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Abstract Recognizing speakers in emotional conditions re-
mains a challenging issue, since speaker states such as emo-
tion affect the acoustic parameters used in typical speaker
recognition systems. Thus, it is believed that knowledge of
the current speaker emotion can improve speaker recog-
nition in real life conditions. Conversely, speech emotion
recognition still has to overcome several barriers before it
can be employed in realistic situations, as is already the case
with speech and speaker recognition. One of these barriers
is the lack of suitable training data, both in quantity and
quality—especially data that allow recognizers to general-
ize across application scenarios (‘cross-corpus’ setting). In
previous work, we have shown that in principle, the usage
of synthesized emotional speech for model training can be
beneficial for recognition of human emotions from speech.
In this study, we aim at consolidating these first results
in a large-scale cross-corpus evaluation on eight of most
frequently used human emotional speech corpora, namely
ABC, AVIC, DES, EMO-DB, eNTERFACE, SAL, SUSAS
and VAM, covering natural, induced and acted emotion as
well as a variety of application scenarios and acoustic con-
ditions. Synthesized speech is evaluated standalone as well
as in joint training with human speech. Our results show
that the usage of synthesized emotional speech in acous-
tic model training can significantly improve recognition of
arousal from human speech in the challenging cross-corpus
setting.
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1 Introduction

In the last years, the field of computational paralinguis-
tics has emerged from loosely connected research in the
more traditional disciplines of speech and speaker recogni-
tion. It deals with the generic problem to determine long-
term speaker traits (e.g., identity, personality, age or gender)
and medium-term or short-term states (e.g., emotion, mood,
sleepiness, or intoxication) from the speech signal by means
of acoustic and linguistic analysis. Such generic speech and
speaker classification is immediately connected to a vari-
ety of relevant applications in surveillance, including detec-
tion of emotional stress, sleepiness or intoxication in high-
risk environments, and forensics, by identifying speakers in
audio recordings from their traits, without requiring an ex-
plicit speaker model (Schuller et al. 2012). Yet, these capa-
bilities are also useful for emulating ‘social competence’ in
technical systems such as dialogue systems or robots, i.e.,
using signal processing and machine learning to react ap-
propriately to dialogue partners with respect to their traits
and states, by adjusting the discourse strategy, or aligning
to the dialogue partner. Among the fields of research in
speaker state analysis, emotion recognition can be consid-
ered one of the most mature, with a first comparative eval-
uation campaign, the INTERSPEECH Emotion Challenge,
held in 2009 (Schuller et al. 2011).

Interestingly, such speaker states can be recognized auto-
matically from speech features such as cepstral coefficients,
and methodologies such as universal background models
(UBMs) often used for speaker recognition (Schuller et al.
2011, 2012; Bone et al. 2011). This suggests that speaker
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state variation poses a major challenge to speaker recog-
nition systems. In fact, downgrades in speaker recognition
performance in emotional conditions have been demon-
strated repeatedly in the literature (Scherer et al. 2000;
Wau et al. 2006; Li and Yang 2007). First studies in that di-
rection suggested the inclusion of emotional speech in the
enrollment procedure for speaker verification (Scherer et al.
2000), which is however hardly feasible in practical appli-
cations. In Wu et al. (2006) it has been proposed to normal-
ize UBM scores by emotion category in order to avoid that
emotional speech is rejected in a speaker verification sys-
tem. Recent results suggest that in principle, speaker state
variation can be thought of as a ‘channel effect’ that can be
modeled, e.g., by latent factor analysis (Li et al. 2012). How-
ever, from this study is not clear whether this unsupervised
channel compensation method is sufficient to counter the
effects of emotional variation on speaker recognition per-
formance. Yet, in all of these previous results we can find
significant evidence for interdependencies between emotion
and speaker recognition.

As a matter of fact, it appears that building emotion rec-
ognizers that can operate in a speaker-independent fashion
in various acoustic environments is challenging (Schuller
et al. 2011). One of the barriers to overcome before emo-
tion recognition can be employed in real-life systems is the
scarcity of labeled training data to develop automatic recog-
nition systems (Zeng et al. 2009; Schuller et al. 2011). In-
deed, it is a common belief in the field of pattern recognition
that “there is no data like more data”. Yet, in emotion recog-
nition the research community is still lacking publicly avail-
able databases of large size, which is in stark contrast to the
field of automatic speech recognition (ASR) where typical
recognizers are trained on hundreds of hours of transcribed
speech. Recently, several methods have been proposed to al-
leviate the data scarcity problem, such as combining mul-
tiple training databases (Lefter et al. 2010) or employing
unsupervised learning strategies to make use of large quan-
tities of unlabeled emotional speech (Zhang et al. 2011;
Mahdhaoui and Chetouani 2009). Another approach to rem-
edy the problem is the use of artificially generated speech,
i.e., speech synthesis. If such data are suitable for training
or adapting models for the recognition of human emotional
speech, countless options open up: Not only could training
data be generated in virtually infinite quantities, but emo-
tional speech could be produced for different target groups
(e.g., by varying parameters of the synthesizer correspond-
ing to different age or gender), for various and also under-
resourced languages, and fitting to the spoken content at
hand. The latter could help for the design of dialogue sys-
tems with specific vocabulary, but could also be promis-
ing to address the challenge of text-independent emotion
recognition: Assuming reliable ASR, one could first recog-
nize the phonetic content, and then re-produce this content

