
International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Analysing Multiple QoS Attributes in Parallel Design
Patterns-based Applications

Antonio Brogi · Marco Danelutto · Daniele De
Sensi · Ahmad Ibrahim · Jacopo Soldani ·
Massimo Torquati

Received: date / Accepted: date

Abstract Parallel design patterns can be fruitfully combined to develop parallel soft-
ware applications. Different combinations of patterns can feature different QoS while
being functionally equivalent. To support application developers in selecting the best
combinations of patterns to develop their applications, we hereby propose a proba-
bilistic approach that permits analysing, at design time, multiple QoS attributes of
parallel design patterns-based application. We also present a proof-of-concept imple-
mentation of our approach, together with some experimental results.

Keywords Parallel design patterns · QoS · Probabilistic analysis · Design time

1 Introduction

Parallel design patterns enable the development of parallel software applications by
composing well-known, widely accepted programming abstractions [21]. When de-
veloping a parallel design patterns-based application, different functionally equiv-
alent compositions of parallel patterns can be considerably different from a non-
functional perspective.

The availability of a support for estimating — at design time — the QoS of a
given composition of patterns would allow application developers to compose and
select the parallel design patterns yielding the desired QoS.

The approach of experimentally measuring an application’s energy consumption
and completion time (for all of its possible configurations) may be unfeasible, since it
may require too much time and resources [10]. Various approaches focus on optimis-
ing the QoS of a parallel design patterns-based application at compile time (e.g., [1],

Department of Computer Science, University of Pisa
Largo B. Pontecorvo 3, 56127 Pisa, Italy
E-mail: {brogi,marcod,desensi,ahmad,soldani,torquati}@di.unipi.it
This is a pre-print. Final version of this manuscript can be downloaded at http://link.
springer.com/article/10.1007%2Fs10766-016-0476-8

http://link.springer.com/article/10.1007%2Fs10766-016-0476-8
http://link.springer.com/article/10.1007%2Fs10766-016-0476-8

2 Antonio Brogi et al.

[4], and [13]), or permit dynamically changing the configuration of a parallel de-
sign patterns-based application at runtime, if given QoS requirements are violated
(e.g., [2], [7], [9], [19], and [20]). However, none of these approaches truly supports
parallel application developers at design time, as in the former cases QoS is hidden
to the developer, while in the latter cases QoS is only available at runtime.

In this paper we present a technique to probabilistically predict the QoS of paral-
lel design patterns-based applications. We illustrate a probabilistic approach that per-
mits analysing multiple QoS attributes in stream parallel applications. Our approach
relies on two simple ideas. First, to permit analysing whatever configuration of par-
allel design patterns, we reduce the control flow of such configurations to an expres-
sion combining two basic cost compositors. Second, to deal with non-determinism
(e.g., whether a processed item is fed back or not to the input stream for further pro-
cessing), we perform our analyses by exploiting Monte Carlo simulations [11].

To show the feasibility of our approach, we present PASA (Probabilistic Analyser
of Skeleton-based Applications), an open-source proof-of-concept implementation of
our technique for analysing multiple QoS attributes. As we will discuss in Sect. 5, our
first experimental results confirm that PASA is a promising support to qualitatively
compare — at design time — arbitrarily complex combinations of parallel design
patterns and to select the ones most probably yielding the higher degree of QoS.

The rest of the paper is organised as follows. Sect. 2 provides an example moti-
vating the need for predicting an application’s QoS at design time. Sect. 3 illustrates
the technique we propose for analysing multiple QoS attributes of parallel design
patterns-based applications. Sects. 4 and 5 illustrate a proof-of-concept implementa-
tion of our methodology and some experimental results, respectively. Finally, Sects. 6
and 7 discuss related work and draw some concluding remarks.

2 Motivating Example

Consider the (toy) image blurring application in Fig. 1. Such application processes a
video sequence (i) by reading each of its image frames, (ii) by applying two subse-
quent blurring filters Blur and Blur2 to each image frame, and (iii) by writing each
filtered image frame back to the disk. If the blurring of an image frame is not satis-
factory, the frame has to be blurred again and is returned (through a feedback loop)
to the input stream of the first blurring filter.

A parallel implementation of such application can be developed by exploiting
different configurations of parallel design patterns [21], e.g., via a pipeline of the
four steps, via a farm of pipelines, and so on. Among all possible configurations, we

Fig. 1 An image blurring application (with a feedback loop).

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 3

Step Heavy Light
Read 1.84 mJ 1.84 mJ
Blur 14.44 mJ 4.99 mJ
Blur2 13.45 mJ 4.41 mJ
Write 1.95 mJ 1.95 mJ

Step Heavy Light
Read 0.144 msec 0.144 msec
Blur 3.991 msec 0.377 msec

Blur2 3.523 msec 0.335 msec
Write 0.151 msec 0.151 msec

(a) Energy consumption (b) Completion time

Table 1 Resources required by each application step for processing a given image frame.

would like to select the ones most probably yielding the best QoS. For instance, we
might be interested in minimising energy consumption and completion time.

Suppose, for instance, that we need to process two different types of image frames
(e.g., heavy and light), whose processing consumes different amounts of millijoules,
and which require different time intervals for being completed by each step (Table 1).
Suppose also that our application is in a steady state where input frames arrive one
right after the other (with negligible delay), that 10% of the image frames are heavy,
and that the probability of a frame to be returned to the input stream is 0.3.

A natural question we would like to answer is the following: What are the energy
consumption and completion time of our application, if we implement it with a given
composition of parallel design patterns?

3 Estimating the QoS of Parallel Design Patterns-based Applications

Predicting the QoS of parallel design patterns-based applications is challenging (i)
since we need to take into account the compositional nature of patterns, and (ii) be-
cause of the non-determinism characterising the input stream and feedback loops.

