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Abstract. A common requirement in speech technology is to align two different symbolic representations of
the same linguistic ‘message’. For instance, we often need to align letters of words listed in a dictionary with the
corresponding phonemes specifying their pronunciation. As dictionaries become ever bigger, manual alignment
becomes less and less tenable yet automatic alignment is a hard problem for a language like English. In this paper,
we describe the use of a form of the expectation-maximization (EM) algorithm to learn alignments of English text
and phonemes, starting from a variety of initializations. We use the British English Example Pronunciation (BEEP)
dictionary of almost 200,000 words in this work. The quality of alignment is difficult to determine quantitatively
since no ‘gold standard’ correct alignment exists. We evaluate the success of our algorithm indirectly from the
performance of a pronunciation by analogy system using the aligned dictionary data as a knowledge base for
inferring pronunciations. We find excellent performance—the best so far reported in the literature. There is very
little dependence on the start point for alignment, indicating that the EM search space is strongly convex. Since the
aligned BEEP dictionary is a potentially valuable resource, it is made freely available for research use.
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1. Introduction27

The requirement commonly arises in speech technol-28
ogy and natural language processing to align two lin-29
ear, symbolic representations of the same linguistic en-30
tity. One important example, which forms the focus of31
this paper, is the alignment of the textual (orthographic32

∗To whom all correspondence should be addressed.

or spelling) and phonemic (pronunciation) represen- 33
tations of isolated words (of English, in this work). 34
The necessity to align text and phonemes arises in, 35
for instance, inferring the complete form of spelling- 36
pronunciation word pairs from elliptical entries in a 37
dictionary (Lawrence and Kaye, 1986) and adding new 38
entries to the pronunciation dictionary that provides a 39
mapping between sub-word models and language mod- 40
els in automatic speech recognition (Knill and Young, 41
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1997, p. 48). But as (Jansche, 2001) writes: “The prob-42
lem of finding a good alignment has not received its43
due attention in the literature”.44

Two examples from the domain of text-to-45
speech (TTS) synthesis suffice to motivate the search46
for powerful automatic alignment techniques.47

1. In (supervised) training of neural networks to per-48
form spelling-to-sound conversion, as in the well-49
known NETtalk and NETspeak of Sejnowski and50
Rosenberg (1987) and McCulloch et al. (1987) re-51
spectively, it is necessary to associate each letter52
of an input word with a target output phoneme. In53
both works, alignment was done manually, but this54
is time-consuming, error-prone, and limits the size55
of datasets that can be used for training. As speech56
synthesis becomes ever more data-driven (Damper,57
2001) using ever larger dictionaries and corpora58
(Young and Bloothooft, 1997), so manual alignment59
becomes less and less tenable and the need for au-60
tomatic alignment methods increases.61

2. Increasingly in recent years, an approach known62
as pronunciation by analogy (PbA) has been used63
in TTS synthesis to derive pronunciations for un-64
known words, i.e., those not listed in the system65
dictionary (Dedina and Nusbaum, 1991; Sullivan66
and Damper, 1993; Pirrelli and Federici, 1994; Pir-67
relli and Federici, 1995; Federici et al., 1995;68
Damper and Eastmond, 1996; Yvon, 1996a; Yvon,69
1996b; Damper and Eastmond, 1997; Bagshaw,70
1998; Damper et al., 1999; Pirrelli and Yvon, 1999;71
Marchand and Damper, 2000; Sullivan, 2001).72
PbA assembles pronunciations for such (unknown)73
words from partial matches to the (known) words74
listed in the dictionary—a process that requires75
each letter of every word in the dictionary to be76
aligned with a corresponding phoneme in contigu-77
ous, one-to-one fashion.78

However, automatic alignment is a difficult prob-79
lem. Much of the difficulty arises because of the lack80
of regularity (‘consistency’ and ‘transparency’) in the81
English writing system. By ‘consistency’, we mean82
that the same letter always corresponds to the same83
phoneme. In fact, English is notorious for the lack84
of consistency in its spelling-to-sound correspondence85
(Venezky, 1965; Carney, 1994) at the level of single86
letters. For instance, the letter c is pronounced /s/ in87
cider but /k/ in cat. On the other hand, the /k/ sound88
of kitten is written with a letter k. By ‘transparency’,89

we mean that a single letter corresponds to a single 90
phoneme (Henderson, 1984, p. 17) and vice versa. 91

