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Abstract—This study suggests using a user-initiated detecting
and data gathering from power-limited and even passive wireless
devices, such as passive RFID tags, wireless sensor networks
(WSNs), and Internet of Things (IoT) devices, that either power
limitation or poor cellular coverage prevents them from commu-
nicating directly with wireless networks. While previous studies
focused on sensors that continuously transmit their data, the
focus of this study is on passive devices. The key idea is that
instead of receiving the data transmitted by the sensor nodes,
an external device (a reader), such as an unnamed aerial vehicle
(UAV), or a smartphone is used to detect IoT devices and read
the data stored in the sensor nodes, and then to deliver it to
the cloud, in which it is stored and processed. While previous
studies on UAV-aided data collection from WSNs focused on the
UAV path planning, the focus of this study is on the rate at
which the passive sensor nodes should be polled. That is, to find
the minimal monitoring rate that still guarantees accurate and
reliable data collection.

The proposed scheme enables us to deploy wireless sensor
networks over a large geographic area (e.g., for agricultural
applications), in which the cellular coverage is very poor if any.
Furthermore, the usage of initiated data collection can enable
the deployment of passive WSNs. Thus, can significantly reduce
both the operational cost, as well as the deployment cost, of the
WSN.

Keywords: passive wireless sensor networks, monitoring low

power devices, data collection.

I. INTRODUCTION

The number of Internet of Things (IoT) devices is rapidly

growing. Power-limited IoT devices suffer from severe con-

straints on their battery consumption, processing, and memory

capabilities. Passive Radio Frequency Identification (RFID)

tags are used to mark animals in farms, and items in ware-

houses, retail stores, and along assembly lines installed in

factories. Wireless sensor networks consist of sensors, proces-

sors, and radio frequencies (RF) modules. A crucial factor for

realizing a sustainable battery-powered IoT device or WSN is

battery maintenance. Several approaches have been proposed

to overcome battery limitations. These approaches include

IoT-dedicated infrastructure, energy-efficient protocols, energy

harvesting, and efficient data gathering techniques. Unfortu-

nately, due to price and power consumption limitations, these

approaches are inadequate for WSNs deployed over a large

geographic area. For instance, for agricultural applications.

This study suggests to use a dedicated device, referred to

as a ”reader”, aiming to reduce, and under certain conditions,

even to eliminate, the power consumption of the IoT devices

and sensor nodes in WSNs. The reader collects the data from

the sensor nodes and transmits it to the network. The reader

acts similarly to a mobile sink, with one major difference:

the sensor nodes do not have to transmit their data to the

reader, which is capable to read this data from the sensors.

That means that theocratically, this approach can support even

battery-less sensor nodes. For this extreme scenario, the power

consumption of the sensor nodes in the WSN is zero.

A. Background and related work

Energy efficiency has been recognized as a major issue for

realizing IoT devices and WSNs. Specifically, battery mainte-

nance has become a limiting factor for deploying a WSN over

a large-scale area. Reducing the battery consumption of sensor

nodes in WSNs is crucial to overcome battery limitations.

Many studies have addressed the issue of reducing battery

consumption in WSNs. The most common approach is to use

energy-saving protocols, such as Narrowband-IoT (NB-IoT)

[11], ZigBee, and Bluetooth low energy (BLE). However, due

to their short range, the implementation of these protocols for

WSNs deployed over a large scale area are very expensive.

Since multi-hop transmission must be used, we get a shorter

lifetime of the sensor node batteries, especially for those

sensor nodes that are close to the sink.

The commercial solution for low-power IoT devices is to

deploy a new IoT-dedicated infrastructure, such as LPWAN

[9]. Examples for commercial solutions based on a dedicated

infrastructure are SigFox [16] and FitBit [2]. Unfortunately,

due to its short range, this solution is very expensive. More-

over, it is not applicable for poor coverage areas. Therefore,

this solution is not applicable neither for rural areas, nor for

WSNs deployed over a large scale geographic area.

