chunk.

Given lookahead symbol σ, we define the set of initial states Iσ as the set of all states that have
an incoming transition labeled σ.

Iσ = {s : δ(x, σ) = s}, ∀s, x ∈ Q. (11)

If symbol σ is the reverse lookahead symbol of chunk ci, then the set of possible initial states for
chunk ci is Iσ. We compute the set of possible initial states for all symbols from the DFA’s alphabet Σ
and set Imax to the maximum cardinality among those sets, i.e.,

Imax = max
σ∈Σ

(|Iσ|) . (12)

As an example, consider the DFA from Fig. 6(a). Fig. 7 shows the input string partitioned for three
processors of equal capacity, i.e., w0 = w1 = w2 = 1. The reverse lookahead symbols are depicted
in gray. No reverse lookahead is required for chunk c0, which will be matched from the DFA’s start
state q0. Because the reverse lookahead symbol σ of chunk c1 is an ‘a’, upon matching of chunk c1 the
DFA can only be in a state that has an incoming transition labeled ‘a’. Likewise, because the reverse
lookahead symbol of chunk c2 is ‘b’, the DFA can only be in a state that has an incoming transition
labeled ‘b’ upon matching of chunk c2. We get Ia = {q1, q3}, Ib = {q2, q3}, and Imax = 2. Inserting
n = 36, Imax = 2, |Q| = 4 and w0 = w1 = w2 = 1 in Eq. (10) yields L0 = 18 < 24 and a speedup of
24
18 = 1.3̇ over the non-optimized matching procedure.

Str : bababbababbababbaa abbababbb aabbaaaba

c0 c1 c2

p0: q0 p1: q1, q3 p2: q2, q3
Fig. 7 Partitioned input string with reverse lookahead symbols and set of initial states to be matched for each chunk.

Algorithm 3 applies initial state sets with the DFA matching procedure. Lines 1–7 compute initial
state sets Iσ from Eq. (11) and Imax from Eq. (12). Unlike Algorithm 2, the partitioning is now based
on the maximum number of possible initial states, Imax, instead of |Q|. The StartPos and EndPos
functions that compute the start and end position of each chunk now receive Imax as the second
argument (lines 11–12 in Algorithm 3). We updated Eqs. (6) and (7) to include an additional parameter
to pass Imax. In Eqs. (5)–(7), instead of |Q| we then use the provided argument value to partition the
input string and to compute the start and end position of each chunk.

Because the maximum number of initial states Imax is a static property of a DFA, it can be
computed off-line. The overhead to compute Imax can thus be avoided with DFAs that are matched
multiple times. For example, with protein patterns maintained in databases, corresponding DFAs
can be expected to be matched on several DNA sequences. However, with all our experiments, we
computed Imax online for every matching run (as stated in Algorithm 3), to account for the general
case were a DFA is matched only once.

Another possible optimization of Algorithm 3 concerns the distribution of cardinalities of initial
state sets Iσ. If the maximum value Imax is significantly larger than the average, then it is desirable to
divide the input at boundaries with reverse lookahead symbols that have a small initial state set. This
would further decrease the number of possible initial states of subsequent chunks. However, searching
the input for the occurrence of particular characters constitutes an effort similar to the matching
process itself. Moreover, relying on statistical properties of the input string (i.e., the occurrence of
particular characters in the input) may violate the failure-freedom of our speculation: if a reverse
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lookahead symbol with a low set of initial states cannot be found, then additional states need to be
matched, resulting in a possible speed-down. In contrast, by considering Imax states, our optimization
always shows equal or better performance than the non-optimized matching procedure that has to
match all states in Q.

4.3 Multiple Reverse Lookahead Symbols

As discussed in the previous section, a smaller Imax constant will decrease the number of symbols to be
matched per chunk, thereby increasing DFA matching performance. We can potentially decrease the
number of possible initial states, if we employ additional reverse lookahead symbols with each chunk.
Given a string of reverse lookahead symbols σ1 . . . σk, k ≥ 1. We number the reverse lookahead symbols
in the order they are matched by the DFA, which is the reverse order of the lookahead itself. The set
of initial states Iσ1...σk

constitutes the set of all states that are the target of a path through the DFA
labeled by a string with postfix σ1 . . . σk, i.e.,

Iσ1...σk
= {s : δ∗(x, σ1 . . . σk) = s}, ∀s, x ∈ Q. (13)

Let Imax,r be the maximum number of possible initial states when using r reverse lookahead symbols
(in particular, Imax,1 = Imax). Algorithm 4 shows for a reverse lookahead of two characters how to
compute initial state sets Iσ1,σ2

and constant Imax,2. The time complexity for computing Imax,r is
O (|Σ|r · |Q|+ |Q|), i.e., the algorithm is exponential in the number r of reverse lookahead symbols.

The following lemma establishes that when increasing the amount of reverse lookahead symbols,
the maximum number of possible initial states Imax,r of a DFA is bounded above by Imax.

Lemma 1 Given a DFA, it holds that Imax = Imax,1 ≥ Imax,2 ≥ . . . ≥ Imax,ω, where ω denotes the

length of the longest accepting path through the DFA.

