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Abstract— We consider a wireless sensor network con-

sisting of a set of sensors deployed randomly. A point in

the monitored area is covered if it is within the sensing

range of a sensor. In some applications, when the network

is sufficiently dense, area coverage can be approximated

by guaranteeing point coverage. In this case, all the points

of wireless devices could be used to represent the whole

area, and the working sensors are supposed to cover all

the sensors. Many applications related to security and

reliability require guaranteed k-coverage of the area at

all times. In this paper, we formalize the k-(Connected)

Coverage Set (k-CCS/k-CS) problems, develop a linear

programming algorithm, and design two non-global solu-

tions for them. Some theoretical analysis is also provided

followed by simulation results.

Index Terms— Coverage problem, linear programming,

localized algorithms, reliability, wireless sensor networks.

I. I NTRODUCTION

In wireless sensor networks (WSNs), one design

challenge is to save limited energy resources to

prolong the lifetime of the network. A duty cycle is

therefore introduced to allow each sensor to switch

between active and sleep modes to save energy.

On the other hand, a certain amount of active

nodes should be present to ensure a desired level

of coverage at all times. The way to select active

nodes is calledcoverageand the method to rotate

the role of each sensor to meet certain objectives

is calledscheduling, where nodes alternate between

active and sleeping modes.

In a WSN, a sensor covers a target if the target

is in the sensing range of the sensor. There exist

three coverage models depending on how targets are

defined:

1) Targets form a contiguous region and the ob-

jective is to select a subset of sensors to cover

the region [21]. Typical solutions involve ge-

ometry properties based on the positions of

sensor nodes.

2) Targets form a contiguous region and the ob-

jective is to select a subset of sensors to cover

the rest of sensors [4]. This model assumes

the network is sufficiently dense so that point

coverage can approximate area coverage. Typ-

ical solutions involve constructing dominating

sets or connected dominating sets [23] based

on traditional graph theory.

3) Targets are discrete points and the objective

is to select a subset of sensors to cover all of

the targets. Typical solutions [3] use the tradi-

tional set coverage or bipartite graph models.
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The desired level of coverage can be defined as

a multiple coverage for the purpose of reliability

in case of failure or for other applications related

to security (e.g., localized intrusion detection) or

localization (e.g. triangulation-based positioning).

In this paper, we deal with the problem based

on the second coverage model. We first formal-

ize the (1-connection)k coverage set problems,

or simply k-(Connected) Coverage Set (k-CCS/k-

CS) problems, in terms of linear programming, and

an approximation algorithm based on integer pro-

gramming is developed for thek-CS problem. We

then propose two non-globalk-coverage solutions.

One is quasi-local cluster-based with a deterministic

bound, the other is localized with a proven proba-

bilistic bound. Two versions of each solution will be

considered, one with connectivity fork-CCS and

the other without connectivity fork-CS. Using a

custom simulator, we compare the effectiveness of

the proposed approaches with other local solutions

to the same problem. Our contributions in this paper

are the following:

1) Define and formalize thek-(Connected) Cov-

erage Set problems (k-CCS/k-CS).

2) Develop a global algorithm for thek-CS

problem using linear programming.

3) Design two non-global solutions fork-CS/k-

CCS.

4) Conduct performance analysis, through ana-

lytical and simulation studies on all the pro-

posed solutions.

The remainder of the paper is organized as fol-

lows: Section II reviews the related work in the field.

Section III gives the problem definition of thek-

CS/k-CCS problems. Section IV presents the linear

programming algorithm fork-CS. Section V pro-

poses the quasi-local solution and the local solution

for the problems. The theoretical bounds of them are

also given in this section. The performance study

through simulation is conducted in Section VI. The

paper concludes in Section VII.

II. RELATED WORK

Several local solutions exist to maintain 1-

coverage in a wireless sensor network. Most of them

rely on location information. A pruning method was

proposed in [21], where a sensor can switch to

sleep mode, if its sensing area is covered by the

sensing areas of its neighbors. As the calculation

of sensing area coverage becomes tedious, some

simplifications have been used. One method is to

use a grid system [26], where the sensing area is

represented by the grid points within this area, and

area coverage is approximated by point coverage.

In another method [25], the deployment area is

divided into small squares. After one sensor is

elected to be active in each square, other nodes can

switch to sleep mode. The following probing-based

solution [27] does not rely on location information.

