
Portable Node-Level Parallelism for the PGAS Model

Pascal Jungblut1 • Karl Fürlinger1

Received: 1 October 2020 / Accepted: 21 May 2021 / Published online: 5 June 2021
� The Author(s) 2021

Abstract
The Partitioned Global Address Space (PGAS) programming model brings intuitive

shared memory semantics to distributed memory systems. Even with an abstract and

unifying virtual global address space it is, however, challenging to use the full

potential of different systems. Without explicit support by the implementation node-

local operations have to be optimized manually for each architecture. A goal of this

work is to offer a user-friendly programming model that provides portable perfor-

mance across systems. In this paper we present an approach to integrate node-level

programming abstractions with the PGAS programming model. We describe the

hierarchical data distribution with local patterns and our implementation,

MEPHISTO, in C?? using two existing projects. The evaluation of MEPHISTO

shows that our approach achieves portable performance while requiring only min-

imal changes to port it from a CPU-based system to a GPU-based one using a

CUDA or HIP back-end.

Keywords PGAS � Parallel computing � Programming models

1 Introduction

Porting performance critical software to new architectures is a challenging task.

Programming abstractions like OpenMP provide means to decouple algorithms from

implementation details to ease the transition. Yet, the many combinations of system

configurations, back-ends and implementations force programmers to modify their

code for acceptable performance. In this paper we present the integration of

abstractions for node-level parallelism into the Partitioned Global Address Space
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(PGAS) programming model. This allows us to easily select the best back-end (e.g.

OpenMP or CUDA) for parallelism and use the global address space at the same

time.

1.1 Partitioned Global Address Space

In PGAS each computer dedicates a part of its local memory to a virtual, global

address space. In this global space, all processes may access memory locations on

remote locations. Each object in the global space is owned by one process or more

general a rank on which it is stored. Although all global memory is accessible from

all nodes, it is desirable to operate primarily on local data for performance reasons.

This stems from higher latency and possibly lower bandwidth for remote accesses

compared to local ones. Note that remote accesses may also refer to other NUMA-

domains on the same node. Often the so-called owner-computes rule is used to

determine which process is responsible for the computation of a data point. It states

that the process writing to an object will perform the computation.

There exist several PGAS implementations, both as dedicated programming

languages like Unified Parallel C (UPC), Co-array Fortran and Chapel or as a library

for existing languages like Global Arrays or Hierarchically Tiled Arrays (HTA).

Although PGAS does not dictate how remote objects are accessed, many libraries

use one-sided message passing. One-sided implies that only one of the commu-

nicating partners is active, i.e. it initiates the transfer, passes all necessary

parameters and monitors the progress. These one-sided operations are often

implemented using Remote Direct Memory Access (RDMA) so the target of an

operation can be truly passive. Hence the semantics are often similar to shared

memory programming where threads may read and write arbitrary shared memory

at any time, also requiring some form of explicit synchronization.

Figure 1 shows a distribution of an array across nodes. It also includes node-local

private memory that cannot be read from other processes. Here, node 2 holds a

private integer.

1.2 Abstractions for Node-Level Parallelism

PGAS processes can be mapped to nodes, NUMA-domains, cores, or SMT threads.

It can be beneficial to assign processes to NUMA-domains and use shared memory

parallelism inside these to avoid costly cross-NUMA accesses. If we take this idea

Fig. 1 An array of 5 elements distributed across 5 nodes using the PGAS model
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one step further, the algorithms may use the hierarchical structure of the hardware to

maximize locality.

Programming for accelerators often require either low-level and/or vendor-

specific languages and libraries like CUDA or OpenCL. These give programmers a

high level of control, are often tailored to the requirements of the hardware and thus

offer a lot room for optimization. However, the portability is limited: even for

languages that are not vendor specific, executing the same code on other hardware

necessitates a compatible implementation. Higher-level models like SYCL and

Alpaka build on top of these but hide the specific back-end. This potentially allows

users to migrate code more easily from one to another platform. Even on the same

hardware this can be useful, because it allows a fast evaluation of all supported

back-ends. As a side-effect these abstractions use a single-source model. This means

that the whole program, including the kernels, are written in one programming

language, e.g. C??.

