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Abstract The availability of inexpensive devices al-
lows nowadays to implement cognitive radio (CR) func-

tionalities in large-scale networks such as the internet-

of-things (IoT) and future mobile cellular systems. In

this paper, we focus on wideband spectrum sensing

(WSS) in the presence of oversampling, i.e., the sam-
pling frequency of a digital receiver is larger than the

signal bandwidth, where signal detection must take into

account the front-end impairments of low-cost devices.

Based on the noise model of a software-defined radio
(SDR) dongle, we address the problem of robust signal

detection in the presence of noise power uncertainty

and non-flat noise power spectral density (PSD). In

particular, we analyze the receiver operating charac-

teristic (ROC) of several detectors in the presence of
such front-end impairments, to assess the performance

attainable in a real-world scenario. We propose new

frequency-domain detectors, some of which are proven

to outperform previously proposed spectrum sensing
techniques such as, e.g., eigenvalue-based tests. The
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study shows that the best performance is provided by
a noise-uncertainty immune energy detector (ED) and,

for the colored noise case, by tests that match the PSD

of the receiver noise.

Keywords Cognitive radio · colored noise · detection ·
Internet-of-Things · noise uncertainty · oversampling ·
wideband spectrum sensing

1 Introduction

The increasing demand for a limited resource such as

the radio-frequency (RF) spectrum is the propelling

force toward new ways radio ecosystems can coexist.

For example, the coexistence between radar and wire-
less communications is a topic which recently received

increasing attention by the DARPA and the US Na-

tional Spectrum Consortium [1, 2]. To this aim, cogni-

tive radio (CR) systems represent a paradigm to oppor-

tunistically access the spectrum provided that the RF
environment is monitored through the so-called spec-

trum sensing (SS) [3, 4]. The objective of SS is to infer

the presence of signals in a frequency band, thus iden-

tifying spectrum holes and enabling primary user (PU)
protection.

Software-defined radio (SDR) was born with the aim

of building flexible front-ends for transceivers in which

radio functionalities are controlled and programmable

by software [5–8]. In the last decade, SDR gained a
renewed interest for implementing multi-band multi-

standard platforms, in particular to enable CR [6–11].

In parallel, we have seen the development and diffusion

of several general purpose high-performance SDRs such
as universal software radio platforms (USRPs) [12]. How-

ever, in the context of internet-of-things (IoT) low-cost

low-complexity SDRs appear more appropriate. There

http://arxiv.org/abs/1907.13505v1
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are several examples of such SDRs that can be used for

SS and, among them, one very popular is represented

by the digital video broadcasting– terrestrial (DVB-T)

dongle based on the Realtek RTL2832U chipset.

The adoption of low-cost devices is, on the other
hand, critical for wideband spectrum sensing (WSS)

due to the presence of receiver nonidealities which have

a substantial impact on detection performance, espe-

cially at very low signal-to-noise ratios (SNRs) [13,14]:
colored noise, noise power uncertainty, in-phase and

quadrature-phase imbalance, nonlinearities, spurs, phase

noise, and aliasing [15–17]. It is therefore essential to

perform a proper characterization of the receiver front-

end and to design robust detection strategies.

Regarding noise, it is common to adopt the ubiqui-

tous additive white Gaussian noise (AWGN) model [18–

20]. However, wideband receivers are often affected by

a non-white noise power spectral density (PSD), which
corresponds to noise temporal correlation, mainly caused

by filtering in the receiver chain [21]. Signal detection in

colored noise is studied in [22] using classical hypothesis

testing approaches, while the effect of noise correlation
on some eigenvalue based algorithms is analyzed in [23].

Another impairment is represented by noise power

fluctuations (caused e.g., by receiver temperature vari-

ations) often referred as noise uncertainty [19, 24, 25].

This issue can be counteracted either by adopting noise
power estimation strategies [13, 19, 26] or by adopting

detection metrics which are independent on the noise

power. In the latter case, time-domain tests that infer

the presence of correlation among the received samples
have been proposed, in particular exploiting eigenval-

ues of the sample covariance matrix (SCM) [20, 21, 23,

27,28]. This is also the case of sensing in the spatial do-

main, where the correlation among multiple antennas

or sensor nodes (by cooperation), due to the presence
of a common signal, is exploited [3, 21, 29, 30].

A key element of WSS is that the receiving band-

width is larger than that of the signal-to-be-detected

(StD), hence for digital receivers oversampling is of-
ten the rule [31–33]. This fact can be exploited both

in the frequency-domain as well as in the time-domain.

For example, since oversampling implies correlation in

time, detectors based on correlation properties of the

received signal are the most common [21,23,29,34–36].
Another significant element is that the literature on

oversampling-based detection explores the case where

the StD has a known band, i.e., center frequency and

bandwidth. However, in some contexts like opportunis-
tic spectrum access, it is necessary to infer the presence

of any signal in the observed frequency slot without

knowing its band a priori [26, 28].