Proof. Indirect. Without loss of generality we assume a DFA with exactly one of its transitions labeled
by a symbol σ ∈ Σ, and state q being the target state of this transition. For this DFA, |Iσ| = 1. Given
another symbol σ′ ∈ Σ, we assume that |Iσ′σ| = 2. Then by the definition of Iσ′σ in Eq. (13), this DFA

Algorithm 3: DFA matching applying initial state sets
Input : δ, Q, Σ, P , Str = c0c1 . . . c|P |−1, q0
Output: vector Lpi

for each chunk ci
1 foreach σi ∈ Σ do

2 Iσi
← ∅

3 foreach s ∈ Q do

4 qtarget ← δ(s, σi)
5 if qtarget 6= qe then

6 Iσi
← Iσi

∪ qtarget

7 Imax ← max(Iσ0
, . . . , Iσ|Σ|−1

)

8 for i← 0 to |P | − 1 do in parallel

9 for j ← 0 to |Q| − 1 do

10 Li[j]← j // initialize vector Li

11 Start← StartPos(ci,Imax)
12 End← EndPos(ci, Imax)
13 if i = 0 then // chunk c0
14 for k ← Start to End do

15 L0[0]← δ(L0[0],Str[k])

16 else // chunks c1 . . . c|P |−1

17 foreach j ∈ Ici do

18 for k ← Start to End do

19 Li[j]← δ(Li[j],Str[k])
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Algorithm 4: Initial state set Iσ1σ2
and Imax,2 computation for 2-character reverse lookahead

Input : δ, Q, Σ
Output: Iσ1σ2

,Imax,2

1 foreach σ1 ∈ Σ do

2 foreach σ2 ∈ Σ do

3 Iσ1σ2
← ∅

4 foreach q ∈ Q do

5 Iσ1σ2
← Iσ1σ2

∪ (δ(δ(q, σ1), σ2) \ {qe})

6 Imax,2 = maxσ1,σ2∈Σ (|Iσ1σ2
|)

must have two distinct states that are the target of a path labeled by a string with postfix σ′σ. However,
this implies that these two target states have an incoming transition labeled σ, which contradicts our
initial assumption that |Iσ| = 1. Thus for any two symbols σ and σ′, it holds that |Iσ| ≥ |Iσ′σ|. The
extension to the general case |Iσ1...σk

| ≥ |Iσ′σ1...σk
| is straightforward and the lemma follows.

4.4 Time Complexity

The time complexity of sequential DFA matching is O(n), where n is the length of the input string.
Our basic speculative DFA matching approach from Section 4.1 distinguishes the first chunk from
subsequent chunks to partition the input string such that the matching load is balanced. The time
required for parallel matching is on the order of

O

(

n · |Q|

|Q|+ |P | − 1

)

. (14)

The speedup of Algorithm 2 over sequential matching is thus on the order of

O

(

1 +
|P | − 1

|Q|

)

. (15)

It follows that in terms of algorithm complexity, this approach will not produce a speed-down, i.e., it
is failure-free.

Eq. (16) shows the time complexity of parallel DFA matching with reduced sets of potential initial
states from Section 4.2. Because computing Imax,r constitutes overhead, we have an additional term
O(|Q| · |Σ|r), where r is the number of reverse lookahead symbols.

O

(

|Q| · |Σ|r +
n · |Imax,r|

|Imax,r|+ |P | − 1

)

(16)

If n ≫ |Q|, or if Imax,r is computed off-line, the additional term can be neglected. Even when computing
Imax,r on-line, for all considered cases the approach with reduced sets of potential initial states showed
better performance.

Our method is capable of utilizing processors of different processing capacities, which is relevant for
heterogeneous multiprocessors and for cloud computing environments. Different processor weights w

encode processors’ capacities. Because we employ weights to calculate chunk sizes for processors, we
encode different processing capacities in the size of each processor’s chunk. If we do not apply weights
for processors of different processing capacities, the following equation describes the overall time com-
plexity,

O

(

nm

m+ p− 1

)

, (17)
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Name CPU Model CPUs Cores
CPU

Clock Freq. Note

Intel MTL Intel Xeon E7-4860 4 10 2.27 GHz n/a
SDE emula-
tor on local
server

AVX2/Haswell on
Intel Xeon E5405
host

n/a n/a n/a n/a

Amazon EC2
(m2.4xlarge)

Intel Xeon X5550 2 4 2.67 GHz 26 EC2 CUs

Amazon EC2
(cc2.8xlarge)

Intel Xeon E5-2670
Sandy Bridge

2 8 2.60 GHz 88 EC2 CUs

Table 2 Hardware Specifications

where p = |P | × wworst and wworst = min(w0, w1, ..., w|P |−1) and m is either |Q| or |Imax,r|. Incorpo-
rating reduced sets of potential initial states with Eq. (15) yields a speedup on the order of

O

(

1 +
|P | − 1

|Q| · γ

)

, (18)

where the ratio γ =
Imax,r

|Q| of reduced sets of potential initial states Imax,r to |Q| constitutes a structural

DFA property. We have 0 < γ ≤ 1, where the magnitude of actual values for γ is negatively correlated
to the profitability of our optimization for particular DFAs.

5 Implementation

We implemented our speculative DFA matching algorithms for the three architectures summarized
in Table 2. For our shared-memory multicore architecture implementation we were granted access to
the Intel Academic Program Manycore Testing Lab (Intel MTL, [20]), which is an experimental envi-
ronment of non-commercial, 40-core nodes provided by Intel mainly for educational purposes. POSIX
threads [11] were used to parallelize DFA matching across multiple cores. To vectorize our speculative
DFA matching algorithm, we employed version 2 of the Advanced Vector Extensions (AVX2) of the
forthcoming Intel Haswell CPU architecture [21]. The AVX2 instruction set provides 256 bit registers
enabling 8-fold vectorization on 32-bit integer and single precision floating point data types. AVX2
is the first x86 instruction set extension to provide a gather-operation for vectorized indexed read
operations from memory (vectorized register-indirect addressing). To the best of our knowledge, we
are the first to utilize gather operations to vectorize DFA matching. Because the Haswell architec-
ture is scheduled to be released in 2013, there is no processor available yet which supports AVX2
instructions. Hence, we used Intel’s Software Development Emulator (SDE, [22]) to emulate AVX2
instructions. To evaluate our approach in a cloud computing environment, we employed m2.4xlarge
and cc2.8xlarge instances of the Amazon EC2 elastic computing cloud [3]. Each EC2 instance provides
a nominal dedicated compute capacity stated in Amazon’s proprietary Compute Unit (CU) measure.
Hardware specifications of the used Amazon EC2 instance types (nodes) are given in Table 2. For our
experiments, we employed 20 instances with a total of 320 physical cores. For communication across
threads, the MPI message passing interface was used.

