
 

 

 

 

 

Abstract—This paper addresses the high dimensionality 

problem in blind source separation (BSS), where the number 

of sources is greater than two. Two pairwise iterative 

schemes are proposed to tackle this high dimensionality 

problem. The two pairwise schemesrealize non-parametric 

independent component analysis (ICA) algorithms based on 

a new high-performance Convex Cauchy–Schwarz 

Divergence (CCS-DIV). These two schemes enable fast and 

efficient demixing of sources in real-world high dimensional 

source applications. Finally, the performance superiority of 

the proposed schemes is demonstrated in metric-comparison 

with FastICA, RobustICA, convex ICA (C-ICA), and other 

leading existing algorithms. 

Index Terms— Blind Source Separation (BSS), Cauchy-

Schwarz inequality, non-parametric Independent 

Component Analysis (ICA), FastICA,  RobustICA. 

I. INTRODUCTION 

lind Signal Separation (BSS) is one of the most 

challenging  areas in signal processing. BSS remains an 

important area of research and development in many 

domains, e.g. biomedical engineering, image processing, 

communication system, speech enhancement, remote sensing, 

etc. BSP techniques do not assume full apriori knowledge 

about the mixing environment, source signals, etc. BSS 

includes two major domains: Independent Component 

Analysis (ICA), and Multichannel Blind Deconvolution 

(MBD) [1-2]. 

In the following, we provide a focused and a brief 

overview. ICA is considered a key approach of BSS and 

unsupervised learning algorithms . ICA relagates to Principal 

Component Analysis (PCA) and Factor Analysis (FA) in 

multivariate analysis and data miningwhenthe components are 

in the form of Gaussian distributions [5 - 7]. However, ICA is 

a technique that includes higher order statistics (HOS) where, 

 
1 Electronics Engineering Department, Hijjawi Faculty for Engineering 

Technology, Yarmouk University, Irbid, Jordan 

Email: albatain@msu.edu, 

 
2 Circuits, Systems, And Neural Networks (CSANN) Laboratory 

Department of Electrical and Computer Engineering, Michigan State 

University, East Lansing, Michigan 48824-1226, U.S.A. 
Email: salemf@msu.edu 

 

in the static mixing case, the goal is to represent a set of 

random variables as a linear transformation of statistically 

independent components. 

ICA techniques are based on the assumption of non-

Gaussianity and independence of the sources. Let an 𝑀 

observation vector 𝒙 = [𝑥1, 𝑥2, … 𝑥𝑀]
𝑇 be obtained from 𝑀 

statistically independent sources 𝒔 = [𝑠1, 𝑠2, … 𝑠𝑀]
𝑇by the 

relation𝒙 = 𝑨𝒔, where 𝑨 is an  𝑀 × 𝑀 unknown invertible 

mixing matrix. The estimated (original) sources can be 

estimated by 𝒚 = 𝑾𝒙 where 𝑾 is a demixing (filter) matrix. 

The goal in ICA is to determine a demixing matrix 𝑾 to 

estimate the source signals. ICA uses the non-Gaussianity of 

sources and a dependency measure to find a demixing 

matrix𝑾. A measure, e.g., could be based on the mutual 

information [8 - 15], Higher Order Statistic (HOS), such as the 

kurtosis [5-7], orJoint Approximate Diagonalization [25-27]. 

In essence, the demixing matrix is obtained by optimizing 

such a contrast function. 

Furthermore, the metrics of cumulants, likelihood function, 

negentropy, kurtosis, and mutual information have been 

developed to obtain a demixing matrix in different adaptations 

of ICA-based algorithms. FastICA [5], [27] was developed to 

maximize non-Gaussianity with relative speed and simplicity. 

Recently, Zarzosoand Comon [6] proposed the Robust 

Independent Component Analysis (R-ICA) method for 

betterconvergence performance.They used a truncated 

polynomial expansion, rather than the output marginal 

probability density functions, to simplify the estimation 

process. Moreover, in [20], the authors developed the rapid 

ICA algorithm which takes advantage of multi-step past 

information with respect to afixed-point method in order to 

augment the non-Guassianityamong the estimated signals. In 

[10–12], the authors have presented ICA methods using 

mutual information. They constructed a formulation by 

minimizing the difference between the joint entropy and the 

marginal entropy among the estimated sources. Moreover, the 

Euclidean distance divergence (ED-DIV) and the Kullback 

divergence (Kl-DIV) were used as the measure functions for 

nonnegative matrix factorization (NMF) problems in [9]. 

Key performance differentiators among these approaches 

are (i) the quality of the estimated demixed signals, and (ii) the 

speed of computation. In light of the advancement of 

computational resources, speed is nowa non-issue of most 

applications. However, the quality of the estimated signals is 
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becoming of utmost importance and differentiation among the 

proposed methods. 

The present work focuses on enhancing the performance in 

terms of the quality of the estimated demixedsignals. To that 

end, wehave developed a novel contrast function for ICA 

based on the conjunction of a convex function into a Cauchy-

Schwarz inequality-based divergence measure [23-24]. This 

convex Cauchy-Schwarz divergence ICA is denoted by CCS-

ICA. This contrast function (CCS-ICA) is controlled by 

a“convexity” parameter.It also uses the Parzenwindow density 

modeling in order to estimatethe non-Gaussian structure of the 

unknown source densities.  The CCS-ICA has succeeded in 

solving the BSS problem and it has shown a better 

performance than other ICA-based methods. The efficacy of 

the proposed method is evaluated by extensive numerical 

studies [28]. 

The paper is organized as follows. In Section II,the new 
convex Cauchy-Schwarz divergence measure is presented. In 
Section III, the new convex Cauchy-Schwarz divergence 
measureis specialized to the ICA domain.Section IV presents 
the CCS-ICA based methods. Comparative simulation results 
and conclusion are given in Section V and Section VI, 
respectively. 

II. THE CCS-DIV MEASURE 

While there exists a wide range of measures, performance 

in terms of the quality of estimated signals, especially in audio 

and speech applications still in need of improvements.An 

improved measure should provide geometric properties for a 

contrast function in anticipation of a dynamic (e.g., gradient) 

search in the parameter space of demixing matrices. The 

motivation here is to introduce a simple measure and 

incorporate controllable curvature in order to control 

convergence speed to an optimal solution. To improve the 

divergence measure and speed up convergence to a solution, 

we have conjugatedconvex functions into (not merely 

applying it to) the Cauchy–Schwarz inequality. In this form, 

one takes advantage of a convexity parameter, say alpha, to 

control the degree of local convexity in the divergence 

measure and to speed up the convergence in the corresponding 

ICA and Non-negative Matrix Factorization (NMF) 

algorithms. As an example, incorporating the joint distribution 

(𝑃𝐽 = p(𝑧1, 𝑧2)) and the marginal distributions (𝑄𝑀 =

p(𝑧1)p(𝑧2)) into the convex function, say,𝑓(. )and 

conjugating them to the Cauchy–Schwartz inequality yields  

|⟨f(𝑃𝐽), f(𝑄𝑀)⟩|
2
≤ ⟨f(𝑃𝐽), f(𝑃𝐽)⟩ ∙ ⟨f(𝑄𝑀), f(𝑄𝑀)⟩ 

 

|⟨f(p(𝑧1, 𝑧2)), f(p(𝑧1)p(𝑧2))⟩|
2

≤ ⟨f(p(𝑧1, 𝑧2)), f(p(𝑧1, 𝑧2))⟩

∙ ⟨f(p(𝑧1)p(𝑧2)), f(p(𝑧1)p(𝑧2))⟩ 
 

(1) 

where〈∙ ,∙〉 is an inner product; f(.) is a convex function, e.g.,  

𝑓(𝑡) =
4

1−𝛼2
[
1−𝛼

2
+
1+𝛼

2
𝑡 − 𝑡

1+𝛼

2 ]  For𝑡 ≥ 0         (2) 