The lack of consistency in English orthography is 92
problematic for alignment since any given letter can 93
potentially align with (i.e., correspond to) many differ- 94
ent phonemes. To illustrate the problems that arise from 95
lack of transparency, consider the word (quay, /ki/), for 96
which a reasonable alignment might be: 97

q u a y

k i 98

This word is not unusual for English in having fewer 99
phonemes than letters, necessitating the insertion of 100
‘null phonemes’ in the transcription if a one-to-one 101
mapping is to be maintained. Such null symbols are 102
entirely ‘artificial’ in that they play no role in speci- 103
fying the pronunciation; their only purpose is to main- 104
tain the one-to-one correspondence between letters and 105
phonemes. Yet it is not clear precisely where the null 106
letters should be placed, since the following is also a 107
reasonable alignment: 108

q u a y

k i 109

This example illustrates a key aspect of the lack 110
of transparency in that letter combinations frequently 111
correspond to a single phoneme—a form of con- 112
text dependency. Such letter combinations have been 113
called “functional spelling units” (Venezky, 1970; Colt- 114
heart, 1984). Examples of functional spelling units are 115
th → /D/ as in that, ch → /tS/ as in church, and qu → /k/ 116
as in this example of quay. Unfortunately, any of the let- 117
ters of the functional spelling unit could plausibly align 118
with the corresponding phoneme, with the others corre- 119
sponding to nulls, leading to a degree of indeterminacy. 120

More rarely, there are fewer letters than phonemes 121
in a word of English. Examples are (six, /sIks/) and 122
(sex, /sεks/) in which the single letter x maps to the 123
two phonemes /ks/, so that ‘null letters’ may have to 124
be introduced to maintain a one-to-one mapping. Se- 125
jnowski and Rosenberg (1987) actually invented ‘new’ 126
phonemes (/K/, /X/ and /#/) in NETtalk to avoid intro- 127
ducing null letters. As with null phonemes, the prob- 128
lem arises as to exactly where the nulls should be 129
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placed. Worse yet, both problems—null letters and null130
phonemes—can occur in the same word, as in the case131
of (axe, /aks/) for which a reasonable alignment is:132

a x e

a k s133

So the simple-minded presumption that the same num-134
ber of letters and of phonemes implies a one-to-one135
mapping is mistaken in this case.136

These examples illustrate that there is no canoni-137
cally correct alignment of text and phonemes in every138
case, nor should we expect this, since the process is139
essentially a computational convenience lacking any140
sound linguistic or theoretical basis. The alignment141
problem is especially severe for languages like En-142
glish and French whose writing systems are ‘deep’, i.e.,143
they display a complex relation between spelling and144
sound lacking consistency and transparency, unlike the145
‘shallow’ orthographies of Finnish or Serbian for exam-146
ple, where the correspondence is mostly if not entirely147
consistent and transparent (Coltheart, 1978; Liberman148
et al., 1980; Katz and Feldman, 1981; Turvey et al.,149
1984; Sampson, 1985). Indeed, (Abercrombie, 1981,150
p. 209) describes the English spelling-to-sound system151
as “. . . one of the least successful applications of the152
Roman alphabet.”153

As one last illustration of the complexities of154
spelling-sound correspondence in English, consider the155
word (made, /meId/):156

m a d e

m eI d157

Here, the final e aligns with a null phoneme, yet158
it does not seem natural to view de as a functional159
spelling unit in this case. Removing the e yields the160
word (mad, /mad/), so that it acts as a ‘marking’161
(Venezky, 1970), signifying that the preceding vowel162
is lengthened or dipthongized: /a/ becomes /eI/. This163
contrasts with the final e of axe, which has no such164
marking effect, further illustrating the inconsistent and165
partly-arbitrary nature of the English spelling sys-166
tem. Markings in English, whereby a final letter af-167
fects the sound of a medial vowel letter, can be very168
long range, as in the well-known example word pairs169
photograph/photography and telegraph/telegraphy170

(Chomsky and Halle, 1968). They can be seen as an 171
interaction of the lack of consistency and transparency, 172
both of which—as we have seen—complicate the pro- 173
cess of alignment. 174

Given these difficulties, it is clear that the automatic 175
alignment of text and phonemes is not a straightforward 176
matter. In the remainder of this paper, we develop an 177
approach to alignment based on ideas originally found 178
in Luk and Damper (1991, 1992, 1993, 1996), but us- 179
ing much-improved algorithms. Although imperfect, 180
our earlier methods have in fact been used by other au- 181
thors (e.g., Parfitt and Sharman, 1991;Jansche, 2001), 182
reflecting the widespread need for a good alignment 183
algorithm. 184

2. Alignment by Dynamic Programming 185

Dynamic programming (Bellman, 1957; Kruskal, 186
1983) offers a simple and powerful way to align text 187
and phonemes on the assumption that we have some 188
knowledge of the probability of a particular letter map- 189
ping to a particular phoneme. In this work, knowl- 190
edge about letter-phoneme mappings will be compiled 191
in an ‘association’ matrix, A, of dimension L × P , 192
where L is the size of the letter inventory (i.e., 26) 193
and P is the size of the phoneme inventory (which 194
is 44 here). The dynamic programming (DP) princi- 195
ple asserts that the global solution to a path-finding 196
problem can be found by a sequence of locally-optimal 197
steps; in other words, no local non-optimality can con- 198
tribute to a globally-optimal solution. This principle is 199
well-known and widely-used in computational linguis- 200
tics and speech technology, forming for instance the 201
basis of the CYK parsing algorithm (Hopcroft et al., 202
2001, pp. 298–301) and the Viterbi algorithm (Viterbi, 203
1967; Forney, 1973; Neuhoff, 1975), used in various 204
guises in speech recognition, speech synthesis, and text 205
processing. 206