In this paper, we focus on oversampling-based signal

detection in the presence of noise power uncertainty,

considering both white and colored Gaussian noise. The

noise model is derived from the statistical analysis of

a popular SDR, suitable for low-cost, large-scale RF
monitoring.

The key contributions of this paper are as follows:

– We analyze the problem of sensing the spectrum in a

setting that combines the presence of colored Gaus-

sian noise and noise power uncertainty when the
sampling frequency is higher than the signal band-

width.

– We revisit several detectors proposed in the litera-

ture, and we derive their performance in terms of

receiver operating characteristic (ROC).
– We propose new detectors which outperform the ex-

isting ones in the specific setting, exhibiting robust-

ness against front-end impairments: a frequency do-

main version of the energy detector (ED) with esti-
mated noise power (ENP), a detector that measures

the spectral flatness, and a spectrum correlation -

based detector.

– Different scenarios are considered: i) unknown signal

band; ii) known signal bandwidth but unknown cen-
ter frequency; iii) both signal bandwidth and center

frequency known.

– The performance is derived in the presence of a sig-

nal model extracted from the statistical characteri-
zation of the noise of a low-cost SDR receiver.

The analysis showed that the best detection perfor-
mance is provided by a noise-uncertainty immune ED

and, for the colored noise case, by tests that match the

PSD of the receiver noise. To the best of our knowledge,

WSS in this setting is underexplored.

The paper is organized as follows. In Section 2 the

system model is introduced. Section 3 proposes detec-

tors in the presence of white noise, while Section 4 an-

alyzes detection with colored noise. A case study based

on the characterization of a real SDR receiver is illus-
trated in Section 5, and the corresponding numerical re-

sults are presented in Section 6. Conclusions are drawn

in the last section.

Throughout the paper, boldface letters denote ma-
trices and vectors. Moreover, Im represents the m×m

identity matrix, tr{A} is the trace of the matrix A,

diag{A} stands for a matrix which contains only the

principal diagonal of the matrix A, (·)T and (·)H stand,
respectively, for simple and Hermitian transposition.

The ℓp-norm of the vector v is ||v||p , p
√∑

i |vi|
p
,

where vi is the ith element of v.
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2 System model

The detection task is to distinguish the presence or ab-
sence of any signal in the observed band. The two hy-

potheses are denoted, respectively, by H1 and H0. We

consider a receiver equipped with a single antenna. Af-

ter down-conversion and sampling, the N -length col-
umn vector of the received complex samples is given

by

y =

{
s + n, H1

n, H0

(1)

where n denotes noise and s contains the transmitted
signal samples including channel effects. Let us con-

sider a bandlimited StD with band B = [fL, fH] and

bandwidth B = fH − fL. Oversampling is implemented

using a sampling rate fs = OSF · B, where OSF is the
integer oversampling factor (OSF) [21, 35]. The SNR

is defined as SNR = σ2
s /σ

2, where σ2
s = E

{
sHs

}
and

σ2 = E
{
nHn

}
. Without loss of generality we assume

that both s and n are modeled as vectors of zero mean

random variables (r.v.s).

The noise power is often uncertain and varying in

time. This is mainly due to effects such as temper-

ature variations, changes in low noise amplifier gain

due to thermal fluctuations, and initial calibration er-
rors [19, 24, 25]. We express the noise samples vector

as n = σ ñ, where ñ are zero mean complex Gaussian

samples with unit variance, and the noise power σ2 is

an unknown time-varying parameter. However, its vari-

ations are generally slow, and thus σ2 can be considered
constant during the collection of the N samples [25].

The most common assumption in the literature is

to model noise as a white Gaussian process. This is a

desirable condition for every receiver, and it is a re-

alistic model for well-designed systems. However, low-
cost wideband devices generally present a colored noise

PSD, which is mainly due to filtering [21–23]. A sta-

tistical description of the noise derived from samples

captured by a SDR device is presented in Section 5.1.
Based on such analysis, we model noise as a correlated

Gaussian process.