We tailored our DFA data-structures to maximize performance and to utilize the AVX2 instruction
set, in particular the novel AVX2 32-bit gather operations. To generate minimal DFAs from regular
expressions, we use Grail+ [37,15], which is a formal language toolset for the manipulation and ap-
plication of regular expressions and automata. Our DFA matching framework reads DFAs and input
strings in Grail+ format and converts them to our framework’s internal representation.

DFA transition tables are usually represented as 2-dimensional arrays, with rows for each state
and one column for each character x ∈ Σ. With our representation, 2-dimensional arrays are flattened
into consecutive, 1-dimensional arrays. This representation allows to store multiple DFAs of different
alphabet sizes, and it facilitates application of AVX2 gather operations (i.e., gather operations allow
1-dimensional indexed reads only). Fig. 8(a) shows our running example DFA from Fig. 6 and the
DFA’s Grail+ format (Fig. 8(b)). Our transition table representation is given in C-like pseudo code
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q0start

q1

q2

q3

a

b

b

a

b

a

(START)|- 0
0 a 1
0 b 2
1 b 3
2 a 1
2 b 3
3 a 3
3 -|(FINAL)

SBase = { 1, 2,

4, 3,

1, 3,

3, 4,

4, 4 };

(a) (b) (c)

Str=bababbababbababababa

IBase={1,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0};

(d)

Fig. 8 Example DFA (a), Grail+ format (b), SBase 1-dimensional transition table representation (c), and representation
of the DFA input (d).

in Fig. 8(c). Grail+ encodes DFA states as integers. Lines in Grail+ format represent triples 〈 source-
state, transition-label, target-state〉, with the start and accepting states indicated on separate lines. Our
DFA representation encodes states as row-indexes into the DFA transition table. Note that State 4
represents the error-state qe. Row-indexes are calculated relative to the base address SBase of the
array. In case of a second DFA stored after the running example, the second DFA’s row indexes will
also be stored relative to SBase. For the input string, we introduce a 1-dimensional array IBase of
integers. For example, in Fig. 8(d), character a is mapped to the value 0, and character b is mapped
to 1. Multiple DFA input strings may be concatenated in array IBase. Generation of this DFA and
input string representation can be trivially implemented while parsing the Grail+ DFA input data.
Our representation allows to run a single DFA simultaneously on multiple input strings, or to match
multiple DFAs on one or more input strings.

Listing 1 Baseline matching routine in C for a possible initial state of a chunk

1 // Get address of first and last character of chunk:

2 INPUT_T * curPtr =& IBase[StartPos ];

3 INPUT_T * endPtr =& IBase[EndPos ];

4

5 // Get starting state and perform matching:

6 STATE_T CurrentState= InitialState*NrSymbols ;

7 for ( ; curPtr != endPtr ; curPtr ++) {

8 CurrentState=SBase[ CurrentState + *curPtr ];

9 }

Listing 1 shows how a chunk is matched for one possible initial state on multicore architectures.
It should be noted that by encoding the transition table’s DFA states as offsets relative to the SBase

base address, 2-dimensional table lookups of conventional DFA representations are simplified to a 1-
dimensional lookup that avoids the rows-times-columnmultiplication of 2-dimensional arrays—with our
representation, we only add the current state’s offset to the current input symbol (line 8 of Listing 1).
We employ pointers to access the input and to detect loop termination, thereby avoiding the need for
maintaining a separate loop counter variable. When compiled to x86-64, this matching loop consists of
only two add operations, one comparison, one indexed load and one conditional jump, which compares
favorable to Grail+’s matching loop implemented in C++, which requires more than an order of
magnitude more instructions for the same purpose. We used a variant of Listing 1 for sequential DFA
matching. This sequential matching routine was used as an efficient yardstick for the comparison to
our parallelized matching algorithms, because we found our sequential matching routine to be more
efficient than Grail+, and the closest approach from the related work, i.e., [19], incurred slowdowns
over sequential matching (see Fig. 11 and Section 7).
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node leader

L0,|C|−1

L0 L1 L|C|−1 n/a

intra-node
communication:

inter-node
communication:

node leader

L|P |−|C|,|P |−1

L|P |−|C| L|P |−1 n/a

master

L0,|P |−1

workers

node 0 node
⌈

|P |
|C|

⌉

Fig. 9 Hierarchical merging of L-vectors to reduce message delay and variability on EC2. The number of available
processing cores is denoted by |P |, and the number of cores allocated per node is denoted by |C|. One core per node
is left unallocated, to avoid performance degradation with hypervised EC2 nodes. Unallocated cores are denoted by
symbol “ ”.

5.1 Vectorized DFA matching using AVX2 instruction set extensions

Listing 2 Vectorized DFA matching of chunks using AVX2 intrinsics

1 int i;

2 __m256i InpSyms , Ones = _mm256_set1_epi32 (1);

3

4 // Load initial indices into SBase and IBase arrays :

5 __m256i States = _mm256_load_si256 (( __m256i const *) CStatesInit );

6 __m256i InpIdx = _mm256_load_si256 (( __m256i const *) CInputInit );

7

8 for (i = ChunkLength ; i>0; i--) {

9 // Load input characters from IBase , indexed by InpIdx :

10 InpSyms = _mm256_i32gather_epi32 (IBase , InpIdx , 4);

11 // Calculate indices of next states :

12 States = _mm256_add_epi32 (States , InpSyms );

13 // Load next state values from SBase , indexed by States :

14 States = _mm256_i32gather_epi32 (SBase , States , 4);

15 // increase input indices by one:

16 InpIdx = _mm256_add_epi32(InpIdx , Ones);

17 }

Listing 2 shows our core matching loop with 8-fold vectorization employing AVX2 vector instruc-
tion intrinsics [21]. Data type m256i represents an 8-way vector containing 8 32-bit int variables.
Variables States and InpIdx contain the indices into the state transition table SBase and the input
array IBase. They are initialized to precomputed starting-positions of chunks in lines 5 and 6. We
use the mm256 i32gather epi32 intrinsic to perform vectorized, indexed loads from the SBase and
IBase arrays. For example, in line 8, 8 input characters are loaded from IBase. Note that the offsets in
vector InpIdx are scaled by a factor of 4 (the third argument of the intrinsic), to account for the 32-bit
size of type int. For further details on the used intrinsics, we refer to [21]. The reason to count the
loop index variable down instead of up is because the decrement instruction will already set the x86
CPU’s sign flag when we cross zero. This way we save a cmp instruction which yields additional 12% of
performance improvement. Neither GCC nor Intel’s ICC managed to generate optimal assembly code
from Listing 2, which required us to use inline assembly instead. Auto-vectorization of sequential DFA
matching is out of reach for compilers, because of the dependencies between current and next DFA
state.