 Now, based on the Cauchy–Schwartz inequality a new 

symmetric divergence measure is proposed, namely:  

DCCS (𝑃𝐽, 𝑄𝑀 , α) =  log
∬ f2(𝑃𝐽)d𝑧1d𝑧2  ∙  ∬ f

2(𝑄𝑀)d𝑧1d𝑧2

[∬ f(𝑃𝐽) ∙ f(𝑄𝑀) d𝑧1d𝑧2]
2  

= log
∬ f2(p(𝑧1, 𝑧2))d𝑧1d𝑧2  ∙  ∬ f

2(p(𝑧1) ∙ p(𝑧2))d𝑧1d𝑧2

[∬ f(p(𝑧1, 𝑧2)) ∙ f(p(𝑧1)p(𝑧2)) d𝑧1d𝑧2]
2  

 (3) 
 

where, as usual,DCCS(𝑃𝐽 , 𝑄𝑀 , α) ≥ 0 and equality holds if and 

only if 𝑃𝐽 = 𝑄𝑀, which means that they are independent of 

each other. This divergence function is then used to develop 

the corresponding ICA and NMF algorithms. It is notedthat 

the joint distribution and the product of the marginal densities 

in DCCS(𝑃𝐽, 𝑄𝑀 , α)is symmetric. This symmetrical property 

does not hold for the Kullback–Leibler (KL) divergence (KL-

DIV) [3], alpha divergence (α-DIV) [11], and f-divergence (f-

DIV) [2] [13].  We anticipate that it would be desirable in the 

geometric structure of the search space as it would result in 

similar behavior from all initial conditions. Additionally, the 

CCS-DIV is tunable by the convexity parameter, in this case 

α. In contrast to the Convex divergence(C-DIV) [15] and the 

α-DIV [18], the range of the convexity parameter α is 

extendable. However, Based on  l’Hopital’s rule, one can 

derive the realization of CCS-DIV forthe case of 𝛼 = 1 and 

𝛼 = −1 by finding the derivatives,with respect to 𝛼, of the 

numerator and denominator for each part of DCCS(𝑃𝐽, 𝑄𝑀 , α).  

Thus, the CCS-DIV with𝛼 = 1 and 𝛼 = −1 are respectively 

given by (4) and (5).  

III. THE CONVEX CAUCHY–SCHWARZ DIVERGENCE 

INDEPENDENT COMPONENT ANALYSIS (CCS–ICA) 

A. Non-Parametric ICA algorithms 

Without loss of generality, we develop the ICA algorithm 

by using the CCS-DIV as a contrast function. Let us consider 

a simple system that is described by the vector-matrix form 

𝐱 = 𝐇𝐬 + 𝐯                       (6) 

where 𝐱 = [x1, … , xM]
T is a mixture observation vector, 

𝐬 = [s1, … , sM]
T is a source signal vector, 𝐯 = [v1, … , vM]

T is 

DCCS(𝑃𝐽,𝑄𝑀, 1) = 

 log
(∬ {(p(𝑧1, 𝑧2) ∙ log(p(𝑧1, 𝑧2)) − p(𝑧1, 𝑧2) + 1)

2
}d𝑧1d𝑧2) ∙ (∬{(p(𝑧1) ∙ p(𝑧2) ∙ log(p(𝑧1) ∙ p(𝑧2)) − p(𝑧1) ∙ p(𝑧2) + 1)

2
}d𝑧1d𝑧2)

[∬{(p(𝑧1, 𝑧2) ∙ log(p(𝑧1, 𝑧2)) − p(𝑧1, 𝑧2) + 1) ∙ (p(𝑧1) ∙ p(𝑧2) ∙ log(p(𝑧1) ∙ p(𝑧2)) − p(𝑧1) ∙ p(𝑧2) + 1)}d𝑧1d𝑧2]2
 

DCCS(𝑃𝐽,𝑄𝑀, −1) = log
(∬ {(log(p(𝑧1, 𝑧2)) − p(𝑧1, 𝑧2) + 1)

2
}d𝑧1d𝑧2) ∙ (∬{(log(p(𝑧1) ∙ p(𝑧2)) − p(𝑧1) ∙ p(𝑧2) + 1)

2
}d𝑧1d𝑧2)

[∬{(log(p(𝑧1, 𝑧2)) − p(𝑧1, 𝑧2) + 1) ∙ (log(p(𝑧1) ∙ p(𝑧2)) − p(𝑧1) ∙ p(𝑧2) + 1)}d𝑧1d𝑧2]2
 

(4) 

(5) 

 



 

 

 

 

an additive (Gaussian) noise vector, and 𝐇 is an unknown full 
rank M×M mixing matrix, where M is the number of source 
signals. To obtain a good estimate,𝐲 = 𝐖𝐱 of the source 
signals𝐬, the contrast function CCS-DIV should be minimized 
with respect to the demixing filter matrix 𝑾. Thus, the 
components of 𝐲 become least dependent when this demixing 
matrix 𝑾 becomes a scaled permutation of 𝐇−1. Following 
the standard ICA procedure, the estimated source 𝐲can be  
carried out in two steps: 1) the original data 𝒙 should be 
preprocessed by removing the mean, i.e. one assumes{E[𝐱] =

0} and also by a (pre-)whitening matrix {𝐕 = 𝚲
−1

2⁄ 𝐄T}, 

where the matrix 𝐄represents the eigenvectors and 𝚲 the 
eigenvalues matrices of the autocorrelation, namely an 

estimate of {𝐑𝐱𝐱 = E[𝐱𝐱
T]}. Consequently, the whitened data 

vector {𝐱𝒕 = 𝐕𝐱}would have zero-mean and its covariance 

equal to theidentity matrix,i.e.,{𝐑𝐱𝑡𝐱𝑡 = 𝐈𝐌}. The demixing 

matrix can be iteratively computed by, e.g., the gradient 
descent algorithm [2]: 

𝐖(k + 1) = 𝐖(k) − γ
𝛛𝐃𝐂𝐂𝐒(𝐗,𝐖(𝐤))

𝛛𝐖(𝐤)
              (7) 

where𝑘 represents the iteration index and γ is a step size or a 

learning rate. Therefore, the updated term in the gradient 

descent is composed of the differentials of the CCS-DIV with 

respect to each element wml of the M×M demixing matrix𝐖. 