in various emotional facets for adaptation of acoustic emo-
tion models. The general feasibility of this idea has been
repeatedly demonstrated: For example, Microsoft’s Kinect
sensor uses synthesized user models to provide for differ-
ent body shapes, postures, etc. Concerning the field of audio
processing, in Lee and Slaney (2006) improved recognition
of chords in music is enabled by synthesis of training ma-
terial from symbolic music using various sound fonts (sets
of instrument samples). Finally, in Schuller and Burkhardt
(2010), we have achieved tentative results showing that us-
ing synthesized speech for training benefits emotion recog-
nition from human speech in a pair-wise cross-database
evaluation using the eNTERFACE (Martin et al. 2006) and
EMO-DB (Burkhardt et al. 2005) corpora, i.e., training on
one database and testing on the other. There, using synthe-
sized speech for training could often outperform training
with human speech.

This article aims at consolidating these promising results
by providing an extensive empirical evaluation on eight hu-
man emotional speech databases in a cross-corpus scenario.
This cross-corpus setting aims to put the evaluation closer
to real-life applications where data from the exact applica-
tion domain might not be available. In fact, there is a large
variability among the labeling schemes, languages, types
of emotion elicitation and associated application scenarios
found in typical databases of human emotional speech. Not
only does this cause a mismatch in the feature distribution
between training and testing instances, but it also necessi-
tates a coercion of the original continuous valued or cat-
egorical labels to a generic scheme. In this study, we opt
for a rather coarse binary labeling with positive/negative
arousal and valence, for compatibility with our earlier work
on cross-corpus emotion recognition (Zhang et al. 2011).
This dimensional, but discrete approach is chosen because
on the one hand, most categorical emotion labels (such as
the ‘Big Six’ emotions joy, sadness, anger, fear, surprise and
disgust) can be expressed as points in the arousal-valence
space (Russell 1980); on the other hand, we use classifi-
cation instead of regression since the majority of the con-
sidered databases is annotated by emotion categories in-
stead of a more fine-grained, continuous annotation—this is
mostly due to the type of emotion elicitation used for creat-
ing these databases. In Sect. 2 we will describe the recording
setups and label mappings of the human emotional speech
databases in detail.

In this study, synthesized speech is generated by two dif-
ferent phonemization components, namely TXT2PHO and
OpenMary, in combination with Emofilt and Mbrola, as will
be laid out in Sect. 3. The 6k space of acoustic features
extracted by our open source Emotion and Affect Recogni-
tion (openEAR) toolkit in compliance with our earlier work,
as well as the classification procedures and results, are pre-
sented in Sect. 4 before concluding with future perspectives
in Sect. 5.



2 Eight human emotional speech databases
2.1 Synopsis

In our selection of human emotional speech databases for
evaluation, we choose frequently used and publicly available
ones. These will be briefly introduced below (in alphabetical
order), describing their recording setup and labeling. While
many of them provide audiovisual data and transcription, we
only use the audio tracks in our analysis.

The Airplane Behavior Corpus (ABC) (Schuller et al.
2007) is an audiovisual emotion database. It is crafted for the
special target application of public transport surveillance. It
is based on induced mood by pre-recorded announcements
on a simulated vacation flight, consisting of several scenes
such as start, serving of wrong food, turbulences, falling
asleep, conversation with a neighbor, or touch-down.

The Audiovisual Interest Corpus (AVIC) (Schuller et al.
2009a) is another audiovisual emotion corpus. It consists
of spontaneous speech and natural emotion. In its scenario
setup, a product presenter leads subjects through a commer-
cial presentation. AVIC is labeled in “level of interest” (loi)
1-3 corresponding to boredom, neutral and interested.

The Danish Emotional Speech (DES) database (Engbert
and Hansen 1996) contains professionally acted nine Danish
sentences, two words, and chunks that are located between
two silent segments of two passages of fluent text. Speech is
expressed in five emotional states: anger, happiness, neutral,
sadness, and surprise.

The Berlin Emotional Speech Database (EMO-DB)
(Burkhardt et al. 2005) features professional actors express-
ing six prototypical emotional states (anger, boredom, dis-
gust, fear, joy, neutral, and sadness) and an emotionally neu-
tral state in ten German sentences without emotional conno-
tations.

The eNTERFACE (eNTER) (Martin et al. 2006) corpus
is a further public audiovisual emotion database. It consists
of recordings of naive subjects from 14 nations speaking
pre-defined spoken content in English. The subjects listened
to six successive short stories eliciting a particular emotion
out of angry, disgust, fear, happy, sadness, and surprise.

The Belfast Sensitive Artificial Listener (SAL) data is
part of the final HUMAINE database. This database was
created in a Wizard-of-Oz scenario simulating the interac-
tion of a human with an emotionally sensitive and expressive
virtual agent (SAL) whose part was taken by a human oper-
ator. There are four different agents representing emotional
stereotypes (the quadrants of the valence-arousal space) to
elicit varying emotional responses from the user. The data
has been labeled continuously in real time with respect to
valence and activation using a system based on FEELtrace
(Cowie et al. 2000). The 25 recordings have been split into
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turns using an energy based Voice Activity Detection. La-
bels for each obtained turn are computed by averaging over
the complete turn.