Another approach for reducing battery power consumption

is energy harvesting. See, for instance in [22], in which a

solar-based energy harvesting was used for WSNs. The usage

of energy harvesting techniques enables to extend the lifetime

of the sensor nodes. However, this extension is achieved at the

expense of increasing the cost of the sensor nodes. Since the

number of sensor nodes installed in a typical WSN deployed

over a large geographic area is expected to be very high, we

seek to reduce their cost.

The issue of a UAV-assisted data collection from WSNs has

been addressed by several studies [1], [6], [4], [7], [8], [12],

[13], [19], [21]. The usage of a mobile sink for data collection

in WSNs was addressed in [5], [8], [19]. However, in these

studies, the sensor nodes still have to transmit as usual, and

the problem discussed is the construction of the shortest path

that covers all the sensor nodes. The main concern of the

studies mentioned above is the data collection path planning.

Our concern is on the monitoring rate at which the data



should be collected from the sensor nodes. To the best of

our knowledge, this issue was not previously addressed. This

paper is an extended version of the study presented in Wireless

Telecommunication Symposium (WTS) 2021 conference [10].

B. Contributions of this work

The focus of this study is on the optimal monitoring

rate, at which the data collection process should be initiated.

Commercial solutions for data collecting from IoT devices,

such as SigFox [16] and FitBit [2], rely on a dedicated

infrastructure, such that the sensor nodes are expected to

transmit their data to a nearby access point, which must be

very close, within 15 feet of the sensor nodes. While previous

studies considered WSNs in which the sensor nodes contin-

uously transmit data that should be collected by a sink node

(either static or mobile), the key idea of this study is to use

a dedicated device, such as a smartphone, or a UAV, referred

to as a ”mobile reader”. While previous studies concerning a

UAV-assisted data collection from WSNs focused on the UAV

path planning, assuming that the sensor nodes continuously

transmit their data, our concern is on the monitoring rate of the

sensor nodes, which either power limitation or poor cellular

coverage prevents them for transmitting. The mobile reader

initiates a data collection process, during which it actively

collects (reads) the data from the sensor nodes, which do not

have to transmit data at all.

This method is especially suitable for WSNs deployed over

a large scale geographic area. For instance, for agricultural

applications, such as monitoring cattle and sheep farms, or

for large plantation farms. For these applications, there is a

need for WSNs to be deployed over a large geographic area.

For cattle and sheep farms, the sensor nodes should be mobile.

Even an RFID tag can be used to track an animal. These farms

are typically located in areas that suffer from a lack of cellular

coverage. Due to their relatively large geographic area, they

are not suitable for networks and protocols based on short-

distance communication. For these reasons, traditional WSNs

do not apply to them.

C. Paper organization

The rest of this paper is organized as follows: Model

and problem formulation are given in Section II. The data

collection scheme is introduced and analyzed in Section III.

Performance analysis and simulation results are described in

Section IV. Finally, summary and concluding remarks are

provided in Section V.

II. MODEL AND PROBLEM FORMULATION

We consider a system consists of three elements: a power-

limited IoT device, to be referred to as a sensor node (SN), a

mobile reader (MR), which is used as a mobile sink that can

move seamlessly across the network, and a processing unit

(PU) that receives the data collected by the MR. The goal

of the PU is to store and process the data collected from the

sensor nodes, and evaluate the desired rate of data sampling,

based on history. The goal of the MR is to enable network

connectivity to the SNs, even in areas which suffer from poor

cellular coverage. The MR can be, preferably, a UAV equipped

with a dedicated reader device (e.g., an RFID reader), or even a

smartphone leveraged to detect IoT devices. Many smartphone

producers leverage their smartphones to detect IoT devices.

For instance, in [20] this feature was used for IoT device

authentication. The usage of smartphones for reading the data

stored in IoT devices is already available commercially. See,

for instance, FitBit [2]. The SN can be either static or mobile.