Basically, each sensor tries to detect activities of

its neighbors. It switches to sleep mode if some

active neighbors are detected; otherwise, it switches

to active mode.

For k-coverage, a global method was proposed in

[18] to constructk separate sets, each set achieving

1-coverage. Together, these sets providek-coverage.

A local solution was provided in [1] to solve the

same problem.

When the objective is to cover individual tar-

gets, dominating set algorithms [3] [6] that achieve

point coverage should be considered. The problems

of double point coverage andk-point coverage in

general have been studied in [10]. In [14], three

heuristic algorithms are provided to achieve double

point coverage. Localized 2-coverage algorithms

were discussed in [17]. Dai and Wu [7] has proposed

several local algorithms to construct ak-connected

k-dominating set. In this paper, we propose to

maintain 1-connectivity rather thank-connectivity,

to reduce the size of thek-coverage set. Geometric

disk cover [9], [11] is another related concept, where

minimum number of disks, centered at a super node,

are placed to cover all the points. The difference
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between disk cover and dominating set problems

is that the locations of disks are not restricted to

those of the points, and the radius of disks can be

arbitrary.

To operate successfully, a sensor network must

also provide satisfactory connectivity so that nodes

can communicate for data fusion and reporting to

base stations. A straightforward solution is to use a

communication range (R) that is at least twice the

sensing range (r), such that area coverage implies

connectivity of active sensors [29]. This conclusion

was generalized in [22]: WhenR ≥ 2r, a sensor

network that achievesk-coverage isk-connected.

More analysis can be found in [20].

Jiang et al [13] considered a local solution for

k-coverage and extended point coverage to area

coverage using a notion ofbiggest vacant square

territory (BVST). We will discuss this scheme under

the zero BVST, since the area coverage is not an

issue here. The basic idea is to apply a local solution

to put as many sensors to sleep as possible while en-

suring a full 1-coverage assuming the sensor range

r is the same as the transmission rangeR. Then,

r is enlarged to ensurek-coverage. Specifically, to

ensurek-coverage,r should be set to be at least

[
√

2 + 1 + (
√

2/2 + 2)i] R, where integeri is a

minimum value satisfying
∑j=i

j=1 4j ≥ k − 1.

III. PROBLEM DEFINITIONS

We consider a wireless sensor network consist-

ing of n homogeneous wireless devices (sensors)

s1, s2, . . . , sn. To reduce energy consumption while

increasing security and reliability, we want to select

a minimum subset of sensors with the property that

each sensor is monitored by at leastk sensors in the

selected subset.

We model the network as an undirected graph

G = (V, E), with the set of vertices (or nodes) being

the set of sensors. An edge exists between two nodes

if the two corresponding sensors are each within the

other’s communication range. We assume that the

network is sufficiently dense, such that the network

is connected, and each node has at leastk neighbors

for a given constantk. Let us now introduce the

problem definitions.

k-Coverage Set (k-CS) Problem: Given a constant

k > 0 and an undirected graphG = (V, E) find a

subset of nodesC ⊆ V such that (1) each node

in V is dominated (covered) by at leastk different

nodes inC, and (2) the number of nodes inC is

minimized.

k-Connected Coverage Set (k-CCS) Problem:
Given a constantk > 0 and an undirected graph

G = (V, E) find a subset of nodesC ⊆ V such

that (1) each node inV is dominated (covered) by

at leastk different nodes inC, (2) the number of

nodes inC is minimized, and (3) the nodes inC

are connected.

k-CS andk-CCS are extensions of the Dominat-

ing Set (DS) and Connected Dominated Set (CDS)

problems [23]. A set is dominating if every node

in the network is either in the set or a neighbor of

a node in the set. When a DS is connected, it is

denoted as a CDS; that is, any two nodes in the

DS can be connected through intermediate nodes

from the DS. CDS as a connected virtual backbone

has been widely used for broadcast process [19],

searching in a reduced space, and point coverage

in wireless sensor networks [4]. Whenk = 1, k-

CS (k-CCS) problem reduces to the DS (CDS)

problem. Therefore, fork = 1, both k-CS and k-

CCS are NP-complete [5].

IV. A G LOBAL SOLUTION FOR THEk-CS

PROBLEM

In this section, we first formulate thek-CS

problem using Integer Programming (IP) and then

present the LP-based approximation algorithm.