The Speech Under Simulated and Actual Stress (SUSAS)
database (Hansen and Bou-Ghazale 1997) serves as a ref-
erence for the first recordings of spontaneous emotional
speech. In addition to the challenges introduced by the spon-
taneity, the speech is partly masked by field noise in the
chosen actual stress speech samples recorded in subject mo-
tion fear and stress tasks (rollercoaster and free fall situa-
tions). The SUSAS content is restricted to 35 English air-
commands in the speaker states high stress, medium stress,
neutral, screaming, and fear.

Finally, the Vera-Am-Mittag (VAM) corpus (Grimm et
al. 2008) consists of recordings taken from a German TV
talk show. The audio recordings were manually segmented
to the utterance level, whereby each utterance contained at
least one phrase. The labeling bases on a discrete five point
scale for valence, activation, and dominance. The evalua-
tor weighted estimator (annotator mean weighted by relia-
bility) (Grimm and Kroschel 2005) is used to create a quasi-
continuous annotation. In our experiments, we only consider
the valence and activation dimensions, the latter being re-
garded as equivalent to arousal.

Further details on the corpora are summarized in Table 1
and found in Schuller et al. (2009b). Overall, these cor-
pora cover a broad variety of data from acted speech (DES,
EMO-DB) to induced emotions (ABC, eNTERFACE) to
spontaneous emotions (AVIC, SAL, SUSAS, VAM), and
from strictly limited textual context (ABC, DES, EMO-DB,
SUSAS) to more variation (¢eNTERFACE) to full variance
(AVIC, SAL, VAM). Three languages (English, German,
and Danish) belonging to the same family of Germanic lan-
guages are contained. Furthermore, the speaker characteris-
tics, the recording conditions, as well as the number of an-
notators vary greatly among these databases.

2.2 Mapping and clustering

Since the eight human speech databases are annotated in var-
ious emotion categories and continuous valued dimensions,
we map the diverse emotion groups into the quadrants of the
two-dimensional arousal-valence space as in Schuller et al.
(2009b): arousal (i.e., high vs. low) and valence (i.e., pos-
itive vs. negative) in order to generate a unified set of la-
bels that can be used for cross-corpus experiments. These
mappings are not straight forward—we favor better balance
among target classes. For corpora labeled in continuous val-
ued dimensions, we discretize the labels into the four quad-
rants (q) 1-4 of the arousal-valence plane. The mappings are
given in Tables 2 and 3 for arousal and valence, respectively.
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Table 1 Overview of the selected emotion corpora (Lab.: labelers, Rec.: recording environment, f/m: (fe-)male subjects), synth.: synthesized

Corpus Language  Speech  Emotion # Arousal # Valence #All  hmm  #m  #f #Lab. Rec. kHz
- + - +
Human Speech (HS)
ABC German Fixed Induced 104 326 213 217 430  1:15 4 4 3 Studio 16
AVIC English Free Natural 553 2449 553 2449 3002 1:47 11 10 4 Studio 44
DES Danish Fixed Acted 169 250 169 250 419  0:28 2 2 - Studio 20
EMO-DB German Fixed Acted 248 246 352 142 494 0:22 5 5 - Studio 16
eNTER English Fixed Induced 425 852 855 422 1277  1:00 34 8 2 Studio 16
SAL English Free Natural 884 808 917 779 1692  1:41 2 2 4 Studio 16
SUSAS English Fixed Natural 701 2892 1616 1977 3593 1:.01 4 3 - Noisy 8
VAM German Free Natural 501 445 875 71 946  0:47 15 32 6/17 Noisy 16
Synthesized Speech (SS)
OpenMary  German Fixed Synth. 280 350 420 210 630 0:33 4 3 - - 22
TXT2PHO  German Fixed Synth. 280 350 420 210 630 0:33 4 3 - - 16

Table 2 Mapping the classes of various databases to a binary arousal
(High or Low)

Table 3 Mapping the classes of various databases to a binary valence
(Positive or Negative)

Corpus High Low

Corpus Positive Negative

Eight Human Speech Databases

ABC Aggressive, cheerful, Neutral, tired
intoxicated, nervous

AVIC l0i2, loi3 loil

DES Angry, happy, surprise Neutral, sad

EMO-DB Anger, fear, joy Boredom, disgust,

neutral, sadness

eNTERFACE Anger, fear, happiness, Disgust, sadness
surprise

SAL ql, g4 q2,q3

SUSAS High stress, medium Neutral
stress, screaming, fear

VAM ql, q4 q2,q3

Two Synthesized Speech Databases
OpenMary/
TXT2PHO

Boredom, neutral,
sadness, yawning

Despair, fear,
happiness, hot anger, joy

3 Emotional speech synthesis

We now describe our approach for synthesis of emotional
speech that is used to augment the human training data as
detailed above.