The differentials
𝛛𝐃𝐂𝐂𝐒(𝐗,𝐖(𝐤))

𝛛𝐰𝐦𝐥(𝐤)
 , 1 ≤ m, l ≤ M are calculated 

using a probability model and the CCS-DIV measure as in [7] 

and [14]. However, the update procedure may be stopped, e.g., 

when the absolute increment of the CCS-DIV measure meets a 

predefined threshold value. During iterations, one should 

make the normalization step 𝐰m =
𝐰m

||𝐰m||
⁄  for each row 

of𝐖,  where ||. || denotes a norm. Please refer to Algorithm 1 

for the delineated algorithm based on gradient descent. 

In deriving the CCS–ICA algorithm, based on the 

proposed CCS-DIV measure DCCS(𝑷𝑱,𝑸𝑀, α),  usually, the 

vector𝑷𝐽corresponds to the probability of the observed 

data(p(𝐲𝑡) = p(𝐖𝐱𝒕) =
p(𝐱𝒕)

|det (𝐖)|
)and vector𝑸𝑀 corresponds 

to the probability of the estimated or expected 

data(∏ p(y𝑚𝑡
M
1 ) = ∏ 𝑝(𝐰𝑚𝐱𝒕)

𝑀
1 ). Here, the CCS–ICA 

algorithm is detailed as follows. Let the demixed signals 

𝐲𝒕 = 𝐖𝐱𝒕 with itsmthcomponent denoted as y𝑚𝑡 =
𝐰𝑚𝐱𝒕.Then, 𝑷𝐽 = p(𝐲𝑡) = p(𝐖𝐱𝒕)and 𝑄𝑀 = ∏ p(y𝑚𝑡

M
1 ) =

∏ 𝑝(𝐰𝑚𝐱𝒕)
𝑀
1 . Thus, the CCS-DIV as the contrast function 

with the built-in convexity parameter α, is 

DCCS(𝑷𝐽, 𝑄𝑀 , α)

= log
∬ f2(𝑷𝐽)d𝑦1…d𝑦𝑀  ∙  ∬ f

2(𝑄𝑀)d𝑦1…d𝑦𝑀

[∬ f(𝑷𝐽) ∙ f(𝑄𝑀) d𝑦1…d𝑦𝑀]
2

 

= log
∬ f2(p(𝐖𝐱𝒕))d𝑦1…d𝑦𝑀  ∙  ∬ f

2(∏ p(y𝑚𝑡
M
1 ))d𝑦1…d𝑦𝑀

[∬ f(p(𝐖𝐱𝒕)) ∙ f(∏ p(y𝑚𝑡
M
1 )) d𝑦1…d𝑦𝑀]

2
 

   (8) 

For any convex function, we use the Lebesguemeasure to 

approximate the integral with respect to the joint distribution 

of yt = {y1, y2, … , yM}. The contrast function thus becomes 

 

DCCS(𝑷𝐽 , 𝑄𝑀, α) = log
∑ f2(𝑝(𝐖𝐱𝒕)) ∙ ∑ f2(∏ p(y𝑚𝑡

M
1 ))T

1
T
1

[∑ f(𝑝(𝐖𝐱𝒕)) ∙ f(∏ p(y𝑚𝑡
M
1 ))T

1 ]2
 

 

= log
∑ f2(𝑝(𝐖𝐱𝒕)) ∙ ∑ f 2(∏ (𝑝(w𝑚𝑡𝐱𝒕))

M
1 )T

1
T
1

[∑ f(𝑝(𝐖𝐱𝒕)) ∙ f(∏ (𝑝(w𝑚𝑡𝐱𝒕))
M
1 )T

1 ]2
 

  (9) 

The adaptive CCS–ICA algorithms are carried out by 

using the derivatives of the proposed divergence, i.e., 

(
 𝛛𝐃𝐂𝐂𝐒(𝑷𝐽, 𝑄𝑀 , α)

𝛛wml
⁄ )as derived in Appendix A. Note 

that in Appendix A, the derivative of the determinant 

demixing matrix (det (𝐖)) with respect to the element (wml) 
equals the cofactor of entry(m, l)in the calculation of the 

determinant of𝐖, which we denote as(
∂det(𝐖)

∂wml
= Wml). Also 

the joint distribution of the output is determined by  p(𝐲𝑡) =
p(𝐱𝒕)

|det (𝐖)|
. 

For simplicity, we can write DCCS(𝑷𝐽 , 𝑄𝑀, α) as a function 

of three variables. 

DCCS(𝑷𝐽, 𝑄𝑀 , α) = log
𝑉1 ∙ 𝑉2
(𝑉3)

2
 

      (10) 

Then, 

 

∂DCCS(𝑷𝐽, 𝑄𝑀 , α)

∂wml
=
V1
′V2 + V1V2

′ − 2V1V2V3
′

V1V2V3
 

     (11) 

where 

V1 =∑f2(𝑷𝐽) ,   

T

t=1

V1
′ =∑2f(𝑷𝐽)f

′(𝑷𝐽)𝐏𝐽
′

T

t=1

 

V2 =∑f2(𝑄𝑀)  ,    

T

t=1

V2
′ =∑2f(𝑄𝑀)f

′(𝑄𝑀)Q𝑀
′

T

t=1

 

V3 =∑f(𝑷𝐽)

T

t=1

f(𝑄𝑀) , 

V3
′ =∑f ′(𝑷𝐽)f(𝑄𝑀)𝐏𝐽

′

T

t=1

+∑f(𝑷𝐽)f
′(𝑄𝑀)Q𝑀

′

T

t=1

 

𝑷𝐽 = p(𝐖𝐱𝑡)and 𝑄𝑀 =∏p(𝐰m𝐱𝑡)

M

m=1

 

 

𝐏𝐽
′ =

∂𝑷𝐽
∂wml

= −
p(𝐱𝑡)

|det(𝐖)|2
∙
∂ det(𝐖)

∂wml
∙ sign(det(𝐖), 

where
∂det(𝐖)

∂wml
= Wml. 

 

Q𝑀
′ =

∂𝑄𝑀
∂wml

= [∏p(𝐰j𝐱𝑡)

M

j=m

]
∂p(𝐰n𝐱𝑡)

∂(𝐰n𝐱𝑡)
∙ xl. 

Wherexl denotes the 𝑙𝑡ℎ entry of 𝐱𝑡 . 
 

In general, the estimation accuracy of a demixing matrix 

in the ICA algorithm is limited by the lack of knowledge of 



 

 

 

 

the accurate source probability densities.  However, non-

parametric density estimate is used in [7], [15], by applying 

the effective Parzen window estimation.One of the attributes 

of the Parzen window is that it must integrate to one. 