It can be, for instance, either a sensor (e.g., for measuring

temperature, humidity, pressure, etc.), or an RFID tag (e.g.,

for tracking animals), or a wearable IoT device. Very often,

the SN has a very limited power capacity, or it can be even a

battery-less device (e.g., passive RFID tags). Thus, the model

assumption is that the SN electric power capacity is very

limited if any. The SN has severe constraints on its memory

capacity and processing power. The SN is assumed to store a

piece of information which can be either transmitted by the

SN (in case it is capable to transmit), or retrieved by a special

device called ”reader” (i.e., the MR). In general, the SN does

not have to possess an IP address. It is assumed that time

is slotted. Since the issue of UAV path planning has been

extensively discussed by previous studies (see, for instance,

in [1], [6], [4], [7], [8], [12], [13], [19], [21]), the focus of

this study is only on the monitoring rate of the IoT device, or

the WSN, which consists of sensor nodes (SNs), and a mobile

reader (MR).

III. THE DATA COLLECTION SCHEME

The key idea of our scheme is to use a dedicated device,

for instance, a smartphone, or a UAV, referred to as MR, for

accessing the data stored in the SNs. While traditionally each

SN transmits its data either to the nearest sink node or to its

nearest neighbors (using multi-hop transmission), we consider

passive devices. Based on run-time knowledge processed in

the cloud, the MR initiates a data collection procedure, during

which it reads the data stored in the SNs. The MR either

access the data stored in the IoT devices carried by the same

person who owns the MR (e.g., a smartphone can read the data

stored in healthcare devices), or travels through the WSN. The

MR delivers this data to the nearest base station (BS), to be

eventually stored and processed in the cloud. That means that

the memory size of the MR should be sufficient to store the

collected data until it is transmitted to the nearest BS. The

main focus of this study is the evaluation of the optimal rate

at which the MR should monitor the SNs.

The MR which is used as a mobile sink, uses a short-

range communication to its SNs. The MR-SN connection is

established by a proximity-based authentication process, as

described in detail in [20]. Therefore, when applied for WSNs,

the UAV flight altitude should be very low (2-10 meters).

The MR is also used as the SNs gateway to the wireless

network. Since the MR-SNs link is based on a short-range

communication, it is more protected against hostile attacks

[20].



A. Analysis

The data collected by the MR is delivered to the cloud,

which adjusts the rate at which the WSN data is collected and

then disseminated across the network, to run-time knowledge.

Consequently, the amount of data produced by the WSN

and disseminated across the network, as well as the power

consumed by the WSN, are both reduced. The implementation

of this task is not feasible for most SNs, since it usually

uses highly computational algorithms based on approximation

techniques and run-time knowledge. For this reason, previous

studies addressing this issue proposed network-based solu-

tions, in which this task is performed by a network element.

Some of these studies are described in [18].

The key idea of this study is the usage of initiated data

collection, activated at discrete time points. Our main concern

is when to initiate the next data collection process. Therefore,

our monitoring model is based on a discrete time Markovian

model. During each time slot, an SN can be at any one of N
states, denoted by i, i = 1...N . For instance, a set of values

(e.g., pressure, temperature) within a pre-specified range can

be considered as a ”state”. The states can be classified as

”normal”, or as such that require special attention. For sensors

(e.g., RFID tags) used for tracking animals, a ”state” can be

the area unit in which the animal is located. The time is

slotted, and at each time slot, an animal can move from one

zone (”a state”) to another. A state transition matrix S, whose

dimension is N ×N , is associated for each SN. The element

sij in S is the SN state transition probability from state i to

state j during one time slot. For instance, moving from area

i to area j (for an SN used to track an animal), or when

the temperature measured by the SN is changed by one unit.

Using the SN history, S can be constructed by the cloud. We

assume that during one time slot the SN can make at most one

transition from one state to another. It is further assumed that

the state transition matrix S is ergodic and regular, implying

that det(S) ̸= 0. The probability for state transition from state

i to state j during t time slots is denoted by stij . That is,

stij = Pr[M(t′ + t) = j | M(t′) = i]; where the SN state at

time t is denoted by M(t), s0ij = 1 if i = j and 0 if i ̸= j. The

usage of Markovian model implies that stij does not depend on

t′. Denoting the probability to find the SN in state k at time t
by ϕk(t), t = 0, 1, 2..., and let ϕ(t) = (ϕ1(t), . . . , ϕN (t)). We

denote the limiting state probability of the SN in steady state,

ϕ(∞), by ϕ. The state probability of the SN ϕ(t) is given by:

ϕ(t) = ϕ(0)St.

