
myjournal manuscript No.
(will be inserted by the editor)

Invasive Compute Balancing for Applications with
Shared and Hybrid Parallelization

Martin Schreiber · Christoph Riesinger ·
Tobias Neckel · Hans-Joachim
Bungartz · Alexander Breuer

Received: date / Accepted: date

Abstract Achieving high scalability with dynamically adaptive algorithms
in high-performance computing (HPC) is a non-trivial task. The invasive
paradigm using compute migration represents an efficient alternative to classi-
cal data migration approaches for such algorithms in HPC. We present a core-
distribution scheduler which realizes the migration of computational power by
distributing the cores depending on the requirements specified by one or more
parallel program instances. We validate our approach with different benchmark
suites for simulations with artificial workload as well as applications based on
dynamically adaptive shallow water simulations, and investigate concurrently
executed adaptivity parameter studies on realistic Tsunami simulations. The
invasive approach results in significantly faster overall execution times and
higher hardware utilization than alternative approaches. A dynamic resource
management is therefore mandatory for a more efficient execution of scenarios
similar to our simulations, e.g. several Tsunami simulations in urgent com-
puting, to overcome strong scalability challenges in the area of HPC. The
optimizations obtained by invasive migration of cores can be generalized to
similar classes of algorithms with dynamic resource requirements.

Keywords Invasive Computing · compute migration · high-performance
computing · hybrid parallelization · dynamic adaptive mesh refinement

1 Introduction

In many applications modeled with partial differential equations (PDE) the
current trend is to use dynamic-adaptive mesh refinement (DAMR). Adaptiv-
ity in general accounts for feature-rich areas by refining the grid, if this area

M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer
Technische Universität München, Fakultät für Informatik
Boltzmannstraße 3, 85748 Garching, Germany
E-mail: {martin.schreiber, riesinge, neckel, bungartz, breuera}@in.tum.de

Preprint version
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6702590

2 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

Fig. 1 Visualization of dynamically changing triangular grid created by dynamical adaptive
simulation with 1st order basis functions. Blue cells represent the mesh with their height
the water surface elevation. The red borders indicate the partitions.

Fig. 2 Visualization of selected time steps of a Tsunami simulation executed on a dynamic
adaptive triangular grid based on displacement datasets for the Chile earthquake 2010. The
water is colored with a rainbow map according to its displacement relative to sea surface
and the water surface elevation is scaled up for enhanced visualization. Note the highly
increased grid resolution which is directly related to the changing computational workload
before and after the propagating Tsunami wave fronts.

significantly contributes to the final result, and coarsening the grid in case that
the result is not highly dependent on this area [5, 11, 30, 46]. In comparison to
regularly resolved simulations, such simulations aim e.g. for the highest pos-
sible science-per-flops-ratios [25]. This approach leads to significantly shorter
run times while keeping the order of accuracy of highly refined regular grids.

Fig. 1 shows an example of a shallow water simulation which uses dynamical
h-adaptive grids also applicable to Tsunami simulations [3] (see Fig. 2).

Feature-rich areas near the wave fronts are higher resolved than other ar-
eas. However, realizing dynamical h-adaptivity involves additional demands
not only on the underlying grid and data management but also on providing
subgrid-migration for parallelization with distributed-memory concepts.

Due to the computational intensity and the memory bandwidth require-
ments, a parallelization of adaptive PDE algorithms is mandatory. Currently,
such parallelizations are usually achieved via threading libraries such as OpenMP,
via MPI, or via hybrid approaches combining distributed- and shared-memory
parallel programming to obtain benefits of both implementations [16].

The trend for modern CPU architectures is clearly towards many-core pro-
cessors with shared-memory domains (e.g. Intel Xeon Phi). A purely threaded
parallelization can lead to several overheads such as increased management
of structures and thread synchronization [37], false sharing [10] and resource
sharing of a single program[29].

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 3

All the beforementioned overheads can be damped by using a lower number
of threads in each program context. Here, we evaluate two different paralleliza-
tion methods for concurrently running programs: First, a pure shared-memory
parallelization with resource-competing and concurrently-running applications
and second a hybrid parallelization with a single application executed on mul-
tiple multi-threaded program instances on each MPI rank. With our require-
ments of running more than one thread in a program context, pure distributed-
memory parallelization methods are not considered in the discussion. For the
following sections, we use the MPI and OpenMP terminology for the dis-
tributed and shared-memory parallelization, respectively.

With parallelization models for distributed- and hybrid-memory systems,
state-of-the art simulation software for dynamically changing grids has to cope
with load imbalances to provide a scalable simulation. These imbalances are
typically tackled with a data migration approach. This sets up demands to
the application developer either to extend interfaces of meshing tools sup-
porting dynamical remeshing and load balancing or to manually implement
the load balancing and data migration in the simulation software. Tackling
load balancing so far was only resolved by explicit (developer-provided), or
implicit (framework-provided) workload migration, thus requiring extensions
for redistributing data. This typically involves severe programmability (see
e.g. required interfaces in [11, 46]) and migration-latency overheads (see [15]).
Additionally,spontaneous and typically non-predictable load imbalances can
occur such as for computations with local-state depending number of instruc-
tions [21] and computations executed only on subsets of the overall grid, e.g. for
local-residual corrections [34] and simulation output of data only laying in a
fast moving field of view [17]. These effects can lead to frequent data migration
of larger chunks. Here, dynamically changing resources provide a potential so-
lution to (a) programmability by clearly defined interfaces and programming
patterns and (b) data-migration overheads by using compute migration; fur-
thermore, spontaneous workload imbalances can be handled more efficiently
by fast compute migration.

2 Existing work and Invasive Computing

Handling changing demands for resources during run time was investigated
in different areas in the last two decades: the basic principles for schedul-
ing of multi-programmed applications originate from embedded systems, es-
pecially in the context of real-time applications (c.f. [33]), which need special
scheduling algorithms (c.f. [45]) that deal with the inherent dynamics. How-
ever, these algorithms do not consider hybrid parallelization or HPC systems.
Embedded systems often consist of heterogeneous multiprocessors where the
single cores have different capabilities such as additional floating-point units,
exclusive caches, etc. (c.f. [6, 2]). In our work, we focus on homogeneous multi-
core processors. Current HPC systems also utilize a memory protection, pre-
venting inter-application work stealing with today’s HPC threading libraries

4 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

(e.g. OpenMP, TBB) due to separated address spaces. This leads to additional
constraints for the HPC architectures considered in this work.

An additional challenge arises when several multi-programmed applications
with changing demand on resources run on the same node in parallel and
compete for congested resources. Bhadauria et al. [8] tackle this problem and
optimize the thread throughput of all running applications in a global view.
For that, information on the scalability of the single applications is required.
This information is collected by a software-based performance monitoring unit
(PMU) during run time. Corbalan et al. [13, 14] are using a similar approach.
The scalability information is gathered by the SelfAnalyzer during run time,
the scheduling itself is done by the Performance-Driven Processor Allocation
(PDPA) policy. In contrast, our approach can also use information such as
scalability graphs and workload information based on the explicit knowledge of
the application developer. This results in more recent (e.g. using the number of
workload of the current time step) rather than over-time derived performance
information. In addition, we are pursuing for maximal global throughput while
Corbalan et al. try to fulfill certain given target efficiencies.

Hybrid parallelization is indispensable when exploiting modern HPC clus-
ters (c.f. [16, 27]) but little investigation has been done in combination with
changing demand of resources during run time. Garcia et al.’s approach (c.f. [20])
tackles the issue in an interesting manner, but loses flexibility due to limita-
tions of OpenMP and SMPSuperscalar and does not offer the opportunity to
provide scalability information on the application by the developer.