Furthermore, it exhibitsa distribution shape that is data-driven 

and is flexibly formed based on its chosenKernel functions.. 
Thus, one can estimate the density function 𝑝(𝒚) of the 

process generating the 𝑀-dimensional sample 𝒚1, 𝒚2… 𝒚𝑀due 

to the Parzen Window estimator. For all these reasons, a non-

parametric CCS–ICA algorithm is also presented by 

minimizing the CCS-DIV to generate the demixed signals𝐲 =
[y1, y2, … , yM]

T. Here, the demixed signals are described by 

the following univariate and multivariate distribution 

estimates [18], 

p(ym) =
1

Th
∑ ϑ(

ym−ymt

h
)T

t=1             (12) 

 

p(𝒚) =
1

ThM
∑ φ(

𝐲−𝐲t

h
)T

t=1          (13) 

where the univariate Gaussian Kernel is 

ϑ(u) = (2π)−
1

2e−
u2

2  

and the multivariate Gaussian Kernel is 

φ(𝐮) = (2π)−
N

2e
−1

2
𝐮T𝒖

. 

The Gaussian kernel(s), used in the non-parametric ICA, 

are smooth functions. We note that the performance of a 

learning algorithm based on the non-parametric ICA is better 

than the performance of a learning algorithm based on  

parametric ICA. By substituting (12) and (13) with 𝐲t = 𝐖𝐱t 
and ymt = 𝐰m𝐱t into (9), the nonparametric CCS-DIV 

becomes 

𝑷𝐽 = p(𝐲𝑡) = p(𝐖𝐱𝒕) =
1

ThM
∑φ(

𝐖(𝐱𝐭 − 𝒙𝐢)

h
)

T

t=1

 

Or  

𝑷𝐽 = p(𝐲𝑡) =
p(𝐱𝒕)

|det (𝐖)|
 

𝑄𝑀 =∏p(y𝑚𝑡

M

1

) =∏ 𝑝(𝐰𝑚𝐱𝒕)
𝑀

1

=∏
1

Th
∑ϑ (

𝐰m(𝐱𝐭 − 𝒙𝐢)

h
)

T

i=1

M

1

 

 

 DCCS(𝑷𝐽,𝑄𝑀, α) =        log
∑ f2(𝑷𝐽) ∙ ∑ f2(𝑄𝑀)

T
t=1

T
t=1

[∑ f(𝑷𝐽) ∙ f(𝑄𝑀)
T
t=1 ]2

 

(14) 

 

However, there are two common methods to minimize 

this divergence function: one is based on the gradient descent 

approach and the other is based on an exhaustive search such 

as the Jacobi method.  We havepresented the derivation of the 

proposed algorithm in Appendix A in order to use it in the 

non-parametric gradient descent ICA algorithm, see 

Algorithm 1.  

B. Scenario of three source signals and more 

Generally Speaking, the non-parametric ICA algorithm 

suffers from insufficient data and high computation in a high 

dimensional space, especially when estimating the joint 

distribution. However, in several previous reports in the 

literature, e.g., [8], [15], the authors suggest applying the 

pairwise iterative schemes to tackle the high dimensional data 

problem for non-parametric ICA algorithm(s).However, there 

are no results indicating how the performance would hold up 

with the pairwise scheme, especially in terms of computational 

complexity and in terms of the accuracy of the non-

parametricICA algorithm.   

In this work, we present two effective pairwise ICA 

algorithms: one is based on the gradient descent and the other 

is based on the Jacobi optimization [4].   

Without loss of generality, one can represent the 

demixing matrix𝐖 as a series of rotational matrices in terms 

of an unknown angle 𝜃𝑖𝑗 ∈ [−π/4, π/4] between each pair 

(i, j) of the observed signals. Specifically, define the pairwise 

rotation matrix 

𝑾(𝜃𝑖𝑗) = [
cos 𝜃𝑖𝑗        − sin 𝜃𝑖𝑗
sin 𝜃𝑖𝑗 cos 𝜃𝑖𝑗

]   (15) 

 

The idea is to make each pair of the estimated (marginal) 

output as “independent” as possible (i.e., minimize 

dependency). It was proven and pointed out by Comon in [27] 

that the mutual independence between the M whitened 

observed signals can be attained by maximizeingthe 

independence between each pair of them.To that end, we 

present two algorithms to solve the high dimensional problem 

in the non-parametric scheme. First, we adopt the non-

parametric algorithm based on the gradient descent into the 

pairwise iterative scheme of Algorithm 2. 

 Second, we propose a CCS-ICA algorithm based on Jacobi 

pairwise scheme in Algorithm 3. This algorithm is based on 

finding the rotation matrix in (15) that attains the minima of 

CCS-DIV. Thus, we set up the resolution of thetas such 

that θij ∈ [ −
pi

4
: θg ∶

pi

4
], where  θg is the grid search, for 

Algorithm 1:the ICA Based algorithm using the gradient descent  

{𝑿 =  𝑽 ∗ 𝑿 = 𝜦^(−1 ⁄ 2) 𝑬^𝑇  𝑿}, 

𝑾 =𝑾− 𝛾
𝜕𝑫𝐶𝐶𝑆(𝑷𝐽, 𝑄𝑀 , α)

𝜕𝑾
 

Input: (𝑀 𝑥 𝑇) matrix of realization𝑠 𝑿, Initial demixing matrix𝑾 = 𝑰𝑴, 

Max. number of iterations 𝐼𝑡𝑟, Step Size 𝛾 i.e. 𝛾 = 0.3, alpha 𝛼 i.e. 𝛼 =
−0.99999 

Perform Pre-Whitening  

For loop: for each I Iteration do 

For loop: for each 𝑡 = 1,… , 𝑇 
Evaluate the proposed contrast function and its derivative 

(

 
  𝝏𝑫𝑪𝑪𝑺(𝑷𝐽, 𝑄𝑀, 𝜶)

𝝏𝒘𝒎𝒍
⁄

)

 
 

 

End For 

Update demixing matrix 𝑾 

 

Check Convergence 

‖∆𝐷𝑐‖ ≤ 𝜖 i.e. 𝜖 = 10−4 
 

End For  

Output: Demixing Matrix𝑾, estimated signals y  



 

 

 

 

instance θg =
pi

64
. Then for each pair (i, j) of the observation 

data in the range, we find the demixing matrixW2, which 

attains the minimum of the CCS-DIV. Please refer to 

Algorithm 3 for more details.  

C. Computational Complexity 

Given 𝑇 realizations of M observation signals, the 

computational complexity of the proposed algorithms rely on  

𝑇 and the number of observation signals 𝑀,and is 

approximately given byO (
M(M−1)

2
T2). The computational 

complexity has been a measure of merit for ICA algorithms. 