Given:

• n nodess1, . . . ,sn
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• aij, the coefficients showing the coverage rela-

tionship between nodes. These coefficients are

defined as follows:

aij =





1 if node si is covered by nodesj

0 otherwise

Variables: xj, boolean variable, forj = 1 . . . n:

xj =





1 if node sj is selected in the subsetC

0 otherwise

Integer Programming:

Minimize x1 + x2 + . . . + xn

subject to
∑n

j=1 aijxj ≥ k for all i = 1, . . . , n

xj ∈ {0, 1} for j = 1, . . . , n
(1)

The constraint
∑n

j=1 aijxj ≥ k, for all i =

1, . . . , n, guarantees that each node inV is covered

by at leastk nodes inC. Let us note with∆ the

maximum node degree inG. We extend the results

presented in [8], [5], to our problem and design

a ρ-approximation algorithm, whereρ = ∆ + 1.

Since IP is NP-hard, we firstrelax the IP to Linear

Programming (LP), solve the LP in linear time, and

then round the solution in order to get a feasible

solution for the IP.

Relaxed Linear Programming:

Minimize x1 + x2 + . . . + xn

subject to
∑n

j=1 aijxj ≥ k for all i = 1, . . . , n

0 ≤ xj ≤ 1 for j = 1, . . . , n
(2)

Next, we present ourρ-approximation algorithm,

where ρ = ∆ + 1. Based on the optimal solution

x∗ of the relaxed LP, we compute a solutionx̄ for

the IP. When the algorithm terminates, the setC

contains thek-coverage set.

The complexity of this algorithm is dominated

by the linear programming solver. The best perfor-

mance isO(n3) using Ye’s algorithm [28], wheren

is the number of variables.

Algorithm 1 : LP-based Algorithm (LPA)

1) C = φ

2) Let x∗ be an optimal solution of the Relaxed

Linear Programming

3) For eachj = 1, . . . , n do:

a) If x∗j ≥ 1/ρ, then x̄j = 1 andC = C ∪
{sj}

b) If x∗j < 1/ρ, then x̄j = 0

4) ReturnC

Theorem 1:The LP-based algorithm is anρ-

approximation algorithm for thek-CS problems,

where ρ = ∆ + 1 and ∆ is the maximum node

degree inG.

Proof: We first note thatρ = ∆ + 1 =

max1≤i≤n
∑n

j=1 aij. Next, we show that our algo-

rithm is anρ-approximation of the optimal solution.

Based on the way we setx̄, it is clear that̄xj ≤ ρ·x∗j ,
for anyj = 1, . . . n. Therefore,

∑n
j=1 x̄ ≤ ρ

∑n
j=1 x∗j .

Next, we claim that by rounding the fractional

values of the variablesx∗, we obtainx̄, a feasible

solution for the initial IP. For this we need to show

that
∑n

j=1 aijx̄j ≥ k for any i = 1, . . . , n. This

guarantees that the subsetC output by our algorithm

k-covers all the nodes.

Let us dividex̄ into two subsets,I1 = {j|x∗j < 1
ρ
}

and I2 = {j|x∗j ≥ 1
ρ
}. Then for anyi = 1, . . . , n

we have
∑

j∈I1 aijx
∗
j < 1

ρ

∑
j∈I1 aij ≤ 1; therefore,

∑
j∈I1 aijx

∗
j < 1. Also,

∑n
j=1 aijx̄j ≥ ∑

j∈I2 aijx
∗
j ≥

k−∑
j∈I1 aijx

∗
j > k− 1. Since both

∑n
j=1 aijx̄j and

k are integers, it follows that
∑n

j=1 aijx̄j ≥ k.

V. NON-GLOBAL SOLUTIONS FOR THE

k-CS /k-CCS PROBLEMS

This section starts with a cluster-based solution

which is quasi-local, followed by a local solution

for thek-CS/k-CCS problems. Some examples and

bounds of the solutions are shown.
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A. A Cluster-based Solution

In [24], the cluster-based CDS protocol is clas-

sified as a quasi-local solution, since it is based

on mainly local state information and occasional

partial global state information. In this subsection,

we propose a scheme for thek-CS/k-CCS prob-

lems, which is based on the traditional clustering

algorithm:

• Sequentially apply a traditional clustering al-

gorithm k times, whereby the clusterheads

selected each time are marked and removed

immediately from the network.