At design time, we do not know precisely which inputs our application is going
to process, neither which of such inputs will be routed back by a feedback loop.
An application developer can however distinguish different types of inputs of her
application based upon the heaviness of their processing, and provide a probability
distribution of input types (e.g., in our motivating example, we expect 10% of the
input stream to be heavy, and the remaining 90% to be light — Sect. 2). She can also
specify the probability of a feedback condition to get satisfied by an input stream item,
thus characterising the probability of such item to be fed back to the input stream1.

We hereby illustrate a probabilistic technique that, given a distribution of the input
types and the probabilities of feedback conditions to get satisfied, permits predicting
the QoS of parallel applications. Our approach relies on two simple ideas:

(i) To deal with configurations of parallel design patterns of whatever complexity,
we reduce the control flow of a parallel design patterns-based application to a
composition of two operators, called Both and Delay (Sect. 3.2).

(ii) To deal with the non-determinism characterising the input stream and feedback
loops, we exploit Monte Carlo simulations [11]. Such simulations will be based

1 Probability distributions can typically be derived from a requirement analysis or from monitoring data
of previous implementations of an application.

4 Antonio Brogi et al.

upon a user-specified distribution of input types and on user-specified probabil-
ities of feedback conditions to get satisfied by an input item.

3.1 Abstract syntax for parallel design patterns-based applications

We shall model parallel applications as compositions of the following core set of
stream parallel design patterns: Node, Comp, Pipe, Farm, and Feedback.

– A Node is a basic activity, which processes the stream of data items arriving on
the input channel and delivers the results on the output channel.

– Comp is a pattern that permits sequencing activities to be executed one after the
other (e.g., in Comp(A,B), B can start processing a given input only when A has
completed processing such input).

– Pipe is a pattern to represent pipelines of parallel activities. Similarly to Comp,
activities are executed in order (i.e., once an activity has completed processing a
given input, such input can start being processed by the subsequent activity). It
differs from Comp since an activity can start processing a new input once it has
completed processing a given input, and while such given input is being processed
by the subsequent activities.

– Farm is a pattern that permits running multiple instances (called workers) of the
same activity to parallelly process different inputs.

– Finally, Feedback is a pattern that can be used to selectively route back results
to the input stream (i.e., once a given input has been processed, it is either returned
to the output stream or routed back to the input stream, if condition cond holds).

The above listed core patterns define the following abstract syntax2:
type QoS = float * float
type Activity =
| Node of (InputType->QoS)
| Comp of Activity list
| Pipe of Activity list
| Farm of Activity * int
| Feedback of Activity * string * float

where QoS is used to represent multiple QoS attributes (viz., energy consumption
and completion time in this paper) of an activity.

Example 1 Consider the application in our motivating example (Fig. 1). The (QoS of
the) Blur node can be defined as follows:

let evaluateBlurQoS (inputType) : QoS =
match inputType with
| Heavy -> (14.44,3.991)
| Light -> (4.99,0.377)

let Blur = Node(evaluateBlurQoS)

By defining also Read, Blur2, and Write, and by assuming 0.3 as the probability
for the condition "blurred?" to get satisfied by an input item, we can define the
whole application as follows:

2 We employ F# [22] pseudo-code for all snippets in this paper, as our proof-of-concept implementation
(Sect. 4) is developed in F#.

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 5

let motivatingExample =
Pipe(Read,Feedback(Pipe(Blur,Blur2),"blurred?",0.3),Write)

Then, motivatingExample term can be given input to our probabilistic analysis,
to estimate its QoS (as we will discuss next). �

3.2 Cost compositors for QoS attributes

To estimate the QoS of parallel design patterns-based applications, we will define
(in Sect. 3.3) a structurally recursive function that associate, in a compositional way,
each parallel design pattern with a cost structure. Please note that such cost structure
is general, and it can be instantiated to define different QoS attributes, e.g., the time
needed to complete an activity or the energy associated with its execution.

We reduce each parallel design pattern to a composition of two cost operators,
called Both and Delay. Both(A,B) permits defining the cost of independently
executing two activities whose costs are A and B, respectively. Delay(A,B) permits
defining the cost of executing an activity whose cost is A and which can start only
when another activity (whose cost is B) has been completed. The compositor Both
is commutative and associative:

Both(A,B)=Both(B,A)
Both(A,Both(B,C))=Both(Both(A,B),C)

The compositor Delay is associative and right-distributive over Both:
Delay(A,Delay(B,C))=Delay(Delay(A,B),C)
Delay(Both(A,B),C)=Both(Delay(A,C),Delay(B,C))

We also explicitly name a neutral element Zero for Both and Delay:
Both(A,Zero)=Both(Zero,A)=A
Delay(A,Zero)=A

With Both and Delay we can naturally model the completion time and energy
consumption of two activities. Let us denote with aTime and bTime their values
of completion time. The completion time for running both activities in parallel is
given by the maximum between aTime and bTime3. Instead, the completion time
for delaying one activity after the other is obtained by summing aTime and bTime,
as the delayed activity can start only after the first activity is completed.

let Both(aTime,bTime) = Max(aTime,bTime)
let Delay(aTime, bTime) = aTime + bTime

Let us denote with aEnergy and bEnergy the energy consumption of two ac-
tivities. The energy consumed for independently executing Both activities can be
approximated with the sum of their energy consumption. On the other hand, the en-
ergy consumed to Delay one activity after the other can be approximated by the
energy consumption of the delayed activity (since delaying an activity does not in-
crease the energy it consumes)4.

3 By taking the Max between aTime and bTime, we obtain an optimistic estimation of the comple-
tion time for executing A and B in parallel. Notice that different definitions of Both and Delay can be
employed if needed. For instance, a pessimistic approach can estimate the completion time for executing
both A and B in parallel by summing aTime and bTime.

4 For the sake of simplicity, we employ a quite simplistic model for energy that abstracts from any
overhead (e.g., idle times) due to concurrent execution of activities.