The approach considered by Hsieh [24] is closely related to our approach:
Instead of migrating data, computational resources are migrated when they
are needed which avoids data-migration overheads. He also uses distributed
shared-memory systems as target platform. However, his approach is not based
on standard HPC programming models (OpenMP/TBB, e.g.), hence requires
significant changes in the application, and thus does not evaluate dynamic re-
source scheduling for applications developed with standard HPC programming
models.

The invasive computing paradigm was originally introduced to be applied
on embedded systems (see [42] for an overview) targeting to optimize dynam-
ically scheduled resources by developing InvasIC-enabled hardware and soft-
ware. The paradigm is currently subject of research in the InvasIC TCRC 891

with its main focus on embedded systems. For HPC systems, this paradigm
covers all issues involved in compute migration:

From the application developer’s point of view, resources assigned to an
application are dynamically changing during run time. Resources which are
not used by an application can be assigned to another application. Applica-
tions themselves behave in a resource-aware manner, offering information to a
resource manager or multiple cooperating resource managers to optimize the
resource distribution over all applications and providing computing resources
if demanded by the resource manager. Three clear basic interfaces are sug-

1 http://invasive-computing.de

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 5

gested in the context of Invasive Computing, which can be directly applied to
our compute migration issue: invade, retreat and infect. With invade, resources
are requested depending on particular application-specific requirements. Free
resources matching the requirements are then returned to a so-called claim.
Computations on the granted resources are then started by executing kernels
on resources made available in the claims, also described by infect ing resources.
Resources can be finally released by using retreat on the owned resources.

In contrast to auto tuning, Invasive Computing puts its focus on application-
supported optimization, thus moving the input for optimizations to the re-
sponsibility of the application developer. Optimizations are then achieved by
a centralized [4] or decentralized [26] resource manager.

When applying this invasive paradigm in reality, several extensions are
required, such as asynchronous invades [4] to overcome scheduling latencies
and iOMP as an extension to OpenMP [22].

3 Contribution

Our contribution is the exploration and optimization with the Invasive Com-
puting paradigm applied to compute migration for simulations with shared-
and hybrid-parallelization on dynamically adaptive grids in the context of PDE
simulations.

These simulations (see Sec. 4) lead to dynamically changing application
requirements regarding computational resources and, thus, extensions in the
invasive resource manager for dynamical compute balancing. We then present
the realization of compute balancing with Invasive Computing for shared- and
hybrid-parallelized application scenarios based on a resource manager (Sec. 5).
The benefits of compute balancing for this class of applications are then shown
for several different benchmark suites (Sec. 6).

4 Simulations with dynamic adaptive mesh refinement

The shallow water equation (SWE) Tsunami simulations described below are
based on a dynamically adaptive triangular grid: In each time step, the grid
is refined by triangle bisection in grid areas with a large contribution to the
result we are interested in and coarsened in grid areas with a low contribution.
Triangles are chosen as basic elements assembling the domain to run computa-
tions on conforming grids which clearly would not be possible with h-adaptive
Cartesian grids. Running simulations on such dynamically adaptive grids typ-
ically leads to a higher science-per-flop ratio, but introduces load-imbalances
due to the dynamically changing grid and thus workload.

On shared-memory systems, a parallelization of spatial meshes can be tack-
led in a variety of ways:

(a) One approach is storing patches in each cell: Instead of storing only
the data for a single cell in one dynamically adaptive grid cell, regular grid

6 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

structures (patches) containing multiple cells are stored in each patch. Paral-
lelization within each patch by executing operations on the patch concurrently
[31] leads to low scalability for small patch sizes.

(b) Another way is ordering all cells, e.g. based on one-dimensional space-
filling curves (SFC) index projections [36, 7], and using the one-dimensional
representation for partitioning. Here, the communication meta information is
stored per-cell or for each hyper face shared among different partitions. How-
ever, such meta information typically only allows single-threaded processing
of each partition (see e.g. [28] with the parallelization from [44]). (c) Cluster-
based parallelization strategies provide an alternative to the previously men-
tioned parallelization strategies and we continue with a description of this
new alternative: They split the domain into a bulk of connected grid cells with
consideration of spatial locality, e.g. by using space-filling curves, but contrary
to (b), this approach uses a different meta-information scheme and software
design: we demand the ability of efficient cluster-based local-time stepping (C-
LTS) [12]. An efficient software design of such a C-LTS yields requirements of
replicated interfaces [40] between each clusters and communication schemes
with run-length encoding for efficient communication in a multi-threaded and
multi-node environment [38]. The resulting software design directly yields ef-
ficient DAMR simulations with shared and hybrid parallelization.

For this work, our cluster generation is based on tree splits of SFC-induced
spacetrees: clusters are then split and joined depending on local or global
information on the grid [39]. Since this algorithm offers high scalability as
well as performance boosts via cluster-based optimizations and is applicable
to Tsunami simulations [3], this provides a solid base line for the evaluation
of our invasive compute-balancing strategies with realistic applications.

Our major target application is given by concurrently executed Tsunami
simulations. Instead of running a three-dimensional flow simulation, one may
apply a frequently used and well established approximation based on the as-
sumption of shallow water in the regions of interest. This allows a simplification
of the three-dimensional Navier-Stokes equations to the two-dimensional shal-
low water equations (SWE). Furthermore, we use a discontinuous Galerkin
(DG) method for the spatial discretization (see e.g. [1]). We consider the ho-
mogeneous form given by the conservation law of hyperbolic equations

∂U(x, y, t)

∂t
+

∂G(U(x, y, t))

∂x
+

∂H(U(x, y, t))

∂y
= 0 , (1)

or in shorthand form
Ut +Gx(U) +Hy(U) = 0

with U = (h, hu, hv)T and

G(U) =




hu
hu2 + 1

2gh
2

huv


 H(U) =




hv
huv

hv2 + 1
2gh

2


 .

The conserved quantities (h, hu, hv)T = (height, x-momentum, y-momentum)T

of the water are given by U(x, y, t) with parameters dropped for sake of clarity.

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 7

The particle velocity components as part of the primitive variables along the
unit vector ei in direction i are given by (u, v)T and can be directly computed
by (huh , hv

h)T using the conserved quantities. The so-called flux functions G(U)
and H(U) describe the change of the conserved quantities U over time by the
possible interplay of each conserved quantities U .

By multiplying eq. (1) with a test function ϕi and applying the divergence
theorem, this yields the weak form

�

T

Utϕi

� �� �
mass term

−
�

T

G(U) · ∂ϕi

∂x
+H(U) · ∂ϕi

∂y� �� �
stiffness term

+

�

T

F(U)ϕi · n
� �� �

flux term

= 0

with T representing a triangular grid cell and n(x, y) the outward pointing
normal at the boundary of the grid cell. Next, we approximate the solution U in

each cell by N ansatz functions: U(x, y, t) ≈ Ũ(x, y, t) =
�N

j=1 Ũj(t) ϕj(x, y).
Furthermore, let F be a solver for discontinuity on the the nodal points used
for the Lagrange reconstruction of the flux polynomial on each edge. Such
a flux solver can be e.g. the Rusanov flux solver. We can then rearrange the
equations to matrix-matrix and vector-matrix operations. Using an explicit
Euler time stepping, this yields

Ũ t+Δt
i = Ũ t

i +ΔtM−1
�
SxŨ(t) + SyŨ(t) + F(Ũ−(t), Ũ+(t))

�
.