• Find gateways to connect the first set of the

clusterheads and also mark them.

• For each marked node (clusterhead or gate-

way), if it does not havek marked neighbors,

it designates some unmarked neighbors to be

marked.

The clustering algorithm divides the network into

several clusters, and each has a clusterhead and

several neighbors of this clusterhead as members.

Any two clusterheads are not neighbors, and the

clusterhead set is a maximum independent set (MIS)

of the network in addition to a DS. The marked

k sets of clusterheads together with one set of

gateways form thek-CCS. For coverage without

connectivity, the second step, gateway selection, can

be removed. Note that gateway selection can be tree-

based, whereby gateways are selected globally to

make the CDS a tree, or mesh-based, whereby each

clusterhead is connected to all of its neighboring

clusterheads, and thus the CDS is a mesh structure.

The implementation follows. Initially, all the nodes

are unmarked. When the algorithm terminates, all

the marked nodes (clusterheads or gateways) form

the k-CCS/k-CS.

Theorem 2:All the clusterheads (and gateways)

marked in CKA form ak-CS (k-CCS) of the

networks.
Proof: Let us assume that the network isG =

(V,E), and the clusterheads selected in roundi are

Algorithm 2 : Cluster-basedk-CS/k-CCS Algo-

rithm (CKA)

1) Using a clustering algorithm to select cluster-

heads, setC1, and the selected clusterheads

are marked and removed from the network.

2) Repeat step 1k times, mark and removeCi,

i = 2, . . . , k.

3) Use a gateway selection approach to select

gateways, setD, to connect clusterheads in

the first set,C1, and mark nodes inD. (This

step is removed for a solution without con-

nectivity.)

4) For each node inC1 ∪ C2 ∪ . . . Ck ∪ D

(clusterhead or gateway), if the number of

its marked neighbors,t, is smaller thank,

it designatesk-t unmarked neighbors to be

marked.

setsCi, i = 1, . . ., k. We first prove that all the

unmarked nodes can be coveredk times. If a node

u is not marked, it must be the neighbor of a node

in Ci in round i. Therefore, there arek nodes from

each of the setsC1, C2, . . ., Ck, that are neighbors

of u, and u is coveredk times by the setC =
∑

Ci, i = 1, . . . , k.

Then we prove the connectivity. Let us assume

D is the gateway set of clusterhead setC1. For any

two nodesu, v, (u, v ∈ C), we now prove there is

a path which contains only nodes inC to connect

them. Whenu, v ∈ C1, they are connected since

C1∪D is a CDS. Whenu is not inC1, u must have

a neighboru′, u′ ∈ Ci. This is becauseC1 is a DS

of G. The same is withv. Therefore,u and v are

connected throughC1.

Finally we prove that all the marked nodes them-

selves can also be coveredk times by other marked

nodes. This is obvious, because step 4 of CKA

guarantees it.
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A traditional clustering algorithm [15] takesO(n)

rounds in the worst case, in a network withn nodes.

A randomized clustering algorithm [16] has been

proposed to achieve 1-coverage inO(log3 n) time

with high probability. This algorithm can be easily

extended to achievek-coverage inO(k log3 n) time

with high probability.

B. A Local Solution

In this subsection, a local solution, PKA, fork-

CS/k-CCS is developed that is based on only local

neighborhood information. A nodeu is “k-covered”

by a subset ofC of its neighbors if and only if three

conditions hold:

• The subsetC is connected by nodes with

higher priorities thanu.

• Any neighbor ofu is a neighbor of at leastk

nodes fromC.

• Each node inC has a higher priority thanu.

For coverage without connectivity, the first con-

straint can be removed. The following algorithm

provides an implementation where each node de-

termines its status (marked or unmarked) based

on its 2-hop neighborhood information. Initially, it

is assumed that all nodes are marked. After the

algorithm terminates, all the marked nodes form the

k-CCS/k-CS.

Theorem 3:The marked nodes from PKA form

a k-CS/k-CCS of the network.

Proof: Let us assume a nodeu is unmarked.