The detection tests proposed in the next sections

exploit the knowledge of the second-order statistical

properties of receiver noise, although noise power re-
mains unknown. We consider, therefore, that detection

is preceded by an off-line calibration stage (under hy-

pothesis H0), in which the system estimates either the

noise PSD, W(f), for frequency-domain detectors, or
the noise covariance matrix, Σ0, for time-domain de-

tectors (see Section 5.2 for details). In both cases, due

to noise uncertainty, the noise PSD and the covariance

matrix are known except for a multiplicative factor re-

lated to the time-varying noise power. 1

2.1 Frequency-domain representation: periodogram

Frequency-domain spectrum sensing is based on the es-

timation of a spectral representation of received sam-

ples and adoption of a test to infer the presence or ab-

sence of a signal. For simplicity, the frequency-domain

representation is based on the PSD estimation through
the averaged periodogram (also known as Bartlett’s pe-

riodogram), by a Nfft-points discrete Fourier transform

(DFT) [37, Section 12.2.1]. In particular, assuming that

the total number of samples is N = NfftNavg, the ith el-
ement of the averaged periodogram p = (p0, . . . , pNfft−1)

is computed as [37]

pi =
1

Nfft Navg

Navg∑

k=1

∣∣∣∣∣

Nfft∑

m=1

ym+(k−1)Nfft
e
−j2π im

Nfft

∣∣∣∣∣

2

(2)

where yl is the lth element of the received vector y.

The Bartlett’s periodogram can be used also to es-
timate the noise PSD during the calibration phase. In

the following, we denote withw = (w0, . . . , wNfft−1) the

vector containing the estimate of the noise PSD, W(f),

calculated as

wi =
1

Nfft Navg

Navg∑

k=1

∣∣∣∣∣

Nfft∑

m=1

nm+(k−1)Nfft
e
−j2π im

Nfft

∣∣∣∣∣

2

. (3)

2.2 Time-domain representation: sample covariance

Using oversampling, time-domain tests can exploit the

correlation properties of y to distinguish the StD from

white Gaussian noise (WGN). In fact, under H0 the

covariance matrix of white noise is Σ0 = E
{
nnH

}
=

σ2IN and thus its eigenvalues are all equal to σ2. Con-
versely, under H1, the eigenvalues are not all equal.

Therefore, eigenvalue-based tests measure the eigen-

value spread to discriminate between H0 and H1.

When the signal covariance Σ = E
{
yyH

}
is un-

known, the SCM of y is used instead [20, 21, 23, 27]. In
this case, the detector arranges the received vector y in

1Note that although the detectors presented do not de-
pend on the noise power, its fluctuations reflect on the SNR,
which in turn have an impact on the performance of the tests.
This aspect must be taken into account in the study of the
decision threshold setting, which is out of the scope of the
paper.
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a p× q matrix (p and q are such that N ≥ pq)

Y =




y1 yp+1 . . . y(q−1)p+1

y2 yp+2 . . . y(q−1)p+2

. . . . . . . . . . . .

yp y2p . . . yqp


 . (4)

Then, the eigenvalues of the SCM S = YYH/q, denoted

as λ1 ≥ λ2 ≥ · · · ≥ λp, are used as estimate of the

eigenvalues of Σ. Previous works adopt p = OSF and
q = ⌊N/p⌋ [23, 29]. In this case, the rows of Y are

sequences obtained using a sampling period equal to

the symbol duration. Assuming the StD composed by

independent symbols, if p = OSF the rows of Y tend to

be independent, while columns are correlated.2

Alternatively, some tests are based on the sample

correlation matrix obtained by normalizing the SCM

as

R = diag{S}−1/2
S diag{S}−1/2 . (5)

The sample correlation matrix element rij is the Pear-

son correlation coefficient between the columns i and j
of Y. In the following, we denote with µ1 ≥ µ2 ≥ · · · ≥
µp the eigenvalues of R.

3 White Noise

In this section, we present WSS detectors in the pres-

ence of white Gaussian noise and noise power uncer-

tainty.

3.1 Frequency-domain detectors

3.1.1 Energy-based detectors

The conventional implementation of the ED considers

the received signal power as a test statistic. Thus, the

frequency-domain version of the ED is given by34

Ted-all = ||p||1
H1

≷
H0

ξ. (6)

When the StD bandwidth is smaller than the receiver

bandwidth, the test statistic Ted-all (6) also includes the

noise-only contributions that come from samples of the

PSD which are out of the signal band. It is, therefore,

2In this case the oversampling-based detection problem
turns out to be equivalent to spectrum sensing with multiple
antennas.

3Note that by Parseval’s theorem we have Ted-all =
1

Navg

∑
i
yi

Hyi, which is proportional to the usual ED met-

ric [19].
4In the paper ξ denotes any detection threshold.

reasonable to modify the ED metric, including only the

frequency components that may contain the signal. De-

noting as p[B] the vector that contains the periodogram

bins for fL ≤ f ≤ fH we propose the test

Ted = ||p[B]||1
H1

≷
H0

ξ. (7)

Note that (6) and (7) depend on the noise power
and thus may suffer noise uncertainty. To counteract

this problem, schemes that compute the ENP can be

adopted [19]. In the oversampling scenario, the noise

power can be estimated from the noise-only bands. Thus,
the frequency-domain version of the ENP-ED test is

given by

Tenp-ed =
||p[B]||1
||p[B]||1

H1

≷
H0

ξ (8)

where p[B] is the vector containing the periodogram

bins that are out of the signal band. In the Appendix,

we prove that Tenp-ed is the generalized likelihood ratio

test (GLRT) when the StD is modeled as a bandlimited
Gaussian random process with flat PSD within B.