Our goal is to obtain the desired rate of monitoring an SN.

That is, we seek to find the maximal time interval during

which the data stored in the SN does not change significantly,

therefore there is no need to collect this data.

Let x be the last known state of an SN d, at time t = 0. In

order to optimize the rate of monitoring d, our interest is to

obtain the probability that d will stay in its state at any given

time t. Given that at time t = 0 d was in state x, then the

probability to find d in this state at time t is given by:

ϕx(t) = rxS
tr

′

x. (1)

Where rx is the row vector whose xth element is 1, and all

the other elements are zero, and r
′

x is the column vector that

is the transpose of rx. Since the number of states N can be

very large, the size of the state transition matrix S may be

very large. Therefore an exact solution of Equation 1 has a

relatively high computational complexity. Thus, our goal is to

find an approximation solution for the transitivity of d over

time. We use the Shrinkage Factor defined in [3], to get that:

|ϕi(∞)− ϕi(t)| ≈ G| det(S)|
t

N−1 , (2)

where G is a constant to be determined. Requiring that

ϕ(∞) and ϕi(0), as determined by Equation 2, are exact, and

denoting ϕ(∞) and ϕi(∞) by ϕ and ϕi, respectively, we get

that:

ϕi(t) ≈ ϕi + [ϕi(0)− ϕi]| det(S)|
t/(N−1)

, (3)

We define α by:

α = | det(S)|
1/(N−1)

. (4)

The parameter α−(N−1) describes the rate at which the

Markov chain converges to its steady state. Therefore, we

identify α (0 < α < 1) as the tendency of the SN to remain

in its current state. Whenever the parameter α approaches

1, the state transition matrix S approaches the unity matrix,

and the state of the SN remains almost the same over time.

Whenever α approaches 0, the SN converges to its steady state

instantaneously, independently of its initial state. Hence, the

SN transitivity is maximized.

Equation 3 determines an approximation for the distance

between ϕi(t) and ϕi. An upper bound on this approximation

was proposed in [15]. Denoting the second largest eigenvalue

of the state transition matrix S by Γsec, an upper bound on

the distance between ϕi(t) and ϕi is given by:

|ϕi(t)− ϕi| ≤
ϕi

ϕmin
Γsec

t , (5)

where ϕmin is the smallest component of ϕ: ϕmin = min{ϕi :
1 ≤ i ≤ N}. It was shown in [14] that since S is ergodic,

|Γsec| < 1 . Denoting the approximated value of ϕi(t) given

in Equation 3 by ϕ′
i(t) we get that:

|ϕ′
i(t)− ϕi| = |ϕi(0)− ϕi|α

t. (6)

Our interest is in the distance between the approximated and

real value of ϕi(t). Denoting this difference by ϵ(t), and using

the triangle inequality, it follows from Equation 5 and Equation

6 that:

ϵ(t) = |ϕ′
i(t)− ϕi(t)| ≤

ϕi

ϕmin
Γsec

t + |ϕ′
i(t)− ϕi| (7)

Substitute Equations 5, 6 in Equation 7 we get that:

ϵ(t) ≤

{

φi

φmin

Γsec
t + ϕiα

t if ϕi ≥ 1/2
φi

φmin

Γsec
t + (1− ϕi)α

t if ϕi < 1/2
(8)

It follows from the above analysis that as long as ϕmin is not

extremely small relative to other ϕi’s, and Γsec is bounded

away from 1, the upper bound on the approximation error



suggested in Equation 3 can be neglected. Both conditions

hold for a broad class of Markov chains, which can be used for

realistic sensor modeling, and are rarely violated in practice.