3.1 Overview

Speech synthesis is usually done in a two step approach.
First, the text is analyzed by a natural language process-
ing (NLP) module and converted into a phonemic repre-
sentation aligned with a prosodic structure, which is then

Eight Human Speech Databases

ABC Cheerful, neutral, Aggressive, nervous,
intoxicated tired
AVIC loi2, 1oi3 loil
DES Happy, surprise, Angry, sad
neutral
EMO-DB Neutral, joy Anger, boredom,
disgust, sadness, fear
eNTERFACE Happiness, Anger, fear, disgust,
surprise sadness
SAL ql, q2 q3, g4
SUSAS Medium stress, High stress,
neutral screaming, fear
VAM ql, q2 q3,q4
Two Synthesized Speech Databases
OpenMary/ Happiness, joy, Boredom, despair,
TXT2PHO neutral fear, hot anger, sad-

ness, yawning

passed to a digital speech processing (DSP) component
in order to generate a speech signal. Both of these sub
modules can be influenced by the emotion modeling com-
ponent. Generally, there exist several main approaches to
model synthetic speech: parametric systems like articulatory
and formant synthesis, data-based synthesis like diphone
and non-uniform unit-selection synthesis and hybrid sys-
tems, e.g., Hidden Markov Model (HMM) synthesis. (Steidl
et al. 2012) evaluated articulatory/parametric synthesis by
humans and an automatic emotion classifier. We used di-
phone synthesis, because it can be seen as a good compro-



mise between the flexibility of parametric and the natural-
ness of data-based synthesis. We developed an emotional
speech synthesis system on the basis of Mbrola (Dutoit et al.
1996). In order to increase the variation in the synthesized
data used for training, we used two different phonemization
components, namely TXT2PHO (Portele 1999) and Mary
(Schroder and Trouvain 2003) for NLP. Emofilt (Burkhardt
2005) acts as an ‘emotional transformer’ between the phone-
mization (Text2Pho or Mary) and the speech generation
component (Mbrola).

The simulation of emotions is achieved by a set of
parametrized rules that describe manipulation of the fol-
lowing aspects of a speech signal: pitch changes, duration
changes, voice quality (simulation of jitter and support of
multiple voice quality databases), and articulation (substitu-
tion of centralized/decentralized vowels).

For the experiments at hand we synthesized the ten sen-
tences of the Berlin Emotional Speech Database (cf. Sect. 2)
with TXT2PHO as well as with Mary and simulated eight
target emotions (happiness, joy, boredom, yawning, fear, de-
spair, hot anger, sadness) plus a neutral state with Emofilt,
using all seven German voices for Mbrola (four female and
three male), thus getting 1260 samples (10 x 2 x 9 x 7, cf.
Table 1).

The remainder of this section firstly describes the modi-
fication rules in general and then specifies which rules were
applied for the emotional states. The rules were motivated
by descriptions of emotional speech found in the literature;
a review can be found in Burkhardt (2000). Before the rules
are applied by Emofilt, the input phoneme chain gets sylla-
blized by an algorithm based on sonority hierarchy. In addi-
tion, stressed syllables are identified as those that carry local
pitch contour maxima (Burkhardt 2005).

3.2 Pitch modification methods

The following modifications are provided for pitch feature
changes.

Pitch level The overall level of the F contour can be
shifted by multiplying all values with a rate factor (rate = 0
resembles no change). This means that high values undergo
stronger changes than low values and was chosen to conform
with the human logarithmic hearing.

Pitch range The pitch range change was motivated by the
peak-feature model mentioned in Bergmann et al. (1988)
and is achieved by a shift of each Fy value by a percentile
of its distance to the mean Fj value of the last syllable.
If range = 0, all values become the last syllable’s mean
value. The shifting corresponds to a contrast change in im-
age processing. Note that Emofilt currently assumes its in-
put to consist of one ‘utterance’ in the sense of a short part
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of speech that shall be uttered emotionally. This might lead
to problems if several sentences are given as input, because
utterance-global values like, e.g., the ‘mean pitch value of
last syllable’ are currently computed only once for the whole
of the input phoneme sequence.

Pitch variation A pitch variation on the syllable level is
achieved by the application of the pitch range algorithm on
each syllable separately. The reference value in this case is
the syllable’s mean pitch.

Pitch contour (phrase) The pitch contour of the whole
phrase can be designed as a rising, falling or straight con-
tour. The contours are parametrized by a gradient (in semi-
tones/sec). As a special variation for happy speech, the
‘wave model’ can be used where the main-stressed sylla-
bles are raised and the syllables that lie equally distanced
in between are lowered. It is parametrized by the maxi-
mum amount of raising and lowering and connected with
a smoothing of the pitch contour, because all F values are
linearly interpolated.

Pitch contour (syllables) A rising, falling or level contour
can be assigned to each syllable type. Additionally, the last
syllable can be handled separately.

Duration modification methods The speech rate can be
modified for the whole phrase, specific sound categories
or syllable stress types separately by changing the duration
of the phonemes (given as a percentile). If the duration is
shorter than the frame rate as a consequence of a length re-
duction, the phoneme is dropped.

3.3 Voice quality modification methods

We developed a formant synthesis based approach to simu-
late different voice quality types based on the Klatt synthe-
sizer (Burkhardt 2009), but could not use the synthesizer for
the problem at hand because it lacks a database for general
speech synthesis. Because with Mbrola the voice quality of
the speech is fixed within the diphone inventory, we had to
restrict ourselves to the two following rules:

Jitter In order to simulate jitter (fast fluctuations of the Fy
contour) the Fy values can be displaced by a percentile al-
ternating down and up.