5.2 DFA Matching on Cloud Computing Architectures

With our implementation for the EC2 cloud computing environment, we employed MPI-based message-
passing to communicate between cores for merging L-vectors. The chosen MPI implementation was
MPICH2 version 1.4 [1]. As mentioned previously, parallel reduction based on binary trees did not
achieve satisfactory performance. We found the message transfer times of messages between EC2 nodes
too high to make binary reduction profitable. E.g., the average inter-node transfer time for a single
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L-vector was 362µs, with a standard-deviation of 3.6%. In comparison, the same intra-node message
would take on average only 2.68µs, with a standard-deviation of 0.14%. This observation is in line
with a recent study that reports large delay variations and unstable network throughput for the EC2
cloud [46].

To account for the message delay and variations on EC2, we devised a variant of parallel reduction
that is hierarchical with respect to intra-node and inter-node communication. This 2-tier merging
approach is based on the observation that intra-node messages showed substantially lower message
transfer times and variations than inter-node communication. Our reduction proceeds in two steps, as
depicted in Fig. 9. In the first step, L-vectors are merged locally by a designated node leader. In the
second step, node leaders send their L-vectors to the master process which combines them to compute
the overall matching result. Without loss of generality, this 2-step merging scheme requires that on
each EC2 node, DFA-matching worker processes are allocated to adjacent chunks. Our worker-to-node
allocation scheme is parameterized by the number of cores to utilize per node, denoted by |C|. For
reasons explained below, we leave one core unallocated per EC2 node. Fig. 9 depicts the computation
of L-vectors by workers (for one chunk), node leaders (the combined map over all chunks matched on a
node) and the master (the overall map from the first to the last chunk). Unallocated cores are denoted
by symbol “ ”).

Our two-tier merging scheme outperformed parallel binary reduction and sequential merging for
even the largest EC2 clusters (i.e., up to 20 nodes, which is the maximum possible EC2 cluster size [4]).
We found MPI messages among processes on the same node to show both low latency and low vari-
ability. We conjecture that MPICH2 applies shared-memory message passing optimizations similar
to [24] for node-local communication. Moreover, node-local communication is free from delay vari-
ations induced by the network that connects nodes. Therefore, with our merging scheme the only
communication step subjected to EC2’s message variability is the merging step conducted by the
master. This compares favorably to any parallel reduction scheme with more than one reduction step
involving inter-node communication, because each such reduction step may suffer from message delays
caused by the underlying network.

As mentioned above, we deliberately left one core per EC2 node unallocated. We observed that
without sacrificing one core per EC2 node, there was a high probability that one of the workers
on each node would experience a matching performance on the order of one magnitude lower than
the workers on the remaining cores. This performance degradation did not affect the offline profiling
step, for which we took the median of a series of partial matching runs. However, this performance
degradation randomly showed with DFA matching. Because we could not reproduce this problem
on a local cluster of Linux computers, we attribute this performance degradation to EC2 hypervisor
activities that occasionally preempted the execution of one arbitrary worker thread per node. Leaving
one core unallocated on EC2 eliminated this problem. Given the increasing numbers of cores per CPU,
leaving one core unallocated can be considered an increasingly small sacrifice (e.g., our experiments
were conducted with EC2 nodes providing 8 and 16 cores, respectively).

6 Experimental Results

We conducted experiments for both our basic and optimized speculative matching algorithms and the
approach of Holub and Štekr presented in [19]. We employed 299 regular expressions from the PCRE
library [34] and 110 protein patterns from the PROSITE protein database [35]. Protein patterns were
selected as an example for the application domain of DNA sequence analysis. We compared our algo-
rithms to the baseline sequential DFA matching algorithm from Section 5 and to the currently used
matching engine that comes with PROSITE. All PCRE regular expressions and PROSITE protein
patterns were converted to unique minimum DFAs using Grail+ [37,15]. All experiments except the
experiments on EC2 were conducted with inputs of one million characters. Because we employed up to
288 cores on EC2, the problem sizes of one million characters turned out too small for precise perfor-
mance measurements. Thus we used inputs of 8 million characters on EC2. We show the scalability of
our approach on both the MTL and the EC2 platforms for up to 10 billion characters in Section 6.3.
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Note that for increased readability we represent speed-downs by negative values instead of fractional
values. For example, conventional denotation for a 2x speed-down is 1

2 but we use -2.
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(a) PROSITE speedups, incl. Imax opt.
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(d) PCRE speedups of Imax opt.

Fig. 10 Speedups on a shared-memory 4 CPU (40 cores) node of the Intel MTL for PROSITE patterns (a) and
PCRE (c), including the Imax optimization for four symbols reverse lookahead. Fig. 10(b) and Fig. 10(d) show speedups
achieved by the Imax optimization over matching for |Q|.