Then according to PKA, there exists a setC, C =

{s|s ∈ N(u), L(s) > L(u)}, and every nodev

in N(u) has at leastk neighbors inC. N(u) is

the neighbor set of nodeu andL(u) is the unique

priority of it. That is to say,u is not in the highest

k rank (based on priority) nodes ofv; thusu is safe

to be unmarked. Therefore, for each nodev in G,

its k highest rank neighbors do not have a chance

to unmark. Every node in the network is coveredk

times by the marked nodes.

Algorithm 3 : Pruning-basedk-CS/k-CCS Algo-

rithm (PKA)

1) Each nodeu is given a unique priority,L(u),

and each nodeu is represented by tuple (L(u),

ID(u)), ID(u) is node ID ofu.

2) Each node broadcasts its neighbor setN(u),

whereN(u) = {v|v is a neighbor ofu }.
3) At node u, build a subset:C(u) = {v|v ∈

N(u), L(v) > L(u)}. Nodeu is unmarked if:

a) subsetC(u) is connected by nodes with

higher priorities thanu (this constraint

is removed for a solution without con-

nectivity), and

b) for any nodew ∈ N(u), there arek

distinct nodes inC(u), sayv1, v2, ..., vk,

such thatw ∈ N(vi).

As to the connectivity, when condition 3 holds,

the node set marked by PKA is a superset of the

node set marked by pruning RuleK algorithm

[6] on the network, which takesk as 1. Thus the

connectivity is guaranteed.

C. Examples

Figure 1 is the small scale example. There are

15 nodes in the network. The transmission range

is 4 andk is 2. The minimum node degree in the

network is not less than 2. The nodes marked with

diamonds form the resultantk-CS or k-CCS in the

figures. In (a), there are 9 nodes in the resultantk-

CCS using CKA. We can see that all the marked

nodes are connected, and every node in the network

is covered at least twice by the marked nodes. (b)

shows thek-CS of size 9 after the CKA (without

connectivity). Although the size is the same as that

of thek-CCS in (a), the marked nodes are different.

Generally speaking, the size of resultantk-CS by

CKA is smaller than that ofk-CCS, but this is not

necessary. This is because, according to CKA, the



7

gateway selection and thek times of clusterhead

selection are independent, and when the last step

checks all the marked nodes, additional marked

gateways may help to prevent adding more nodes

in the set. (c) is the resultantk-CCS with the size

of 13 by the PKA. (d) shows thek-CS by the

PKA (without connectivity). There are 12 nodes in

the set. Compared with (c), node1 is not marked.

This is because, neighbors of 1 form two connected

components. One is nodes 4, 7, and 10, and the

other is nodes 12, 13, and 15. Neither of these

two components can satisfy the three constraints

for k-CCS. But if they combine together, they are

qualified. Therefore, node 1 unmarks itself ink-CS

constructing. (e) isk-CS by LPA, and there are 12

nodes in it.

D. Theoretical bounds

Let CKAk be the backbone constructed by the

cluster-based algorithm CKA. Similarly, letPKAk

denote the backbone constructed by the pruning

algorithm PKA that achievesk-coverage, andOPTk

be the minimal node set that achievesk-coverage.

We prove that the size ofCKAk is O(k2) times the

size of OPTk in the worst case, and the average

size of PKAk is O(1) times the size ofOPTk in

random wireless sensor networks.

Theorem 4:In a unit disk graph,|CKAk| =

O(k2) · |OPTk| for all k ≥ 1.

Proof: From the cluster-based algorithm,

CKAk = C1 ∪ C2 ∪ . . . ∪ Ck ∪ D ∪ C ′
k, where

Ci (1 ≤ i ≤ k) is the set of clusterheads selected

in round i, D is the set of gateways to connectC1,

and C ′
k is the set of nodes added in the last step

to ensurek-coverage of marked nodes. It has been

proved in [2] that

|Ci| = O(1) · |OPT1|

for 1 ≤ i ≤ k and

|D| = O(1) · |OPT1|
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(a) k-CCS by CKA of size 9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

1

2

1

4

1

7

1

10

1

12

1

13

1

15

2

4

2

5

2

6

2

7

2
9

2

10

2

14

3

4

3

7

3

11

4

6

4

7

4

10

5

6

5

7

5

9

5

10

5

14

6

7

6

10

7

10

8

11

8
12

8

13

8

15

9

14

11

12

11

13

11

15

12

13

12

15

13

15

1

(b) k-CS by CKA of size 9
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(c) k-CCS by PKA of size 13
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(d) k-CS by PKA of size 12
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(e) k-CS by LPA of size 12

Fig. 1. A small scale example (n = 15, k = 2, r = 40).