Vocal effort For the German language, there exist two
voice databases that were recorded in three voice qualities:
normal, soft, and loud (see Schroder and Grice 2003). The
change of voice quality can be applied to the whole phrase
or specific syllable stress types only.
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Table 4 Modification rule description for the used emotional categories, sorted into pitch, duration, voice quality and articulation changes

Category Pitch Duration Voice quality Articulation
Boredom Lower level (80), lower range (50 %), General slower (120), accented Soft vocal effort Vowel target undershoot
lower variability (80) syllables (140)
Yawning Raise level (200), falling contour (50) Like boredom Like boredom Like boredom
Despair Raise level (200), lower range (50), Slower (120) Jitter (20) -
lower variability (90), falling contour on
stressed syllables (20)
Happiness ‘Wave model (120) Slower (120), voiceless frica- - -
tives slower (150)
Sadness Lower variability (80) and range (80), Slower (140) Vocal effort soft, Vowel target undershoot
straight contour on stressed syllables, last jitter (10)
syllable rising contour (10)
Joy Level raised (150), range broader (200), Faster (70), voiceless fricatives Vocal effort loud -
rising contour for stressed syllables (70) slower (150)
Fear Level raised (200), range broader (160), Faster (70), longer pauses (210) Jitter (5) Vowel target undershoot
falling phrase contour (10), straight con-
tour for stressed syllables (70), last sylla-
ble rising contour (10)
Hot anger Level raised (150), range broader (200), Faster (70), vowels faster (70) Loud vocal ef- Vowel target overshoot

more variability (130), level of stressed
syllables raised (130), falling contour for
stressed syllables (30)

fort, jitter (5)

3.4 Articulation modification

As a diphone synthesizer has a very limited set of phoneme
realizations and does not provide for a way to do manipu-
lations with respect to the articulatory effort, the substitu-
tion of centralized vowels with their decentralized counter-
parts and vice versa is possible as a work-around to change
the vowel precision. This operation was inspired by Cahn
(1989).

3.5 Simulating emotional states

As stated in the introduction, emotional modeling is usu-
ally either done by a categorical system that distinguishes
between a specific set of emotion categories like anger or
boredom, or by the use of dimensions like arousal, va-
lence or dominance. It is easy to derive appropriate acous-
tic modification rules for the arousal dimension, because
both are directly related to muscle tension, but such deriva-
tions are considerably more difficult for the other dimen-
sions. Therefore we model emotional states with a categor-
ical system, although we realize that dimensional systems
are more flexible and better suited to model the imprecise-
ness of the ‘real world’, in which ‘full blown’ emotions
such as the ‘Big 6’ rarely occur. Table 4 lists the modi-
fications for the eight emotion categories used in the on-
coming experiments. As stated above, they were inspired
by a literature review, manually fine tuned and partly ver-
ified by perception experiments (Burkhardt and Sendlmeier

2000). Most modifications are parametrized by a rate value
which is stated in parenthesis. Emofilt is freely available
(http://emofilt.sourceforge.net) and the reader is invited to
reproduce the simulations.

The modifications work are applied in a cascading fash-
ion; this means, for example, that if the overall speech rate
is faster (e.g. 70) and vowel durations are also faster (e.g.
70), the new duration for vowels is shortened to 49 % (70 %
of 70 %). Of course the emotional expression that is gener-
ated by these rules is very prototypical and only one pos-
sibility to display the target emotions. In order to get a
higher variety, and hence to generate even more training data
for future experiments, it would be possible to randomly
shift the parameters for the modifications slightly, or use the
Emofilt ‘graded-emotion’ function which generates stronger
or weaker versions of the modification rules.

For the purpose of uniting both human and synthesized
speech in the training of a single classifier, we mapped the
emotional categories from Table 4 into the quadrants of the
arousal-valence plane (cf. Tables 2 and 3, respectively).

3.6 Evaluation of synthesis performance

We evaluated the performance of the emotional synthesis in
a forced choice listening test with 20 participants. The four
basic emotions anger, joy, sadness and fear plus neutral stim-
uli were generated by the rules described above. Overall,
55.6 % accuracy could be achieved by the human subjects
in assigning the stimuli to emotion classes (recall of neutral:



Table S 56 frame-wise Low-Level Descriptors (LLD) extracted from
audio signals for emotion classification. 7p: periodic time

Feature group Features in group

Raw signal Zero-crossing-rate

Signal energy Logarithmic

Pitch Fundamental frequency Fy in Hz via Cepstrum and
Autocorrelation (ACF)
Exponentially smoothed Fj envelope

Voice quality Probability of voicing (é‘CCFF((@)))

Spectral Energy in bands 0-250 Hz, 0-650 Hz, 250-650 Hz,

1-4kHz
25 %, 50 %, 75 %, 90 % roll-off point, centroid, flux,
and rel. pos. max./min.

Band 1-26
MFCC 0-12

Mel-spectrum

Cepstral

60 %, anger: 55 %, joy: 35 %, sadness: 50 %, fear: 78 %).
Joy was often confused with anger (28 %).

4 Experimental setup and results

We now proceed to describe the acoustic features extracted
from the human and synthesized speech, as well as the de-
tails of the classifier setup and evaluation procedure. Note
that in order to obtain emotion models from synthesized
speech, we take a data-based approach as for the human
speech, using the same set of acoustic parameters for com-
patibility; the classifier then learns automatically how our
generation rules affect these parameters.