6 Antonio Brogi et al.

let Both(aEnergy,bEnergy) = aEnergy + bEnergy
let Delay(aEnergy, bEnergy) = aEnergy

3.3 Estimating the QoS of a composition of parallel design patterns

We hereby introduce a recursive evaluation function exec that estimates the QoS
of a parallel application defined as a combination of the core parallel design pat-
terns Node, Comp, Farm, Pipe and Feedback of Sect. 3.1. Essentially, exec (i)
reduces a parallel design patterns-based application to a term combining the cost op-
erators Both and Delay, and (ii) determines the QoS to be returned by evaluating
the obtained term according to the cost composition rules described in Sect.3.2.

let rec exec (a:Activity, startIndex:int, endIndex:int):QoS=
match a with

| Node(evaluateQoS) -> ...
| Comp(aList)-> ...
| Pipe(aList) -> ...
| Farm (a,n) -> ...
| Feedback(a,cond,prob) -> ...

The exec function inputs an Activity a and two indexes (startIndex and
endIndex) identifying the portion of the input stream to be processed.

In the following we will assume the availability of a (global) list inputStream
of InputTypes, which represents the input stream to be processed. Different cate-
gories of input items can be distinguished, each requiring different values of energy
consumption and completion time. To set up a Monte Carlo simulation, the list mod-
elling the inputStream is generated by exploiting a sampling function [11] whose
behaviour strictly depends on the input stream to be modelled.

Example 2 Consider the input stream in our motivating example (Sect. 2), where
10% of the input image frames are heavy, and the remaining 90% are light. Suppose
also that we want to build a small stream containing of 10000 image frames. The F#
code to create a corresponding inputStream is the following:

type InputType = Heavy | Light
let rand = new System.Random()
let samplingFunction i =

if rand.NextDouble() <= 0.1 then Heavy
else Light

let inputStream = Array.init 10000 samplingFunction

Namely, we declare the InputTypes (Heavy and Light) and we define a sam-
pling function, which returns Heavy with probability 0.1 and Light with probabil-
ity 0.9. Then, we create an inputStream whose size is 10000 and whose content
is generated according to the specified samplingFunction. �

3.3.1 Evaluating Node activities

The evaluation of a Node activity consists of estimating the QoS of such node for pro-
cessing the portion of the inputStream identified by startIndex and endIn-
dex:

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 7

| Node(evaluateQoS) ->
let mutable nodeQoS = Zero
for i=startIndex to endIndex do

let iQoS = evaluateQoS(inputStream.[i])
nodeQoS <- Both(iQoS,Delay(nodeQoS,iQoS))

nodeQoS

Namely, we initially set the estimated nodeQoS to Zero. Then, for each item i
from startIndex to endIndex, we evaluate the QoS iQoS of the current Node
for processing item i, and we update nodeQoS with the cost of executing the cur-
rent item i delayed after the previous items. Once all items from startIndex to
endIndex have been processed, nodeQoS is returned.

3.3.2 Evaluating Comp activities

A Comp activity inputs a list of activities (aList). Its QoS can be estimated (i)
by simulating the processing of each item of the given portion of the input stream by
such a sequence of activities, and (ii) by ensuring that an item i starts being processed
by the first activity in aList only when the last activity in aList has completed
processing the preceding input i-1.
| Comp(aList)->
let mutable compQoS = Zero
for i = startIndex to endIndex do
let mutable aListQoS = Zero
for a in aList do

let aQoS = exec (a,i,i)
aListQoS <- Both(aListQoS,Delay(aQoS,aListQoS))

compQoS <- Both(compQoS, Delay(aListQoS,compQoS))
compQoS

More precisely, the estimated compQoS is initially set to Zero. Then, we compute
the QoS (aListQoS) for processing each item i in the portion of the inputStream
identified by startIndex and endIndex. Such aListQoS is simply obtained
by executing each activity a in aList on the given input stream item i, and by de-
laying the cost of each activity after the preceding one. Then, compQoS is updated
with the cost aListQoS for the current item i delayed after the cost for processing
the previous items of the input stream. As soon as all items from startIndex to
endIndex have been processed, compQoS is returned.

3.3.3 Evaluating Pipe activities

A Pipe activity inputs a list of activities. Its QoS can be estimated (i) by determin-
ing the cost of each of its stages for processing all items of the input stream from
startIndex to endIndex, and (ii) by composing such costs with Both.

| Pipe(aList) ->
let mutable pipeQoS = Zero
for a in aList do

let aQoS = exec(a,startIndex,endIndex)
pipeQoS <- Both(pipeQoS,aQoS)

pipeQoS

Namely, we estimate the cost (pipeQoS) of a Pipe by computing, for each activity
a in aList, the cost aQoS for executing a on all items in the given portion of the

8 Antonio Brogi et al.

input stream (from startIndex to endIndex). Then, we compose all computed
aQoS with Both.

The reason why we can compose all activities’ costs with Both is that the cost
of a Pipe can be approximated by the cost of independently executing all its stages
over all the items in the given portion of the input stream. Namely:

– Since Both sums the values of energy consumption, we estimate the energy con-
sumed by a Pipe as the sum of all costs for processing each item in the given
portion of the input stream by each activity in aList.

– Both takes the maximum among the values of completion times, and this means
that we estimate the completion time of a Pipe maximum among the completion
times of its stages. Since completion times corresponds to multiplying the stages’
service times by the size of the stream to be processed, we are actually estimating
the completion time of a Pipe as the maximum among service times multiplied
by the size of the stream to be processed.