The process of aligning text and phonemes for a spe- 207
cific word can be cast as a path-finding problem by 208
building a table, or B matrix, indexed by the letters of 209
the word’s spelling and the phonemes of its pronun- 210
ciation. This is illustrated for the word (phase, /feIz/) 211
in Fig. 1(a). The entries in this matrix are to be inter- 212
preted as degrees of ‘association’ between each letter 213
and each phoneme. The procedure for inferring these 214
entries is detailed in later sections. (The values seen 215
here are taken from one iteration of an actual run of our 216
algorithm.) Note that we have added word delimiters 217
(# and $ for letter and phoneme domains respectively), 218
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with an association of 0 for (#, $). This is done to allow219
the DP algorithm to align the leading letter or phoneme220
of a word with a null; otherwise the first letter would221
always align with the first phoneme. The ‘best’ align-222
ment of letters and phonemes is then defined by the path223
from the top-left entry of the matrix to the bottom-right224
that maximizes the accumulation of association values225
along this path.226

To find this best alignment, we introduce two new227
matrices C and D. Matrix C is a table of accumulated228
associations, such that each entry is the maximum accu-229
mulated association up to that point in the table (i.e., up230
to that point in the alignment). Matrix D holds pointers231
indicating the precursor cell from which the DP algo-232
rithm moved to each cell. The C and D matrices are233
filled left-to-right, top-to-bottom using some appropri-234
ate form of simple recursive maximization equation.235
At the end of the process, the C matrix holds the max-236
imum accumulated association for the complete word237
in its bottom right cell, and the best alignment can be238
found by tracing pointers back from the bottom right239
cell of the D matrix.240

In this work, we have used the implementation of DP
due to Needleman and Wunsch (1970), since it is
simple, well-known and performed very satisfactorily
in preliminary, exploratory investigations. The spe-
cific form of the recursive maximization equation for
a given word w is:

Ci, j = max

{ Ci−1, j−1 + Bi, j ,

Ci−1, j − δ,

Ci, j−1 − δ

}
1 ≤ i ≤ |lw|
1 ≤ j ≤ |pw|

(1)
where |lw| and |pw| are the lengths of word w in terms241
of letters and phonemes (including delimiters) respec-242
tively, and δ is some suitably chosen penalty term,243
which here is set to 0.244

Figure 1(b) shows the C and D matrices found for245
the word (phase, /feIz/) with the associations tabu-246
lated in Fig. 1(a). For ease of illustration, the two247
matrices are shown superimposed. If the maximiza-248
tion chose the Ci−1, j−1 + Bi, j argument, correspond-249
ing to a diagonal move in the B and C matrices, the250
entry in the D matrix is “↘”. If the maximization251
chose the Ci−1, j argument, corresponding to a ver-252
tical move in the B and C matrices, the entry in the253
D matrix is “↓”, corresponding to alignment of a let-254
ter with a null phoneme. If the maximization chose the255
Ci, j−1 argument, corresponding to a horizontal move in256
the B and C matrices, the entry in the D matrix is “→”,257
corresponding to alignment of a phoneme with a null258

letter. The “ε” in the top left cell indicates the start 259
for the DP alignment from which no back-tracing is 260
possible. The maximal association (or DP score) for 261
the word is align(phase) = 71446. By tracing point- 262
ers back from the bottom right entry, the alignment 263
is found as: 264

p h a s e

f eI z 265

Note that the dynamic programming handles con- 266
text dependency (e.g., letter group ph acts here as 267
a functional spelling unit) in an implicit manner, 268
since at each step of the maximization, Eq. (1), 269
we consider moves from the three possible pre- 270
cursors (cells (i − 1, j − 1), (i − 1, j), and (i, j − 1)) 271
of cell (i, j). At the same time, the very strong 272
a → /eI/ and s → /z/ associations of 23098 and 45788 273
respectively in Fig. 1 act as ‘anchors’ for the DP 274
alignment. 275

It only remains to find the A matrix and thereafter 276
we can align any word in the dictionary. This is done 277

Figure 1. (a) Example matrix of letter-phoneme associations
(B matrix) for the word (phase, /feIz/). The word is delimited
by # and $ in the letter and phoneme domains respectively. See text
for explanation of entries. (b) Table of cumulative associations found
by dynamic programming, together with the production or ‘move’
from the precursor cell that maximizes this value. This table can be
viewed as a superposition of C and D matrices (see text).
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using a form of the EM algorithm, which is the subject278
of the next section.279

3. Estimating Associations with the EM280
Algorithm281

The expectation-maximum (EM) algorithm is an iter-282
ative approach to the solution of maximum-likelihood283
estimation problems when there are data missing from284
the set of observations and/or the likelihood function285
cannot be easily differentiated to find its maxima. Al-286
though the basic idea had appeared in the literature287
previously (e.g., Hartley, 1958; Baum, 1972), the term288
“EM algorithm” was coined by Dempster et al. (1977).289
A useful introduction is provided by Moon (1996); an290
excellent survey and treatment of recent developments291
is given by McLachlan and Krishnan (1997).292