The upper bound on the approximation error determined in

Equation 8 can be used for controlling the monitoring rate of

the WSN. Given the desired accuracy level ∆ for an SN d, we

can use the upper bound on the approximation error given in

Equation 8 to obtain the monitoring rate for d. The length T
of the time interval between two consecutive data collection

actions from d is determined by the condition:

ϵ(T ) ≥ ∆. (9)

Where the upper bound on ϵ(T ) is determined by Equation 8.

Equation 9 determines the desired rate 1
T of monitoring the

WSN. It follows from Equation 8 that the approximation error

decreases exponentially with time. Therefore, as time increases

we can approximate the SN state accurately using Equation

3. Clearly, the monitoring rate should be state-depended. For

instance, the state transition matrix S may depend on the time-

in-day, season, etc... The information obtained by the WSN

can be processed in the cloud and used to determine the next

time of data collection.

It follows from Equation 8 that the approximation error ϵ(t)
decreases exponentially with time. The reason for this obser-

vation is that ϵ(t) depends on αt. It follows from Equation 4

that the parameter α depends on the determinant of S, that

all its elements are probabilities, i.e. non-negative numbers

between 0 and 1. Therefore, αt decreases exponentially with

t. The same reasoning applies for Γsec
t, since 0 < Γsec < 1.

Therefore, it follows from Equation 8 that the approximation

error ϵ(t) decreases exponentially with time.

It follows from Equation 3 and Equation 8 that α reflects

the rate of the WSN information aging. The factor αt which

appears in both equations reflects the value of prior knowledge

obtained at time t = 0. The future value of the information

obtained during the data collection process depends on α.

As α approaches 1, the SN is more stable, and it is likely

to remain in its current state for a relatively long time. On

the other hand, as α approaches zero, the future value of

the information obtained during the data collection process

decreases very rapidly, and there is a need for frequent data

collection processes.

Upon data collection from an SN d, to be found in state

x, the benefit of reading the data stored in d decreases with

the steady state probability ϕx to find d in its current state x.

That is, the benefit is given by 1 − ϕx. The reason for this

behavior is that the benefit of reading the data stored in d
increases with the ”surprise”, which is the difference between

the value expected to be found, which depends on the steady

state probability vector ϕ, and the probability to find d in state

x, which is the real value of d at the time of data collection.

As the state x of d is unlikely - that is as ϕx approaches zero,

the ”surprise” is greater, and therefore the benefit is greater.

The analysis above holds for a single SN. In a real WSN,

we should have a large number of SNs. Thus, the probabilistic

approach described above should be accurate when applied on

a real WSN which consists of many SNs.

Given that at time t = 0, an SN d is in state x (i.e., the

value of the data stored in d is within a specific range x), the

probability that d will remain in its current state x during the

next t time units is given by:

St
xx = (1−

∑

j ̸=x

Sxj)
t. (10)

Thus, it follows from Equation 10 that, after obtaining the

data (i.e., the state) x stored in an SN d at time t = 0, the

confidence in this value decreases exponentially with time,

and depends on the state transition probability Sxx. This

confidence level can be used to determine an upper bound

on the rate of monitoring the SN d.

The discrete time Markovian model used in this section for

the analysis of the data stored in the SNs can be used for other

applications of WSNs. For instance, the states of the SN can

describe the SN location. This usage is applicable, for instance,

for monitoring cattle and sheep farms. For these applications,

each animal can be marked with an RFID tag that enables to

track the animal location. The area covered by the WSN is

partitioned into zones. A state i indicates that the animal is

currently residing in the zone i. The state transition matrix S

for this application describes the movement probability from

one zone (the ”state”) to another zone. A UAV equipped with

an RFID reader can be used to track the animals. Another

possible application for this usage of the model described

above is for monitoring a large geographic area covered with

many surveillance cameras. Using UAV - SNs communication

we can track objects moving across the WSN.

IV. PERFORMANCE ANALYSIS AND SIMULATION RESULTS

The proposed scheme enables to reduce both the deploy-

ment cost, as well as the operational cost of WSNs. These

goals are achieved by reducing the cost of the SNs, that do not

have to use expensive batteries for frequent data transmissions

and extending their lifetime. Since sensors acquisition and

battery maintenance cost are the most significant cost factors

that affect the deployment and operational cost of the WSN,

reducing their cost can significantly reduce the cost of WSNs.