3.3.4 Evaluating Farm activities

To estimate the QoS of a Farm (with a round robin scheduling policy) with n work-
ers5, (i) we partition the input stream among its workers, and (ii) we compute the
cost for concurrently executing such workers, each processing the portion of the in-
put stream it has been assigned to.

| Farm (a,n) ->
let mutable farmQoS = Zero
let workerStreamSize = (endIndex - startIndex + 1) / n
for w=0 to n-1 do

let wStartIndex = startIndex + w*workerStreamSize
let wEndIndex = wStartIndex + workerStreamSize - 1
let mutable wQoS = Zero
if (wEndIndex < inputStream.Length) then

wQoS <- exec(a,wStartIndex,wEndIndex)
else

wQoS <- exec(a,wStartIndex,inputStream.Length)
farmQoS <- Both(farmQoS,wQoS)

farmQoS

Namely, we compute the size (workerStreamSize) of the portion of the input
stream to be assigned to each worker. Then, for each worker w, we evaluate its QoS by
estimating the cost required by the activity a (which is running on w) for processing
the portion of the input stream assigned to w. Since all workers run in parallel, the
cost (farmQoS) of the considered Farm is obtained by composing with Both all
the costs wQoS required by the workers.

One may note that, strictly speaking, the above snippet does not implement a
round robin policy, as the input stream is split into contiguous segments assigned to
different workers. It is worth noting that, as we are setting up a Monte Carlo simu-
lation (Sect. 3.3.6), the inputStream will be sampled according to a given proba-
bilistic distribution. Moreover, we are interested on predicting the QoS based on the
distribution of the input types in the input stream, rather than on the “identity” of

5 For simplicity, when evaluating a farm with n workers, we assume the availability of n processing
cores. In this way, we abstract from any delay due to scheduling n workers over m < n processing cores.

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 9

each input stream item. This, along with the facts that the size of the stream is usu-
ally much bigger than the amount of workers, and that each simulation is going to be
repeated a huge number of times [11], justifies evaluating a Farm by simply splitting
the input stream among the workers.

3.3.5 Evaluating Feedback activities

A Feedback activity inputs the Activity a to be executed, and a condition cond
that causes a processed input item to be routed back to the input stream with a
certain probability prob. The actual satisfaction of a condition cond is unknown
a priori (as it depends on the actual data items to be processed), and this intro-
duces non-determinism when analysing a Feedback activity. To deal with such
non-determinism, we rely on the probability prob to determine how many items are
probably routed back to the input stream and to repeat the analysis over such items.

| Feedback(a,cond,prob) ->
let mutable feedbackQoS = exec(a,startIndex,endIndex)
let mutable f = 0
for i=startIndex to endIndex do

if(sampleCondition(cond,prob)) then f <- f+1
if f > 0 then

let fQoS = exec(Feedback(a,cond,prob),endIndex-f+1,endIndex)
feedbackQoS <- Both(feedbackQoS,Delay(fQoS,feedbackQoS))

feedbackQoS

More precisely, we initially set the cost feedbackQoS of the evaluated Feedback
activity to the cost required by the inner activity a for processing the given portion of
the input stream. We then compute f as the amount of items of the input stream that
have to be routed back to the input stream. Then, to simulate the analysis of the f
feedbacked items, we re-evaluate the current Feedback over the last f items of the
input stream6. Such analysis results in a cost fQoS that is added to feedbackQoS
(i.e., the cost of the feedbacked f items is delayed after the previously computed cost
feedbackQoS) to compute the overall cost of the current Feedback activity.

Notice that, to compute the amount f of items to be fed back to the input stream,
we exploit another sampling function, which simulates the non-deterministic be-
haviour of the feedback condition. Such function returns truewith probability prob
(i.e., condition cond is satisfied), false otherwise.

let rand = new System.Random()
let sampleCondition(cond:string, prob:float) =

if rand.NextDouble() <= prob then true
else false

3.3.6 Setting up the Monte Carlo simulations

In the previous sections we have shown how to generate the inputStream and how
to evaluate the QoS of an Activity a (i.e., a given composition of parallel design

6 As we noted in Sect. 3.3.4, we are interested on predicting the QoS based on the distribution of the
input types in the input stream, rather than on the “identity” of each input stream item. Hence, it is enough
to repeat our analysis on f items (most probably) satisfying such a probability distribution, such as the last
f items of the given portion of the input stream.

10 Antonio Brogi et al.

patterns) for processing a given portion of such inputStream. We now need to put
the pieces altogether for setting up a Monte Carlo simulation that permits predicting
QoS of parallel design patterns-based applications.

let predictQoS(a:Activity,size:int,samplingFunction:int->InputType) =
let inputStream = Array.init size samplingFunction
let rec exec (a:Activity, startIndex:int, endIndex:int):QoS = ...
exec(a,0,size-1)

The function predictQoS inputs an Activity a whose QoS has to be predicted,
and the size of the inputStream to be processed. It assumes the availability of
a global samplingFunction that permits populating the input stream according
to a given distribution of input types. After defining function exec, predictQoS
simply invokes such function to estimate the QoS of a for processing the whole
inputStream.

Obviously, one invocation of predictQoS simulates a single execution of a.
According to the Monte Carlo simulation theory [11], a reliable prediction can be
obtained if we repeat a simulation a huge amount of times (each of which re-samples
both the input stream and the feedback conditions) and properly aggregate the com-
puted results. As one can expect, the higher the amount of iterations, the better the
accuracy of the performed Monte Carlo simulation [11].