This represents the very basic implementation of the DG method, see e.g. [23]
for enhanced versions.

For the benchmarks with a hybrid parallelization, we used the Rusanov
flux solver [35] and a discretization based on a constant basis function on each
cell support, thus a finite volume discretization.

For the simulations used in the Tsunami parameter studies, varying un-
derwater depth (bathymetry) data has to be considered. Here, we used the
computationally more intensive Augmented Riemann solver [21] and multi-
resolution sampled GEBCO [9] bathymetry datasets.

We use these simulations as a realistic basis for an application scenario
with varying workload. In particular for hyperbolic simulations, a changing
workload leads to varying efficiency which cannot be considered with a static
resource allocation.

This changing efficiency information can be provided in different ways to a
resource manager which then optimizes the current resource distribution. The
next Section presents such a solution of a dynamic resource allocation.

5 Realizing Invasive Computing

We first introduce our point of view on hybrid-parallelized applications (Sec. 5.1)
and the challenges in the context of concurrently executed shared-memory par-
allelized applications (Sec. 5.2). Afterwards, a generic view on the optimiza-
tion algorithm in the resource manager is given (Sec. 5.3) and the interface
requirements between the resource manager and the applications to distribute

8 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

cores

cache coherent
shared memory
bus system

MPI ranksMPI rank 0 MPI rank 1

worker
threads

logical separation
of applications

p
h

y
s
ic

a
l
la

y
e
r

lo
g

ic
a
l
la

y
e
r

Fig. 3 Overview of the dynamical assignment of cores to ranks with hybrid parallelization.
The top layer represents the physical cores available for computations with each processor
providing 4 cores for computations. The bottom layer associates the physical cores with
threads executing instructions and threads being dynamically assigned to MPI ranks.

computational resources to MPI ranks and other concurrently running appli-
cations are presented (Sec. 5.4). Finally, we explain a resource manager as the
core component of the Invasive Computing approach which is responsible to
distribute resources to applications (Sec. 5.5).

5.1 Hybrid parallelization

Invasive Computing for hybrid parallelized applications involves a mix of
shared and distributed memory parallelization strategies. Fig. 3 gives an
overview of the dynamically changing resource layers of a hybrid simulation
on a single shared-memory HPC system. The top physical layer describes the
physical resources including the cache-coherent bus system. For operating sys-
tems, such a cache-coherency is required internally whereas for applications
pinned to cores, this is typically not required between different MPI ranks
due to separated address space. The lower logical layer maps resources to
the physical components. Each worker thread operates on a single core and
in case of using MPI, one MPI rank usually contains several worker threads.
The number of worker threads per MPI rank in combination with the pinning
to cores is static over run time with existing standard parallelization models.
This leads to compute or work-imbalances among MPI ranks due to refining
and coarsening (coarse grids cause less computational load, fine grids cause
more) with the compute imbalance being research of this paper. Therefore,
we suggest a dynamically changing number of worker threads and dynamic
pinning of threads to cores.

5.2 Concurrently running applications

Considering concurrently running applications on cache-coherent memory sys-
tems, the typical way of parallelization is accomplished with a threading library

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 9

Symbol Description

R Number of system-wide available computing resources
N Number of concurrently running processes
A List of running applications or MPI processes
� Placeholder for ”no application”
C State of resource assignments to applications
Di Optimal resource distribution assigning Di cores to application Ai

Pi Optimization information (scalability graphs, e.g.) for application i
Ti Optimization targets (throughput, energy, etc.) for each application
Gi Number of resources currently assigned to application i
Fi List of free resources

Wi Workload for application i
T (c) Throughput for c cores
Si(c) Scalability graph for application i.

Table 1 Symbols representing the data structures used by the resource manager.

such as OpenMP and TBB. However, once running applications concurrently,
resource conflicts can lead to a severe slowdown in performance due to fre-
quently executed context switches on shared cores. This results in overheads
induced by cache thrashing and costs of context switches. Furthermore, origi-
nally load-balanced computations suffer from load-imbalances due to comput-
ing delays introduced by the before-mentioned issues.

In the next Section, we introduce a resource manager which assigns re-
sources dynamically to applications, focusing to avoid the beforementioned
issues.

5.3 Resource manager

The resource manager (RM) itself is implemented as a separate process running
in background on one of the cores utilized by the simulation software. Its
responsibility is to optimize the resource distribution. This optimization is
achieved by utilizing the information provided by the applications through
their developers. Such information can be scalability graphs to optimize for
non-linear workload-to-scalability and range-constraints requesting resources
within a specific range such as “1 to 6 cores”.

The communication to the RM is achieved via IPC message queues [18] due
to their low overhead compared to TCP/IP or other socket-based communi-
cation. Thus, the RM provides a service bound to a particular message queue
ID and each process has to subscribe to the service by a handshake protocol.
With the utilization of message queues, the addresses of the processes and the
RM are made unique by tagging messages to the RM with ID 0 and those to
each process by the unique process id.

For sake of clarity, Table 1 contains an overview of the symbols introduced
in the following. For the management of the cores, the RM uses the vector C
with each entry representing one of the R = |C| physical cores. In case of core

10 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

i being assigned to a process, the process id is stored to the entry Ci and �
otherwise.

5.3.1 Scheduling information

Next, we discuss our algorithm for optimizing the resource distribution for con-
currently executed applications. Let R be the number of system-wide available
compute resources, N be the number of concurrently running applications, �
be a marker for a resource not assigned to any application and A be a list of
identifiers of concurrently running applications, with |A| = N . We then distin-
guish between uniquely system-wide and per-application stored management
data.

System-wide data: We define the system-wide management data given by
the resource assignment which is done by the RM and the optimization target
such as maximizing application throughput or minimizing for energy efficiency.
The current state on the resource assignment is given by

C ∈ ({�} ∪A)R,

uniquely assigning each compute resource to either an application a ∈ A or to
none �. The optimal resource distribution is given by

D ∈ {0, 1 . . . , R}N

with each entry Di storing the number of cores to be assigned to the i-th ap-
plication Ai. To avoid oversubscription of these resources to the applications,
we further demand �

i

Di ≤ R. (2)

This subscription constraint avoids assignment of more resources than there
are available on the system, whereas the explicit assignment of resources in an
exclusive way via the vector C avoids resource collision per se. For enhanced
releasing of cores, the cores currently assigned are additionally maintained in
a list for each application.

Per-application data: The data Pi stored for each application Ai con-
sists of the currently specified constraints which were sent to the RM with a
(non-)blocking invade call. These constraints provide the basis for the opti-
mizations with different optimization targets available and discussed in Section
5.3.3.

5.3.2 Optimization loop

After its setup, the RM processes messages from applications in a loop. Up-
dates of resource distributions are then based on messages processed in a way
optimizing the current resource distribution C towards the optimal target re-
source distribution D. We can separate the optimization loop into the following
three parts:

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 11

– Computing target resource distribution D: For setup, shutdown and in par-
ticular invade messages, new parameters for computing the target resource
distribution are handed over to the RM via the constraints. This triggers
execution of the optimization function, in its general form given by

(D(i+1),C(i+1)) := foptimize(D
(i),C(i),P,T) (3)

with T being a vector of optimization targets for each application such as
improved throughput or load distribution, P the application constraints,
the current core-to-application distribution C(i) and the optimizing func-
tion foptimize as input parameters. foptimize computes the quantitative tar-
get resource distribution D(i+1) to which the computing cores have to be
updated to. The superscript (i) annotates the i-th execution of the opti-
mization function in the RM.
In its generic form, also the core-to-application assignment is returned in
C(i+1). We expect this to get beneficial in case of accounting for non-
uniform memory access (NUMA) prone applications and mandatory, once
extending the RM to distributed memory systems. So far, this direct core-
to-application assignment is not considered in computation of the target
resource distribution and we continue solely using the quantitative opti-
mization given in D(i+1).