We introduce the combination of abstractions for node-level parallelism and the

PGAS programming model. This approach offers flexibility for porting codes to

new distributed memory architectures. Our main contributions are:

1. A unified, hierarchical system for data placement across nodes and compute

units

2. A flexible distribution of the workload

3. An interface to integrate shared memory parallelism with the PGAS model

To have fine grained control over threads and accelerators, programmers often have

to resort to manually extending the PGAS environment, similar to an MPI?X

approach that is employed in message passing solutions. We want to provide a

usable, flexible and abstract integration of the aforementioned abstractions. For that

we allow the implementations to dynamically transfer the ownership of data to an

accelerator or other processing elements. The details of this idea are described in

Sects. 2.3 and 2.4.

We first detail our approach. In Sect. 3 we describe the C?? implementation

using two existing libraries along with an evaluation in Sect. 4. Related approaches

are discussed in Sect. 5 and finally we conclude this paper and offer an outlook for

future work.

2 Approach

To integrate node-level parallelism kernel acceleration into the PGAS programming

model, we extended the latter to allow the distribution of local work to accelerators.

Supported algorithms can hand over the control along with a task to executors that
will gain ownership of (some part of) the data. During this phase it is prohibited for

any other entity than the executor to access the data, so data that is needed outside of

an executor must be copied before. Accelerators then work asynchronously on the

tasks. If an accelerator and the host do not share the same memory space, data must

be moved to the accelerator’s memory before the execution starts. Conversely, the

results from the execution must eventually be copied back to the host. However,
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skipping redundant copies from accelerator to host or vice-versa is an optimization

available in case a coherent shared memory space is available.

2.1 Definitions

Within one node there can be several types of processing elements (PE). We define

that two PEs have the same type if they have the same computational capabilities

and memory space, e.g. two cores on the same CPU have the same type while a

CPU-core and a GPU-thread have different ones. Performance differences from

manufacturing or changes in frequency are not considered in this paper. These could

nonetheless be included if the focus was more on load balancing. Processing

elements or groups of the same type of processing elements on a node l are called

entities El. Entities can be freely defined as long as the constraints above are

honored. For example it might be useful to define the PEs of CPU socket, a NUMA-

domain or simply a group of cores as one entity. Each PE of an entity E is called an

instance ei.

2.2 Requirements

Both the PGAS implementation as well as the node-level abstraction need to fulfill

some requirements for our approach to work. This is the case for most of the widely

used software. We go over some of it in Sect. 5. The PGAS implementation needs

to support two features:

• Persistent and predictable data layout the runtime is not allowed to move

allocated memory from one process to another. The software may support

policies for the global data layout or let the user specify it manually.

• Explicit synchronization the interoperability of the local and global part requires

support for synchronization between processes.

On the node-level the requirements are:

• Non-blocking memory management and kernel invocation our approach assumes

that kernel invocation and memory movement may both be non-blocking. To our

knowledge this is supported natively by all widely used implementations.

• Separate memory space or coherence with PGAS the node-level abstraction must

either support memory spaces per device or we expect the memory to be

coherent with the global memory view, e.g. CUDA-aware MPI.

The requirements for the PGAS implementation are motivated by the support of

unaware local implementations: if the data was moved during the execution of the

local framework, this would lead to race conditions. On the node we must assume a

symmetric situation where the two systems (local and global) are unaware of each

other. Thus, it is required to either have explicit support for separate memory spaces

or to provide a coherent view of the node-local memory to the PGAS library.
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2.3 Data Placement

A crucial part of the interaction between the node-level back-end and the PGAS

environment is the strategy for data placement. How inter-node and intra-node

distribution of data is configured has a large influence on the achievable

performance and compatibility. The owner-computes model already motivates the

usage of favorable layouts for many hardware topologies. The strategy to avoid

costly remote accesses implies that data locality is a priority.

PGAS implementations let the user specify data placement configurations to

varying degrees. Some like UPC derive the data distribution from the number of

elements and the number of nodes. Others allow more fine grained control up to

Hierarchically Tiled Arrays where each hierarchy level represents a hardware level.

DASH implements the pattern concept which lets the user map each element of a

container to an arbitrary location in global memory. We extend this pattern concept

to work with entities instead of processes (i.e. MPI ranks). As a basis we use the

pattern concept as described in previous work [8]. The mapping of data onto global

memory location is a three-step process: first, each element in a container is

assigned to a location in the global index space. Second the index space is divided

into blocks which are finally distributed across units. This approach is suited best for

a one-to-one mapping from processes to accelerators, but is not flexible enough for

more complicated setups. Current HPC-systems may have two or three accelerators

per CPU-socket.