Example 3 Consider again our motivating example (Fig. 1). As we have shown in
Example 1, we can define our application as follows:

let motivatingExample =
Pipe(Read,Feedback(Pipe(Blur,Blur2),"blurred?",0.3),Write)

Suppose that, for instance, we now want to predict its energy consumption and com-
pletion time over an input stream built as shown in Example 2. To do it, we can
iterate a huge amount of times the invocation of predictQoS and then average all
estimated values of energy consumption and completion time.

let iterations = 1000000
let mutable avgEnergy = 0.0
let mutable avgTime = 0.0
for i = 0 to iterations - 1 do
let iQoS = predictQoS(motivatingExample,10000,samplingFunction)
avgEnergy <- avgEnergy + (fst iQoS)
avgTime <- avgTime + (snd iQoS)

avgEnergy <- avgEnergy / (float iterations)
avgTime <- avgTime / (float iterations)

The above F# snippet shows how to compute the expected energy consumption (avg-
Energy) and completion time (avgTime) for our motivating application for pro-
cessing an input stream that contains 10000 images, and whose desired input type
distribution is obtained by exploiting the given samplingFunction. �

4 Proof-of-Concept Implementation: PASA

To illustrate the feasibility of the approach described in Sect. 3, we developed a proof-
of-concept implementation of it. PASA (Probabilistic Analyser of Skeleton-based

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 11

Applications — Fig. 2) is an open-source F# [22] application that permits predict-
ing the QoS in parallel design patterns-based applications7.

Parallel design

patterns-based

application

PASA

analyser

QoS and

Probabilities

Monte Carlo Simulation

uses

Input Tool Output

+

Fig. 2 Bird-eye view of the input-output behaviour of the PASA analyser.

PASA inputs (i) the description of a parallel application defined as a combination
of basic activities (i.e., Nodes) and of the core stream parallel design patterns Comp,
Pipe, Farm, Feedback, (ii) the size and the optional classification of the input
stream (e.g., in our motivating example, we categorise the data items coming from the
input stream as heavy or light, to distinguish the energy consumption and completion
time they require for being processed), (iii) the QoS required by each node to process
each type of input, and (iv) the probabilities of a given input type to occur and of a
given Feedback conditions to get satisfied.

Given the above input, PASA predicts the QoS of the specified application for
processing the input stream. More precisely, the input is passed to a back-end, which
implements the recursive function exec and the Monte Carlo algorithm. The latter
permits simulating multiple execution of the given composition of parallel design
patterns on the given input stream. PASA generates n samples8 (where n is exploited
by users to indicate the total number of Monte Carlo iterations to be performed), each
denoting an execution trace of the given composition. By applying exec to each
sample, PASA computes the QoS (i.e., energy consumption and completion time) of
each execution trace. The QoS computed for all traces are then aggregated to derive
the desired prediction of QoS. For instance, by simply averaging all QoS values, it
is possible to estimate the average energy consumption and the average completion
time required by the specified application for processing the given input stream.

PASA also permits displaying the results of the performed analysis in different
formats. For instance, it is possible to display such results in the form of histograms
summarising the probability distribution of the estimated QoS (Fig. 2).

7 The source code of PASA is publicly available at https://github.com/ahmad1245/PASA.
8 The samples are generated with sampling functions following the probability distributions of input

types and of Feedback conditions’ satisfaction.

https://github.com/ahmad1245/PASA

12 Antonio Brogi et al.

5 Experimental results

Consider again the image processing application in our motivating example (Fig. 1),
which has to process a stream containing 10000 image frames of two different types
(viz., heavy and light), each requiring different QoS to be processed. Suppose that we
want to parallelise our application, and that we wish to qualitatively compare different
compositions of parallel design patterns to select the one most probably yielding the
higher degree of QoS.

First, we measured the energy and time required by each application step of our
application to process an image frame of a given type9. All measurements were per-
formed in isolation on a sequential version of the image processing application. In
particular, energy consumption was measured by inspecting RAPL counters to mea-
sure the power consumption of the CPU [14]. The measured values of energy con-
sumption and completion time are reported in Tables 1.(a) and 1.(b), respectively.

We defined a first parallel version of our application in PASA as follows:
let motivatingExample =
Pipe(Read,Feedback(Pipe(Blur,Blur2),"blurred?",probF),Write)

where probF is the probability of the "blurred?" condition to get satisfied by a
processed item. We compared the values of QoS predicted by PASA10 (for different
values of probF) with respect to those directly measured on a synthetic implemen-
tation of the same application in FastFlow [3]. As shown in Table 2, the predicted
value for completion time is quite accurate11.

Fig. 3 shows that, if we fix the amount of expected heavy input stream items
(either to 10% or to 20%), and if we vary the probability of the feedback condition
"blurred?" to get satisfied by a given item, PASA effectively identifies the trend
of the multiple QoS attributes it analyses. Since this holds independently of the mag-
nitude of the relative error, PASA can be exploited by parallel application developers
who aims at qualitatively analysing multiple dimensions of the QoS of different par-
allel design patterns compositions.

To show an example of a qualitative analysis that we can perform with PASA,
suppose that we want to assess the advantages of parallelising our motivating exam-
ple application. Suppose that we have to process 1000 image frames (45% of which
are heavy), and that we can exploit at most 16 processing units. Obviously, we can
implement our application as (C) a composition of Comp and Feedback, or as (P)
a composition of Pipe and Feedback:
let C = Comp(Read,Feedback(Comp(Blur,Blur2),"blurred?",0.2),Write)
let P = Pipe(Read,Feedback(Pipe(Blur,Blur2),"blurred?",0.2),Write)

We can also decide to build a Farm, each of whose workers is a composition of Comp
and Feedback. In this case, since we can exploit at most 16 processing units, since

9 Such measurements, as well as all the other experiments reported in this section, have been performed
on an Intel Xeon Ivy Bridge (running at 2.40GHz with 12 cores 2-way Hyper-Threading), equipped with
a Linux OS (version 3.14.49 x86 64 shipped with CentOS 7.1).

10 Such values were obtained by performing 1000 iterations of the Monte Carlo simulation.
11 Similar results were achieved when predicting the energy consumption of our application, even with

an average relative error higher with respect to that affecting the predicted completion time (due to the
extremely simplistic model we employed for estimating energy consumption).