3.1.2 Flatness-based detectors

In the presence of white noise, some frequency-domain
tests are based on the measure of the flatness of the

received signal PSD. A flat spectrum is expected, in-

deed, under H0, contrarily H1 occurs. An example is

the arithmetic-geometric mean ratio test (AGM) [31]

Tf-agm =
1

Nfft

∑Nfft

i=1 pi
(∏Nfft

i=1 pi

)1/Nfft

H1

≷
H0

ξ. (9)

Another way to measure spectrum flatness is to build

a test which is the ratio between the ℓ1-norm and the

ℓ2-norm of p, as

Tsf =
1√
Nfft

||p||1
||p||2

H0

≷
H1

ξ. (10)

The rationale behind (10) is that its inverse is similar

to the population coefficient of variation (CV), a statis-
tical parameter defined as the ratio of the sample stan-

dard deviation to the sample mean. The CV is often

used in statistics and related disciplines as a measure

of the variability of a series of samples. In our setting,
under H0 all wi’s are very similar because of the white

PSD of noise, so we have appoximatively Tsf = 1 ir-

respectively of the noise power. Moreover, because of
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the well-known inequality ||p||1 ≤
√
Nfft||p||2 we have

Tsf ≤ 1.

Note that Ted-all, Tf-agm, and Tsf do not require

the knowledge of B, which instead must be known for

the ED-based tests Ted and Tenp-ed. Different detectors

can be conceived with a partial knowledge of the StD
characteristics. Considering the case in which only B

is known, one can search for the band that contains

the maximum received power. Thus, similarly to (8) we

propose the test

Tsearch-B =
max
CB

||p[CB ]||1
||p||1

H1

≷
H0

ξ (11)

where CB is any frequency slot, with bandwidth B, con-

tained in the receiver band.

3.2 Time-domain detectors

3.2.1 Eigenvalue-based tests

Eigenvalue-based tests are probably the most popu-
lar detectors studied in the presence of white noise

[20,21,23,27,29]. Of considerable importance there are

the sphericity test (also called AGM) [27,38], the maxi-

mum to minimum eigenvalues ratio (MME) [21,23], the
ratio of maximum eigenvalue to the trace (MET) [20]

and the locally best invariant (LBI) test [20, 39]. The

corresponding decision metrics are given by

Tsph =
(
∏p

i=1 λi)
1/p

(
∑p

i=1 λi)/p

H0

≷
H1

ξ Tmme =
λ1

λp

H1

≷
H0

ξ

Tmet =
λ1∑p
i=1 λi

H1

≷
H0

ξ Tlbi =

∑p
i=1 λ

2
i

(
∑p

i=1 λi)
2

H1

≷
H0

ξ.

(12)

We also consider three tests based on the sample

correlation matrix R (5), namely the test of indepen-

dence [27], the Frobenius norm test [40], and the max-

imum eigenvalue test, defined, respectively, as

Tind =

p∏

i=1

µi

H0

≷
H1

ξ Tfro =

p∑

i=1

µ2
i

H1

≷
H0

ξ

Tmax = µ1

H1

≷
H0

ξ. (13)

All the tests defined above are independent of the
noise power.We do not include in the analysis eigenvalue-

based tests that suffer noise uncertainty, such as the

Wilk’s test [20].

3.2.2 Autocorrelation-based detectors

In this section, we discuss some alternative tests that

exploit the correlation properties of y, but cannot be

expressed as functions of the eigenvalues of the SCM or
R. One of the most popular detector in this context is

the covariance-based detector [41]

Tcov =

∑p
n=1

∑p
m=1 |sn,m|

tr{S}
H1

≷
H0

ξ. (14)

Some modifications of this detector have been proposed

in [42, 43].

In [35], autocorrelation-based approaches specifically
for detection in the presence of oversampling have been

discussed. In particular, two detectors proposed are

Tac =

OSF−1∑

i=1

∣∣y{i}
H y + vi

∣∣2
H1

≷
H0

ξ (15)

Tac-1 =
∣∣y{1}

H y + v1
∣∣2

H1

≷
H0

ξ (16)

where y{i} denotes a circular shift of y by i steps, vi =

Nαiσ
2
s /
(
2SNRref +NSNR

2
ref

(
α2
i + 2 i2/OSF/N

))
, and

αi = (OSF− i) /OSF. The reference SNR parameter

SNRref should be set equal to SNR. However, since in

practice, SNR is unknown, it can be calculated as the

SNR corresponding to the weakest signal power required
to perform detection.