– Optimizing current resource distribution C: With an optimized resource
distribution D(i+1) at hand, the current resource distribution in C has to
be successively updated. During this resource reassignment, resources can
be assumed to be only immediately releasable under special circumstances.
Such circumstances are e.g. that the cores have to be released for the ap-
plication for which the optimization process with a blocking (re)invade call
is currently processed. Otherwise, the RM has to send a message with a
new resource distribution to an application. Only as soon as the appli-
cation replies with its updated resource distribution, these resources can
be assumed to be released. Hence, resources cannot be assumed to be di-
rectly released in general during the optimization process inside the RM,
e.g. after sending a release message. This results in a delay in resource reas-
signment, hence idling time, which has to be compensated by the benefits
of core-migration.
The resource redistribution step then iterates over the list A of applica-
tions. For each application Ai, either the resources stay unmodified, are re-
leased or assigned from or to the application. Let Gi := |{j|Ai = Cj , ∀j ∈
{1, . . . , R}}| be the number of resources currently assigned to application
Ai and a list of free resources F with CFj = �. The redistribution process
then iterates over all applications:

– Gi = Di: No update
The number of resources assigned to an application equals the currently
assigned resources. Therefore, there are no resources to update for this
application.

– Di < Gi: Release resources
In case of less resources to be assigned to the application, a message

12 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

is sent to the application. This message is either send directly to the
application in case of a non-blocking communication or as a response
message to a blocking (re)invade call. In every case, the message in-
cludes only a shrank set of resources, Gi −Di cores less than currently
assigned to the application.
Note that the current resource distributionC is not updated yet. Other-
wise, those resources could be assigned to other applications, leading
to resource conflicts.

– Di > Gi: Add resources
Assignment of additional resources is accomplished by searching for
resources in the list of free resources and assigning up to k ≤ Di −Gi

of them to the application with

∀j ∈ {F1, . . . ,Fk} : Cj := Ai.

– Client-side resource update messages: As soon as the change of resource
utilization is assured, e.g. by an application responding with the resources
currently used, the RM tests for further optimizations in case of released
resources. We then apply the same operations for the standard optimization
of the resource distribution C since this also accounts for assigning recently
released resources by adding resources in case of Di > Gi.

5.3.3 Scheduling decisions

We use the previously introduced data structures to compute our optimized
target resource distribution D depending on the specified optimization target
T and per-application specified information P.

Recapitulating our original optimization function (3), we drop the core
dependencies C yielding an optimization function

D(i+1) := foptimize(D
(i),P,T) (4)

with a reduced set of parameters. We then apply optimizations based on the
constraints given for all applications in P and depending on the optimization
target T.

Requirements on constraints: Resource-aware applications are expected to
forward information on their state as well as their requirements via constraints
to the RM, which keeps this information in P . Depending on the optimization
target T, the RM then schedules resources based on these constraints. We fur-
ther distinguish between local and global constraints, respectively, depending
on their capability of optimization per application or for all applications.

Local constraints: With constraints such as a range of cores, an application
can always request between 1 and the maximum number of cores available on
the system. Such constraints do not yield a way of adopting the application’s
resources under consideration of other concurrently running applications with-
out knowledge on the state (FLOP/s, throughput, etc.) of these applications.
Therefore we refer to such constraints as local ones.

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 13

Global constraints: With global constraints, we refer to constraints to be
evaluated by the optimization function leading to a global cooperative way:

– Application’s workload : Under the assumption of similar applications, load
balancing related values such as the workload can be used to schedule re-
sources. Using this constraint, our target function then distributes R com-
pute resources to N applications with workload Wi for each application i:

Di :=

�
R ·Wi�

j Wj

�
− αi, αi ∈ {0, 1}

This assigns Di resources to application Ai. α has to be chosen in a way
to avoid over-subscription (see Eq. (2)).
Only considering the assigned resources Di, we take a different point of
view leading to alternative global scheduling: Each application has a per-
fect strong scalability S(c) for c cores within the range [1;Di]: S(c) :=
min(c,Di). The cores are then assigned to the applications until their scal-
ability does not yield any performance improvement. Obviously, such a
strong scalability graph represents only an approximation of the real scal-
ability graph which we discuss next:

– Application’s scalability graph: We consider applications messaging strong
scalability graphs to the RM. Such scalability graphs are linearly dependent
on the application’s workload throughput via the strong scalability:
We compare the throughput T (c) depending on the number of cores c. With
the throughput for a number of cores given by the fraction of the time taken
to compute a solution and the fixed problem size w = Wi, we compute
the throughput improvement with the baseline set at the throughput with
a single core:

w
T (c)
w

T (1)

=
T (1)

T (c)
=: S(c)

yielding the scalability graph S(c). Therefore this justifies relating the scal-
ability graph to the application’s throughput. Moreover, a scalability graph
also yields a way to optimize for throughput for different application types
due to the normalization S(1) = 1 for a single core.
Given a scalability graph Si(c) with subindex i for the i-th application, we
further demand each graph to be monotonously increasing Si(c) − Si(c −
1) ≥ 0 , and concave Si(c+ 1)− Si(c) ≤ Si(c)− Si(c− 1) , thus assuming
no super-linear speedups with the concavity property.
We can then search for combinations in D maximizing the global through-
put by formulating our optimization target as a maximization problem:
maxD (

�
i Si(Dj)) with the side constraint avoiding over-subscription�

j Dj ≤ R. Hence, we get a multivariate optimization problem with Dj

the search space.
A sketch of this optimization is given in Fig. 4. Here, we consider two ap-
plications, each one providing a scalability graph. The scalability graph for
the first application is given with increasing number of resources (red solid

14 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

0

5

10

15

20

25

30

35

40

0
/4

0

2
/3

8

4
/3

6

6
/3

4

8
/3

2

1
0

/3
0

1
2

/2
8

1
4

/2
6

1
6

/2
4

1
8

/2
2

2
0

/2
0

2
2

/1
8

2
4

/1
6

2
6

/1
4

2
8

/1
2

3
0

/1
0

3
2

/8

3
4

/6

3
6

/4

3
8

/2

4
0

/0

S
ca

la
b
ili

ty
 /
 t

h
ro

u
g
h
p
u
t

Core to client distribution (Appl. 1 / Appl. 2)

Throughput Appl. 2

Throughput of Appl. 1 + Appl. 2

Throughput Appl. 1

Fig. 4 Examples for scalability graphs: The scalability graph for the first application is
given with increasing number of cores from left to right and for the second application
vice versa. The global throughput is given with different assignments of all cores to both
applications with the maximum throughput our optimization target.

line) and the second scalability graph (greed dashed line) with increas-
ing numbers of resources from right to left. Then the theoretical optimal
resource distribution is given by the global maximum of the sum of normal-
ized throughput of both applications (blue dotted line) for different valid
resource constellations.
Using our assumptions of strictly monotonously increasing and concave
scalability graphs, we can solve this maximization problem for more than
two applications with an iterative method similar to the steepest descent
solver [19]:

Initialization: We introduce the iteration vector B(k) assigning Bi com-
puting cores to application i in the k-th iteration. Since each applica-
tion requires at least one core to continue its execution, we start with
B(0) := (1, 1, . . . , 1), assigning each application a single core at the start.