Fig. 10 shows the results of our speculative parallel DFA membership test with and without applying
four symbol reverse lookahead, for the PROSITE and PCRE benchmark suites conducted on the Intel
MTL. We used GCC 4.5.1 on RedHat RHEL 5.4 (x86 64 kernel version 2.6.18-164.el5). x-axes denote
the number of states |Q|, and y-axes denote the speedup over sequential matching. We note the
following observations: (1) Our algorithms always show better performance than sequential matching,
despite the overhead from redundant computations incurred by speculative parallelization. Redundant
computations constitute matching of subsequent chunks for multiple DFA states, which contrasts
sequential DFA matching where the input is only matched for the start state q0. (The red horizontal
lines denote the break-even point where the speedup over sequential matching is 1.) The fact that
there are no speed-downs validates the failure-freedom of our speculative parallelization. (2) Speedups
are always proportional to |P |, as predicted by the complexity analysis in Section 4.4. This proves
our basic assumption that the number of symbols to be processed per processor decides the overall
matching time despite the overhead due to parallelization. The performance improvements due to our
Imax optimization are shown in Fig. 10(b) and Fig. 10(d).

This result compares favorable to an approach presented in [19], which has a complexity of O(n · |Q|
|P | )

and thus achieves speedups only if the number of processors is larger than the number of states. We
evaluated the approach from [19] for both PCRE and the PROSITE patterns, as depicted in Fig. 11.
In-line with the algorithm’s complexity results, the previous approach cannot achieve speedups when
|P | ≤ |Q|. We observed an almost 390x speed-down for a DFA with 788 states. In contrast, our
algorithm achieved a speedup between 2.3x and 38.8x for PCRE, and between 1.3x and 19.9x for
PROSITE.

Another experiment conducted on the MTL is the comparison to ScanProsite [14,39], which is the
reference implementation from the PROSITE protein database. ScanProsite is used to detect signature
matches in protein sequences. The tool is implemented in Perl; it can be used to find all substrings that
match a certain PROSITE pattern. We parameterized ScanProsite to find only one match to compare
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Fig. 11 Performance of the approach from [19] on the Intel MTL.
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Fig. 12 Performance of our approach compared to ScanProsite (a) and the UNIX grep utility (b).

with our optimized DFA matching algorithm which determines whether an input string contains a
certain pattern or not. For a second comparison, we employed the UNIX grep utility with ScanProsite.
Grep constructs a DFA and uses the Boyer-Moore algorithm for matching [17]; it is faster than Perl
which uses backtracking [13]. As shown in Fig. 12, our algorithm using four symbol reverse lookahead
is 559.3 to 15079.7 times faster than ScanProsite, and 62.1 to 23572.0 times faster than the UNIX grep

utility.

6.1 Performance of Vectorized DFA Matching Using AVX2 Instruction Set Extensions

At the time of writing, CPUs supporting AVX2 instruction set extensions were not commercially
available. To validate our vectorized code, and to get an indication on the speedups obtainable with
AVX2, we resorted to Intel’s SDE emulator [22], version 4.46.0. SDE is not cycle-accurate, but it
provides the number of machine instructions “executed” by the emulated binary. We used the number
of executed machine instructions as the basis of our performance comparison of scalar and vectorized
code. Speedup throughout Section 6.1 thus denotes a ratio of executed machine instructions, as opposed
to observed execution time. Performance on real hardware, e.g., Intel’s Haswell microarchitecture, must
be expected to vary to the extent of variations in the cycles per instruction (CPI) between scalar and
vectorized code. For compilation of code with AVX2 intrinsics, we used ICC version 12.1.4.

Fig. 13 compares the speedups of scalar and vectorized DFA membership tests applying the Imax

optimizations for one symbol lookahead. Eight-fold vectorization using AVX2 instructions achieved
a 4.45x improvement over scalar code. Furthermore, we observed that the expected speedups on an
emulated 8-core machine with AVX2 are on the order of magnitude of a 40-core node of the MTL.
The speedups range from 1.2x to 35.7x for PCRE and 0.7x to 13.2x for PROSITE. Speedup is again
proportional to |P |, showing that vectorization is in-line with our complexity analysis from Section 4.4.
We observed a 16.0% speed-down on average (maximum 31.5%) with very large DFAs due to the
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Fig. 13 Speedups from AVX2 8-fold vectorization for PROSITE patterns (b) and PCRE (d). Fig. 13(a) and Fig. 13(c)
depict the achieved speedups without vectorization.

overhead of our parallelization for SIMD operations. This speed-down is not innate to the algorithms,
but due to our implementation, in particular the way chunks are allocated to SIMD vector units.
The speed-down can be overcome by increasing the problem size (which we refrained from, to keep
experiments consistent).

6.2 DFA Matching Performance on Cloud Computing Architectures

We conducted experiments on the Amazon EC2 elastic computing cloud to determine the performance
of our speculative DFA matching algorithms on distributed-memory architectures, employing up to
20 nodes and 288 cores. We explored the adaptation of our load-balancing approach to EC2 nodes
of varying processing capacities. For the convenience of operating a cluster of EC2 nodes, we used
StarCluster [44] version 0.93.3, an open source cluster-computing toolkit for EC2.

Experiments were conducted on up to 20 cc2.8xlarge EC2 instances, which provide 16 cores per
node. We again employed four symbols reverse lookahead with our approach. For reasons discussed in
Section 5.2, we occupied 15 out of 16 cores, resulting in 300 cores in total. For better presentation,
Fig. 14 shows our experimental results with cluster sizes that are a multiple of 32 cores. We used
version 1.4 of the MPICH2 MPI implementation [1], which provided higher performance on EC2 than
OpenMPI [32] version 1.4.3.

We found the communication costs between nodes an important factor on the EC2 cloud. We instru-
mented our matching framework to determine the communication overhead. Fig. 14(a) and Fig. 14(c)
show speedups including communication costs, and Fig. 14(b) and Fig. 14(d) depict the ratio of time
spent for communication to overall execution time. Although graphs shown in Fig. 14 are irregular due
to the instability of the EC2 network, we can observe that the communication costs increase as the
number of processors grows. The communication cost decreases as |Q| grows, which follows from the
fact that the required matching time increases with |Q|, which de-emphasizes communication costs.
This observation explains why PCRE benchmarks, which show smaller Imax constants and smaller sets
of possible initial states, are more impacted by communication overhead than PROSITE benchmarks.
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Fig. 14 Performance on cloud computers (cc2.8xlarge instance type on EC2) with PROSITE patterns (a) and PCRE (c).
Fig. 14(b) and Fig. 14(d) show proportional overhead of MPI communication cost with PROSITE patterns and PCRE
respectively.