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 13

Perc. of
heavy items

Prob. of
feedback

Predicted
time (msec)

Measured
time (msec)

Relative
error

10% 0.1 8201.0 8344.4 1.718%
10% 0.2 9214.5 9301.5 0.935%
10% 0.3 10536.4 11256.9 6.400%
10% 0.4 12275.5 12528.9 2.023%
20% 0.1 12236.8 12395.5 1.280%
20% 0.2 13738.1 14324.5 4.093%
20% 0.3 15703.9 16457.9 4.582%
20% 0.4 18329.2 18657.8 1.761%
30% 0.1 16238.4 16606.4 2.216%
30% 0.2 18250.3 18464.0 1.157%
30% 0.3 20851.6 20822.8 0.138%
30% 0.4 24341.3 24280.2 0.252%
40% 0.1 20259.8 20404.9 0.711%
40% 0.2 22775.6 23109.0 1.443%
40% 0.3 26069.7 26023.0 0.180%
40% 0.4 30391.6 30342.9 0.160%

Min. err. 0.138%
Avg. err. 1.816%
Max. err. 6.400%

Table 2 Completion times for a pipelined implementation of our motivating example application.

each worker is a Comp (thus requiring a single processing unit), and since we have to
spend two processing units for the Farm’s emitter and collector, we can instantiate
from 2 to 14 workers:

let F2C = Farm(Comp(Read,Feedback(Comp(Blur,Blur2),"blurred?",0.2),
Write),2)

...
let F14C = Farm(Comp(Read,Feedback(Comp(Blur,Blur2),"blurred?",0.2),

Write),14)

Similarly, we can build a Farmwhose workers are compositions of Pipe and Feed-
back. In this case, since each worker requires 4 processing units (one for each stage
of the Pipe), and since we have to spend two processing units for the Farm’s emitter
and collector, we can only instantiate either 2 or 3 workers:

let F2P = Farm(Pipe(Read,Feedback(Pipe(Blur,Blur2),"blurred?",0.2),
Write),2)

let F3P = Farm(Pipe(Read,Feedback(Pipe(Blur,Blur2),"blurred?",0.2),
Write),3)

Another possible combination of patterns is a Pipe whose first and last stages are
Read and Write, and with an intermediate stage that is a Farm whose workers
are a Comp of Blur and Blur2. Due to the same restriction on processing units as
above, we can instantiate from 2 to 12 workers in the intermediate Farm:

let PF2C = Pipe(Read,Farm(Feedback(Comp(Blur,Blur2),"blurred?",0.2),
2),Write)

...
let PF12C = Pipe(Read,Farm(Feedback(Comp(Blur,Blur2),"blurred?",0.2),

12),Write)

Finally, we can derive a different combination of patterns by simply exploiting Pipes
instead of Comps to implement the workers in the intermediate Farm of the above
Pipe. Since we increase the amount of processing units required by each worker, we
need to decrease the maximum amount of workers that we can instantiate to 6:

let PF2P = Pipe(Read,Farm(Feedback(Pipe(Blur,Blur2),"blurred?",0.2),

14 Antonio Brogi et al.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

0.1 0.2 0.3 0.4

m
J

probability of feedback

Predicted Measured

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

0.1 0.2 0.3 0.4

m
J

probability of feedback

Predicted Measured

(a) Energy consumption (10% heavy) (b) Energy consumption (20% heavy)

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

0.1 0.2 0.3 0.4

m
se

c

probability of feedback

Predicted Measured

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

0.1 0.2 0.3 0.4

m
se

c

probability of feedback

Predicted Measured

(c) Completion time (10% heavy) (d) Completion time (20% heavy)

Fig. 3 Growth trends of the considered multiple QoS attributes (with fixed percentage of heavy items and
varying probability of the feedback condition "blurred?" to get satisfied by an input item).

2),Write)
...
let PF6P = Pipe(Read,Farm(Feedback(Pipe(Blur,Blur2),"blurred?",0.2),

6),Write)

By running PASA, we can estimate the expected completion time for all identified
combinations of parallel design patterns. We can then compare such combinations in
the bidimensional space in Fig. 4 (where the x axis denotes the predicted comple-
tion time, while the y axis denotes the amount of processing units needed to run a
given pattern combination) to assess the effect of increasing the amount of employed
computing resources.

Furthermore, by including additional QoS properties (e.g., energy consumption)
in the analysis (thus transforming the bidimensional space in Fig. 4 in an n-dimensional
space) we can gain further information to decide whether to use one pattern combi-
nation or another.

6 Related Work

The importance of estimating the QoS of parallel applications is a widely recognised
issue in the parallel design pattern community.

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 15

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 0 1000 2000 3000 4000 5000

co
m

pu
tin

g
re

so
ur

ce
s

completion time (ms)

C

C

P

P

FnC

F2C

F3C

F4C

F5C

F6C

F7C

F8C

F9C

F10C

F11C

F12C

F13C

F14C

FnP

F2P

F3P PFnC

PF2C

PF3C

PF4C

PF5C

PF6C

PF7C

PF8C

PF9C

PF10C

PF11C

PF12C

PFnP

PF2P

PF3P

PF4P

PF5P

PF6P

Fig. 4 An example of comparison for different composition of patterns.

[18] and [15] were among the earliest works to estimate the QoS of parallel appli-
cations. Given an application defined as a composition of data parallel patterns, [18]
exploits a differential equation solver composition to generate alternative composi-
tions, and to estimate the QoS, thus enabling their comparison. [15] instead translates
a data parallel application into a program written in an intermediate language, and
it abstractly interprets the obtained program to estimate the QoS of the original ap-
plication. Both [18] and [15] differ from our approach since they target data parallel
patterns and since they do not cope with non-determinism.