Iteration: With our optimization target aiming for improved application
throughput, we then compute the throughput improvement for application
i if a single core is additionally assigned to this application

ΔSi := Si(Bi + 1)− Si(Bi). (5)

and determine the application n, which yields the maximum throughput
improvement ΔSn := maxj{ΔSj}.
The resource distribution is then updated by

B
(k+1)
i := B

(k)
i + δi,n (6)

with the Kronecker delta δ.

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 15

Stopping criterion: We stop the iterative process, as soon as all resources

are distributed, thus if
�

i B
(k)
i = R. The target resource distribution

D(k+1) is then given by the last iteration vector B.

5.4 Resource manager and hybrid-parallelized applications interplay

In order to apply Invasive Computing for applications with hybrid paralleliza-
tion, two additional extensions have been realized: (a) an extension to the RM
to start it on the first MPI rank with appropriate synchronizations for contact-
ing the RM by the other MPI ranks and (b) a dead-lock free implementation
due to intermixing the communication of the RM with MPI synchronization
barriers with the dead-lock free implementation discussed next.

We start with an example of such a deadlock which can occur during the
initialization phase of Invasive Computing for a better understanding of the
challenges of core migration: We assume (without loss of generality) only two
MPI ranks being executed in parallel. All cores are initially assigned to the first
MPI rank which starts the computations in parallel whereas the second rank
is waiting for resources. This waiting is due to avoidance of oversubscription of
resources, see Eq. (2). During the computations, an MPI reduce operation is
executed - e.g. to compute the maximum allowed time step width. However, the
second MPI rank is not allowed to start any computations since all resources
are already reserved by the first MPI rank which is executing the barrier. Due
to the blocking barrier, this MPI rank is not able to free resources and make
them available for other MPI ranks to call the barrier. The solution is given
by non-blocking invasive requests during the setup phase. These non-blocking
invased are executed until at least one computational resource is assigned to
each MPI rank, implemented with an MPI reduce.

We conclude that non-blocking invasive interfaces during the setup phase
are mandatory for Invasive Computing for our hybrid parallelized applications.
The simulation loop itself can be executed deadlock-free with blocking or non-
blocking invasive commands. With the (MPI-)setup phase being provided by
the invasive framework layer, our deadlock-free initial resource assignment is
hidden from the application developer.

5.5 Owning computation resources

The pinning of threads to cores is frequently used in HPC to assure locality of
computation cores to data on the memory hierarchy. With OpenMP, changing
the number of cores is only available out of the scope of a parallel region. Also
with TBB [32], the task scheduler has to be deleted and reallocated to change
the number of cores used for our simulation. However, dynamically changing
and pinning of computational resources during a simulation are not considered
by current standard threading libraries such as OpenMP and TBB.

16 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

We extended OpenMP and TBB to allow for changing the number of active
threads and their pinning during runtime and continue describing one of our
approaches for TBB. Before the setup phase of the simulation, as many threads
as cores are available on the system are started. A list of mutices with each
mutex assigned to one of the available threads is used to enable and disable
threads of doing work stealing with work stealing initially disabled. Then, for
all but the first master thread, tasks are enqueued with setting affinities to
the corresponding threads requesting a lock to one of the mutices. Clearly,
no spin-lock may be used in this circumstances since the thread really has to
idle to make it available to other applications. Otherwise this would lead to
resource conflicts as discussed in Sec. 5.2.

For requesting a different number of resources, we distinguish between an
increase or a decrease in the requested number of cores. If the number of cores
has to be increased, work-stealer tasks can be enabled directly by unlocking
the corresponding mutex. For decreasing the number of cores, tasks requesting
the mutex are enqueued, leading to worker-threads with an idling state.

We are now able to change the number of cores used for running computa-
tions for each program context. To consider the memory hierarchy, we describe
our pinning method of threads to cores, which avoids memory conflicts. With-
out pinning, our invasive applications would not be able to work cooperative
with other applications due to violating exclusive resource agreements. The
information on which cores an application should run on is dynamically given
to the application during run time. After changing the number of resources,
we set the thread-to-core affinities by enqueuing tasks, which set affinities of
the currently executing thread to the desired core. This assures that threads,
which continue running computations on particular cores, don’t conflict with
others.

To improve the programmability for MPI parallelized applications, the
RM is started on the first rank and running in background on an additional
thread. Contrary to the exclusive pinning of threads to cores for the applica-
tion’s threads, we rely on the operating system scheduler to use pre-emptive
scheduling for the RM.

6 Results

All experiments presented in this section were conducted on an Intel Westmere
EX machine with 4 Intel Xeon CPUs (E7-4850@2.00GHz) and 256 GB memory
totally available on the platform. This gives 4× 10 physical cores plus 4× 10
additional hyper threading cores, with the latter ones not used during the
benchmarks.

All the benchmarks used in this section use a changing workload in each
memory context, hence leading to the requirements of coping with the load
imbalances induced by the changing workload. While the non-invasive bench-
marks do not use core-migration between each time steps, the invasive bench-
marks allow changing the thread-to-core assignment between time steps if

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 17

2.1

2.2

2.3

2.4

2.5

2.6

2.7

0 5 10 15 20 25

S
e
co

n
d
s

Simulation test run

invasive
invasive non-blocking

OpenMP

Fig. 5 Invasive message passing and processing overheads: 25 identical simulation runs
execute on a single MPI rank. We compare a purely threaded simulation, a non-blocking
invasive execution and a blocking execution.

triggered by the resource manager. Regarding the programmability issues of
data migration, we purely focus on core migration only and do not consider
data migration approaches.

For sake of reproducibility of our results, the source code is released at
http://www5.in.tum.de/sierpinski/,
http://www.martin-schreiber.info/sierpinski/ (mirror) and
https://github.com/schreibm/ipmo

6.1 Micro benchmark for invasive message passing and processing

Invasive execution of our applications typically involves a message passing to
the resource manager. This leads to overheads due to the message passing and
the response latency. We measure this overhead with a micro benchmark based
on a very small single-process SWE scenario (with a regularly refined spacetree
resulting in 128 grid cells), ignoring the influence of other applications. The
size of this setup is just large enough to obtain significantly measurable times
for communication overheads.

The tests were conducted in three different variants: (a) a pure threaded ex-
ecution, (b) a scenario sending requests to resource manager in a blocking way,
thus waiting and forcing cores to idle until the resource manager responds, and
(c) invasive requests to the resource manager using a non-blocking communi-
cation. Such a non-blocking communication sends new requirements to the
resource manager, tests for and processes resource-update messages from the
resource manager and immediately continues the simulation in case of messages
left in the message queue to the resource manager. Results for multiple runs
of identical scenarios are given in Figure 5. These micro benchmark scenarios
show in general small overheads of Invasive Computing due to the communica-
tion with the resource manager. Compared to the non-invasive execution, the
blocking communication to the resource manager leads to additional and scat-
tered overhead of up to 15%. With non-blocking communication, the maximum

18 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

0
1
2
3
4
5
6
7
8
9

10

number of computation steps T

break even point

in
va

si
ve

 r
un

tim
e

no
rm

al
iz

ed
by

 n
on

-in
va

si
ve

 r
un

tim
e

Fig. 6 Invasive vs. non-invasive execution of the artificial benchmark. For different problem
sizes (e.g. representing different initial grid refinement) depending on T , the time of the
invasive execution is given normalized to the non-invasive run time.

overhead and its scattering is reduced to 5% providing a robust improvement
for invasive executions.

