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Abstract. A hybrid Neural-Genetic algorithm (NG) is presented for the frequency assignment problem in satellite
communications (FAPSC). The goal of this problem is minimizing the cochannel interference between satellite
communication systems by rearranging the frequency assignments. Previous approaches to FAPSC show lack of
scalability, which leads to poor results when the size of the problem grows. The NG algorithm consists of a Hopfield
neural network which manages the problem constraints hybridized with a genetic algorithm for improving the
solutions obtained. This separate management of constraints and optimization of objective function gives the NG
algorithm the properties of scalability required.

We analyze the FAPSC and its formulation, describe and discuss the NG algorithm and solve a set of benchmark
problems. The results obtained are compared with other existing approaches in order to show that the NG algorithm
is more scalable and performs better than previous algorithms in the FAPSC.
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1. Introduction

Frequency assignment problems (FAPs) arise in many
different situations in the context of wireless communi-
cations. Mobile telephony, TV broadcasting or satellite
communications are some examples [1, 2]. These ap-
plications lead to different models, types of instances
and solving techniques for FAPs, and include problems
like:

(1) Planning models for permanent spectrum alloca-
tion, which maximize the utilization of all available
spectra [3, 4].

(2) On-line algorithms for dynamically assigning fre-
quencies to users in a established network (mainly
wireless communication networks) [5, 6].

∗This work was supported in part by CICYT under grant TIC
1999-0216.
†Author to whom all correspondence should be addressed.

(3) Planning models for network and systems design,
like mobile, broadcast or satellite networks [2, 7].

In this paper we focus on planning the design of
satellite communication systems, in order to reduce
the system cochannel interference. This reduction of
the cochannel interference has arisen as one major fac-
tor for determining satellite systems design [1, 8]. In
addition, with the increase of geostationary satellites,
this interference reduction has become an even more
important issue, due to the necessity of accommodating
as many satellites as possible in geostationary orbit. To
cope with interference reduction, the rearrangement of
frequency assignments is considered an effective mea-
sure in practical situations [9].

Frequency rearrangement can be formulated as a
combinatorial optimization problem known as Fre-
quency Assignment Problem for Satellite Communica-
tions (FAPSC hereafter). FAPSC belongs to a class of
optimization problems with constraints, in which a goal
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function must be optimized and a set of constraints have
to be fulfilled for a solution to be feasible. In this kind of
problem, scalability is a major factor of the algorithm’s
design, due to the poor performance of non-scalable
algorithms when the size of the problem grows. In
this context, FAPSC has been solved before by using
emerging methods such as branch and bound [9] and
Hopfield neural networks [8]. Both techniques have
the problem of lack of scalability, which leads to poor
quality solutions in large, difficult problems.

In this paper we propose a hybrid Neural-Genetic
algorithm (NG) for the FAP, in which a fast serial
Hopfield neural network (HNN) manages the prob-
lem’s constraints and a simple Genetic Algorithm (GA)
searches for high-quality solutions. We show that our
algorithm is more scalable, due to the separate man-
agement of constraints and goal function, and achieves
better results than existing algorithms for the FAPSC.

The rest of the paper is organized as follows: in
the next section we define and analyze the FAPSC. In
Section 3 the hybrid Neural-Genetic algorithm is de-
scribed, by studying the Hopfield neural network and
the GA which form it. Section 4 shows the performance
of the NG algorithm, by solving a set of benchmark
problems and comparing the results obtained with pre-
vious algorithms for the FAPSC. In this section some
discussion about the design of the NG algorithm is
provided. Finally, Section 5 ends the paper with some
concluding remarks.

2. Problem Formulation

Given two adjacent satellite systems as in Fig. 1, the
FAPSC consists of reducing the inter-system cochannel
interference by rearranging the frequency assignment
on carriers in system #2, while the assignment in system
#1 remains fixed.

Due to the fact that each carrier usually occupies
a different length in a frequency band [9], introduced
the segmentation of carriers, in such a way that every
carrier can be described by a collection of consecutive
unit segments.

In a system with M segments, an interference M×M
matrix E is defined, in which the ei j element stands for
the cochannel interference when segment #i in system
#2 uses a common frequency with segment #j in system
#1 (see Fig. 2 as an example).

The constraints of the FAPSC are:

(C1) Every segment in system #2 must be assigned to
a segment in system #1.

S1S2

STATION 1 STATION 2

Figure 1. Outline of cochannel interference.
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Figure 2. Example of interference matrix. Symbols ∗ stand for an
infinity interference.