We extended the (global) patterns that describe the mapping from the global

domain space to global indices by local patterns. A local pattern Pl maps node-local

blocks Bn as defined by the global pattern P onto entities: Pl : Bn 7!E. Note that the
local patterns only consider node-local blocks so this mapping is independent from

the global memory layout. Additionally, the mapping of a block does not imply any

data movement. Only when the data is requested to be owned by an algorithm, data

may be moved to an entity’s memory space.

The motivation for this hierarchical approach is two-fold. First each unit n may

define a different pattern for its blocks Bn. This could be due to algorithmic

optimizations or resource imbalance. Second, for the same blocks multiple local

patterns may be defined, because no data movement takes place. This is especially

useful to balance the load individually per algorithm. For example, if there are

bl ¼ jBnj local blocks, one local pattern may assign wCPU � bl blocks to the CPU and

wGPU � bl blocks to the system’s GPUs and change wCPU and wGPU between

invocations. A pattern may define an arbitrary amount of blocks bl for a container.

Local blocks that are assigned to an entity with a separate memory space must be

copied before usage; either explicitly by issuing an appropriate call or implicitly by

allocating memory in a compatible memory space. For example all recent CUDA-

enabled devices support unified memory to transparently migrate pages from the

host memory space to the CUDA-device’s space. If this is not available or wanted,

for example due to limitations of the PGAS implementation, it is possible to track

local blocks that were already copied to an entity’s memory space. The runtime may

then eliminate redundant migrations. Unified memory may have a negative

performance impact, since some runtime has to keep track of page faults and
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migrate memory pages on demand. To counter this, we can use prefetching when an

entity requests ownership of a block, e.g. using cudaMemPrefetchAsync.
However, the evaluation shows that excessive prefetching may have a negative

impact on the scalability due to congestion on the memory bus.

Figure 2 shows a local pattern of a 2-dimensional array on node n. It contains
4� 4 contiguous blocks of memory. The top-left ones are mapped to the

OMPEntity while the bottom and right blocks are mapped to two separate instances

of the CUDAEntity (i.e. two CUDA-enabled GPUs). Exemplary the seven blocks

assigned to CUDAEntity will be prefetched before the kernel execution is started.

For the evaluation we implemented a flexible local pattern. Here bi denotes the i-
th local block of a node-local process with index p and t the total number of

instances of the mapped entity E. The local pattern maps bi to ek 2 E.

• An identity-pattern with k ¼ i. This is only valid if jblj ¼ t.

• A round-robin-pattern with k ¼ i� tbitc. Trivially, if jblj ¼ t this is equivalent to

the identity pattern.

• An x-per-process-pattern with k ¼ i� xbixc þ px.

The x-per-process-pattern is useful for cases where the number of node-local

processes is less than the available entities. It distributes x consecutive local blocks
to each entity. The evaluation in Sect. 4 contains an example with the DGX-1

system where the total runtime is optimal for four processes per node with eight

GPUs.

2.4 Computation

The definition of a local pattern does not imply any data movement. Transfers only

happen when an algorithm schedules work on local blocks. The execution of an

algorithm is split into three phases:

1. Initialization Allocate memory, copy missing blocks to the desired memory

space and initialize local variables.

2. Computation Pass ownership to assigned entities and execute kernels using the

executors.

Fig. 2 2-dimensional local blocks of memory on node n are executed on different entities. The local
pattern describes the exact assignment (indicated by color) to entities. Depending on the memory spaces
the blocks will be prefetched or copied to the entities memory. Here, two instances of CUDAEntity exist
which represent two distinct GPUs
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3. Finalization Copy the result buffers to the host memory space and release

ownership of the local blocks.

During the computation phase, accesses to non-owned blocks are only allowed if the

owning entity does not use the same memory space, i.e. there exists a separate copy

on the device memory of the mapped entity. For all other accesses the memory must

be copied beforehand. Algorithm 1 shows how the execution is scheduled in more

detail. This strategy is also employed in pure PGAS applications, e.g. by copying

the ghost cells in a stencil application in chunks to avoid the latencies for element-

wise remote accesses.