4 Colored Noise

In this section, we present WSS detectors in the pres-

ence of colored Gaussian noise and noise power uncer-
tainty.

4.1 Frequency-domain detectors

4.1.1 Energy-based detectors

Energy-based detectors (6)-(8) can be used to infer the
presence of a signal in the observed band in non-flat

noise PSD case. Regarding (8), note that both the nu-

merator and the denominator are proportional to σ2;

thus, such a detector does not suffer noise uncertainty.

A modification of Tenp-ed for the colored noise case

can be obtained applying frequency-domain whitening,
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consisting of defining the vector q = (q0, . . . , qNfft−1),

with elements qi =
pi

wi
. The resulting test is

Tw-enp-ed =
||q[B]||1
||q[B]||1

H1

≷
H0

ξ (17)

where q[B] and q[B] are analogous of p[B] and p[B] in (8).

Note that wi are the elements of w calculated during
the calibration phase by (3).

4.1.2 Flatness-based detectors

Considering the AGM, after whitening, we get the test

[33]

Twf-agm =
1

Nfft

∑Nfft

i=1 qi∏Nfft

i=1 q
1/Nfft

i

H1

≷
H0

ξ. (18)

4.1.3 Noise PSD matching detectors

Under hypothesis H0 the vector p exhibits a high de-

gree of similarity with w, while they should differ under

H1. A method to measure the similarity is the degree

of correlation between p and w, which leads to the fol-
lowing test

Tfc =
p
T
w

||p||2 ||w||2

H0

≷
H1

ξ (19)

where the decision metric is the correlation coefficient
between p and w.

Alternatively, the Kullback-Leibler (K-L) divergence
between p and w can be adopted as decision test. In

order to avoid noise uncertainty we adopt the normal-

ized vectors p̃ = p/||p||1 and w̃ = w/||w||1, and thus

the detector is given by

Tfkl =

Nfft∑

i=1

p̃i log
p̃i
w̃i

H1

≷
H0

ξ. (20)

Note that both (19) and (20) are novel. In [44] a

test similar to (19) without normalization is adopted

when the StD spectrum is known a priori and the noise
is white. On the contrary, our test assumes that noise is

colored, and its PSD known from the calibration phase,

while the StD spectrum is unknown.

4.2 Time-domain detectors

When noise is colored, eigenvalue-based algorithms can

be adopted if time-domain whitening is applied to the
received samples before detection [21].5 In this domain,

whitening is based on the calibration phase described

in Section 2, from which the SCM of noise under H0,

S0 = YYH/q, is obtained. Eigenvalue tests can then

be applied considering now the eigenvalues λB
1 ≥ λB

2 ≥
· · · ≥ λB

p of BSBH, where B is the whitening matrix,

i.e., a matrix such that BS0 B
H = Ip. Therefore, the

sphericity test in the presence of colored noise becomes

Tw-sph =

(∏p
i=1 λ

B

i

)1/p
(∑p

i=1 λ
B

i

)
/p

H0

≷
H1

ξ. (21)

Similarly, considering the tests based on R, we can

adopt detectors based on µK
1 ≥ µK

2 ≥ · · · ≥ µK
p , the

eigenvalues of KRKH, where K is the a matrix such

that KR0K = Ip. For example, the independence test
and the maximum eigenvalue test assume the forms

Tw-ind =

p∏

i=1

µK

i

H0

≷
H1

ξ (22)

and

Tw-max = µK

1

H0

≷
H1

ξ (23)

respectively.

5 Case Study: Low-cost SDR Receiver

In this section, we analyze samples collected under H0

by the RTL-SDR dongle NESDR-mini [45]. Such SDR

receiver is composed by a Rafael Micro R820T tuner,

an analog front-end which includes a low-noise ampli-

fier (with controllable gain via software), RF filtering

and downconversion at an intermediate frequency of
3.57MHz. The following RTL2832U chip performs an

8 bits analog-to-digital conversion, quadrature demod-

ulation, and sample rate reduction through decimation

[46, 47]. The final sampling rate, fs, is adjustable and
can be up to 2.8MS/s. I-Q samples are then available

on the USB port [11, 48–50].