The EM algorithm interleaves two steps, starting293
from initial, assumed values for the missing data:294

1. the E-step, in which the expected value of the like-295
lihood is found with respect to the unknown values,296
using the current estimate of the parameters, condi-297
tioned on the observations.298

2. the M-step, in which this expectation is maximized299
to yield a new set of parameters.300

The E- and M-steps are iterated with each iteration301
guaranteed to increase the likelihood until we con-302
verge to a local maximum of the likelihood function.303
Convergence is proved by Dempster et al. (1977) and304
Wu (1983) among others. Like other optimisation tech-305
niques that find local maxima by gradient ascent, the306
particular local maximum found in general depends on307
the start point of the iteration—i.e., the assumed initial308
values of the missing data.309

In the specific case of letter-phoneme alignment, the310
observed data are the words listed in the dictionary311
in terms of their paired spellings/pronunciations. The312
missing data are the parameters describing the proba-313
bilistic correspondence between words and letters that314
underlie the alignment process and that are compiled315
into matrix A. As mentioned in Section 4 below, we316
maximize not the likelihood for word w at iteration k317
but the maximal DP score (as described in the previous318
section) given the association matrix from the itera-319
tion. Hence, the process must start with an association320
matrix A0 initialized with some appropriate values.321

The simplest way to obtain A0 is the naı̈ve initial-322
ization, found as follows. Processing each word of the323

dictionary in turn, every time a letter l and a phoneme p 324
appear in the same word, irrespective of relative po- 325
sition, the corresponding element a0

lp of A0 is incre- 326
mented. After the first pass through the dictionary, each 327
element a0

lp contains a count of the number of times let- 328
ter l and phoneme p appear in the same word. This is 329
not of course to say that a specific l and p do align; the 330
rationale is that they can only align if they occur in the 331
same word. Although we do not expect this to give a 332
very good estimate of A, an initial alignment can be 333
attempted from A0. 334

Once we have this (imperfect) alignment, we can per- 335
form a second pass through the dictionary to produce a 336
new and better association matrix A1 with elements a1

lp 337
that count the number of times letter l and phoneme p 338
appear at the same (aligned) position, i . At this first 339
iteration, nulls are now introduced into the dictionary 340
as a consequence of the DP matching so that letters 341
can associate with null phonemes and phonemes can 342
associate with null letters. Although these nulls obvi- 343
ously affect the counts of letter-phoneme associations, 344
they are not themselves entered as part of the updated 345
matrix A1. They are omitted because to do so worked 346
far better than including nulls. If we include nulls in 347
the set of letters and phonemes at the EM stage, we are 348
effectively building in an unnatural tendency for align- 349
ments to exploit nulls, because of their cumulative high 350
scoring over a variety of situations. Hence, we restrict 351
the role of the nulls to the DP matching stage. 352

Proceeding as above, a new set of candidate align- 353
ments can now be produced and scored, a new ‘best’ 354
alignment again selected, and A1 updated to A2. Fur- 355
ther iterations can then be used to improve the align- 356
ments, and the estimates of the association matrix, 357
until convergence. 358

By its use of a step in which expectations of new cor- 359
respondences are computed (using the current estimate 360
of the correspondences conditioned on the dictionary 361
data) followed by a maximization step, this can be seen 362
as an EM-like algorithm. 363

4. Issues with the Alignment Algorithm 364

Many interesting issues arise with respect to alignment 365
based on the EM and DP algorithms. In this section, 366
we briefly discuss the more important of them. 367

As a form of gradient ascent procedure, convergence 368
is to a local maximum that in general depends upon the 369
start point, i.e., the matrix A0. One possible start point 370
uses the simple naı̈ve approach of the previous section. 371
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Intuitively, this has the disadvantage of allowing any372
letter to associate with any phoneme, no matter that373
one might appear at the beginning of a long word and374
the other at the end. Hence, an attractive possibility is to375
weight the entries a0

lp inversely according to the differ-376
ence of the position indices of the l and p symbols. For377
example, the position-index difference between letter h378
and phoneme /z/ of (phase, /feIz/) is |2 − 3| = 1. Vari-379
ous weighting schemes could be envisaged. Yet another380
possibility is to use the manual alignments devised for381
training NETtalk (Sejnowski and Rosenberg, 1987) or382
NETspeak (McCulloch et al., 1987) to obtain A0. (In this383
latter case, the counts entered into A0 will have taken384
account of nulls.) Further, Black et al. (1998) have de-385
scribed a similar algorithm to ours in which they specify386
a set of “allowables”, i.e., letters and phonemes that can387
plausibly associate on the basis of prior intuitive knowl-388
edge of letter-phoneme correspondences. This can be389
used to define binary values for a0

lp (which become con-390
tinuous on subsequent EM iterations). One of the major391
aims of this paper was to evaluate the wide variety of392
possibilities for initialization (see Section 5.2).393