6.2 Artificial hybrid-parallelized load-imbalance benchmark

Our next benchmark suite for invasive executions involves more than a single
program context and is based on artificial workload executed with two MPI
ranks to show the general applicability, but also restrictions of our approach.

Let r be the MPI rank of a single simulation run. We execute our test
application with artificial load simulating an application with T computation
steps and each computation step denoted with t ∈ [0;T − 1]. Then, the work-
load for rank r at computation step t is given with Lr(t). For our artificial
test case executed on two MPI ranks, we chose linear functions creating the
workloads L0(t) := T − t for rank 0 and for rank 1 L1(t) := t.

Our artificial workload is simulated by L2
r square roots computed for each

rank and for each simulation time step. Thus, MPI rank 0 starts with a work-
load of 0 quadratically increased to T and MPI rank 1 vice versa. This artificial
workload represents the changing number of grid cells and a barrier is executed
after each artificial workload L2

r e.g. to account for similar parallel communi-
cation pattern of hyperbolic simulations.

Our artificial load imbalance benchmark scenarios are conducted for differ-
ent numbers of time-steps T and, thus, workload sizes. We compare the bench-
mark setup for our invasive implementation, which allows compute balancing
via the RM, with the non-invasive counterpart. This assigns the resources
equally distributed to all MPI ranks at simulation start. All other simulation
parameters (such as adaptivity by refining and coarsening) are identical in
both variants. For a better comparison, we use the ratio of the time for the
invasive execution Tinv to the time for the non-invasive execution Tdefault.

The results are given in Fig. 6 with the break-even point at 1 represent-
ing the normalized run time of the non-invasive application. For small prob-

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 19

0

50

100

150

200

250

300

40 / 2 40 / 4 20 / 2 20 / 4

si
m

la
tio

n
tim

e
in

 s
ec

on
ds

cores / MPI ranks

non-inavsive
invasive

Without NUMA awareness

0

50

100

150

200

250

300

40 / 2 40 / 4 20 / 2 20 / 4

si
m

la
tio

n
tim

e
in

 s
ec

on
ds

cores / MPI ranks

non-inavsive
invasive

NUMA aware with owner-compute

Fig. 7 Invasive vs. non-invasive execution times with default TBB affinities for different
combinations of number of cores and MPI ranks. See text for further information on NUMA
aware execution.

lem sizes, Invasive Computing has a clear overhead compared to the non-
invasive execution. However, this soon improves starting with still relatively
small problem sizes with T = 8192 and remains a robust optimization for
larger problem sizes. Comparing the run times for our largest test simulation
(Tdefault = 6057.24, Tinv = 2870.82), the run time was improved by 53%.
Therefore, the realization of the invasive paradigm, even though including the
overheads determined with the micro benchmarks, really pays off.

To discuss the applicability of our results to other simulations, we con-
sider the threshold of the break-even point at the relatively small workload of
8192 taking 8.43 seconds for the non-invasive and 8.39 seconds for the invasive
execution. Our simulations with dynamically changing resource requirements
typically yield larger workloads, hence we expect robust performance improve-
ments for typical DAMR simulations with similar workload changes.

6.3 Shallow water simulation benchmark

For our simulation based on a dynamically adaptive mesh refinement, we
used the shallow water equations explained in Sec. 4. The scenarios are con-
ducted with an initial refinement depth of 14, thus creating (2×2)14 bisection-
generated initial grid-cells for a triangulated domain setup by two initial tri-
angles and a relative refinement depth of 10. The domain was initially split
up along the diagonals assigning the computations for each quarter to an MPI
rank. This assignment to MPI ranks is kept over the entire simulation run
time, thus without data migration, with each MPI rank being able to split its
subregion to improve local load balancing by massive splitting in combination
with threaded parallelization as proposed in [38]. The adaptivity criterion was
chosen to refine and coarsen based on the relative water-surface displacement
to the horizon.

The results for the benchmark are given in Fig. 7. A robust improvement
of simulation run time for all different utilized cores and MPI ranks can be
observed. For the scenario using 20 cores and 4 MPI ranks, an increased load
imbalance can be shown. The computational efficiency of this scenario was

20 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

0

5

10

15

20

25

30

35

40

s
ta

c
k

e
d

 c
o

re
-t

o
-r

a
n

k
 s

c
h

e
d

u
li
n

g

execution time

Rank 3

Rank 2

Rank 1

Rank 0

Fig. 8 Overview of core-to-MPI rank distribution. The cores are given in a stacked repre-
sentation depending on the real time in which the scheduler is reassigning the resources.

mostly improved by invasive core migration whereas for the non-invasive sce-
nario, the lost computation time was due to idling cores.

Due to different results depending on using owner-compute for schedul-
ing on simulations with a longer run time [39], we decided to run additional
simulations with owner-compute cluster scheduling to improve awareness of
NUMA effects: instead of generating a task for each cluster, we assign one or
more clusters to a thread. The results for a simulation with the owner-compute
scheme enabled are visualized in the right image in Fig. 7 with a performance
similar to the default simulation.

The owner-compute simulations are even slightly slower compared to the
default work stealing - in particular the 40/4 combination. We account for this
by NUMA effects of the underlying memory architecture: due to the chang-
ing core distribution, core-to-NUMA domain relations are frequently changing
whereas our owner-compute scheduling aims to compensate NUMA effects un-
der the assumption of a core-to-cluster locality over time. However, the owner-
compute scheme does not allow for work-stealing, e.g. to compensate dynamic
resource distributions introducing additional NUMA effects, therefore leading
to longer run time. We emphasize, that this is contrary to the results obtained
for the static resource assignment with the owner-compute scheme yielding
improved runtime compared to the work stealing [39].

An overview of the scheduling is given in Fig. 8. We executed our simulation
with a severely reduced problem size in order to get a better survey on the
distribution of the workload: the initial depth was set to 10, the adaptive depth
leading to the dynamical grid to 8 and the simulation was executed for 1000
time steps taking 19.3 seconds to compute the simulation. A radial breaking
dam is initialized with the gravitation-induced wave leading to a dynamically
adaptive grid refinement, see Fig. 1 for an example. The first phase between 0 to
0.2 seconds is used for the setup. Afterwards, the simulation itself is executed,
starting at 0.2 seconds. Rank 3 was initially assigned the most computation
cores which is due to the initial radial dam break created mainly in the grid
assigned to this rank, leading to a severely higher workload at rank 3. During

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 21

Fig. 9 Screenshots with visualization of the dynamic adaptive grid underlying to a 2011
Tohoku Tsunami simulation used for the Tsunami parameter study benchmark. We use a
highly-refined grid at the wave front and a coarser grid in the other areas.

wave propagation, the workload in rank 1 dominates successively and, thus,
obtains more and more resources from rank 3. At the end of the simulation
run, the grid resolution and, hence, workload for rank 2 is increased relatively
to other ranks, and it consequently reassigns resources from other ranks. This
dynamic resource distribution fits to the underlying dynamic adaptive mesh
refinement.

Without synchronization for core reassignment, idling processing time is
automatically introduced during the scheduling of taking away a core to ini-
tialize migrating this core to another MPI rank. This overhead is visible at
the top of the graph by the small white gaps. Despite this core-scheduling-
idling overhead, the overall reduced idling time due to compute imbalances is
severely reduced, thus improving the applications efficiency.