Therefore, the number of marked nodes before the

last step is

|C1|+ |C2|+ . . . + |Ck|+ |D| = O(k) · |OPT1|

Note that in the last step, at mostk neighbors of

each marked node are added inC ′
k. That is,

|C ′
k| ≤ k(|C1|+ |C2|+ . . . + |Ck|+ |D|)
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r

A d

r

Fig. 2. For any node in regionA, placing k nodes in each gray

region is sufficient tok-cover all neighbors of nodes inA.

Combine the above equations, we have|CKPk| ≤
(k + 1)(|C1| + |C2| + . . . + |Ck| + |D|) = (k +

1)O(k) · |OPT1| = O(k2) · |OPT1| When k ≥ 1,

|OPT1| ≤ |OPTk|, and |CLSk| = O(k2) · |OPTk|.

Theorem 5:In random unit disk graphs,

E(|PKAk|) = O(1) · |OPTk| for all k ≥ 1.

Proof: Consider a square regionA with side

d = r/2
√

2 (diagonal line r/2). As shown in

Figure 2, ifA is not empty, neighbors of nodes inA

are within a7×7−4 = 45 square region surrounding

A. These square regions can bek-covered by putting

k nodes in each of the 12 gray regions. Note that

these12k nodes are all neighbors of an arbitrary

node inA. In addition, these nodes are connected

via themselves. Suppose these nodes do exist, and

among them nodev has the lowest priority, then

all nodes inA with a lower priority thanv can be

unmarked.

Let VA be the set of nodes within these 45

squares. We sortVA in the descending order of

node priority, and denote them by theirranks

1, 2, . . . , |VA| in the sorted list. The node with the

highest priority has the lowest rank 1. LetVi ⊆ VA

be the set ofk nodes with minimum ranks in the i-th

gray region (1 ≤ i ≤ 12), Ri be the maximal rank

of nodes inVi, andR = max(Ri) be the maximal

rank of these12k nodes thatk-covers all neighbors

of A. Note that all marked nodes inA have a rank

less thanR; that is,|PKAA| < R, wherePAKA is

k 2 3 4

Jiang’s 325.50 325.50 325.50

CKA 22.20 27.45 33.75

PKA 23.35 32.10 40.55

TABLE I

COMPARISON OFJIANG ’ S, CKA, AND PKA

(r = 40, n = 1000, r′ = 7).

the set of marked nodes inA.
Consider eachRi as a random variable, where

Ri = n means among nodes with ranks1, 2, . . . , n−
1, k − 1 of them are in thei-th gray region; in

addition, the node with rankn is also in thei-th

gray region. The corresponding probability is

Pr(Ri = n) =

(
n− 1

k − 1

)
pk(1− p)n−k (3)

wherepi is the probability that a node inVA is in the

i-th gray region. From (3),Ri has a negative bino-

mial (Pascal) distribution [12], which expected value

is k/pi. When nodes are randomly and uniformly

distributed, pi is a constant andE[Ri] = O(k).

Therefore,

E[|PKAA|] < E[R] ≤
12∑

i=1

E[Ri] =
12∑

i=1

O(k) = O(k)

Since each non-empty regionAi is covered by

at leastk nodes fromOPTk, and each nodes in

OPTk can cover at mostO(1) such regions, the

total number of non-empty regions in the network

is

N = O(1/k) · |OPTk|
andE[|PKAk|] ≤ ∑N

i=1 E[|PKAAi
|] = N ·O(k) =

O(1) · |OPTk|.

VI. SIMULATION

This section presents results from our simulation.

The linear programming approach (LPA) fork-CS,

the k-coverage approach by Jiang et al (Jiang’s)

for k-CCS, the cluster-based algorithm with and

without connectivity (CKA), and the pruning al-

gorithm with and without connectivity (PKA) for
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Fig. 3. Comparison ofk-CCS & k-CS by different algorithms

(k = 2).

k-CCS and k-CS are all evaluated and compared

in the simulation. A mesh-based gateway selection

algorithm is used in the CKA.

Linear programming is implemented using Mat-

lab. All other approaches are implemented on a

custom simulator. To generate a random network,

n nodes are randomly placed in a restricted100 ×
100 area. We assume all nodes have the same

transmission range. The tunable parameters in our

simulation are as follows: (1) The node numbern.