(C2) Every segment in system #1 can be assigned by
at most one segment in system #2.

(C3) All the segments of each carrier in system #2 must
be assigned to consecutive segments in system #1
in the same order.

The frequency reassignment in a system with N car-
riers and M segments can be represented by a square
M × M matrix F , called the reassignment matrix, in
such a way that fi j = 1 means that the segment #i in
system #2 has been reassigned to segment # j in system
#1. Following [8], the management of constraint C3 is
performed by using a mixed representation to solve the
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Figure 3. Segmentation of the system defined by Figs. 1 and 2.

problem: another matrix F̃ , N × M , derived from F
is defined, such that f̃ i j = 1 means that first segment
of carrier #i in system #2 has been reassigned to seg-
ment # j in system #1, and the following segments of
the carrier go behind consecutively. Figure 3 shows an
example of assignment matrices F̃ and F for the inter-
ference matrix E in Fig. 2. Note that matrix F can be
obtained in a straight forward manner from matrix F̃
knowing the number of carriers of system #2 and their
lengths in segments.

In addition, we also need to define a matrix C , N×N ,
in which every element ci j stands for the minimum
separation in segments between two carriers #i and # j .

Taking into account the definitions above, we can
mathematically formulate the frequency assignment
problem as follows:

Achieve an assignment F̃ (recall that F is obtained
from F̃) such that:

min(γ (E, F)) (1)

subject to:

N∑
i=1

f̃ i j = 1 j = 1, . . . , M (2)

and in such a way that the assignment F̃ fulfils the
constraints in C , i.e., if f̃ i j = 1 and f̃ pq = 1 then
| j − q| ≥ cip.

Where γ (E, F) represents an objective function de-
pending on the interference matrix E and assignment
matrix F . In this paper we consider two objective
functions.

First, we consider an objective function for the FAP
which requires that the total interference of the systems

to be minimum:

γ1(E, F) =
M∑

i=1

M∑
j=1

ei j · fi j . (3)

and second, we introduce an objective function which
minimizes the maximum peak of interference between
the systems (largest interference):

γ2(E, F) = max(ei j · fi j ) ∀ i, j (4)

2.1. An Example

An example of a small FAPSC instance may clarify
concepts. First, consider the two systems (satellite-
station) depicted in Fig. 1. Imagine that the interference
matrix between the two systems, E , is the one in Fig. 2.
Both systems have M = 6 segments, and system #2 has
N = 4 carriers. Note that the range of carrier (length in
segments of the minimum and the maximum carrier in
the system) in this example is 1–2 (the smaller carrier
has 1 segment and the larger carrier has 2 segments).
The range of interference is defined as the minimum
(not 0) and maximum (not infinity) values in matrix E .
In this example the range of interference is 5–55.

The FAPSC consists of reassigning carriers of sys-
tem #2, whereas system #1 is fixed. Figure 4 illustrates
the segmentation of the systems, and a possible reas-
signment when interference matrix in Fig. 2 is consid-
ered.

Figure 3 shows this assignment in the mixed rep-
resentation we use to solve the problem. Figure 3(a)
shows matrix F̃ . Note that this matrix fulfils the con-
straint in Eq. (2) (one “1” per row in F̃), and also fulfils
the constraints in C (separation in segments between
one “1” and the following in F̃ is at least equal to
the length of the carrier first “1” belongs). In Fig. 3(b)
we can see how to get matrix F from F̃ , only knowing
the carrier’s length. This matrix F will be used to cal-
culate the objective function associated to the problem.

3. The Neural-Genetic Algorithm

The algorithm we propose for solving the FAPSC con-
sists of a hybrid global-local scheme, where a global
algorithm looks for the minimization of the objective
function, and a local procedure manages the fulfilment
of FAPSC’s constraints. We use a a standard Genetic
Algorithm (GA) as a global algorithm, due to several
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Figure 4. (a) Example of matrix F̃ for the interference matrix of
Fig. 2 (shaded squares represent “1s” and whites squares “0s”).
(b) Matrix F obtained from F̃ .

reasons. First, they are known to be robust search algo-
rithms [10]; second, the standard GA codify the solu-
tions as binary strings, so the solution matrix F̃ can be
codified in a GA as a binary string. This allows the con-
struction of hybrid search schemes, mixing global and
local algorithms. The separation of the global search
from the constraints fulfilment gives our algorithm the
desired properties of scalability, outperforming the ex-
isting algorithms in large difficult problems, as we will
show in the experiments Section.