3 Implementation

We implemented this approach using two already existing libraries. The PGAS

library used here is DASH. For the compute-intensive kernel operations, we chose

Alpaka. Both are pure C?? libraries that require a C??14 compatible compiler.

We will briefly describe both frameworks in the following section and how we

integrated them as MEPHISTO.

Figure 3 shows the overall architecture. MEPHISTO is a thin layer on top of

DASH and Alpaka which in turn both support multiple backends. DASH handles

Fig. 3 MEPHISTO architecture
with DASH and Alpaka
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global inter-process communication using PGAS libraries such as one-sided MPI

and Alpaka supports parallelization through its backends while providing the user

(DASH in this case) a unified interface.

3.1 DASH

DASH is a general purpose C??14 PGAS library that implements distributed data

structures and optimized algorithms similar to the Standard Template Library

(STL). It is built on top the DASH run time (DART) which supports a range of

distributed memory abstractions like one-sided MPI, OpenSHMEM or GASPI. The

containers like dash::array and dash::map are compatible with their STL

counterparts, so they can be used with STL algorithms. However, the STL is not

optimized for the PGAS environment: DASH algorithms minimize remote access

and may employ low-level implementations for better performance. For example

dash::transform_reduce will use the reduce implementation of the

underlying technology, e.g. MPI_Reduce. Listing 1 shows a simple program

using a DASH array and two algorithms to generate a sorted array of random

numbers.

The data distribution across the processes is specified with the DASH patterns.

Listing 1 shows how a distributed array is allocated with the data layout defined by

the 2-dimensional dash::Pattern. The data is partitioned blocked in the first

dimension, i.e. each of the P processes holds at most 1
P consecutive elements in this

dimension.

It is then filled with random numbers using dash::generate algorithm and

finally sorted by dash::sort.

3.2 Alpaka

The Abstraction Library for Parallel Kernel Acceleration (Alpaka) [20] is a C??14

header only meta-programming library for node-level parallelism. It supports

several back ends like C?? std::thread, OpenMP 2, OpenMP 5 with

offloading, Boost Fiber, CUDA or HIP.

In Alpaka, the user describes kernels as plain C?? functors and uses Alpaka’s

interface for interactions such as synchronization, data movement or kernel

invocations. During compile-time one selects a back-end using C??’s type system.

In Listing 2 the selected back-end is the serial CPU accelerator (line 2) which will

execute the kernel single threaded on the CPU. To use another back-end, for
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example CUDA, one would only need to change AccCpuSerial to

AccGpuCudaRt.
The programming model is similar to the one CUDA and OpenCL offer, i.e. the

work is split up into multiple threads per block and blocks per grid. There are some

conceptual extensions to support different platforms: a kernel executed on a CPU

thread typically yields the best performance when it operates on many contiguous

memory locations, negating the overhead of thread management. In contrast the

programming model for GPUs encourages a mapping of one element per thread.

Alpaka offers an additional execution layer that allows looping over elements. For a

GPU-based back-end the loop-size would typically be one and, since it can be set at

compile time, the loop is optimized out or expresses vectorization. Note that

Alpaka’s blocks do not correspond to local blocks as described in Sect. 2.1 but to

the concept known from CUDA.

Alpaka provides queues that are conceptually similar to CUDA streams. A queue

belongs to one accelerator, i.e. one particular device, and schedules kernels to

execute. Both blocking and non-blocking queues are provided. In this integration we

exclusively use the non-blocking queues so the synchronization can be managed by

MEPHISTO.

3.3 Integration

This work aims to integrate PGAS with node-level abstractions for portable perfor-

mance between system configurations. As a prototype we integrated Alpaka and

DASH into MEPHISTO. In this section we describe the technical details of the

approach outlined in Sect. 2.