Other early work (e.g., [13], [1], [4], and [12]) done in this area focused on
proposing transformation rules for different parallel design patterns to optimise the
QoS of their compositions. [13] proposed two transformation rules to cover the data
parallel patterns scan and reduce. By applying such rules to a network topology ex-
ample, [13] shows that the resulting transformation yields a better QoS with respect to
the originally specified composition of patterns. [1] extends the idea of [13] from data
parallel patterns to stream parallel patterns (i.e., pipe and farm). Namely, [1] proposes
transformation rules to convert a composition of pipes and farms to an equivalent nor-
mal form, which is essentially a farm of comps. Experimental results demonstrate that
the obtained normal forms provide better QoS with respect to original compositions.
[4] is another example of a transformational framework that permits improving the
(time) performances of parallel design patterns-based application by transforming a
given composition of patterns into a functionally equivalent, but more efficient com-
position. [12] also proposed transformation rules for programs containing shift, zip
and map skeletons to yield more efficient programs.

16 Antonio Brogi et al.

[13], [1], [4], and [12] assign the responsibility of optimising performances to
the framework implementing the parallel design patterns, which however can opti-
mise application performances up to a certain extent. Application developers are in
a better position to optimise their code, but too-low level information cannot be con-
veyed to a developer, and this makes it difficult for her to optimise her code. [2], [7],
[19], and [20] follow this motivation, and are suitable for scenarios where execution
environment has to be hidden to developers.

[2] permits developers to provide a contract defining the desired QoS of a paral-
lel design patterns-based application. Autonomic controllers continuously monitor an
application, and in case of a mismatch between the QoS contract and the actual ap-
plication performances, a reconfiguration of the application is planned and executed.
[7] not only detects performance degradations in parallel design patterns-based ap-
plications, but also provide developers with explanations and suggestions on how to
address them. Performance degradations and improvement suggestions are obtained
by continuously monitoring applications and by using ad-hoc performance metrics.
[19] and [20] are other examples of hierarchical autonomic management where auto-
nomic managers cooperate to ensure a certain QoS. A wider discussion about auto-
nomic managers can be found in [17].

Other approaches worth mentioning are [6], [8], [9] and [10]. [6] estimates the
throughput of a stream parallel application in a given network configuration, by
analysing the corresponding PEPA model [16]. [6] differs from our approach since it
only considers throughput, and since it is limited to compositions of Pipes.

[8] takes a composition of sequence, pipe and farm, and generates all alternative
compositions having the same denotational semantics. Then, it computes the min-
imum number of threads needed by each alternative, and it selects the alternative
requiring the lowest amount of cores to run. [8] differs from our approach since it
does not consider non-determinism, and since it assumes that all activities take the
same amount of time to be executed, which can be unrealistic in some scenario.

[9] and [10] instead focus on identifying the most appropriate configuration (in
terms of CPU frequency and number of employed cores) to meet some given perfor-
mance goals. [9] proposes an approach to reconfigure stream parallel patterns-based
applications at runtime. Essentially, it monitors system utilisation and dynamically
selects a new configuration if such configuration minimises energy consumption. [10]
shows that testing all possible configurations to identify that yielding the optimal QoS
requires a long time. To address this problem, [10] proposes an approach that can ex-
ecute and monitor the application on few configurations, and then performs a linear
regression on the monitored data to estimate the QoS of all remaining configurations.

Summing up, [1], [4], [12] and [13] focus on optimising the QoS of parallel de-
sign patterns-based application at compile time, hiding all QoS information to the
developer. [10] permits determining the optimal configuration for a parallel design
patterns-based application at deployment time, by requiring to run some application
configurations, to monitor their performances, and then to exploit the retrieved infor-
mation to estimate the performances of other possible configurations. [2], [7], [9],
[19], and [20] instead monitor QoS at runtime, and reconfigure the running applica-
tion if given QoS requirements are violated.

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 17

To the best of our knowledge, the only approaches focusing on estimating QoS
at design-time are [6], [18], [15], and [8], which however are tightly coupled with a
fixed set of patterns and do not deal with non-determinism. Our approach differs from
all aforementioned approaches since it tackles the problem from a different perspec-
tive. Its novelty indeed resides in reducing whatever composition of parallel design
patterns to the composition of two cost compositors (i.e., Both and Delay), and in
exploiting Monte Carlo simulations to deal with the non-determinism introduced by
input types distribution and by feedback loops.

Finally, it is worth highlighting the potentials and generality of our approach,
which is not limited to parallel design patterns, but can also be adapted to predict QoS
of other kinds of composite software applications. For instance, our previous work [5]
shows how to employ Both, Delay, and Monte Carlo simulations to predict the QoS
(e.g., response time, availability, or cost) of web service orchestrations.

7 Conclusions

When implementing a parallel design patterns-based application, QoS is one of the
main discriminants to decide which of the possible pattern compositions to employ
for implementing such application.

In this paper we have proposed a probabilistic technique that permits predicting
the QoS of given compositions of parallel design patterns, and which relies on two
basic ideas. First, in order to deal with arbitrarily complex compositions of parallel
design patterns, we reduce each composition of patterns to a combination of two cost
operators, which permit analysing the cost of independently executing two activities
(Both) and of delaying one activity after the other (Delay). Second, to deal with
the non-deterministic nature of the input stream and of Feedback loops, we employ
Monte Carlo simulations [11].

Our approach is thought to be easily extensible. On the one hand, including addi-
tional QoS attributes in the analysis requires only to specify how the values of such
properties have to be combined when two activity run independently or one after the
other (i.e., by specifying how Both and Delay compose their values). On the other
hand, to include other parallel design patterns in the analysis, it is enough to extend
the abstract syntax for parallel design patterns-based applications (Sect. 3.1), and to
extend the definition of the function exec to coherently simulate the added patterns.
The extension of the set of the analysable QoS attributes, and of the set of considered
patterns is in the scope of our immediate future work.