With the advent of Graphics Processing Units (GPUs) (see 

Nvidia.com, e.g.), and more powerful computing platforms, 

however performance accuracy holds more merit. In our 

comparison among the ICA algorithms, we employ several 

metrics including computational time and accuracy.We  

alsoemploy adaptive sampling techniques thatimproves the 

performance in terms of both metrics (accuracy and 

computational load). The presented technique samples the 

signal into small time blocks in order to evaluate the 

integration of the proposed divergence and reduce the 

computational complexity. Thus, we have introduceda 

sampling factor Tsto evaluate the proposed divergence at each 

 Ts instance. Therefore, the computational complexity of the 

proposed algorithm is reduced by the square of the sample 

factor  Ts to be less than O (
M(M−1)

2
(
T

Ts
)
2

). Namely, we 

quantize the specific area of integration of the proposed 

divergence into equal (
T

Ts
)segments to evaluate the proposed 

divergence. 

IV. COMPARATIVE SIMULATION STUDY 

A. Performance evaluation of the proposed CCS-ICA 

algorithms versus the existing ICA-based algorithms 

In this section, Monte Carlo Simulationsare carried out. It is 

assumed that the number of sources is equal to the number of 

observations “i.e., sensors”. All algorithms have used the same 

whitening method. The simulations have been carried out 

using the MATLAB software on an Intel Core i5 CPU 2.4-

GHz processor and 4G MB RAM. Each entry in the 

forthcoming tables corresponds to the average of 

corresponding trial “independent Monte Carlo” runs in which 

the mixing matrix is randomly chosen.  

Firstly, we start with the 2x2 mixture matrix case as a 

baseline for verifying the performance of the presented 

algorithms and thoroughly studying the impact of various 

classes of source signals, namely, uniform distributions, 

Laplacian distributions, Rayleigh distributions and log-normal 

distributions, on the performance of the proposed algorithm. 

We compare the performance of the ICA algorithms based 

on the CCS-DIV, CS-DIV, E-DIV, KL-DIV, and C-DIV with 

α = 1 and α = −1 for the Algorithm 3 scheme. We also 

compare it with other benchmark algorithms such as FastICA
3
 

[5], RobustICA
4
 [6], JADE

5
 [25-26] and RapidICA

6
 [20].For 

 
3http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html 
4http://www.i3s.unice.fr/~zarzoso/robustica.html 
5http://www.tsi.enst.fr/icacentral/algos.html 
6http://dx.doi.org/10.4236/jsip.2012.33037 

Algorithm 2: The ICA Based on pairwise gradient decent 

scheme 

 

{𝑿 =  𝑽 ∗ 𝑿 = 𝜦^((−1) ⁄ 2) 𝐸^𝑇  𝑿}, 

𝑹([𝒊  𝒋], [𝒊   𝒋]) = 𝑾𝟐 

𝑾 = 𝑹 ∗𝑾 

Input: (𝑀 𝑥 𝑇) matrix of realizations𝑿, Initial demixing 

matrix𝑾 = 𝑰𝑴, number of iterations 𝐼𝑡𝑟, Step Size 𝛾e.g.,. 𝛾 =
0.3,   𝛼, e.g.,. 𝛼 = −0.99999 

For𝑖𝑡𝑟 = 1 … . 𝑖𝑡𝑟𝑚𝑎𝑥 

 Perform Pre-Whitening  

For loop: for each 𝑖 = 1…𝑀 − 1 

For loop: for each 𝑗 = 𝑖 + 1…𝑀 

     Initial demixing matrix 𝑾𝟐 = 𝑰𝟐 
While: while (true) 

Find𝑾𝟐e.g., usingAlgorithm 1 for each pairs of𝑿 ; 

 End While  

            Initial rotational matrix 

𝑹 = 𝑰𝑴, 
    Update rotational matrix 

Update Demixing matrix  

End For j 

 

End For  i 

End For itr 

 

Output: Demixing matrix𝑾 =𝑾∗ 𝑽  and demixed sources in 
X=W * X 

 

Algorithm 3:The ICA Based on pairwise Jacobi scheme  

{𝑿 =  𝑽 ∗ 𝑿 = 𝜦^((−1) ⁄ 2) 𝐸^𝑇  𝑿}, 

𝑾𝟐 = [
𝑐𝑜𝑠 𝜃1 −𝑠𝑖𝑛 𝜃1
𝑠𝑖𝑛 𝜃1 𝑐𝑜𝑠 𝜃1

] 

𝑾𝟐 = 𝒎𝒊𝒏
𝑾𝟐

𝑫𝒄(𝑿(𝒊: 𝒋, : ),𝑾𝟐 ∗ 𝑿, 𝛼) 

𝑹([𝒊  𝒋], [𝒊   𝒋]) = 𝑾𝟐 

𝑾 = 𝑹 ∗𝑾 

𝑪𝑴([𝒊  𝒋], [𝒊   𝒋]) = 𝑡ℎ𝑒𝑡𝑎 ∗
180

𝑝𝑖
 

Input: (𝑀 𝑥 𝑇) matrix of realization X, Initial demixing 

matrix𝑾 = 𝑰𝑴, number of iterations 𝐼𝑡𝑟, Step Size 𝛾, 𝑒. 𝑔. , 𝛾 =
0.3,   𝛼e.g.,. 𝛼 = −0.99999 

Perform Pre-Whitening  

While (True) 

For loop: for each 𝑖 = 1…𝑀 − 1 

For loop: for each 𝑗 = 𝑖 + 1…𝑀 

    If  𝑪𝑴([𝒊  𝒋], [𝒊   𝒋]) == 0 

Continue; 

     end 

   For loop: For each 𝜃1 = −
𝑝𝑖

4
:
𝑝𝑖

64
∶
𝑝𝑖

4
 

 Evaluate 

𝑫𝒄(𝑿([𝒊 𝒋], : ),𝑾𝟐 ∗ 𝑿([𝒊 𝒋], : ), 𝜶)For all𝑡 = 1,… , 𝑇. 

End For  

 Find 

  Initial rotational matrix  

𝑹 = 𝑰𝑴, 
 Update rotational matrix 

         Update Demixing matrix  

Update Convergence matrix 

End For 

 

End For 

End while loop  If 𝑠𝑢𝑚(𝑪𝑴) <= 1 
 

Output: Demixing matrix 
𝑾 = 𝑾 ∗ 𝑽 and estimated Sources in 𝑿 = 𝑾 ∗ 𝑿 

 

http://www.cis.hut.fi/projects/ica/fastica/code/dlcode.html
http://www.i3s.unice.fr/~zarzoso/robustica.html
http://www.tsi.enst.fr/icacentral/algos.html
http://dx.doi.org/10.4236/jsip.2012.33037


 

 

 

 

these methods, the default setting parameters are used 

according to their toolboxes and their publications. 

During the comparison, we use the bandwidth as a function 

of sample size, namely, h = 1.06T
−1

5  [13-15]. The demixing 

matrix has been initialized as an identity i.e., 𝑊 = IM for all 

algorithms.Note thatCCS2 and CCS3 represent Algorithm 2 

and Algorithm 3, respectively.In addition, the minus and plus 

signs represent α = 1and α = −1cases, respectively. Table I 

,Table IIand Table IIIsummarize the performance of the 

proposed non-parametric ICA algorithms “CCS2 and CCS3” 

against other aforementioned algorithms. In this task, our goal 

isto separate mixtures of two sub-Gaussians, two sup-

Gaussians, and both sub and sup- Gaussian signals.  