5Some papers, such as [23], propose to use eigenvalue-
based tests also in the presence of colored noise, i.e., when
the covariance matrix eigenvalues under H0 are not all equal.
In this case, the decision regions of the detector and their
relative position may depend on the SNR and the degree of
correlation between noise samples.
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test real part imaginary part

Jarque-Bera (Univariate Gaussianity) 0.953 0.952
Anderson-Darling (Univariate Gaussianity) 0.965 0.966
Henze-Zirkler (Multivariate Gaussianity) 0.941 0.942

Andersson-Perlman (Circularity) 0.999

Table 1 Occurrence rate of Gaussianity tests for I-Q samples captured with a RTL-SDR receiver. Univariate tests are based
on the observation of 1000 samples, while multivariate tests consider 4×400 matrices. Each test is performed 50000 times with
a significance level of 0.05.

This low-cost device is characterized by the pres-

ence of imperfections, such as non-flat noise PSD, noise

power fluctuations, and spurs caused by harmonics from
the mixer, local oscillator leakage and DC offset [33,51].

This last impairment has not been taken into consider-

ation, assuming that spectrum sensing is preceded by

spurious removal, through, e.g., an upstream spur de-
tection and spur censoring stage [33].

5.1 Received signal characterization under H0

To validate the noise model described in Section 2, we

adopt standard statistical Gaussianity tests. Table 1

shows the occurrence rate relative to 50000 tests on
captured noise-only samples. All tests are performed

with a significance level of 0.05. As univariate tests,

we consider the Jarque-Bera and the Anderson-Darling

tests, which can be adopted when the mean value and

variance are not known [52–54]. Each test is performed
on 1000 samples. We also considered a multivariate

test, that fits the case in which samples are collected

in matrices like (4). We chose, in particular, the Henze-

Zirkler test proposed in [55], which has an excellent
overall power against alternatives to normality [56]. All

the tests show that the captured samples well fit Gaus-

sian distributions, with about 0.95 probability. Beyond

normality, we also tested the circularity property of

the samples using the Andersson-Perlman test [57, 58].
These results validate the use of the Gaussian model

for the received samples under H0.

5.2 Calibration

Regarding the whiteness assumption, we estimated the

PSD in the absence of an input signal. Except for a mul-
tiplying constant (i.e., a vertical shift in dB scale), the

characteristic shape of the noise PSD is shown in Fig. 1.

The multiplying constant is due to the noise power fluc-

tuation, which causes noise power uncertainty, while the
shape can be ascribed to the digital filter in the deci-

mation stage of the RTL-SDR receiver chain [21–23].

Based on this analysis, we model noise as a Gaussian
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0

PSfrag replacements
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rm
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Fig. 1 Example of a spurious-free noise PSD shape measured
in an RTL-SDR dongle. This normalized PSD has been es-
timated from samples, under H0 hypothesis, using Bartlett’s
periodogram with Nfft = 128 and Navg = 1000.

process with correlated samples, as described in Sec-

tion 2.

We assume, therefore, that detection is preceded by

an off-line calibration stage in which the system esti-

mates the noise power PSD (3), for frequency-domain

detectors, or the noise covariance matrix, Σ0, for time-

domain detectors. This can be done, e.g., replacing the
antenna with a 50Ω load. According to the noise model

in Section 2, the estimated noise PSD, and the SCM

are known except for a multiplicative constant related

to the time-varying noise power.

The accuracy of the estimates performed in the cali-

bration phase typically depends on its duration. A thor-

ough analysis of such a duration is out of the scope of

the paper, and it is the subject of future research. As
a rule of thumb, the calibration should last at least an

order of magnitude more than the detection phase.6

6 Numerical Results and Discussion

6.1 White noise

The performance of the detectors presented in Section 3

have been assessed by numerical simulation considering

6See, for example, [19], in which the length of the noise
power estimation phase must be longer than the detection
phase, to guarantee that the target PFA and PD is reached.
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Fig. 2 ROCs for Tenp-ed, varying Nfft and Navg with N =
1600, OSF = 4, SNR = −10 dB.

an orthogonal frequency-division multiplexing (OFDM)

signal embedded in AWGN with SNR = −10 dB. The
bandwidth of the OFDM signal equals fs/4, i.e., OSF =

4.

6.1.1 Parameters setting

The performance of frequency-domain detectors intro-

duced in Section 3.1 depends on the total number of

samples collected N . Setting N , it is possible to trade-

off between Nfft and Navg for the estimation of the PSD
in (2). In particular, in the following, we set N = 1600,

and we vary Nfft and Navg pairs such that Navg =

⌊N/Nfft⌋.
Fig. 2 shows the ROCs for Tenp-ed for different Nfft,

Navg pairs. The parameter Nfft impacts the frequency

resolution of the PSD estimate. A small Nfft implies,

indeed, to have just a few DFT elements, each of which

collects a large contribution from sidelobes. Therefore,
increasing Nfft provides a better estimate of the in-

band signal energy. Considering Navg, note that it cor-

responds to the number of periodograms averaged in

(2) and thus it impacts the accuracy of the PSD esti-

mate. Therefore, there is a trade-off between these two
parameters that provide the best performance. From

Fig. 2 we can see that the best choice is Nfft = 128 and

Navg = 12. Note that increasing Nfft above this level,

the detector performance decreases due to the small
number of averages Navg.