One very important issue is evaluating quantitatively394
the effectiveness of any alignment algorithm. However,395
this is difficult since there is no canonically correct396
‘gold standard’ alignment in all cases (see Introduc-397
tion). Scoring on the basis of human judgement is likely398
to be subjective and inconsistent between judges and399
is, in any case, not practical for the sort of very large400
dictionaries that we wish to use. Although it is possible401
(and indeed sensible) to have a human expert check ob-402
vious problem cases (e.g., axe, know, phase, . . . ), and403
we did in fact do this during program development, it404
does not amount to a full and thorough evaluation, giv-405
ing a global summary figure of merit. Thus, we have406
decided to assess our alignment results indirectly ac-407
cording to the number of words correctly transcribed408
by a pronunciation by analogy (PbA) system. For this409
purpose, we have used the PbA system of 2000.410

Another issue is what we have previously called the411
‘harmonization’ of the different phoneme inventories412
used by different researchers and/or dictionary com-413
pilers (Damper et al., 1999). Thus, if we wish to use414
the NETtalk manual alignment to estimate A0 in or-415
der to align a dictionary such as BEEP (see below),416
we must have some way of mapping the different sets417
of phonemes used by the different dictionaries onto a418
common set. Because our goal is to align BEEP, we419
obviously choose the BEEP symbols as the common420
set. Tables 1 and 2 show the harmonization scheme421

Table 1. Harmonization scheme used to map the NETtalk phoneme
set onto the BEEP set.

NETtalk BEEP as in . . . IPA

a aa father a
b b bet b

c ao bought O
d d dime d

e ey bake eI

f f fin f

g g guess g
h hh head h

i iy peat i

k k kitten k

l l let l

m m met m

n n net n

o ow boat oU
p p pet p

r r red r

s s set s

t t test t

u uw lute u

v v vest v

w w wet w

x ax about ´
y y yet j

z z zoo z

A ay bite aI

C ch chin tS
D dh this D
E eh bet ε

G ng sing N
I ih bit I

J jh gin ’
K k s sexual k S
L l bottle :
M m abysm (´)m

N n button (´)n

O oy boy ÅI

Q k w quest k w

R er bird ‰
S sh shin S
T th thin T
U uh book U
W aw bout aU

(Continue on next page.)
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Table 1. (Continue).

NETtalk BEEP as in . . . IPA

X k s sex k s

Y y uw cute j u

Z zh leisure Z
@ ae bat a

! t s nazi t s

# g z examine g z

+ w aa bourgeois w a
∗ w whack ∑
ˆ ah but ø

used to map the NETtalk and NETspeak phoneme sets422
onto BEEP. Note that BEEP uses a phoneme inventory423
of 44 symbols (excluding the null phoneme), whereas424
the NETtalk and NETspeak inventories are both of size 51425
(again excluding the null phoneme).426

The symbols listed in the ‘NETtalk’ column of Ta-427
ble 1 are those in the file downloaded from http://428
www.speech.cs.cmu.edu/comp.speech and429
not the ones tabulated in Appendix A of 1987. The430
downloaded file includes a symbol ‘+’ which is not431
listed in the paper and excludes a symbol ‘|’ which is432
listed in the paper. In general, harmonization can never433
be an exact process, because of idiosyncratic choice of434
phoneme inventories by the different individual com-435
pilers of the transcribed dictionaries, which often re-436
flect dialectal differences. For instance, Sejnowski and437
Rosenberg (1987) use the same symbol /a/ to transcribe438
both the a vowel in father and the Å vowel in stock, as439
these are probably the same vowel for their dialect of440
American English. So the mapping from NETtalk to441
BEEP symbols is not one-to-one. We can only try to442
achieve the most consistent mapping according to our443
intuitions.444

A final issue is that the EM algorithm is properly a445
probabilistic algorithm. We experimented with various446
normalizations, corresponding to various probabilistic447
models, but none performed as well as using simple448
(unnormalized) frequency counts directly from the as-449
sociation matrix A. Hence, all results presented here450
use this formulation. This is the reason we refer to our451
algorithm as “EM-like”. The effect of using unnormal-452
ized counts (rather than proper probabilities) on con-453
vergence is unknown but, as we shall see, this did not454
prove to be an issue in practice.455

Table 2. Harmonization scheme used to map the NETspeak
phoneme set onto the BEEP set.

NETspeak BEEP as in . . . IPA

A ax about ´
B b bet b

D d dime d

E eh bet E
F f fin f

G g guess g
H hh head h

I ih bit I

J jh gin ’
K k kitten k

L l let l

M m met m

N n net n

O oh stock Å
P p pet p

R r red r

S s set s

T t test t

U ah but ø
V v vest v

W w wet w

Y y yet j

Z z zoo z

AA ae bat a

AI ey bake eI

AR aa father a
AW ao bought O
CH ch chin tS
DH dh this D
EE iy peat i

EI ea air E´
ER er bird ‰
EY ih despite I

GZ g z examine g z

IA ia ear I´
IE ay bite aI

KH k sh anxious k S
KS k s sex k s

KW k w quest k w

NG ng sing N
OA ow boat oU
OI oy boy ÅI

(Continue on next page.)
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Table 2. (Continue).