4.1 Acoustic features and classification

As acoustic features for classification, we employ the ‘emo-
large’ set provided by our open source openEAR toolkit (Ey-
ben et al. 2009). This set contains 6 552 (39 x 56 x 3) fea-
tures obtained by systematically applying 39 statistical turn-
level functionals to 56 frame-level Low-Level Descriptors
(LLDs) and their first and second order discrete derivatives.
The turn-level functionals serve to capture temporal varia-
tion of the LLDs in feature vectors of constant dimension in-
dependent of the utterance length. This kind of static model-
ing is often superior to dynamic modeling in emotion recog-
nition (Schuller et al. 2011). The LLDs extracted (cf. Ta-
ble 5) include prosodic features (zero-crossing rate, pitch,
energy) as well as probability of voicing, spectral and cep-
stral features, all of which are commonly used in acous-
tic emotion recognition (Schuller et al. 2011). The consid-
ered spectral sub-bands emphasize on energy in the Fy re-
gion (0-250 Hz), the first formant (7, 250-650 Hz, mostly
vowels), both F and F; (0-650 Hz), and higher order for-
mants (1-4 kHz, mainly consonants). The LLD derivatives
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Table 6 39 functionals applied to LLD contours

+

Functionals

Respective rel. position of max./min. value

Range (max./min.)

Max. and min. value—arithmetic mean

Arithmetic mean, Quadratic mean, Centroid

Number of non-zero values

Geometric, and quadratic mean of non-zero values
Mean of absolute values, Mean of non-zero abs. values
Quartiles and inter-quartile ranges

95 % and 98 % percentile

Std. deviation, variance, kurtosis, skewness

Zero-crossing rate

EE N SN \S e S I \S L VS B \S I (S

# of peaks, mean dist. btwn. peaks, arth. mean of peaks,
arth. mean of peaks—overall arth. mean

~

Linear regression coefficients and error

Quadratic regression coefficients and error 5

are computed by ‘delta regression’ as in the Hidden Markov
Model Toolkit (HTK) (Young et al. 2006). Table 6 summa-
rizes the statistical functionals which were applied to the
LLDs shown in Table 5. These functionals cover extrema
and moments of the LLD contours, outlier robust distribu-
tion features such as percentiles and inter-quartile ranges,
functionals related to the occurrence of peaks, and parame-
ters of linear and quadratic regression on the contours.

As classifier, we selected linear kernel Support Vector
Machines (SVM) due to their good generalization proper-
ties in high dimensional feature spaces; at present, they are
likely the most frequently used classifier in emotion recog-
nition (Schuller et al. 2011). We chose an SVM complexity
constant of 0.05, and binary class discrimination based on
Sequential Minimal Optimization (Platt 1999). The imple-
mentation in the Weka toolkit (Hall et al. 2009) was used for
maximum reproducibility. Note that we train separate clas-
sifiers for each dimension (arousal and valence).

4.2 Evaluation protocol

We evaluated our experiments in terms of unweighted ac-
curacy (UA), i.e., the unweighted average of the recalls of
the ‘positive’ and ‘negative’ classes, which has been the of-
ficial competition measure of the first of its kind INTER-
SPEECH 2009 Emotion Challenge (Schuller et al. 2011).
UA is evaluated separately for both binary arousal and va-
lence discrimination. In a first baseline experiment, we em-
ploy pair-wise cross-corpus training and testing on the eight
databases of human emotional speech (HS), i.e., for each test
database, each of the remaining seven databases is used once
as training set. This protocol results in 56 = 7 x 8 cross-
corpus classifications for each dimension (arousal and va-
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Table 7 Mean and maximum

Unweighted Accuracy (UA) for Train Test Mean

varying training data in ABC AVIC DES EMO eNTER SAL SUSAS VAM

cross-corpus binary arousal and

valence classification on eight Arousal

test databases of human speech.

Training with HS: single Mean UA [%]

databases of human speech, SS: HS 60.8 58.0 71.7 69.6 59.6 59.4 56.2 65.4 62.6

two databases of synthesized SS 65.7 66.8 69.9 77.3 55.9 57.2 59.7 66.2 64.8

speech, HS + S8 all possible HS+SS 640 617 741 768  59.0 597 585 676 652

permutations of human speech

and synthesized speech Max UA [%]

databases. EMO: EMO-DB HS 6.1 642 803 710 640 647  60.6 732 693
SS 66.7 66.8 70.1 79.8 571 57.9 61.2 67.5 66.0
HS +SS 69.1 67.0 79.7 84.0 61.4 62.0 63.2 72.9 69.9
Valence
Mean UA [%]
HS 56.5 56.4 53.6 54.0 52.8 522 49.1 51.4 533
SS 483 51.8 55.0 542 56.9 50.8 385 477 50.4
HS +SS 55.2 59.1 54.2 54.5 54.1 52.1 42.1 49.1 52.6
Max UA [%]
HS 60.6 66.1 577 58.8 58.4 57.4 56.0 58.5 59.2
SS 484 539 58.3 55.8 58.1 51.5 385 50.0 51.8
HS +SS 59.4 66.3 58.7 59.3 56.9 55.4 45.0 57.3 57.3