6.4 Tsunami parameter study benchmark

The final benchmark suite using several concurrently executed Tsunami sim-
ulations represents an example of a parameter study for the 2011 Tohoku
Tsunami event. The simulation first loads the bathymetry data [9], prepro-
cesses it to a multi-resolution format and then sets up the initial simulation
grid iteratively by inserting edges close to the earthquake-generated displace-
ment data [41], see Fig. 9. Such parameter studies are e.g. required to identify
adaptivity parameters such as the net-flux crossing each edges and/or the
minimum and maximum refinement depth.

The resource optimization constraint we used in these studies is based on
the workload, e.g. current number of cells, in each parameter study.

We compare three different ways to execute such parameter studies:

– Invasive Computing :
The application is started as soon as it is enqueued. A short period after its
start, the application is waiting until a message from the RM provides at
least a single resource. This is important to avoid any conflicts with other
concurrently running applications.

22 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

0

5

10

15

20

25

30

35

40

C
om

pu
tin

g
co

re
s

Time in Seconds

Study 5

Study 4

Study 3

Study 2

Study 1

Fig. 10 Visualization of a typical resource redistribution to invasified applications executed
with different parameters and started at different points in time. The spikes at the top of the
resource distribution represent the idle time of computing cores until they are rescheduled
to another application.

1

10

100

1000

10000

100000

Scen. A Scen. B Scen. C Scen. D Scen. E Scen. F

O
ve

ra
ll

ex
ec

ut
io

n
tim

e

Different Scenarios

Invasive Computing
OMP sequential
Threading Building Blocks

0

10000

20000

30000

40000

50000

60000

70000

80000

Scenario E Scenario F

O
ve

ra
ll

ex
ec

ut
io

n
tim

e

Different Scenarios

Invasive Computing
OMP sequential
Threading Building Blocks

Fig. 11 Left image: The problem size was successively increased per execution scenario (left
to right) via the adaptivity parameters. Comparing our Invasive Computing approach with
scenarios using typical OpenMP and TBB parallelized applications, Invasive Computing
results in a robust optimization for larger scenarios. Right image: Scenarios E and F with
linear scaling for improved comparison.

– OpenMP sequential :
Using OpenMP scheduling, starting each application directly after its en-
queuing would result in resource conflicts, and thus severely slowing down
the execution. Therefore, this execution policy starts the enqueued appli-
cation only if the execution of the previous applications was finished.

– Threading Building Blocks (TBB):
Using TBB, we start each application as soon as it is enqueued to our sys-
tem. TBB has features which automatically circumvent resource conflicts
in case of idling resources, hence setting up a perfect baseline to compare
our Invasive approach with another optimization method.

A typical dynamic resource distribution with Invasive Computing for such
parameter studies is given in Fig. 10. We successively increase the problem
size for the scenarios by increasing the maximum allowed refinement-depth
parameter, resulting in higher workload for each scenario. Five applications
with slightly different adaptivity parameters are enqueued to the system with
a delay of a few seconds. Such a delay represents a more realistic, user-driven-

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 23

like enqueuing of applications to the computing system compared to starting
all applications at once.

The results of the three approaches for different parameter studies are given
in Fig. 11 with increasing workload from left (scenario A) to right (scenario
F). The OpenMP sequential execution always yields the longest run time. For
smaller workloads, the TBB implementation is competitive to the Invasive
Computing approach whereas for larger workloads, it approaches the longer
OpenMP sequential run times. Regarding our Invasive Computing approach,
the costs for rescheduling resources are compensated for larger simulations
(scenario C to F). For the scenarios E and F with a larger workload, the
invasive execution of such larger problem sizes yields an optimization of 45%.

For our simulations, the effects of the underlying NUMA architectures did
not have a significant impact on the performance. We account for this e.g. by
the computational intensive solvers, the cache-optimized grid traversal and
efficient stack-based data exchange as well as the underlying hardware which,
in case of accessing a non-local NUMA domain, requires only a single HOP.
We expect higher impact on latencies on larger systems with more than 1K
cores, e.g. with NUMA domain data access requiring page-wise migration.

7 Conclusions and future work

We presented a new approach in the context of Invasive Computing as per-
formance improving solution for (a) dynamically changing resource require-
ments of concurrently running applications on cache-coherent shared-memory
systems and for (b) load imbalances for applications with hybrid paralleliza-
tion. Due to the clear interfaces and easy extension of applications with this
compute-balancing strategy, this leads to improved programmability while ac-
counting for changing resource requirements and load imbalances.

We conducted experiments based on four different benchmarks on a cache-
coherent shared-memory HPC system. The results show robust improvements
in performance for realistic PDE simulations executed on NUMA domains
with hybrid parallelization. With the efficiency of Tsunami parameter stud-
ies considerably improved by 45%, the Invasive Computing approach is very
appealing for concurrently executed applications with changing resource de-
mands and time-delayed points of execution.

The presented optimizations with Invasive Computing are not only appli-
cable to DAMR simulations but can also be applied to other applications with
dynamically changing resource requirements in general.

Our current work is on systems with run time configurable cache-coherency
protocols and cache-levels [43] to further enhance the performance and pro-
grammability of parallel applications on such systems. With our simulations
conducted on an HPC shared-memory NUMA domain which requires only 1
additional hop to each domain, thus hiding the NUMA domain effects very ef-
ficiently, we expect that evaluation of the invasive concepts leads to additional
requirements on larger scale NUMA domains.

24 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

Acknowledgements

This work was supported by the German Research Foundation (DFG) as part
of the Transregional Collaborative Research Centre ”Invasive Computing”
(SFB/TR 89).

References

1. Aizinger V (2002) A discontinuous Galerkin method for two-dimensional
flow and transport in shallow water. Advances in Water Resources

2. Al Faruque MA, Krist R, Henkel J (2008) ADAM: run-time agent-based
distributed application mapping for on-chip communication. In: Proceed-
ings of the 45th annual Design Automation Conference, ACM, New York,
NY, USA, DAC ’08, pp 760–765

3. Bader M, Breuer A, Schreiber M (2012) Parallel Fully Adaptive Tsunami
Simulations. In: Facing the Multicore-Challenge III, Institut für Infor-
matik, Technische Universität München, Springer, Heidelberg, Germany,
Lecture Notes in Computer Science, vol 7686

4. Bader M, Bungartz HJ, Schreiber M (2012) Invasive Computing on High
Performance Shared Memory Systems. In: Facing the Multicore-Challenge
III, Springer, Lecture Notes in Computer Science, vol 7686, pp 1–12

5. Bangerth W, Hartmann R, Kanschat G (2007) deal.II – a General Purpose
Object Oriented Finite Element Library. ACM Trans Math Softw

6. Becchi M, Crowley P (2006) Dynamic thread assignment on heteroge-
neous multiprocessor architectures. In: Proceedings of the 3rd conference
on Computing frontiers, ACM, New York, NY, USA, CF ’06, pp 29–40

7. Behrens J (2012) Efficiency for Adaptive Triangular Meshes: Key Issues
of Future Approaches. In: Earth System Modelling-Volume 2, Springer

8. Bhadauria M, McKee S (2010) An approach to resource-aware co-
scheduling for CMPs. In: Proceedings of the 24th ACM International Con-
ference on Supercomputing, ACM, ICS ’10, pp 189–199

9. BODC (2013) Centenary Edition of the GEBCO Digital Atlas
10. Bolosky WJ, Scott ML (1993) False sharing and its e ect on shared mem-

ory performance. In: 4th Symposium on Experimental Distributed and
Multiprocessor Systems, pp 57–71