Moreover, there is no need for RF modules, processors, and

sink nodes, which can be replaced by either a smartphone or

a single UAV traveling across the WSN.

The efficiency of the data collection process can be further

increased by limiting the data collection process to the specific

areas that require special attention, in response to reported

events (e.g., by using a UAV-installed camera). There is no

need to scan every SN in the WSN.

Alternatively, the mobile reader can be used by a ”conven-

tional” WSN, in which the SNs can transmit. In this scenario,

each time a group of SNs transmits exceptional data (e.g., for

forest monitoring) a UAV can be sent for detailed monitoring

on the suspected area. Both goals, cost reduction, and real

time detailed monitoring can be achieved simultaneously. For

instance, by using two types of SNs within the same WSN -



a relatively small number of more expensive SNs, which can

transmit data, and a large number of cheaper SNs - which

do not transmit data, but should be monitored under certain

conditions. The UAV can collect data from the WSN, and

transmits it to a BS located far away from the sensing area.

Consequently, the multi-hop transmission between the SNs can

be avoided, and the area covered by the WSN can be extended.

A. Simulation results

In this section numerical experiments were used for evalu-

ating the performance of the proposed data gathering method.

The system under consideration is a collection of green-

houses, monitored by 10000 SNs arranged in a rectangle

shape, of sizes 10 km X 10 km. The SNs are placed in 100

lines, with a distance of 100 meters between two neighboring

lines, and a distance of 100 meters between two neighboring

SNs in the same line. For this system, the MR can be even

a smartphone equipped with an RFID reader [20]. Each SN

monitors the temperature, humidity, CO2 concentration, and

light within its greenhouse and can be found in any of 20

states. The combination of these parameters defines the SN

state. The treatment required for the plant is determined by

the state of the local SN, for instance: ”ready for plantation”,

”needs more water”, ”ready for picking”, etc. The state tran-

sition matrix is constructed in the cloud, based on history.

Since the data stored in each SN is unique for the greenhouse

in which this SN is located, data sampling methods are not

feasible. The performance metric considered is the quality

of the proposed approximation method and the rate of data

collections/transmissions per time unit.

The quality of the approximation method suggested in

Equation 3 is considered in Figure 1. 10 20x20 matrices

were considered, reflecting 10 types of the state transition

matrix S. The real value of each component of the vector

ϕ(t) was compared with the approximated value of the same

component. Figure 1 depicts the arithmetic average of the

approximation error over all the experiments, as a function

of time. It is clearly demonstrated that the difference between

the real and approximated values are negligible, and decreases

exponentially with time, as predicted in Section III.

Figure 2 depicts the average number of data collections per

SN, for passive WSN (PWSN), versus traditional (transmit-

ting) WSN (TWSN), in which all the SNs must transmit.

The TWSN is partitioned into clusters. Each SN transmits

its data to its cluster head whenever its state is changed.

The cluster heads use multi-hop transmission between them

to deliver the data to the nearest BS. Two types of TWSN are

considered - with no multi-hop transmission (i.e., it consists

of one cluster), and with three hops transmission per SN

(i.e., each cluster head uses on average two transmissions to

another cluster head, which delivers the information to the

nearest BS). It is further assumed that the energy required for

reading the information from each SN is considered equal to

that required for one data transmission in the TWSN under

consideration. The number of data transmissions/collections

is depicted as a function of time (measured in time units).

Fig. 1: The quality of approximation, expressed by the average

approximation error, as a function of time (in time units).

The TWSN is distinguished from the PWSN. The PWSN

uses a smartphone/UAV for data collection whenever the time

duration T since the last data collection is sufficiently large,

such that a state transition is expected. For the TWSN with no

multi-hop transmission, each SN transmits to the nearest sink.