We change the number of deployed nodes from100

to 1000 to check the scalability of the algorithms.

(2) The transmission ranger. We use 20 and 40

as transmission ranges to produce the effect of

link density on the algorithms. (3) The average

node degreed. We use 30 and 60 as the average

node degree in the network. When node number

is 100, the adjusted transmission range is 40 with

d = 30, and 60 with d = 60.(4) The coverage

parameterk. We use 2, 3, and 4 as its values. The

performance metric is the number of nodes in the

resultantk-CCS/k-CS. For each tunable parameter,

the simulation is repeated 1000 times or until the

confidence interval is sufficiently small (±1%, for
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Fig. 4. Algorithms with and without connectivity (k = 2).

the confidence level of90%).

Table I compares the sizes of resultantk-CCS by

Jiang’s, CKA and PKA. Since in Jiang’s algorithm

[13], the biggest vacant square territory (BVST)

is assumed to small enough, the network is quite

dense. We use 1000 as the number of nodes and 40

as the sensing range in Jiang’s. Thus the adjusted

transmission range,r′, is 7. We can see that CKA

and PKA have better performance than Jiang’s. This

is because Jiang’s is designed for the worst case

bound, while CKA and PKA are based on average

cases, and Jiang’s does not generate ak-CCS set

corresponding to every single value ofk; Jiang’s has

smaller transmission range than CKA or PKA.

Figure 3 shows the comparison of the proposed

LPA, CKA, PKA algorithms. (a) shows the resultant

k-CCSs by CKA and PKA when transmission

range is 20. (b) is when transmission range is 40.

CKA has better performance than PKA because

CKA is quasi-local while PKA is local algorithm.

More information leads to a more precise precess.

(c) shows thek-CSs by CKA, PKA and LPA

when range is 20. Both CKA and PKA have better

performance than LPA, especially when the node
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Fig. 5. k-CCS & k-CS by PKA & CKA with k = 2, 3, 4.

number is large. (d) is when range is 40. LPA has

worse performance than CKA and PKA, especially

when the network is dense. A dense network has a

negative impact on the performance of LPA. This

is because a dense network increases the maximum

node degree, and thus the LPA’s performance ra-

tio. Additionally, a large maximum node degree

decreases the k-set cover selection threshold (1/ρ),

and therefore more nodes are added to the setC. As

the theoretical results indicate, LPA performs better

for sparse topologies.

Figure 4 shows the comparison ofk-CS and k-

CCS by different algorithms using different trans-

mission ranges, 20 in (a) and 40 in (b), and node

degree, 30 in (c) and 60 in (d). We can see thatk-

CS by CKA has the smallest size, and next is thek-

CCS by CKA. k-CS by PKA has almost the same

size ask-CCS by PKA. The size ofk-CCS/k-CS

increases with the growth of the number of nodes

when the average node degree is fixed. Figure 5

shows the size ofk-CCS in (a), andk-CS in (b)

as parameterk varies withr = 20. (c) and (d) are

when the transmission range is 40. We can see that

with larger k, the size ofk-CCS or k-CS from

CKA or PKA is larger. But when the number of

node is great, this increase is less significant.

The simulation results can be summarized as

follows: (1) CKA has better performance than PKA,

especially in generatingk-CS. (2) CKA and PKA

have better performance than LPA, especially when

network is relatively dense. (3) Greaterk leads

to larger sizedk-CS/k-CCS. (4) CKA and PKA

have better scalability than LPA, especially when

the network is relatively dense. (5) LPA performs

better in sparse topologies; a dense topology, with

a large maximum node degree, negatively affects

both LPA’s performance ratio and the k-cover set

selection threshold.

VII. C ONCLUSION

In this paper, we have addressed thek-

(Connected) Coverage Set (k-CS/k-CCS) problems

in wireless sensor networks with the objective of

minimizing the total energy consumption while ob-

tainingk coverage for reliability. We have proposed

one global solution fork-CS and two non-global

algorithms. The first one uses a cluster-based ap-

proach to select backbone nodes to form the set.

The second uses the pruning algorithm based on

only 2-hop neighborhood information. We have also

analyzed the performance of our algorithms through

theoretical analysis and simulations.
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