11. Burstedde C, Wilcox LC, Ghattas O (2011) p4est: Scalable Algorithms for
Parallel Adaptive Mesh Refinement on Forests of Octrees. SIAM Journal
on Scientific Comp 33(3):1103–1133, DOI 10.1137/100791634

12. Castro C, Käser M, Toro E (2009) Space–time adaptive numerical meth-
ods for geophysical applications. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences

13. Corbalán J, Martorell X, Labarta J (2000) Performance-driven processor
allocation. In: Proceedings of the 4th conference on Symposium on Oper-
ating System Design & Implementation-Volume 4, pp 5–5

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 25

14. Corbalan J, Martorell X, Labarta J (2005) Performance-driven proces-
sor allocation. Parallel and Distributed Systems, IEEE Transactions on
16(7):599–611

15. De Grande R, Boukerche A (2011) Dynamic load redistribution based on
migration latency analysis for distributed virtual simulations. In: Haptic
Audio Visual Environments and Games (HAVE), 2011 IEEE International
Workshop on, pp 88–93, DOI 10.1109/HAVE.2011.6088397

16. Drosinos N, Koziris N (2004) Performance comparison of pure MPI vs
hybrid MPI-OpenMP parallelization models on SMP clusters. In: Parallel
and Distributed Processing Symposium, 2004, IEEE

17. Falby JS, Zyda MJ, Pratt DR, Mackey RL (1993) NPSNET: Hierarchical
data structures for real-time three-dimensional visual simulation. Com-
puters & Graphics 17(1):65–69

18. Fleisch BD (1986) Distributed system V IPC in LOCUS: a design and
implementation retrospective. In: ACM SIGCOMM Computer Communi-
cation Review, ACM, vol 16, pp 386–396

19. Fletcher R, Powell MJ (1963) A rapidly convergent descent method for
minimization. The Computer Journal 6(2):163–168

20. Garcia M, Corbalan J, Badia Maria R, Labarta J (2012) A dynamic load
balancing approach with SMPSuperscalar and MPI. In: Keller R, Kramer
D, Weiss JP (eds) Facing the Multicore-Challenge II

21. George D (2008) Augmented Riemann solvers for the shallow water equa-
tions over variable topography with steady states and inundation. Journal
of Computational Physics 227(6):3089–3113

22. Gerndt M, Hollmann A, Meyer M, Schreiber M, Weidendorfer J (2012)
Invasive computing with iOMP. In: Specification and Design Languages
(FDL)

23. Hesthaven JS, Warburton T (2008) Nodal discontinuous Galerkin meth-
ods: algorithms, analysis, and applications. Springer

24. Hsieh WCY (1995) Dynamic Computation Migration in Distributed
Shared Memory Systems. PhD thesis, MIT

25. Keyes DE (2000) Four horizons for enhancing the performance of paral-
lel simulations based on partial differential equations. In: Euro-Par 2000
Parallel Processing, Springer, pp 1–17

26. Kobbe S, Bauer L, Lohmann D, Schröder-Preikschat W, Henkel J (2011)
DistRM: Distributed resource management for on-chip many-core systems.
In: Proceedings of the seventh IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, ACM, pp 119–128

27. Li D, De Supinski B, Schulz M, Cameron K, Nikolopoulos D (April) Hybrid
MPI/OpenMP power-aware computing. In: Parallel Distributed Process-
ing (IPDPS), 2010, pp 1–12

28. Meister O, Rahnema K, Bader M (2011) A Software Concept for Cache-
Efficient Simulation on Dynamically Adaptive Structured Triangular
Grids. In: PARCO, pp 251–260

29. Michael MM (2004) Scalable lock-free dynamic memory allocation. In:
ACM SIGPLAN Notices, ACM, vol 39, pp 35–46

26 M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, A. Breuer

30. Neckel T (2009) The PDE Framework Peano: An Environment for Effi-
cient Flow Simulations. Dissertation, Institut für Informatik, Technische
Universität München

31. Nogina S, Unterweger K, Weinzierl T (2012) Autotuning of Adaptive Mesh
Refinement PDE Solvers on Shared Memory Architectures. In: PPAM
2011, Springer-Verlag, Heidelberg, Berlin, Lecture Notes in Computer Sci-
ence, vol 7203, pp 671–680

32. Reinders J (2010) Intel threading building blocks: outfitting C++ for
multi-core processor parallelism. O’Reilly Media, Inc.

33. Rosu D, Schwan K, Yalamanchili S, Jha R (1997) On adaptive resource
allocation for complex real-time applications. In: Proceedings of the 18th
IEEE Real-Time Systems Symposium, IEEE Computer Society, Washing-
ton, DC, USA, RTSS ’97, pp 320–, DOI 0-8186-8268-X

34. Rüde U (1993) Fully adaptive multigrid methods. SIAM Journal on Nu-
merical Analysis 30(1):230–248

35. Rusanov VV (1962) Calculation of interaction of non-steady shock waves
with obstacles. NRC, Division of Mechanical Engineering

36. Sagan H (1994) Space-filling curves, vol 18. Springer-Verlag New York
37. Schmidl D, Cramer T, Wienke S, Terboven C, Müller M (2013) Assessing

the performance of openmp programs on the intel xeon phi. In: Wolf F,
Mohr B, Mey D (eds) Euro-Par 2013 Parallel Processing, Lecture Notes
in Computer Science, vol 8097, Springer Berlin Heidelberg, pp 547–558

38. Schreiber M, Bungartz HJ, Bader M (2012) Shared Memory Paralleliza-
tion of Fully-Adaptive Simulations Using a Dynamic Tree-Split and -Join
Approach. IEEE International Conference on High Performance Comput-
ing (HiPC), IEEE Xplore, Puna, India

39. Schreiber M, Weinzierl T, Bungartz HJ (2013) Cluster optimization of
parallel simulations with dynamically adaptive grids. In: EuroPar 2013,
Aachen, Germany

40. Schreiber M, Weinzierl T, Bungartz HJ (2013) SFC-based Communication
Metadata Encoding for Adaptive Mesh. In: Proceedings of the Interna-
tional Conference on Parallel Computing (ParCo)

41. Shao G, Li X, Ji C, Maeda T (2011) Focal mechanism and slip history of
the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained
with teleseismic body and surface waves. Earth, planets and space 63(7)

42. Teich J, Henkel J, Herkersdorf A, Schmitt-Landsiedel D, Schröder-
Preikschat W, Snelting G (2011) Invasive computing: An overview. In:
Multiprocessor SoC, Springer, pp 241–268

43. Tradowsky C, Schreiber M, Vesper M, Domladovec I, Braun M, Bungartz
HJ, Becker J (2014) Towards Dynamic Cache and Bandwidth Invasion.
Springer

44. Vigh CA (2012) Parallel Simulations of the Shallow Water Equations on
Structured Dynamically Adaptive Triangular Grids. Dissertation, Institut
für Informatik, Technische Universität München

45. Vuchener C, Esnard A (2012) Dynamic Load-Balancing with Variable
Number of Processors based on Graph Repartitioning. In: Proceedings

Invasive Compute Balancing for Appl. with Shared and Hybrid Parallelization 27

of High Performance Computing (HiPC 2012), pp 1–9
46. Weinzierl T (2009) A Framework for Parallel PDE Solvers on Multiscale

Adaptive Cartesian Grids. Dissertation, Institut für Informatik, Technis-
che Universität München, München