EC2 Instances PROSITE PCRE
Fast Slow Min. Avg. Max. Min. Avg. Max.

0 5 0.0036 0.0102 0.0298 0.0046 0.0149 0.0696
1 4 0.0031 0.0086 0.0360 0.0036 0.0108 0.0355
2 3 0.0033 0.0090 0.0275 0.0062 0.0121 0.0427
3 2 0.0051 0.0116 0.0248 0.0083 0.0186 0.0707
4 1 0.0060 0.0130 0.0700 0.0093 0.0194 0.0707
5 0 0.0056 0.0119 0.0305 0.0095 0.0188 0.0412

Table 3 Effectiveness of the load-balancing scheme on six configurations of inhomogeneous clusters consisting of two
types of Amazon EC2 instances, m2.4xlarge and cc2.8xlarge

The goal of our load-balancing mechanism is to determine chunk sizes such that all processing cores
are utilized equally, i.e., take equally long for matching their assigned chunk. Processor capacities are
incorporated in the form of weights (see Eq. (4)). To evaluate the load-balance achieved with our spec-
ulative DFA matching computations, we used two different types of Amazon EC2 instances, namely
cc2.8xlarge (denoted as “Fast” in Table 3) and m2.4xlarge (denoted as “Slow” in the second column
of the table). Although the clock frequencies of these EC2 instance types do not differ much (see Ta-
ble 2), the difference of the processor capacities is observable. We found the ratio of actual processing
capacity of cc2.8xlarge compared to m2.4xlarge to be 1.41 on average, meaning that cc2.8xlarge on
average computes 41% faster than m2.4xlarge. For this experiment, we allocated inhomogeneous clus-
ters consisting of various numbers of cc2.8xlarge and m2.4xlarge instances. To get an indication for the
effectiveness of our load-balancing scheme, we determined the standard-deviations of DFA matching
times across all cores of such inhomogeneous EC2 clusters. A balanced load would then be indicated
by standard deviations close to zero. E.g., the experiment from row 5 was conducted on a mix of
four cc2.8xlarge instances and one m2.4xlarge instance. The maximum observed standard deviation
of execution times was 7.0%, with 0.6% minimum standard deviation and 1.3% average across the
PROSITE benchmark suite. During experiments, we noticed that capacities of cluster nodes could
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Fig. 15 Speedups on the Intel MTL node over sequential matching, without Imax optimization. Observed speedups
closely follow the prediction from Eq. (15). The predicted speed-up for 40 cores is shown by the graph labelled “P=40
(predicted)”.

change slightly across cluster invocations, making the re-estimation of processor capacities necessary
at cluster startup time. (This is in line with the findings from [41], on performance unpredictability of
cloud computing environments.) Hence the adaptability of our load-balancing scheme with respect to
processor capacities is essential on cloud computing environments. Our observed proportional standard
deviations of execution times are very low, around 1% on average, as shown in Table 3. In particular,
the presented load-balancing scheme adapts well to different configurations of inhomogeneous clusters.

6.3 Performance Impact of Structural DFA Properties and Scalability to Large Input Sizes

If we regard the number of processing cores as a constant, then the expected speedup of the proposed
speculative DFA matching approach solely depends on the number of DFA states |Q| (see Eq. (15)).
Fig. 15 shows the speedups that we obtain without the Imax optimization. The line labeled “Theoret-
ical Speedup for P=40” depicts the expected speedup according to Eq. (15). The observed speedups
closely follow this trend. Speedups without Imax optimization are thus very regular. This contrasts the
speedups obtained with Imax optimization enabled, because DFAs with the same number of states |Q|
can vary drastically in Imax, i.e., their maximum number of possible initial states. As a consequence,
the number of DFA states |Q| cannot predict the performance of the Imax optimization. We will thus
consider to what extent different numbers of reverse lookahead symbols reduce the number of possible
initial start states.
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Fig. 16 Original sizes of DFAs and the reduction rate for various numbers of reverse lookahead symbols: Imax,1, Imax,2,
Imax,3 and Imax,4.
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We investigated the sizes of possible initial state sets for the PCRE and PROSITE benchmark
suites for 1, 2, 3 and 4 reverse lookahead symbols. Fig. 16 depicts the number of states |Q| and the
initial state reduction rates for 299 PCRE benchmark DFAs and 110 PROSITE protein patterns. (For
DFAs with the same number of states, the possible initial state set sizes were averaged.) For example,
the rightmost, largest DFA in Fig. 16(b) consists of |Q|=1288 states. One-symbol reverse lookahead
eliminates 65% of |Q|. Two-symbol, three-symbol and four-symbol lookahead remove 83%, 94% and
97% of all states. It follows from Fig. 16 that DFAs exhibit variations in their initial state reduction
rate, which has an impact on matching performance. For example, the PCRE DFA with 43 states
(Fig. 16(a)) shows Imax reduction rates below 31%. The resulting impact on performance can be
observed in Fig. 10(c) with the Intel MTL node and in Fig. 14(c) for the EC2 cloud.