7

Fig. 3 shows the ROCs for the frequency-domain

detectors Tf-agm and Tsf for different Nfft, Navg pairs.

Numerical results reveal that the best performance is
obtained with Nfft = 16. This suggests that for this

kind of detectors having a better PSD estimate, which

7We remark that the optimal value of Navg and Nfft de-
pends on the specific setting and system parameters.
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Fig. 3 ROCs for Tf-agm and Tsf, varying Nfft and Navg with
N = 1600.
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Fig. 4 ROCs for Tmax, Tsph, and Tcov, varying p and q with
N = pq = 1600.

can be obtained with a higher Navg, is preferable than

increasing the frequency resolution.

The parameter setting for the eigenvalue-based de-

tectors is analyzed in Fig. 4. We can see that the best

performance is obtained with p = 4, which equals OSF.

6.1.2 Detection performance comparison

Fig. 5 shows the comparison between the eigenvalue-

based tests described in Section 3.2. The best perfor-

mance is reached by the test Tmax.

The general comparison between all the detectors

proposed for the white noise case is presented in Fig. 6.
The test Tenp-ed provides the best detection perfor-

mance considering both frequency-domain and time-

domain tests. The comparison also include the autocor-

relation detectors defined in Section 3.2.2. We can see
that Tac-1 outperforms Tac and both provide a good

detection performance when SNRref = SNR = −10 dB,

outperforming all other detectors except for the Tenp-ed.
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Fig. 6 ROCs for frequency-domain test and time-domain de-
tectors in the white noise scenario, varying Nfft and Navg,
with N = 1600, OSF = 4, and SNR = −10dB.

However, SNR is not known a priori in general, and con-

sidering a worst case approach, as proposed in [35], the
detection performance decreases substantially. See, e.g.,

the case SNRref = −20 dB. Fig. 6 also reports the com-

parison between the flatness-based detectors defined in

Section 3.1.2 and Tmax, which is the best among the

eigenvalue-based tests. Note that both Tsf and Tf-agm

outperform Tmax. From the analysis above we can see

that in general, Tenp-ed is the best detector in the pres-

ence of oversampling. When the bandwidth and the car-

rier frequency of the StD are unknown, the flatness-
based detectors, and in particular our proposed Tsf,

provide a higher PD with respect to time-domain de-

tectors.
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Fig. 7 ROCs for Tenp-ed (continuous lines) and Tw-enp-ed

(dashed lines), varying Nfft and Navg with N = 1600. Test
on real samples captured with RTL-SDR.

6.2 Colored noise

We now present the ROC curves of the detectors de-

scribed in Section 4, using samples captured from the
RTL-SDR dongle. The RTL-SDR receiver is tuned at

430MHz with sampling frequency fs = 1MS/s. This

frequency band has been chosen for being a signal-free

band in our laboratory at the Cesena campus of the

University of Bologna. The StD is an OFDM wave-
form transmitting independent symbols and having a

250 kHz bandwidth, generated using a USRP platform.

The transmitter has been located in a non-line-of-sight

position, and its transmit power has been tuned to have
a SNR at the receiver equal to −10 dB.

6.2.1 Parameters setting

In this section, we analyze the trade-off between the

parameters Nfft and Navg for the frequency-based de-

tectors described in Section 4.1.

Fig. 7 shows the ROCs for Tenp-ed and Tw-enp-ed, for
different Nfft, Navg pairs. From Fig. 7 we can see that

also in this case we have a trade-off between Nfft and

Navg, and as in the white noise case the best choice is

Nfft = 128 and Navg = 12. Regarding the comparison

between the whitened and non-whitened ED, the plots
confirm the advantage introduced by frequency-domain

whitening, except for the cases where near-optimal val-

ues of Nfft and Navg are chosen. In these cases, whiten-

ing does not provide substantial improvements.

In Fig. 8, the ROCs for Tfc, Twf-agm, and Tfkl, are
reported for different combinations of Nfft and Navg,

respectively. From the comparison, we can see that de-

creasing Nfft provides a higher probability of detection.
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Fig. 8 ROCs for the frequency-based detectors Tfc (continu-
ous), Twf-agm (dashed), Tsf (dash-dotted), and Tfkl (dotted).
Test on real samples captured with RTL-SDR.