Specifically, we use the following distributions:  

For the sub-Gaussian distribution, we use (i) the uniform 

distribution 

 

p(s1)= {
1

2τ1
s1 𝑖𝑛 (-τ1,τ1)

 0  Otherwise
}     (16) 

and(ii) the Rayleigh distribution, i.e., 

p(s2) = s2exp [−
s2
2

2
]      (17) 

 For the super-Gaussian distribution, we use (i) the Laplacian 

distribution 

p(s3) =
1

2τ2
exp [−

|s3|

τ2
]     (18) 

and(ii) the log-normal distribution, i.e.,  

p(s4) = exp [−
(log s4)

2

2
]        (19) 

Also, data samples,T = 1000,are selected and randomly 

generated by usingτ1 = 3  andτ2 = 1 in the above. Kurtoses 

for all aforementioned signals are 

−1.2, 2.99, −0.7224, and 8.4559  respectively, and they are 

evaluated using Kurt(s) = E[s4]  ⁄ (E[s2 ])2  − 3. 

Furthermore, A different, randomly generatedmixing matrices 

areused to generate the mixtures. 

One can observe several patterns from Table I, II and III. 

The presented algorithms based on the proposed measure 

showthe best performance in terms of accuracy (in most cases) 

and repeatability (in terms of variance). The proposed 

algorithm CCS3 exhibits comparable behavior in terms of 

speed and stability with KL and ED.  Clearly, the proposed 

divergence improves on the CS-DIV in terms of repeatability 

and performance. Notably, most the presented divergences 

struggle to separate the Rayleigh distributions(𝒔𝟐, 𝒔𝟐) (including 

the KL-DIV) except the proposed divergence and C-DIVs. 

Moreover, Table IIIshows the variance of the performance  of 

the proposed algorithm outperforms the CS-DIV and renders 

the divergence more robust against variation in parameters. It 

is also worthwhile to represent the average performance of 

each method in Fig. 1. 

Also, it is notedthat the non-parametric methods result in  

better  performance and repeatability than methods such 

asJADE, FastICA and other algorithms. Nevertheless JADE 

performs better than each of FastICA, RobustICA and Rapid 

ICA in terms of accuracy in some cases. However,  in terms of 

speed, we find that these later algorithms outperform the 

JADE algorithm, especially  rapid ICA and Robust ICA. 

Secondly, An extensive analytical study is carried out to 

Table I: The performance of the ICA algorithm based on the proposed divergence and other widely used ICA algorithms in terms of the Amari error (multiplied by 

100). Each entry averages over the corresponding number of trials. Observation mixtures consist of two source signals that follow the same distribution as denoted 
in the corresponding example. 

Source Samples Trials FastICA JADE RobustICA Rapid 

ICA 

IK-

DIV 

CS-

DIV 

KL-

ICA 

ED-

DIV 

C-

DIV+ 

C-

DIV- 

CCS 

DIV1+ 

CCS-

DIV1- 

CCS 

DIV2+ 

CCS-

DIV2- 

𝒔𝟏, 𝒔𝟏 1000 100 6.16 4.77 5.27 5.07 3.32 2.66 1.75 2.04 2.17 2.36 2.25 2.40 1.86 1.71 

𝒔𝟐, 𝒔𝟐 1000 100 22.34 18.51 28.29 20.26 6.78 7.39 8.13 5.12 5.38 3.83 8.92 5.80 3.55 2.99 

𝒔𝟑, 𝒔𝟑 1000 100 2.45 2.10 2.24 2.14 2.31 2.21 2.31 2.31 2.65 2.50 2.19 1.94 1.84 1.84 

𝒔𝟒, 𝒔𝟒 1000 100 3.34 3.03 3.13 3.29 1.93 2.02 1.93 1.71 2.04 1.90 1.97 1.93 1.82 1.76 

𝒔𝟏, 𝒔𝟑 1000 100 5.11 4.53 5.39 5.17 2.44 2.07 2.06 2.24 2.56 2.10 2.50 2.33 2.21 1.97 

 

 

                

 Table II:The computational load, in seconds, of the ICA algorithm based on the proposed divergence and other widely used ICA algorithms, each entry 

averages over the corresponding number of trials. Observation mixtures consists of two source signals that follow the same distribution as denoted in the 
corresponding example. 

Source Sample

s 

Trials FastICA JADE RobustICA Rapid 

ICA 

IK-

DIV 

CS-

DIV 

KL-

ICA 

ED-

DIV 

C-

DIV+ 

C-

DIV- 

CCS-

DIV2+ 

CCS-

DIV2- 

CCS-

DIV3+ 

CCS-

DIV3- 

𝒔𝟏, 𝒔𝟏 1000 100 0.0 0.0 0.0 0.0 20.1 22.1 19.5 20.1 24.1 24.1 22.2 22.2 19.3 19.3 

𝒔𝟐, 𝒔𝟐 1000 100 0.0 0.1 0.0 0.0 20.1 21.3 19.2 20.2 23.3 23.3 19.1 19.1 21.2 21.2 

𝒔𝟑, 𝒔𝟑 1000 100 0.0 0.0 0.0 0.0 19.1 20.7 19.1 22.1 25.1 25.1 18.1 18.1 20.2 20.2 

𝒔𝟒, 𝒔𝟒 1000 100 0.0 0.1 0.0 0.0 20.4 24.3 19 23.1 24.1 24.1 19.1 19.1 19.2 19.2 

𝒔𝟏, 𝒔𝟑 1000 100 0.0 0.0 0.0 0.0 20.2 20.1 20.1 22.1 21.4 21.4 18.1 18.1 19.2 19.2 

 

 

 Table III:The corresponding variance of the performance. 

Source Samples Trials FastICA JADE RobustICA Rapid 
ICA 

IK-
DIV 

CS-
DIV 

KL-
ICA 

ED-
DIV 

C-
DIV+ 

C-
DIV- 

CCS-
DIV2+ 

CCS-
DIV2- 

CCS-
DIV3+ 

CCS-
DIV3 

𝒔𝟏, 𝒔𝟏 1000 100 11.02 12.07 38.05 11.74 3.76 2.58 0.81 1.15 1.39 0.98 1.53 1.91 0.72 0.78 

𝒔𝟐, 𝒔𝟐 1000 100 102.53 211.75 332.76 95.06 16.43 37.71 8.87 8.87 6.76 3.92 28.35 10.63 6.19 2.62 

𝒔𝟑, 𝒔𝟑 1000 100 1.11 1.80 1.71 1.27 1.63 1.54 1.66 1.66 1.60 1.35 2.39 1.93 1.17 0.86 

𝒔𝟒, 𝒔𝟒 1000 100 18.47 15.34 17.44 14.64 1.51 1.52 0.95 0.78 1.07 1.08 1.19 1.51 0.83 0.83 

𝒔𝟏, 𝒔𝟑 1000 100 13.91 12.88 13.90 14.16 2.14 2.75 1.63 1.72 2.25 1.16 2.04 1.92 1.37 1.02 

 



 

 

 

 

evaluate and show the performance of the proposed algorithm 

and other algorithms for the high dimensional case (i.e., 

mixture of more than 2 sources).To that end, we form five 

groups based on the number of source signals in the mixtures, 

namely, 2, 4, 8, 16 and 20. Then, we implement ourproposed 

algorithms and other hosted algorithms on each corresponding 

group using various sample size to show the impact of the 

sample size on their performance. 