To implement the local patterns we extended the existing patterns in DASH. A

local pattern inherits from a global pattern and extends it with one essential method:

This method can be implemented for each entity, for example CudaRTEntity
or NumaEntity. Assigning a new local pattern is a non-collective operation so no

synchronization is required. With blocks_for_entity the DASH algorithms

can retrieve the mapping of local blocks to entities and gain ownership.
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We used the concept of C??’s execution policies and executors to allow users to

specify on which entities an algorithm should execute. Execution policies can be

used to relax the guarantees given by the STL, e.g. to have std::-
for_each(std::execution::par_unseq, begin, end, f) apply

f in parallel and possibly vectorized over [begin, end). The policies can be

extended by executors to specify where an algorithm is executed. At the time of

writing none of the executor proposals have been standardized. We extended one of

them1 to integrate an AlpakaExecutor that can be attached to an execution

policy. An AlpakaExecutor can be created for each entity. It holds state, e.g. a

thread pool, and may exist across algorithm invocations. Note that other executors

(e.g. a KokkosExecutor) are possible just as well. However, as part of

MEPHISTO, we only ship the AlpakaExecutor.
Inside the algorithm’s implementation the three phases are executed as described

in Sect. 2. We obtain the blocks with blocks_for_entity for each entity and

start the kernels using Alpaka. In our implementation the execution devices from

Alpaka are directly mapped to entities.

Listing 4 shows a simple invocation of Alpaka inside of DASH. For our

prototype we extended DASH’s for_each, transform, reduce (and similar

algorithms) and transform_reduce which have equivalent semantics as the

STL variants. The prototype also provides three predefined Alpaka-enabled

executors for CPU (serial, OpenMP) and CUDA. The code resembles the three

phases outlined in Sect. 2.4: all blocks for the current entity (entity) are loaded

and the ownership is requested. In this case this is a blocking call, but the request for

ownership may be wrapped into a std::future to asynchronously wait and start

executing the kernel after that. The call to execute_kernel hands over the

control to Alpaka. It calculates a work division, i.e. the dimensions of elements per

thread, threads per block and the number of blocks, based on the input size and the

characteristics of the entity. For example, for entities that use offloading to GPUs

the elements-per-thread extent will be set to one while for CPU-based OpenMP

variants the elements per thread will be maximized. The algorithm synchronizes

1 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r12.html.
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after all local blocks have been reduced by the entities. This is a node-local barrier.

The results of all entities are then reduced again and finally a global result is

calculated using the existing global dash::min_element.

3.4 Usage

Listings 2 and 4 show internals of the integration that are transparent to a user of the

library. The interface of the containers and algorithms is very similar to DASH

programs like the example in Listing 1. The changes required to offload the

invocation of a DASH-algorithm to an entity are small:

• Specify a local pattern for the container.

• Extend the call to the algorithm with an execution policy.

To extend the example from Listing 1 we add a round-robin local pattern and pass

the policy with the executor attached to the algorithms.

Listing 5 shows the same example with MEPHISTO enabled. Line 1 specifies the

entity that should be used within the executor. Only this line would need to be

changed to offload to other entities. Lines 3 and 4 create the local pattern and

initialize an execution policy. The execution policy is passed to both algorithms as a

first parameter, similar to the standard C?? execution policies.

4 Evaluation

We evaluated the prototype using several systems:

SuperMUC-NG at LRZ is based on a Intel Xeon 8174 (Skylake-SP) with 48

cores at 2.7 GHz. The benchmarks were compiled with Intel ICC 19.0.5.281 and

executed with Intel MPI 2019. Each node has 96GB of memory.

HAWK of the HLRS consists of 5,632 nodes with two AMD EPYC 7742 CPUs

at 2.25 GHz with 64 cores each. We tested several compilers and OpenMP-

implementations and found ICC 19.1.0.166 and AOCC (Clang) 2.1.0 with the best

consistent results. The reported results were compiled with ICC.

DGX-1 P100 from NVIDIA contains eight Tesla P100 GPUs with 16 GB HBM2

cross-connected with NVLink. The host CPUs are two 20-core Intel Xeon E5-2698.

DGX-1 V100 is very similar to DGX-1 P100: it contains Tesla V100 with 16 GB

HBM2 instead. The code was compiled with ICC 19.0 for the host code and the

CUDA back-end with version 10.2 on both systems.
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Rome consists of two nodes with two AMD EPYC 7742 with 64 cores each at

2.25 GHz. Each node contains two AMD Radeon MI-50 connected via PCIe4.

4.1 Reduction

As a micro-benchmark we implemented a reduction using dash::trans-
form_reduce and observed the scaling behavior as well as the portability across

architectures. The operation takes a unary function unary(elem) for the

transform and a binary operation binary(accum, elem) for the reduction. One

can lower the number of slow memory accesses by computing binary(acc,
unary(elem)) for each element in a block and use a tree reduction for the block,

grid, entity level and finally the global level for the global result. For a given array

arr of size a in this scenario the transform_reduce computes
Pa�1

i¼0
arri

arri2þ1
.