lence). Then, to assess the suitability of synthesized train-
ing data for analyzing human speech, we repeat the exper-
iment by training with each of the two sets of synthesized
emotional speech (TXT2PHO and Mary, SS), and testing on
each of the human speech databases (16 = 2 x 8§ evaluations
per dimension). Finally, to investigate the benefit of joint
training with human and synthesized speech (HS + SS), we
consider all 16 =2 x 8 combinations of human and synthe-
sized data sets for training, and evaluate on each of the seven
human databases not found in the training data. This last ex-
periment results in 112 = 16 x 7 combinations of training
and test data per dimension. To generally enhance perfor-
mance in cross-corpus emotion recognition, we employed
feature standardization through linear scaling of each fea-
ture to zero mean and unit variance per corpus. This helps
to reduce trivial cases of feature mismatch due to differ-
ent microphone-to-mouth distances etc. We have shown that
this ‘z-normalization’ strategy achieves better performance
in cross-corpus emotion recognition than simple mean nor-
malization or linear scaling to a certain feature range (Zhang
etal. 2011).

4.3 Results and discussion

Table 7 shows the unweighted accuracies (UA) obtained for
the two-class arousal and valence classification tasks when
following the three above-mentioned evaluation protocols

(HS, SS, and HS + SS). In summary, the results of the base-
line experiment (cross-corpus training and testing on human
speech, HS) corroborate the results of other cross-corpus
emotion recognition studies, indicating that while arousal
classification is somewhat stable, cross-corpus valence clas-
sification cannot be performed robustly using the acoustic
features used in this study. In fact, results are often found
below chance level UA (50 %) for valence. Furthermore, in
arousal classification, we find that testing on highly proto-
typical emotions (e.g., EMO-DB or DES) generally leads to
higher performance than testing on spontaneous emotions
(e.g., in the SAL or SUSAS databases), which is expected.
A notable exception from this general pattern is the compa-
rably high UA (73.2 %) when testing on the VAM database;
this can be attributed to the fact that while the emotions in
this database are naturalistic, the talk show recording sce-
nario is much more likely to elicit strong emotions than,
e.g., the human-computer interaction scenario in the SAL
database.

Comparing synthesized and human speech for training
purposes, it is highly interesting that in the SS scenario
(training on synthesized speech only) the average UA of bi-
nary arousal classification across all test databases (64.8 %)
is significantly higher than in the HS scenario (training on
human speech only, 62.6 %). In contrast, for valence, the
performance of synthesized training data (50.4 % average
UA) is observed significantly below the one of human data
(53.3 % UA), and is near chance level UA (50 %). This in-
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Fig. 1 Distributions of Unweighted Accuracies (UA) for cross-corpus
binary arousal/valence classification of eight test databases: Single—
database classifiers are depicted by crosses and the average of single—
database classifiers by a plus sign. For each test database, the top row
corresponds to training on human speech, the middle row to training
with synthesized speech, and the bottom row to merging of one human
database with one synthesized speech database

dicates a large mismatch between the features of the synthe-
sized speech that is supposed to express negative valence,
and the human utterances actually corresponding to negative
valence (or being perceived as such by the human labelers).
Generally, this result corroborates the well-known fact that
variation of valence can only partly be modeled, and hence
be generated, by variation of acoustic features.

Third, when considering the performance of merging
‘HS” and ‘SS’ data in training (65.2 % average UA), we
find a slight enhancement over training with only synthe-
sized speech (64.8 % UA), and a significant gain of 3 % ab-
solute across all databases with respect to training with only
human speech (62.6 % UA). This performance enhancement
by agglomeration of HS and SS training data is to be ex-
pected, since the performances of HS and SS on the indi-
vidual databases suggest that they may have complementary
strengths when used for model training (cf. Fig. 1 and the
discussion below).

Besides these promising improvements in a large scale
perspective, without doubt there are several noteworthy sin-
gular results which should not be overlooked. For example,
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we see that synthesized speech prevails over human train-
ing data when testing on the EMO-DB (77.3 % on aver-
age); this is probably a consequence of text dependency,
due to the fact that the sentences from the EMO-DB were
used to synthesize the emotional training speech. In the
same vein, the overall best result on the EMO-DB (84.0 %)
is achieved by joining the DES database of acted emo-
tions with synthesized speech from Mary. This, however,
should not suggest that synthesized speech is only useful
when the textual content matches: On the spontaneous, free-
text AVIC database, both variants of synthesized speech
deliver 8.8 % absolute higher UA (66.8 %) than human
speech on average (58.0 %), and are observed above the
best single human speech database—which is, interestingly,
the acted DES database (64.2 % UA). Looking at the max-
imum UA values in Table 7, we find other surprising cases
of databases that seem to ‘match’ particularly well. For ex-
ample, the best result in cross-corpus arousal classification
on the DES database is achieved by using the spontaneous
VAM database for training (80.3 % UA); even more notably,
the same holds vice versa (training on DES and testing on
VAM delivers the best single result of 73.2 % UA on VAM).
This apparent similarity of DES and VAM is also reflected
in the fact that both are ‘equally hard’ to classify by syn-
thesized speech as opposed to human speech (max. UA of
70.1/80.3 % for DES, max. UA of 67.5/73.2 % for VAM).
The latter also indicates that the evident mismatch between
the synthesized speech and DES is not simply caused by dif-
ferent languages (Danish/German): VAM is in German as is
the synthesized speech.