NETspeak BEEP as in . . . IPA

OO uh book U
OU aw bout aU
SH sh shin S
TH th thin T
UL l bottle :
UR ua moor ò´
UU uw lute u

YU y uw cute j u

ZH zh leisure Z

5. Results456

In this section, we report the results of using our algo-457
rithm to align a large dictionary.458

5.1. BEEP Dictionary459

Our algorithm has been tested by using it to460
align BEEP: the British English Example Pro-461
nunciation dictionary. BEEP is publically acces-462
sible and can be downloaded from http://463
www.speech.cs.cmu.edu/comp.speech. It464
is typical of the size and content of the on-line dictio-465
naries used for current speech technology applications.466
BEEP was constructed by amalgamating several pub-467
lic domain dictionaries to yield a large composite. The468
version used here contained 257,033 words. Note that469
there has been no strong quality control in construct-470
ing BEEP. Consequently, it contains several erroneous471
word entries (e.g., INDISPUTABLE for indissoluble,472
UNDILAPIDATED for undiluted) and transcriptions473
(e.g., for abnegation). Those that we discovered have474
been removed but we certainly cannot guarantee to have475
found all errors. We also removed all words with mul-476
tiple pronunciations for conformity with the evaluation477
protocol in Marchand and Damper (2000). This gives478
a dictionary with 198,632 entries in all.479

5.2. Initializations480

The following initializations were used:481

• naı̈ve;482
• a weighted scheme with W = β/(1 + |d|) where483

d is the letter-phoneme position-index difference,

and β is a heuristic scaling set to 40 for the results 484
reported here; 485

• the NETtalk manual alignment (20,009 words); 486
• the NETspeak manual alignment (16,280 words); 487
• various random alignments. 488

5.3. Convergence 489

The convergence criterion was that there was no change 490
as between Ak and Ak−1. 491

Figure 2 shows the convergence behavior for the 492
NETtalk initialisation. The quantity graphed is the to- 493
tal DP score for the whole dictionary at the end of 494
iteration k, i.e., Sk = ∑198,632

i=1 alignk(wi ). Note that 495
convergence requires that the A matrix is unchanged 496
between iterations, Ak = Ak−1, which (because nulls 497
are not included in the A matrix) is not quite the 498
same as the total DP score remaining unchanged, 499
Sk = Sk−1. The total DP score at the zeroth iteration, S0, 500
is very low in this case, because only the 20,009 words 501
of the originally-aligned NETtalk dictionary can be 502
scored. 503

Figure 3 shows convergence behavior for two dif- 504
ferent initializations, excluding the total DP score at 505
the zeroth iteration, S0. This gives a clearer view 506
of the convergence for the NETtalk initialization than 507
does Fig. 2 where the very low value of S0 swamps 508
the trend. For the naı̈ve initialization, it is not re- 509
ally sensible to depict S0 anyway since the dramatic 510
overcounting of associations (every letter is counted 511
|pw| times and every phoneme is counted |lw| times) 512
produces a very high score that is effectively mean- 513
ingless. For both initializations, most of the improve- 514
ment takes place between the first and second iter- 515
ations. This was found to be a general characteris- 516
tic of the results. For all initializations, convergence 517
was achieved in between 5 to 8 iterations. The man- 518
ual alignment of the NETtalk dictionary, even though 519
it is much smaller than BEEP, shows a clear ben- 520
efit in terms of a higher score at iteration 1 to- 521
gether with faster convergence. The score at con- 522
vergence, SC , was remarkably consistent across the 523
various initializations, suggesting that the search prob- 524
lem is strongly convex. The best value obtained 525
was SC = 8.579 × 1010 for the NETtalk initialization 526
whereas the worst value was SC = 8.473 × 1010 for 527
one of the random initializations. Generally, the ran- 528
dom initialization values were slightly lower than the 529
others. 530
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Figure 2. Convergence behavior of the alignment algorithm for the NETtalk initialization.

Figure 3. Convergence behavior of the alignment algorithm for two different initializations. Rectangles: NETtalk initialization; Circles: naı̈ve
initialization.