The average size of possible initial state sets for 1, 2, 3 and 4 reverse lookahead symbols compared
to the overall number of states |Q| is depicted in Table 4. Applying a reverse lookahead of one symbol to
the PCRE benchmarks reduces the number of possible initial states on average to 33.7% of the original
states. Applying 2, 3 and 4 reverse lookahead symbols yielded further reductions of 7%, 10% and 12%
over |Q|. With the PROSITE benchmarks, one symbol reverse lookahead reduced on average to 47.2%
of the original states. Applying 2, 3 and 4 reverse lookahead symbols yielded further reductions of
18%, 26% and 31% over |Q|. The profitability of reverse lookahead is a static property of DFAs, which
is reflected in this data: while for PCRE one symbol lookahead already yields a large reduction on
the number of states, lookahead >2 symbols does not provide substantial improvement. However, with
PROSITE, one symbol reverse lookahead provided a smaller improvement, while reverse lookahead up
to 4 symbols yielded steady gains.

r 0 1 2 3 4

PCRE 100% 33.7% 26.4% 23.7% 21.7%
PROSITE 100% 47.2% 29.2% 20.5% 16.0%

Table 4 Average size of Imax,r compared to |Q|, for r reverse lookahead symbols

Because of the exponential time complexity to compute Imax,r, there is a trade-off between the
overhead of the reverse lookahead computation and the obtainable performance gains. To quantify this
overhead, we investigated the cost of reverse lookahead computations on an Intel Xeon 5120 CPU.
Fig. 17(a) shows the overhead in microseconds to compute Imax,r for an example DFA of |Q| = 5
up to three reverse lookahead characters. As expected, the overhead is exponential in the size of Σ.
Fig. 17(b) depicts the overhead for increasing numbers of states. Because Imax,r is a static property of
a DFA, it can be computed off-line, and then loaded when the matching operation is performed. This
way the overhead can be avoided with DFAs that are matched many times (e.g., protein patterns from
databases).
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Fig. 17 Required overhead due to Imax,r calculation over |Σ| (a) and |Q| (b).

We have experimentally evaluated to what extent the size of the input string affects the DFA
matching performance of our approach. The order of magnitude of the speedups from Eq. (15) does not
contain the size of the input (n), which is reflected by the performance data obtained on the Intel MTL
node: for input sizes of 1MB, 100MB and 10GB, the obtained speedups are almost identical (Fig. 18).
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Fig. 18 Speedups for varying input sizes and P=40 cores on the Intel MTL node.

Our algorithms thus scale well with respect to large input sizes on the MTL shared memory multicore
architecture.
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Fig. 19 Performance variation (a) over different sizes of inputs and its proportional communication overhead (b) with
PROSITE patterns on cloud computers (cc2.8xlarge instance type on EC2).

Fig. 19(a) depicts the performance for input sizes of 10MB, 100MB, 1GB and 10GB for the
PROSITE patterns executed on EC2 for 288 cores. Unlike shared memory architectures, our DFA
matching algorithm achieves higher performance for long (10GB) input. This is due to the communi-
cation costs, which depend on the DFA size (for transmitting L-vectors with the final state reduction),
but which are independent of the DFA input size. Larger DFA inputs incur longer overall chunk match-
ing times, which de-emphasize the high (but constant) communication costs for a given DFA. Fig. 19(b)
depicts the proportional communication costs that we measured for varying input sizes. It follows that
for 1GB and 10GB input sizes, the proportion of communication overhead with respect to the overall
execution time is close to zero. However, with input sizes of 100MB and especially 10MB, the time
spent for communication constitutes a large part of the overall execution time. As shown in Fig. 19(a),
our DFA matching approach scaled well for input-sizes of up to 10GB on the EC2 computing cloud.

For sake of completeness, we state the execution time costs for computing DFAs from PROSITE
protein patterns. We used Grail+ to create nondeterministic finite automata (NFAs) from regular
expressions, convert NFAs to DFAs, and minimize DFAs. We did not apply parallel versions of al-
gorithms for DFA creation and minimization [12,45]. On average, it took 8min 21.5 s to convert a
PROSITE pattern to a minimal DFA, and 4min 35.8 s to convert a pattern to a non-minimal DFA.
Our speculative DFA matching approach is suitable to both minimal and non-minimal DFAs.

7 Related Work

Locating a string in a larger text has applications with text editing, compiler front-ends and web
browsers, Internet search engines, computer security, and DNA sequence analysis. Early string searching
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algorithms such as Aho–Corasick [2], Boyer–Moore [9] and Rabin–Karp [25] efficiently match a finite
set of input strings against an input text.

Regular expressions allow the specification of infinite sets of input strings. Converting a regular
expression to a DFA for DFA membership tests is a standard technique to perform regular expression
matching. The specification of virus signatures in intrusion prevention systems [10,43,38] and the
specification of DNA sequences [42,8] constitute recent applications of regular expression matching
with DFAs.

Considerable research effort has been spent on parallel algorithms for DFA membership tests.
Ladner et al. [26] applied the parallel prefix computation for DFA membership tests with Mealy
machines. Hillis and Steele [18] applied parallel prefix computations for DFA membership tests on the
65,536 processor Connection Machine. Ravikumar’s survey [36] shows how DFA membership tests can
be stated as a chained product of matrices. Because of the underlying parallel prefix computation,
all three approaches perform a DFA membership test on input size n in O(log(n)) steps, requiring
n processors. Their algorithms handle arbitrary regular expressions, but the underlying assumption
of a massive number of available processors can hardly be met in most practical settings. Misra [31]
derived another O(log(n)) string matching algorithm. The number of required processors is on the
order of the product of the two string lengths and hence not practical.

A straight-forward way to exploit parallelism with DFA membership tests is to run a single DFA
on multiple input streams in parallel, or to run multiple DFAs in parallel. This approach has been
taken by Scarpazza et al. [40] with a DFA-based string matching system for network security on
the IBM Cell BE processor. Similarly, Wang et al. [47] investigated parallel architectures for packet
inspection based on DFAs. Both approaches assume multiple input streams and a vast number of
patterns (i.e., virus signatures), which is common with network security applications. However, neither
approach parallelizes the DFA membership algorithm itself, which is required to improve applications
with single, long-running membership tests such as DNA sequence analysis.

Scarpazza et al. [40] utilize the SIMD units of the Cell BE’s synergistic processing units to match
multiple input streams in parallel. However, their vectorized DFA matching algorithm contains several
SISD instructions and the reported speedup from 16-way vectorization is only a factor of 2.51. In
contrast, our proposed 8-way vectorized DFA membership test avoids SISD instructions, achieving a
speedup of 4.45 over the sequential version.