Figure 4 shows the total run time of a reduction for 10 GB total (strong scaling)

and 20 GB per process (weak scaling) on up to 256 nodes in HAWK and

SuperMUC-NG. In both strong scaling studies the overhead of MEPHISTO’s back-

end (OpenMP in this case) becomes visible as we add more threads per process. Due

to Alpaka’s optimized reduction kernel and its zero-overhead abstractions the total

run time is slightly lower than a pure MPI implementation up until 32 threads per

process.

For HAWK (Fig. 4b) we chose the fastest combination of 4 processes each with

32 threads per process. The graph also shows the purely local portion of the

computation, up until the global reduction. As expected it stays nearly constant

regardless of the number of total nodes. The same effect can be seen on SuperMUC

in Fig. 4d. Here we used 32 threads and one process per node so all node-level

parallelism was managed by Alpaka. For the final global reduction MEPHISTO uses

an MPI_Allreduce so the growing overhead can be traced back to that call.

One central motivation of MEPHISTO is the optimal support for different

architectures and thus portability. To demonstrate the feasibility and portability of

the approach we also evaluated the transform-reduce implementation on Nvidia’s

DGX-1 nodes with P100 and V100. Figure 4f shows the execution time for a

transform-reduce over the problem size on one P100. We compare MEPHISTO

(with and without prefetching) to Thrust [2]. This library comes bundled with

CUDA and implements STL-like algorithms optimized for the execution on CUDA-

enabled GPUs. We used thrust::transform_reduce to perform the same

operation as with MEPHISTO.

Block-wise prefetching has a positive effect on the performance across all

problem sizes. However, especially for small problem sizes Thrust’s implementa-

tion is the fastest alternative. Note that Thrust’s containers manage memory on their

own and do not rely on unified memory. Therefore we include data movement

between host and device but no allocation in the run time which reduces Thrust’s

run time compared to MEPHISTO. Scaling up from one GPU per node to up to six

as depicted in Fig. 4g reveals two characteristics. First, prefetching does not offer a

speed-up in all scenarios. Especially when the number of concurrently used GPUs is

large, prefetching has a clear negative effect on the performance. Second, the
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parallel efficiency is not ideal with this problem size of 10GB. Further investigation

indicates that the PCI-e link between the host memory and the GPUs becomes

congested. The effect is amplified when all GPUs start prefetching whole blocks

during the execution.

During the evaluation it became clear that the architecture of DGX-1 limits the

throughput for a single process. On DGX-1 each CPU is connected to four P100/

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Evaluation of MEPHISTO’s transform-reduce implementation. The top figures show shows strong
scaling on a shared memory node of HAWK (a) and weak scaling with 20GB per process on the same
system (b). The figures below show the same benchmarks on SuperMUC-NG. e shows a comparison
between Thrust and MEPHISTO with and without prefetch enabled whereas f shows the scaling on a
different number of GPUs
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V100 via two PCI-e switches. The CPUs in turn are connected with Intel’s

QuickPath Interconnect (QPI) and the GPUs with NVLink. With one process pinned

to CPU0, all blocks assigned to GPU 4, 5, 6 and 7 must be sent over QPI to the

second socket and PCI-e to the GPUs. With the x-per-process-pattern the

benchmark can be started with one, two, four or eight processes and with eight,

four, two or one GPU per process. The evaluation in Fig. 5 shows the benefit of each

configuration, especially when working with prefetching. With one process assigned

to each GPU the PCI-e lanes become congested. Even with two processes (one per

CPU) there is still a higher runtime than with a 4� 2 configuration. This matches

the topology directly and shows the need for flexible process-to-accelerator

assignments.

4.2 Heat Equation

We used a 2-dimensional heat equation calculation to further evaluate different

entities with local and global communication. The algorithm is a double buffered

5-point stencil application that uses blocking for temporal data locality within each

thread. Again we use DASH to span a global array across all processes and execute

the kernels using Alpaka. Thus, the global communication for neighbor-exchange

across processes is handled by DASH and node-local this is done with Alpaka. The

tests were conducted on the Rome system with AMD AOMP 11.9 as the compiler

for OpenMP 2 and 5 (offloading) and hipcc 4.1 (Clang 12), because Alpaka requires

HIP version 4.0 and up.