We have also illustrated PASA (Probabilistic Analyser of Skeleton-based Appli-
cations), a proof-of-concept implementation of our approach developed in F# [22].
Our first experimental results demonstrate that PASA provides highly reliable pre-
dictions for completion time (with an average relative error of 1.816%), while the
prediction of energy consumption is currently less accurate. This is mainly due to the
quite simplistic model we employed for estimating energy consumption. We are cur-
rently analysing more precise ways to combine the energy consumption of separate
activities to improve the estimation of energy consumption.

18 Antonio Brogi et al.

Our experiments with PASA also prove that our probabilistic approach can be
fruitfully exploited to qualitatively compare different compositions of parallel design
patterns. Hence, PASA can be considered a promising technique for supporting paral-
lel application developers at design time (e.g., for selecting whichever of the suitable
combinations of patterns to employ to implement a parallel application). The exten-
sion of PASA prototype to support new patterns and frameworks (also easing the way
of providing the necessary input) is in the scope of our future work.

PASA is not only useful for helping parallel application developers, but it can also
be of great value for improving the compile time optimisation frameworks and the
monitoring and reconfigurations solutions that we discussed in Sect. 6. In particular,
we plan to develop autonomic managers that rely on the multi-attribute QoS analysis
performed by PASA to determine which of the suitable configurations to employ to
respond to a QoS or SLA violation and reconfigure an application.

Acknowledgements The research leading to these results has been partly supported by the project Through
the Fog (PRA_2016_64) funded by the University of Pisa, and by the project REPARA (ICT-609666)
funded by the European Union within the FP7 program.

References

1. Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimization. In: Proceedings of the 12th
International Conference on Parallel and Distributed Computing Systems (PDCS 1999), pp. 955–962.
International Society for Computers & Their Applications (1999)

2. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Autonomic management of non-functional concerns in
distributed & parallel application programming. In: Proceedings of the IEEE International Sympo-
sium on Parallel Distributed Processing (IPDPS 2009), pp. 1–12. IEEE (2009)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: high-level and efficient streaming
on multi-core. In: S. Pllana, F. Xhafa (eds.) Programming Multi-core and Many-core Computing
Systems, Parallel and Distributed Computing, chap. 13. Wiley (2014)

4. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel programming by transfor-
mation: The FAN skeleton framework. Parallel Algorithms And Applications 16(2), 87–121 (2001)

5. Bartoloni, L., Brogi, A., Ibrahim, A.: Probabilistic Prediction of the QoS of Service Orchestrations: A
Truly Compositional Approach. In: X. Franch, A.K. Ghose, G.A. Lewis, S. Bhiri (eds.) Proceedings
of the 12th International Conference on Service-Oriented Computing (ICSOC 2014), Lecture Notes
in Computer Science, vol. 8831, pp. 378–385. Springer (2014)

6. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Evaluating the performance of skeleton-based high
level parallel programs. In: Computational Science-ICCS 2004, pp. 289–296. Springer (2004)

7. Caromel, D., Leyton, M.: Fine Tuning Algorithmic Skeletons. In: Proceedings of the 13th Interna-
tional Euro-Par Conference on Parallel Processing (Euro-Par 2007), pp. 72–81. Springer (2007)

8. Castro, D., Hammond, K., Brady, E., Sarkar, S.: Structure, Semantics and Speedup: Reasoning about
Structured Parallel Programs using Dependent Types. Under consideration for publication in J. Func-
tional Programming (2015)

9. Danelutto, M., De Sensi, D., Torquati, M.: Energy driven adaptivity in stream parallel computations.
In: Proceedings of the 23rd Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP 2015), pp. 103–110. IEEE (2015)

10. De Sensi, D.: Predicting Performance and Power Consumption of Parallel Applications. In: Pro-
ceedings of the 24th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2016), pp. 200–207. IEEE Computer Society (2016)

11. Dunn, W.L., Shultis, J.K.: Exploring Monte Carlo Methods. Elsevier (2011)
12. Emoto, K., Matsuzaki, K., Hu, Z., Takeichi, M.: Domain-specific optimization strategy for skeleton

programs. In: Euro-Par 2007 Parallel Processing, pp. 705–714. Springer (2007)

Analysing Multiple QoS Attributes in Parallel Design Patterns-based Applications 19

13. Gorlatch, S., Lengauer, C.: (De)Composition Rules for Parallel Scan and Reduction. In: Proceedings
of the 3rd working conference on Massively Parallel Programming Models (MPPM 1997), pp. 23–32.
IEEE (1997)

14. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for short code paths
using rapl. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17 (2012)

15. Hayashi, Y., Cole, M.: Static performance prediction of skeletal parallel programs. PARALLEL AL-
GORITHMS AND APPLICATION 17(1), 59–84 (2002)

16. Hillston, J.: A compositional approach to performance modelling, vol. 12. Cambridge University
Press (2005)

17. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing — degrees, models, and applica-
tions. ACM Comput. Surv. 40(3), 7:1–7:28 (2008)

18. Jay, C.B.: Costing parallel programs as a function of shapes. Science of Computer Programming
37(1), 207–224 (2000)

19. Kandasamy, N., Abdelwahed, S., Khandekar, M.: A hierarchical optimization framework for auto-
nomic performance management of distributed computing systems. In: Proceedings of the 26th Inter-
national Conference on Distributed Computing Systems (ICDCS 2006), pp. 9–9. IEEE (2006)

20. Khargharia, B., Hariri, S., Yousif, M.S.: Autonomic power and performance management for com-
puting systems. In: Proceedings of the 3rd International Conference on Autonomic Computing, pp.
145–154. IEEE (2006)

21. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed Computing.
Springer-Verlag London (2003)

22. Syme, D., Granicz, A., Cisternino, A.: Expert F# 4.0, fourth edn. Apress (2015)

	Introduction
	Motivating Example
	Estimating the QoS of Parallel Design Patterns-based Applications
	Proof-of-Concept Implementation: PASA
	Experimental results
	Related Work
	Conclusions