Thus, each data transmission must be followed by another

transmission - of the sink. For the TWSN with three hops

transmission, the average number of data transmissions per

SN is 4 transmissions - one to a neighbor of the SN (its

cluster head), an average of two messages transmitted between

the cluster heads, and a fourth transmission - to deliver the

information to the nearest BS. Consequently, even though the

average number of data collections per SN for the PWSN is

significantly larger than the equivalent number transmitted by

an SN in the TWSN which stores the data, the average number

of data transmissions generated by the TWSN is larger than

the equivalent number generated by the PWSN.

The scenarios depicted in Figure 2 are the worst cases for a

PWSN. In reality, even if a TWSN deployed over a large area

has cellular coverage, due to its large area a typical SN should

need several multi-hop transmissions until the data is delivered

to the nearest BS. Therefore, in reality, the power consumed

by a TWSN should be significantly higher than the equivalent

power consumed by a PWSN. Note that the average number

of data collection events from an SN for the PWSN in the

simulation was significantly higher than the average number

of data transmissions generated by the same SN in the TWSN

(before taking into consideration multi-hop transmissions until

the data is delivered to the nearest BS). The reason for this

is that, in the scenarios described in Figure 2, the SNs in the

TWSN transmit the minimum number of messages. An SN

should transmit data only whenever the detected value differs

from its last detected value. On the other hand, using the

suggested approximation method, data collection is performed



whenever a state transition is expected. As it is shown in Figure

1, the average value of the approximation error is significantly

smaller than the upper bound on the approximation accuracy

obtained in Equation 3. Therefore, the rate of data collection

events must be higher than the optimal (i.e., the minimal)

number of data transmissions required for keeping the ap-

proximation error below its upper bound. However, since a

TWSN must rely on multi-hop transmissions, the total power it

consumes is still higher than the power consumed by a PWSN,

as depicted in Figure 2. It should be noted that the cluster

heads in TWSN transmit more messages than the other SNs,

implying higher maintenance costs.

Fig. 2: The average number of data transmissions/collections

per SN, for a PWSN, versus transmitting WSN (TWSN) with

no multi-hop transmission, and with three hops transmission

per SN, as a function of time (measured in time units).

Figure 2 demonstrates that the power consumed by the

PWSN is less than the equivalent power consumed by the

TWSN, while the data collection rate of the PWSN is higher

than the equivalent rate of the TWSN. Thus, we get better

monitoring (i.e., higher data collection rate) for less price.

Figure 3 examines the power consumed by a PWSN versus

the power consumed by a TWSN, for the same data collection

rate. That is, the same WSNs used for Figure 2 transmit/collect

data every T time units, where T is a constant. This is a

realistic scenario, expected from a real WSN. The value used

in Figure 3 is T = 10 time units. Figure 3 demonstrates that

for the same data collection rate, the power consumed by the

PWSN is significantly less than the equivalent cost consumed

by the TWSN, since the multi-hop transmission between

cluster heads is completely avoided for the PWSN. The power-

saving increases linearly with the average number of multi-

hop transmissions. Therefore, the superiority of PWSN over

TWSN increases linearly with its size.

Fig. 3: The average number of data transmissions/collections

per SN, for a PWSN, versus TWSN, for the same data

collection rate, as a function of time (measured in time units).

V. SUMMARY AND CONCLUDING REMARKS

It was shown that the usage of initiated data collection from

a WSN enables WSNs deployment in areas that are poorly

covered by cellular networks. Moreover, it can potentially re-

duce, and under certain conditions even eliminate, the number

of data transmissions generated by the SNs. Consequently, the

SNs do not need a multi-hop transmission and can use cheaper

batteries. Since battery maintenance and sensor acquisition

cost are the major cost factors affecting the cost of a WSN,

both the WSN deployment cost as well as the operational cost

should be reduced.
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Figures

Figure 1

The quality of approximation, expressed by the average approximation error, as a function of time (in
time units).



Figure 2

The average number of data transmissions/collections per SN, for a PWSN, versus transmitting WSN
(TWSN) with no multi-hop transmission, and with three hops transmission per SN, as a function of time
(measured in time units).



Figure 3

The average number of data transmissions/collections per SN, for a PWSN, versus TWSN, for the same
data collection rate, as a function of time (measured in time units).