Figure 6a shows the per-node scaling on two nodes on the Rome system for a

different number of threads using the OpenMP 2 entity. It is visible that the scaling

is limited due to the neighbor exchange as the surface between the processes grows

with its number. The shared memory parallelism performs well, because the

neighbor exchange can be done in-memory. Figure 6b shows the execution of the

same algorithm in three different MEPHISTO configurations: purely on the CPU

(equivalent to Fig. 6a) using the OpenMP 2 backend, one with OpenMP 5 with

offloading to the GPUs and one HIP backend. The OMP 5 backend has considerably

longer runtimes compared with both the OMP 2 version and the HIP backend

Fig. 5 Runtime of
MEPHISTO’s transform-reduce
combinations of the number of
processes and GPUs per process
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(HIP?P with prefetching). We were able to reproduce similar effects with other

workloads outside of MEPHISTO. Even with simultaneous execution on the CPU-

entity the benefit of OMP 5-offloading was marginal, whereas the HIP backend

performed better than the CPU-based version. Prefetching of the buffer holding the

exchanged neighbors yielded a slight improvement. OpenMP 5 does not support

explicit prefetching.

4.3 MiniMD

As a more complex case we ported MiniMD [5] to DASH and then used

MEPHISTO to add shared memory parallelism. For that less than 1% of the 1500

LOC needed to be changed:

• Choose one of the pre-configured entities (e.g. using OpenMP) to be used.

• Specify which calls to DASH’s algorithms should be performed in parallel using

executors.

• Optional: change the data layout using DASH’s patterns.

MiniMD is a molecular dynamic proxy application that mimics the workload of

LAMMPS [16]. The 3d-space is decomposed into a configurable number of cells.

Each cell holds a dynamic number of atoms. To update the position and velocity of

each atom, the force of the surrounding atoms is calculated. MiniMD configures a

cut-off distance rcutoff and only calculates forces of neighbors inside this radius.

Because the space domain is already split into cells, only the cells within rcutoff have

to be considered, reducing the complexity from Oðn2Þ to OðnÞ for n atoms. For our

evaluation we used the default configuration of the reference implementation that

requires each cell to consider at maximum 27 neighbor cells. The atoms are stored

in a dash::NArray with four dimensions: three dimensions representing cells

(b)(a)

Fig. 6 Heat equation computed on the Rome systems
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and one for atoms in each cell. An NArray is static in size so we re-allocate when a

cell overflows during the binning process.

Figure 7 shows the comparison of the reference implementation and the Kokkos

and MEPHISTO ports on one node of SuperMUC-NG with an increasing number of

threads. The anomalies at around 24 threads point to a NUMA-related issue,

although we observed similar spikes for two socket-pinned MPI processes (with half

the number of threads) on all variants. Here all variants perform similar. We tested

several other combinations of processes and threads and all performed similar or

minimally slower.

5 Related Work

Similar to Alpaka is Kokkos [6], an open source abstract interface for shared

memory programming. For the details on the differences between both, refer to [20].

SYCL2 is cross platform and built on top of OpenCL that supports potentially a

wide range of accelerators. In contrast to OpenCL, it is also single-source. SYCL is

a part of Intel’s OneAPI approach for heterogeneous, parallel programming. Thrust

[2] is a library that implements STL-like algorithms with a CUDA, Thread Building

Blocks or OpenMP back-end. Because it ships its own data structures, the

compatibility with most PGAS implementations will be limited. OpenMP itself is an

open standard for shared memory programming. Version 4.5 introduced the target
environment with data regions which can be used to allocate device memory and

offload computation to accelerators. It does not yet support the allocation and usage

of block-wide memory on CUDA devices, potentially impairing the performance on

these devices. Very similar to OpenMP is OpenACC3, also an open standard, which

does provide access to block-shared memory. All of these offer no integration with

distributed memory paradigms. We support OpenMP 2, OpenMP 5 and TBB

through Alpaka as backends. PACXX is an abstraction for many-core systems that

uses an extension to Clang and LLVM to provide similar, high-level features in

C?? [9]. Conceptionally, MEPHISTO could integrate PACXX instead of Alpaka.