5.4. Analysis of Association Matrices531

Figures 4(a) and (b) show the association matrices532
for the naı̈ve initialization initially, A0, and at conver-533
gence, A7. The larger association values in Fig. 4 are a534
consequence of the overcounting mentioned above. As535
expected, the matrix is considerably less random (i.e.,536
peakier) at convergence. Quantitatively, the (negative)537
entropy of the A0 matrix was 8.84 bits whereas that538
of the converged matrix was 5.24 bits; these figures539
compare with 10.13 bits for the equiprobable case. En-540

couragingly, the strongest peaks at convergence, corre- 541
sponding to the major letter-phoneme associations, are 542
also among the strongest peaks in A0, indicating that 543
the naı̈ve initialization, albeit very simple, still provides 544
an effective start point for our algorithm. 545

There is a wealth of information about letter- 546
phoneme correspondences in English to be gleaned 547
from the A matrix obtained at convergence. Since nulls 548
are introduced into the aligned dictionary only at the 549
DP matching stage (see Section 3) and do not figure 550
in the A matrix, they are not considered explicitly in 551
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Figure 4. Association matrices for the naı̈ve initialization both initially, A0, and at convergence, A7.

the remarks that follow. With this proviso, the common-552
est correspondence overall was n → /n/. The common-553
est letter participating in correspondences is i, which554
occurs 148,913 times in the matrix. This is slightly555
surprising as the commonest letter overall is e. The556
apparent discrepancy is explained by the number of557
times letter e participates in a functional spelling unit558
such as ea and so aligns with null (with the letter a559
aligning with the vowel phoneme). The least common560
letter participating in correspondences is q, which oc-561
curs just 17 times. Again, q almost invariably occurs562

in a qu functional spelling unit, with q aligning with 563
a null phoneme, which reduces its count in the ma- 564
trix. The commonest phoneme is /I/ at 138,176 occur- 565
rences, which can be understood from the frequency 566
with which letter i occurs and the fact that i → /I/ 567
is a very common correspondence (at 109,508 occur- 568
rences). Schwa, /´/, is relatively less common than /I/ 569
at 190,975 occurrences. Intuitively, one might expect 570
schwa to be the commonest vowel, but it is perhaps 571
more likely than /I/ to align with a null letter. Of the 572
letters, o displays most variability in its association with 573
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phonemes, with no less than nine correspondences with574
a frequency count of 1000 or more. The least variabil-575
ity is shown by letter m, which almost always associates576
with phoneme /m/. Schwa displays easily the most vari-577
ability in its association with letters, participating in578
five correspondences (with letters a, e, i, o and u) with579
a count greater than 1000. The least variable phoneme580
was /N/, which associated with letter n in all but just581
2 cases.582

5.5. Assessing Alignment Performance Using PbA583

As previously stated, alignment results were assessed584
using PbA. Each word was removed from the dictio-585
nary and a pronunciation determined from the word’s586
spelling by analogy with all other words. The Marc-587
hand and Damper PbA system uses multiple (actually588
five) criteria to select between candidate pronuncia-589
tions to find the ‘best’. There is, however, a problem in590
that PbA was designed to transcribe text in which there591
will obviously be no null letters. Yet here, null letters592
have been added to the alignments of many words. Our593
first step, then, has been to ignore any words with null594
letters, reducing the number of words to be tested from595
198,632 to approximately 177,000. (The number varies596
with the exact initialization used.) This is an obvious597
simplification of the problem, but should nonetheless598
yield interesting insights.599

Table 3 shows results obtained (for words without600
null letters) in terms of words and phonemes correctly601
pronounced for each of the initializations used. Several602
different random initializations were used, but results603
were very similar and so figures for one only are tab-604
ulated here. In each case, we show the results for the605
best single scoring criterion of the five, for the best606
combination, and when all five are combined. Note607
that 10100 in the column heading indicates that scor-608
ing strategies 1 and 3 as described by Marchand and609
Damper (2000, pp. 207–208) provided the best com-610
bination performance for all initializations. Although611
space precludes a full description of our PbA method-612
ology, we mention that strategy 1 takes the product of613
arc frequencies along the shortest path in the pronun-614
ciation lattice, whereas strategy 3 counts the number615
of identical pronunciations having the same shortest616
path length. Strategy 1 is relatively popular in PbA617
(e.g., Damper and Eastmond, 1997) whereas we are618
not aware that any other researchers have ever used619
strategy 3, which interestingly turns out to be best per-620
forming single strategy overall.621

Table 3. Results when alignment of the BEEP dictionary is assessed
by the performance of a pronunciation by analogy system, for various
initializations. Words with null letters in their alignments have been
ignored at this stage.

Best Single Best Combination All 5

NAı̈VE 00100 10100 11111

Words (%) 85.84 87.32 85.96

Phonemes (%) 97.52 97.78 97.57

W WEIGHTED 00100 10100 11111

Words (%) 85.87 87.36 86.00

Phonemes (%) 97.60 97.85 97.65

NETTALK 00100 10100 11111

Words (%) 86.00 87.41 86.05

Phonemes (%) 97.59 97.83 97.63

NETSPEAK 00100 10100 11111

Words (%) 86.01 87.48 86.11

Phonemes (%) 97.64 97.89 97.70

RANDOM 00100 10100 11111

Words (%) 85.87 87.38 85.69

Phonemes (%) 97.51 97.78 97.57

The figures in Table 3 are remarkably consistent, in- 622
dicating that the particular initialization used does not 623
have a dramatic effect. This is in spite of our attempts 624
to restart the algorithm from a variety of very differ- 625
ent points, suggesting that the search space is strongly 626
convex. It is worth noting, however, that as a con- 627
sequence of the large dictionary size (approximately 628
177,000 words) the difference between the best Best 629
Combination of 87.48% (for the NETtalk initialization) 630
and the worst Best Combination of 87.32% (for the 631
naı̈ve initialization) is in fact marginally significant at 632
the 5% level (binomial test, z = 2.026, p ∼ 0.021). 633