 

A new set of randomly generated source signals (refer to 

Table IV) and mixing matrices are generated for the next 

comparative case study.Table V summarizes the performance 

of the aforementioned algorithms in a more complex 

separation process for mixtures of multiple sources. We use 

the label dimension to identify the number of signal sources in 

Table V. In a nutshell, TableV summarizes the performance of 

each algorithm in terms of the standard Ammarierror metric 

(multiplied × 100), see [2], [13]. All results have been 

averaged over a number of independent Monte Carlo runs. 

Several pattrens can be observed from Table V. First, the non-

parametric ICA algorithms attain the best performance in 

terms of accuracy. However, in terms of speed, RapidICA, 

FastICA, RobustICA and JADE perform better. Second, the 

non-parametric ICA based on the proposed divergence 

(CCS3)provides the best performance in terms of accuracy (in 

most cases). Third, the performance of the new algorithms 

perform more consistently and exhibitsperformance 

improvement as the sample size increases. Lastly, in terms of 

speed, RapidICA, FastICA, RobustICA and JADE perform 

better. Thus, these latter algorithms could be chosento 

initializethe process of the proposed algorithms in order to 

reduce the overall computational load. 

Since the comparison between the ICA algorithms has 

relied on two criteria, namely, accuracy and computational 

load, a tradeoff between these two criteria has always been 

assessed for eachtargeted application. We also note that with 

the advent of powerful computing platforms including 

Graphics Processing Units (GPUs), computational load/speed 

becomes less of a factor, and thetrue metric becomes accuracy 

or quality of estimates.  

Furhtermore, Table VIsummarizes the performance of 

CCS-ICA (see Algorithm 3) based on the different values 

of  𝑇𝑠 (1, 10, 100, 1000), which correspond to the length of a 

sample frame of data.Finally, Table VII shows the various 

relative computational load of the algorithms in seconds 

(using the same intel i5 CPU processor of a portable PC). 

Based on Table VI, one observes that the accuracy of the 

proposed algorithm degrades as the sample time frame,  𝑇𝑠,is 

increased. However, the speed of the proposed algorithm 

speeds up as the sample time   𝑇𝑠is increased.  It is observed 

that  the CCS-ICA-- Algorithm 3 scheme at   𝑇𝑠 = 100 

attains the best performance in terms of both metrics (accuracy 

and computational complexity). More comparative resultson  

theproposed non-parametric CCS-ICA algorithmare relegated 

to http://www.egr.msu.edu/bsr/. 

 

I. CONCLUSION  

Two schemes of pairwise non-parametric ICA algorithms are 

developed to tackle the dimensional curse in  BSS. Several 

simulations are carried out to show the improved performance of 

the proposed schemes. Furthermore, the paper provides a 

comparative  Monte-Carlometric performance with a host of 

leading ICA algorithms. We have also introduced sampling 

factor T sto evaluate the CCS-DIVfor several  Tsvalues.The 

computational complexity of the non-parametric ICA 

algorithm is reduced in proportion to  the sample factor Ts. 

APPENDIX A 

CONVEX CAUCHY–SCHWARZ DIVERGENCE AND ITS 

DERIVATIVE 

Assume the demixed signals 𝐲𝒕 = 𝐖𝐱𝒕 with 

itsmthcomponent denoted as y𝑚𝑡 = 𝐰𝑚𝐱𝒕.Then, 𝑷𝐽 =

 
Fig. 1 Average performance of the ICA algorithms in terms of the Amari Error  
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p(𝐲𝑡) = p(𝐖𝐱𝒕)and 𝑄𝑀 = ∏ p(y𝑚𝑡
M
1 ) = ∏ 𝑝(𝐰𝑚𝐱𝒕)

𝑀
1 . Thus, 

the CCS-DIV as a contrast function, with the built-in 

convexity parameter α, is 

DCCS(𝑷𝐽, 𝑄𝑀 , α)

= log
∬ f2(𝑷𝐽)d𝑦1…d𝑦𝑀  ∙  ∬ f

2(𝑄𝑀)d𝑦1…d𝑦𝑀

[∬ f(𝑷𝐽) ∙ f(𝑄𝑀) d𝑦1…d𝑦𝑀]
2

 

= log
∬ f2(p(𝐖𝐱𝒕))d𝑦1…d𝑦𝑀  ∙  ∬ f

2(∏ p(y𝑚𝑡
M
1 ))d𝑦1…d𝑦𝑀

[∬ f(p(𝐖𝐱𝒕)) ∙ f(∏ p(y𝑚𝑡
M
1 )) d𝑦1…d𝑦𝑀]

2
 

By using the Lebesgue measure to approximate the integral 

with respect to the joint distribution of𝐲𝐭 = {y1, y2, … , y𝑀}, the 

contrast function becomes  

DCCS(𝑷𝐽, 𝑄𝑀 , α)

= log
∑ f2(p(𝐖𝐱𝐭)) ∙ ∑ f2(∏ (p(𝐰𝑚𝐱𝐭))

M
1 )T

1
T
1

[∑ f(p(𝐖𝐱𝐭)) ∙ f(∏ (p(𝐰𝑚𝐱𝐭))
M
1 )T

1 ]2
 

For simplicity, let us define 

V1 =∑f2(𝑷𝐽) ,   

T

t=1

V1
′ =∑2f(𝑷𝐽)f

′(𝑷𝐽)𝐏𝐽
′

T

t=1

 

V2 =∑f2(𝑄𝑀)  ,    

T

t=1

V2
′ =∑2f(𝑄𝑀)f

′(𝑄𝑀)Q𝑀
′

T

t=1

 

V3 =∑f(𝑷𝐽)

T

t=1

f(𝑄𝑀) , 

V3
′ =∑f ′(𝑷𝐽)f(𝑄𝑀)𝐏𝐽

′

T

t=1

+∑f(𝑷𝐽)f
′(𝑄𝑀)Q𝑀

′

T

t=1

 

and the convex function, e.g.,  is  

𝑓(𝑡) =
4

1 − 𝛼2
[
1 − 𝛼

2
+
1 + 𝛼

2
𝑡 − 𝑡

1+𝛼

2 ] 

𝑓′(𝑡) =
2

1 − 𝛼
[1 − 𝑡

𝛼−1
2⁄ ] 

then,  

𝑷𝐽 = p(𝐖𝐱𝑡)and 𝑄𝑀 =∏p(𝐰m𝐱𝑡)

M

m=1

 

 

𝐏𝐽
′ =

∂𝑷𝐽
∂wml

= −
p(𝐱𝑡)

|det(𝐖)|2
∙
∂ det(𝐖)

∂wml
∙ sign(det(𝐖), 

where
∂det(𝐖)

∂wml
= Wml. 