Recent research efforts focused on speculative computations to parallelize DFA membership tests.
Holub and Štekr [19] were the first to split the input string into chunks and distribute chunks among
available processors. Their speculation introduces a substantial amount of redundant computation,

which restricts the obtainable speedup for general DFAs to O( |P |
|Q| ), where |P | is the number of pro-

cessors, and |Q| is the number of DFA states. Their algorithm degenerates to a speed-down when |Q|
exceeds the number of processors (see also Section 6, Fig. 11). To overcome this problem, Holub and
Štekr specialized their algorithm for k-local DFAs. A DFA is k-local if for every word of length k and
for all states p, q ∈ Q it holds that δ∗(p, w) = δ∗(q, w). Starting the matching operation k symbols
ahead of a given chunk will synchronize the DFA into the correct initial state by the time matching
reaches the beginning of the chunk, which eliminates all speculative computation. Holub and Štekr
achieve a linear speedup of O(|P |) for k-local automata. Unlike Holub and Štekr’s approach, our DFA
parallelization avoids speed-downs altogether. We use structural properties of general DFAs to limit
the amount of speculation. In particular, the restriction to k-local automata is not required. We have
vectorized our speculative matching routine, and we have extensively evaluated our approach on a
40-core shared memory architecture, for AVX2 vector instructions, and on the Amazon EC2 cloud
infrastructure.

Jones et al. [23] reported that with the IE 8 and Firefox web browsers 3–40% of the execution-
time is spent parsing HTML documents. To speed up browsing, Jones et al. employ speculation to
parallelize token detection (lexing) of HTML language front-ends. Similar to Holub and Štekr’s k-local
automata, they use the preceding k characters of a chunk to synchronize a DFA to a particular state.
Unlike k-locality, which is a static DFA property, Jones et al. speculate the DFA to be in a particular,
frequently occurring DFA state at the beginning of a chunk. Speculation fails if the DFA turns out
to be in a different state, in which case the chunk needs to be re-matched. Lexing HTML documents
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results in frequent matches, and the structure of regular expressions is reported to be simpler than,
e.g., virus signatures [29]. Speculation is facilitated by the fact that the state at the beginning of a
token is always the same, regardless where lexing started. A prototype implementation is reported to
scale up to six of the eight synergistic processing units of the Cell BE.

The speculative parallel pattern matching (SPPM) approach by Luchaup et al. [29,28] uses specu-
lation to match the increasing network line-speeds faced by intrusion prevention systems. SPPM DFAs
represent virus signatures. Like Jones et al., DFAs are speculated to be in a particular, frequently
occurring DFA state at the beginning of a chunk. SPPM starts the speculative matching at the begin-
ning of each chunk. With every input character, a speculative matching process stores the encountered
DFA state for subsequent reference. Speculation fails if the DFA turns out to be in a different state
at the beginning of a speculatively matched chunk. In this case re-matching continues until the DFA
synchronizes with the saved history state (in the worst case, the whole chunk needs to be re-matched).
A single-threaded SPPM version is proposed to improve performance by issuing multiple independent
memory accesses in parallel. Such pipelining (or interleaving) of DFA matches is orthogonal to our
approach, which focuses on latency rather than throughput.

SPPM assumes all regular expressions to be suffix-closed, which is the common scenario with
intrusion prevention systems; A regular expression is suffix-closed if matching a given string w implies
that w followed by any suffix is matched, too. A suffix-closed regular language has the property that
x ∈ L ⇔ ∀w ∈ Σ∗ : xw ∈ L.

Unlike SPPM and the approach by Jones et al., our speculative DFA matching approach does not
rely on a heavily biased distribution of DFA state frequencies. Instead, we use static DFA properties
to minimize speculative matching overhead. Our approach is not restricted to suffix-closed regular
expressions, and our speculation does not rely on the common case being a match (Jones et al.), or
the common case being a non-match (SPPM). To the best of our knowledge, we are the first to employ
SIMD gather-operations to fully vectorized the DFA matching process. Our DFA membership test
provides a load-balancing mechanism for clusters and cloud computing environments. Unlike previous
approaches, our speculative matching algorithm cannot result in a speed-down. We conducted an
extensive experimental evaluation on a 40-core shared memory architecture, on a simulator for AVX2
vector instructions, and on the Amazon EC2 cloud infrastructure. Our benchmarks consist of 299
regular expressions from the PCRE library [34], and of 110 patterns from the PROSITE protein
pattern database [42]. We analyzed the complexity of our speculative matching algorithm, and we
provide insight on achievable scalability on shared-memory and cloud-computing environments. This
paper is the extended, journal version of an informal one-page abstract presented at the 4th annual
meeting of the Asian Association for Algorithms and Computation [6], and a preliminary technical
report [7].

8 Conclusions

We have presented a speculative DFA pattern matching method for shared-memory, SIMD and cloud
computing environments. Our parallel matching algorithm exploits structural DFA properties to mini-
mize the speculative overhead. To the best of our knowledge, this is the first speculative DFA matching
approach that is failure-free, i.e., (1) it maintains sequential semantics, and (2) it avoids speed-downs
altogether. On architectures with a SIMD gather-operation for indexed memory loads, our matching
operation is fully vectorized. Communication patterns specifically for the characteristics of cloud com-
puting environments are provided. The proposed load-balancing scheme uses an off-line profiling step
to determine the matching capacity of each participating processor. Based on matching capacities,
DFA matches are load-balanced on inhomogeneous parallel architectures. We have shown that our al-
gorithms have a better time complexity than previous work. We conducted an extensive experimental
evaluation of PCRE and PROSITE benchmarks on a 4 CPU (40 cores) shared-memory node of the In-
tel Academic ProgramManycore Testing Lab (Intel MTL), on the Intel AVX2 SDE simulator for 8-way
fully vectorized SIMD execution, and on a 20-node (288 cores) cluster of the Amazon EC2 computing
cloud. We showed the scalability of our approach for DFAs of up to 1288 states, and input-strings
of up to 10GB. Our results predict that speculative parallel DFA matching can produce substantial
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speedups. Unlike previous methods, our technique does not impose any restriction on the matched
regular expressions.
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