The best PbA performance is found for NETspeak 634
but initializing alignment with the NETspeak dictionary 635
actually produced a slightly lower total DP score at con- 636
vergence than initializing with NETtalk. In other words, 637
the total DP score at convergence is a good but not per- 638
fect indicator of PbA performance. Examination of the 639
final alignments revealed that these were strongly sim- 640
ilar; there were typically somewhere between 10 and 641
100 different alignments only between one initializa- 642
tion and another. Most often, differences were due to 643
the specific placement of nulls in words having many 644
silent letters (e.g., bourgeoisie, heavyweight, mem- 645
oirs). Frequently, these were words of foreign (French) 646
origin. 647
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This is certainly among the best performance fig-648
ures ever reported on English letter-phoneme conver-649
sion, in terms of word-level accuracy on a large dic-650
tionary. Previously (Damper et al., 1999), we obtained651
71.8% words correct using PbA on a much smaller652
dictionary—the 16,280 manually-aligned words used653
by McCulloch et al. (1987) to train NETspeak. (It654
should be noted, however, that BEEP uses a smaller655
phoneme inventory of 44 symbols than the 51 used656
in the NETspeak dictionary, making for a somewhat657
easier problem.) A further observation is that using658
all five strategies does not give best performance, as659
it did for our earlier work with smaller dictionaries660
(Marchand and Damper, 2000). In assessing perfor-661
mance, however, we must remember that we have sim-662
plified the problem by ignoring words with nulls, which663
arguably gives a too optimistic view of the present re-664
sults. However, even under the maximally pessimistic665
assumption that PbA were to get all the words with666
null letters wrong, the 85.8% words correct for best667
single strategy, naı̈ve start point, would fall to 76.1%—668
still a very respectable result on such a sizable669
dictionary.670

To gain further insight into this issue, PbA was used671
to produce pronunciations for all 198,632 words includ-672
ing those with null letters in their alignment, treating the673
latter as a legitimate input symbol (even though it never674
could be in practice). Results for the best combination675
averaged 82.3% words correct, showing that high ac-676
curacy is potentially achievable if only ‘missing’ nulls677
in the PbA input could be appropriately introduced.678

6. Discussion and Conclusions679

We have described a form of the EM algorithm, used680
with dynamic programming to align a dictionary of681
word spellings and their pronunciations. Such align-682
ment problems commonly occur in speech technology683
and natural language processing. The issues that arise684
in solving this important problem have been detailed685
and discussed. The quality of the obtained alignment686
has been assessed using pronunciation by analogy to687
derive pronunciations for all words in the dictionary688
from their spelling, using the aligned data as a knowl-689
edge base. Since the EM algorithm is effectively a gra-690
dient ascent procedure prone to finding local maxima,691
alignment has been performed from a variety of ini-692
tializations, or start points. Results are judged to be693
extremely encouraging, and are relatively insensitive694
to a wide variety of start points. This indicates that the695

search space is strongly convex and, hence, that local 696
maxima are not a practical problem. 697

Our work has several similarities with that of Ristad 698
and Yianilos (1998). This is perhaps not surprising as 699
they take the topic of stochastic transduction as their 700
motivation, whereas the ideas reported in this paper 701
had their early expression in our own work, which led 702
to the use of stochastic transduction to solve problems 703
in TTS conversion, including letter-phone alignment 704
(Luk and Damper, 1996, 1998). Ristad and Yianilos 705
also use dynamic programming in conjunction with 706
the EM algorithm to learn edit distances between two 707
strings. Since the string edit operations of insertion and 708
deletion can be interpreted as the introduction of nulls 709
into one string or another—either the word’s spelling 710
or its pronunciation—there is clearly a strong relation 711
between the two pieces of work. As Jansche (2001) 712
writes: “The problem of letter-to-sound conversion is 713
very similar to the problem of modeling pronunciation 714
variation”. However, although Ristad and Yianilos con- 715
sider the problem of pronunciation modelling in speech 716
technology, they do not consider alignment problems 717
as such. 718

This work represents the most comprehensive study 719
to date of letter-phoneme alignment, at the same time 720
achieving what is probably the best reported perfor- 721
mance on the difficult task of letter-phoneme conver- 722
sion of unknown words of English. Since the aligned 723
BEEP dictionary is a potentially valuable resource, 724
the version obtained from the NETspeak initialization 725
(which produced best performance on letter-phoneme 726
conversion) is made freely available for research 727
use at http://festvox.org/packed/data/ 728
damper. Since our software has wide applicability, we 729
are also working to provide an on-line facility at which 730
researchers can submit dictionaries for alignment. 731
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