 

Q𝑀
′ =

∂𝑄𝑀
∂wml

= [∏p(𝐰j𝐱𝑡)

M

j=m

]
∂p(𝐰n𝐱𝑡)

∂(𝐰n𝐱𝑡)
∙ xl. 

wherexl denotes the 𝑙𝑡ℎ entry of 𝐱𝑡. 
Thus, we re-write the CCS-DIV as  

𝐷𝐶𝐶𝑆(𝑷𝐽, 𝑄𝑀 , 𝛼) = 𝑙𝑜𝑔
𝑉1 ∙ 𝑉2
[𝑉3]

2
= 𝑙𝑜𝑔𝑉1 + 𝑙𝑜𝑔𝑉2 − 2𝑙𝑜𝑔𝑉3 

and its derivative  becomes 
𝜕𝐷𝐶𝐶𝑆(𝑷𝐽 , 𝑄𝑀 , 𝛼)

𝜕𝑤𝑚𝑙
=
𝑉1
′

𝑉1
+
𝑉2
′

𝑉2
− 2 ∗

𝑉3
′

𝑉3
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Table V:The performance of the ICA algorithm based on the proposed divergence and other widely used ICA algorithms in terms of Amari error 

[2] (multiplied by 100). Each entry averages over the corresponding number of trials. 

Dimensions Samples Trials JADE FastICA RapidICA RobustICA CS CDIV KLDIV CCS2 CCS3  

2 1000 512 5.6 7.3 6.1 7.2 2.5 2.2 2.3 2.1 2  

2000 512 5.1 5.9 5.5 6 1.9 1.7 1.9 1.8 1.8  

4000 512 3.1 4.1 3.5 4.3 1.7 1.6 1.5 1.6 1.4  

8000 512 2.4 2.6 2.5 2.6 1.3 1.2 1.1 1.4 1.1  

4 1000 200 8 9.7 9.1 9.8 3.0 2.4 3.1 3.1 2.5  

2000 200 5.4 7.3 6.5 7.2 2.4 2.2 2.1 2.5 1.8  

4000 200 4.2 4.2 4.1 4.3 1.7 1.4 1.4 1.4 1.6  

8000 200 2.1 2.7 2.5 2.7 1.4 1.2 1.3 1.4 1.2  

8 1000 75 10.5 10.3 9.6 11.2 4.6 3.6 4.2 4.4 3.2  

2000 75 8.1 8.0 7.6 8.2 3.5 3.1 3.3 3.2 3  

4000 75 5.7 4.1 4.4 4.9 2.5 2.3 2.7 2.6 2.8  

8000 75 2.7 3.1 3.0 3.2 2.3 2.1 2 2.1 1.9  

16 1000 15 8 9.7 9.1 9.8 6.7 6 6.7 7.3 5.5  

2000 15 5.4 7.3 6.5 7.2 6.1 5.2 6 6.9 5.1  

4000 15 4.2 4.2 4.1 4.3 5.4 4.4 5.1 5.6 4.2  

8000 15 2.1 2.7 2.5 2.7 3.6 2.6 3.1 3.8 2.9  

20 1000 5 22.3 21.1 20.1 26.2 14.1 9.1 10.1 13.1 8.9  

2000 5 15.7 15.6 15.2 16.2 7.7 6.7 7.3 8.3 7.2  

4000 5 7.8 7.2 7.1 7.2 6.2 7.6 6.4 6.7 5.3  

8000 5 4.5 4.1 3.9 4.0 2.7 2.2 2.6 4.4 2.3  

 
 

 

  
Table VI: The performance of the ICA algorithm based on the proposed 

divergence in terms of the Amari error (multiplied by 100). Each entry 

averages over the corresponding number of trials. 

𝑴 

Dimensions Samples 

𝐓 

Trials 

𝟎. 𝟏𝐓 

CCS3 

at 

𝟎. 𝟎𝟏𝐓 

CCS3 

At 

𝟎. 𝟎𝟎𝟏𝐓 

CCS3 

At  

𝟏 

CCS3 

At  

2 1000 1024 4.6 2.9 2.1 2 

2000 1024 3.6 2.3 1.9 1.8 

4000 1024 2.8 1.9 1.6 1.4 

8000 1024 2.2 1.6 1.1 1.2 

4 1000 250 5.8 3.8 2.4 2.5 

2000 250 5 2.9 2 1.8 

4000 250 3.5 2.5 1.6 1.6 

8000 250 2.7 2.2 1.3 1.3 

8 1000 100 5.6 3.8 2.5 3.2 

2000 100 3.7 3.1 2.2 3 

4000 100 3.1 2.6 2.2 2.8 

8000 100 3.0 2.2 1.9 1.9 

16 1000 25 20.5 15.8 8.6 5.5 

2000 25 12.6 10.1 7 5.1 

4000 25 8.6 8 4.5 4.2 

8000 25 5.8 3.9 1.9 2.9 

20 1000 10 27.7 15.1 13.7 8.9 

2000 10 22.8 11.3 12 7.2 

4000 10 15.6 9 7.2 5.3 

8000 10 9.8 6.3 3 2.3 

 

 
 

 
 

 
 

 

Table VII: The computational load, in seconds, of the ICA algorithm based 

on the proposed divergence and other widely used ICA algorithms, each 
entry averages over the corresponding number of trials. 

𝑴 

Dimensions Samples 

𝐓 

Trials 

𝟎. 𝟏𝐓 

CCS3 

at 

𝟎. 𝟎𝟏𝐓 

CCS3 

At 

𝟎. 𝟎𝟎𝟏𝐓 

CCS3 

At  

𝟏 

CCS3 

At  

2 1000 1024 0.4 2.8 29.8 28 

2000 1024 0.5 4.8 44.8 96.4 

4000 1024 0.8 8 77.9 342.9 

8000 1024 1.5 10.6 137 1073 

4 1000 250 1.8 24 218.1 237.9 

2000 250 4.3 39 344.8 630.3 

4000 250 5.9 47.9 593.4 2348.6 

8000 250 10.2 83.6 1105 7737.1 

8 1000 100 19.3 128.7 1053 1174 

2000 100 31.5 201.7 1743 3347 

4000 100 46.5 266.4 3109 11705 

8000 100 74.2 241.8 5534 42115 

16 1000 25 170.6 909.5 6282 4376.2 

2000 25 242.3 1171 9320 17918.3 

4000 25 305.5 1403 14717 58894.6 

8000 25 329.9 2297 25658 10483.4 

20 1000 10 339 1195.7 9605 11355.2 

2000 10 427.4 1724.2 14708 27504.8 

4000 10 607.6 2398.3 23634 52536.6 

8000 10 900 3754.5 42538 97312.1 

 
 

 
 

 
 