6.2.2 Detection performance comparison

Fig. 9 shows a comparison between the ROCs of the

frequency-based detectors of Section 4.1 and the time-

domain tests described in Section 4.2. We adopt, in this

case, the parameters Nfft and Navg that maximize the
detection performance for each test. For the eigevalue-

based detectors we adopt p = OSF = 4. From the com-

parison, we can see that frequency-domain detectors

outperform eigenvalue-based tests. Note, in particular,

that Tenp-ed provides the best performance with much
higher detection probability compared to other detec-

tors. For example, when PFA = 0.01 the probability of

detection of Tenp-ed is approximately PD = 0.97, while

for Tfc is PD = 0.74 and for Tw-max is PD = 0.65.

The significant detection performance gain of the

ENP-ED can be explained because Tenp-ed exploits ad-

ditional information with respect to other detectors.
Note, indeed, that Tenp-ed requires the knowledge of

the signal band, B. This is a valid assumption, for ex-

ample, when the signal to be detected is a PU, whose

channelization is generally known from standards and

regulations.

In different CR scenarios, however, B is unknown,

and the best choice is to adopt Tfc, which does not
require any knowledge of the signal to be detected (in-

cluding its operating band) and that provides better de-

tection performance than Twf-agm and eigenvalue-based

tests.

7 Conclusion

In this paper, we discussed the problem of WSS in the

presence of oversampling, i.e., when the sampling fre-

quency is larger than the signal bandwidth. We consid-
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Fig. 9 ROC comparison of frequency-domain tests and time-
domain detectors. Samples captured with RTL-SDR.

ered both the white noise case, which fits well-designed

receivers, and the colored noise case, which fits inex-
pensive devices in which front-end non-idealities can-

not be neglected. Considering the latter case, we stud-

ied the receiver characteristic of a low-cost commer-

cial device. We analyzed several detectors, proposing
some frequency-domain tests which have been demon-

strated to outperform time-domain approaches, such

as the standard eigenvalue-based tests. The analysis

showed that the best detection performance is provided

by a noise-uncertainty immune ED and, for the colored
noise case, by tests that match the PSD of the receiver

noise.

Appendix

The ENP-ED detector (8) can be derived as a GLRT

assuming AWGN and a signal described as a white

Gaussian process with bandwidth B. Let us organize
y as a sequence of Navg vectors yk of length Nfft with

k = 1, . . . , Navg, and let ỹk be the DFT of yk. Under

the hypotheses made, the spectral representation ỹk is

Gaussian distributed with covariance Σ̃j with j = 0, 1,

depending on the presence/absence of the StD. Under
H0 its covariance matrix is Σ̃0 = σ2INfft

, while under

H1 the covariance Σ̃1 is a diagonal matrix in which

the elements within the signal band are all equal to

σ2
t = σ2

s + σ2, and the others equal to σ2. Thus the
joint distribution of the vectors ỹk is given by

f
(
{ỹk}Navg

k=1 |Hj

)
=

1

πNfftNavg

∣∣∣Σ̃j

∣∣∣
Navg

× exp

(
−
∑

k

ỹH
k Σ̃

−1
j ỹk

)
.
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The likelihood ratio (LR) of ỹk is therefore

L = f
(
{ỹk}Navg

k=1 |H1

)
/f
(
{ỹk}Navg

k=1 |H0

)

=

∣∣∣Σ̃0

∣∣∣
∣∣∣Σ̃1

∣∣∣
eNfft tr{Σ̃−1

0 S̃}−Nfft tr{Σ̃−1
1 S̃}

=

(
σ2
)NfftNavg

(σ2)
(Nfft−|S|)Navg (σ2

t )
|S|Navg

eNfft((σ2)−1tr{S̃})

× e−Nfft((σ2
t )

−1 ∑
i∈S

s̃i,i+(σ2)−1 ∑
i∈S̄

s̃i,i) (24)

where S is the set of the indexes of the frequency bins

within the signal band, |S| is its cardinality and the

SCM is given by S̃ =
∑Navg

k=1 ỹkỹ
H
k /Navg. Under H0,

the maximum likelihood (ML) estimate of σ2 is σ̂2
H0

=∑
i si,i/Nfft, while underH1 we get σ̂

2
H1

=
∑

i∈S s̃i,i/|S|
and σ̂2

H0
=
∑

i∈S̄ s̃i,i/ (Nfft − |S|). Substituting the es-

timates into (24) we obtain

L = κ

(
1 +

∑
i∈S s̃i,i∑
i∈S̄ s̃i,i

)NfftNavg
(∑

i∈S s̃i,i∑
i∈S̄ s̃i,i

)−|S|Navg

(25)

where the constant κ contains terms that do not depend
on the signal samples. Finally, from (25) we get the

sufficient statistic
∑

i∈S s̃i,i∑
i∈S̄ s̃i,i

=
||p[B]||1
||p[B]||1

(26)

which corresponds to the ENP-ED test Tenp-ed in (8).
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