To give an overview of the performance and its variability
of the various training and testing permutations, we visual-
ize the distributions of the UA for the three kinds of train-
ing scenarios in Fig. 1 as one-dimensional scatter plots. For
each human testing database, the top row shows results ob-
tained by human speech training sets, the middle row cor-
responds to synthesized speech training sets, and the bot-
tom row refers to training sets obtained by merging one hu-
man database with one synthesized speech database. The
‘plus’ symbols indicate the average performance per row.
From Fig. 1, it is obvious that training with single databases
of human speech results in greatly varying performance.
This effect is most visible for the acted test databases (DES
and EMO-DB), where the UA of binary arousal classifica-
tion with training on human speech ranges from 60.6 % to
80.6 % (DES), and from 51.4 % to 81.0 % (EMO-DB). The
latter is somewhat expected, since for databases with limited
variation of content, there is a larger chance that some train-
ing databases will strongly ‘mismatch’ the testing data. We
can see that especially for arousal classification (Fig. 1a),
this variability can be partly compensated by adding syn-
thetized data to the training set; this effect is clearly visi-
ble for all but the AVIC and SUSAS databases. For valence
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classification (Fig. 1b), we cannot observe such decreases
in variability, which can be attributed to the generally lower
classification performance which is often near chance level.

5 Conclusions

In this article, we have presented a large scale study on the
suitability of synthesized speech for model training in cross-
corpus emotion recognition. We have proposed a label map-
ping and evaluation framework for this challenging cross-
corpus scenario which involves various labeling schemes
and recording conditions including different types of emo-
tion elicitation. Investigating the performance of 56 4 16 +
112 = 184 different combinations of human and synthe-
sized speech in binary arousal and valence classification of
eight popular human speech databases, we have found that
combining human and synthesized speech increases the ex-
pected performance while decreasing the performance vari-
ability caused by training with ‘matching’ or ‘mismatch-
ing’ human speech databases. Furthermore, in many cases
the training on synthesized speech alone has been shown
to be at least competitive with training on disjoint human
speech databases. The fact that we could not observe these
trends for cross-corpus valence classification, and the gen-
erally disappointing performance in this task, show the dif-
ficulty not only of building generalizing models for acous-
tic valence classification, but also the difficulty of synthe-
sizing speech that matches the human perception of posi-
tive/negative valence.

Overall, we believe that our results can add a new argu-
ment to the ever-lasting debate in the field of affective com-
puting, whether to prefer data with controlled variation and
stable ground truth (such as acted data) or data collected
‘in the wild’ that is subsequently annotated by human ob-
servers: Interestingly, based on our results, we can recom-
mend the usage of synthesized data generated with full con-
trol of the ‘emotional variation’ for ‘bootstrapping’ acoustic
models to be deployed in real-life emotion recognition sys-
tems, as this procedure evidently benefits classification of
arousal on all of the four databases of natural emotion con-
sidered. This is all the more interesting as the problem of
emotional speech synthesis appears far from being solved:
A perception study revealed significant mismatch between
the emotional categories associated with the acoustic param-
eters of the synthesized speech by humans, and the intended
emotional categories.

Starting from the results presented in this article, future
work should address using multi- or cross-lingual speech
synthesis methods to benefit cross-lingual emotion recog-
nition, and to develop synthesis methods to simulate differ-
ent target groups of computer users, from children (e.g., the
FAU Aibo Corpus used for the first INTERSPEECH Emo-
tion Challenge) to the elderly, or even pathologic voices. If

a meaningful synthesis of such voices can be established,
it could be a major step forward to the generalization of
emotion recognition to target groups which are nowadays
overlooked by the lion’s share of research in the (certainly
justified) quest for stable results in ‘controlled’ evaluation
scenarios involving healthy adult speech.

Besides, it is evident that the methodologies which we
employ for emotional speech analysis and synthesis dif-
fer considerably in the signal modeling: Analysis is based
on brute forcing of statistical functionals of generic acous-
tic features while synthesis involves a multi-stage approach
partly using hand-crafted features and expert rules. Thus, we
expect future research to provide insight into the fundamen-
tal question of whether we should continue working towards
‘bridging the gap’ between analysis and synthesis—by uni-
fying modeling techniques to avoid first generating wave-
form data from one model and then extracting features to
train another model, instead of directly adapting the param-
eters, as was proposed, e.g., in Li and Yang (2007) for emo-
tional speaker recognition—or, whether complementary ap-
proaches for analysis and synthesis are needed.

Finally, one should continue aiming at an optimal ex-
ploitation of the obvious interdependencies between speaker
states and traits recognition, for example, emotion recogni-
tion and speaker recognition. Using emotion specific back-
ground models, feature mapping, emotional factor compen-
sation and so forth can be seen as a starting point to exploit
emotion recognition for robust speaker identification. Into
the other direction, for example, one could start by explor-
ing multi-task learning of speaker and emotion identifica-
tion or similar techniques, in order to allow semi-supervised
adaptation to the differences in how emotion manifests in
the vocal expression of the individual.
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