However, PACXX requires a custom compiler whereas Alpaka works with a wide

range of C?? compliant compilers and backends.

Fig. 7 Comparison of the shared
memory runtime of the
reference, Kokkos and
MEPHISTO implementations on
SuperMUC-NG

2 https://www.khronos.org/sycl/.
3 https://www.openacc.org/.
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There are also higher-level skeleton programming environments that can use

multiple backends. SkePU supports parallel OpenMP execution on the CPU and

offloading to GPUs with OpenCL and CUDA. Because SkePU is also pure C??, an

integration in MEPHISTO is conceptionally possible [7]. Other GPU-capable

approaches are the Muenster Skeleton Library [19], StarPU [1] and SkelCL [17].

The latter extends OpenCL for better support of multiple GPUs but is limited to one

node. StarPU is task-based and works on distributed systems through MPI.

TuCCompi provides a multi-level programming environment for distributed and

heterogeneous systems [15]. The global communication is handled via message

passing (as opposed to PGAS). The local computation is done with OpenMP and

CUDA. It requires the programmer to write specific code for CPUs and GPUs.

Skeleton frameworks decouple the description of the algorithm from its mapping to

the hardware. MEPHISTO is more transparent about this mapping, e.g. the local

part of a PGAS container is often explicitly addressed by a user.

PGAS is either implemented as a programming language or in a library for an

existing language. UPC [18], Co-array Fortran [14], Chapel [3], and X10 [4] are

languages with built-in PGAS support. All have configurable data placement with

respect to the nodes, making it usable for our approach. However, these languages

require a special compiler that limits the portability. High-level libraries such as

DASH, Global Arrays or UPC?? provide PGAS support without the need for a

special compiler. They ship with distributed data structures and algorithms. There

are also more low-level ones such as GASPI or one-sided MPI. These are used as a

provider by the aforementioned libraries. The integration of the shared memory

abstractions with our approach is possible with all of these, because the only

requirements for the PGAS implementation are user-defined data layouts and a form

of synchronization between processes. All of the above offer both.

There has been some work on combining shared memory parallelism in a PGAS

environment, much like MPI?X with the message passing model. The MiniMD

application was ported to PGAS in [12] using UPC and POSIX threads. Jose et al.

implement a PGAS runtime to achieve considerable speedups due to shared memory

support [10] These focus on specific implementation whereas MEPHISTO is

agnostic to the back-end. Most similar to our work is [13]. The authors combine

already mentioned directive-based OpenACC with XcalableMP to XcalableACC,

enabling offloading to accelerators. It requires a dedicated compiler but offers

accelerator-to-accelerator communication which we do not explicitly support. HPX

[11] supports distributed job scheduling but uses Active Global Address Space, thus
violating our requirement that allocated memory is not moved by the runtime.

6 Conclusion

6.1 Summary

In this paper we present our approach to integrate node-level abstractions for

parallelism with the PGAS programming model in a user-friendly way. It extends

existing methods for data distribution to include local patterns that map contiguous
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memory blocks to processing resources. Further, it includes a simple execution

model using these patterns to execute kernels on entities, processing elements

supported by various back-ends. We combine two existing projects as MEPHISTO

to achieve flexible kernel acceleration and offloading in distributed systems with

partitioned global memory.

6.2 Limitations

The approach, aside from the restrictions outlined in Sect. 2, requires users to be

aware of race conditions when working with a shared memory space. Currently

there exists no explicit method to synchronize during the execution. However, it is

possible to use either synchronization from both the PGAS and the node-level

abstraction’s implementation.

Further, our prototype implementation currently only implements unified

memory for the CUDA back end. This in turn requires CUDA-aware MPI to

provide a coherent view of the data to MPI.

6.3 Outlook

In the future we want to focus on automatic load balancing (auto tuning) between

entities. For now we only tested the execution on one entity at a time, albeit with

multiple instances (threads/GPUs) of each. When the host and multiple entities may

execute during a single invocation of an algorithm, the benefits of smart load

balancing seem worthwhile investigating to minimize the idle time for each entity.

Another more complex endeavor is the scheduling of kernels on executors

independently of the invocation of their containing algorithms. This could bring

benefits due to better cache usage and the removal of barriers.
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