3.1. The Local Search Procedure

As was mentioned before, the local search procedure
we use consists of a kind of Hopfield Neural Net-
work (HNN) whose dynamics depends on the matrix C ,
and, of course, on the initial state of the neurons. This
Hopfield network belongs to a class of digital Hopfield
networks, where the neurons only can take the values
1 or 0, see [11] for further details. The structure of the

HNN can be described as a graph, where the set of ver-
tices are the neurons, and the set of edges defines the
connections between the neurons. We map a neuron to
every element in the solution matrix F̃ . In order to sim-
plify notation, we shall also use matrix F̃ to denote the
neurons in the Hopfield network. The HNN dynamics
can be described then in the following way: After a ran-
dom initialization of every neuron with binary values,
the HNN operates in serial mode. This means that only
a neuron is updated at a time, while the rest remain
unchanged. Denoting by f̃ i j (t) the state of a neuron on
time t , the update rule is described by:

f̃ i j (t) = isgn




N∑
p=1
p �=i

min(M, j+ci,p)∑
q=max(1,ci,p+1)

q �= j

f̃ pq


 ∀ i, j. (5)

where the isgn operator is defined by:

isgn(a) =
{

0 if a > 0

1 otherwise

The discussion of this updating rule is important to
understand how the digital Hopfield network proposed
works: consider that a neuron f̃ i j has to be updated.1

Its state f̃ i j depends only on the state of other neurons
f̃ pq within a distance of cip in columns. If the state
of any of these f̃ pq neurons in the neighbourhood of
f̃ i j is equal to 1, the solution given by the network
would be infeasible, and therefore the neuron f̃ i j must
be updated to 0. In the case that all neurons f̃ pq within
a distance in columns of cip from f̃ i j are 0, the neuron
f̃ i j will be updated to 1.

Following [11], the convergence of this neural net-
work to a feasible solution is always guaranteed if the
number of neurons is finite. In addition, it is expected
that this neural network converges much faster to a
feasible solution than traditional Hopfield networks de-
fined by means of energy function terms, what makes
this network suitable to be hybridized with global
search heuristics like Genetic Algorithms.

It is important to note that in updating rule (5), the
neurons f̃ i j are updated in their natural order, i.e.,
i = 1, 2, . . . , N , j = 1, 2, . . . , M . We introduce a
modification of this rule by performing the updating
of the neurons in a random ordering of the rows (vari-
able i). This way the variability in the feasible solution
found increases. Let π (i) be a random permutation of
i = 1, 2, . . . , N . The new updating rule of the HNN
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results:

f̃ π (i) j (t) = isgn




N∑
p=1

p �=π (i)

min(M, j+cπ (i),p)∑
q=max(1,cπ (i),p+1)

q �= j

f̃ pq


 ∀ i, j.

(6)

This updating rule runs over the rows of F̃ in the or-
der given by the permutation π (i), but the columns are
updated in its natural order j = 1, 2, . . . , M . Note that
the discussion carried on before on the performance of
rule (5) is valid for this new rule (6), since only the
order of updating has been modified.

We can define a cycle as the set of N × M successive
neuron updates in a given order. In a cycle, every neuron
is updated once following the given order π (i), which is
fixed during the execution of the algorithm. After every
cycle, the convergence of the HNN is checked. The
HNN is considered converged if none of the neurons
have changed their state in the cycle. The final state of
the HNN dynamics is a feasible solution for the FAPSC,
which fulfils the constraints of the matrix C .

3.2. The Global Search Algorithm

The optimization of the objective function is performed
in our algorithm by a Genetic Algorithm (GA), in the
following way: A solution F̃ is codified in the GA as
a (N × M)-length binary string. The GA population is
formed by a fix number of (N × M)-length strings, χ ,
which codify several solutions to the problem. These
solutions are called individuals of the population. The
population is then evolved through successive genera-
tions by means of the application of the genetic opera-
tors: selection, crossover and mutation [10].

Selection is the process by which individuals are
randomly sampled with probabilities inversely propor-
tional to their fitness values (in order to minimize the
objective function). In this case, values of fitness are
given by the problem’s objective function:

γ1(E, F) =
M∑

i=1

M∑
j=1

ei j · fi j . (7)

or

γ2(E, F) = max(ei j · fi j ) ∀ i, j (8)

An elitist strategy, consisting in always passing the
highest fitness string to the next generation, is applied
in order to preserve the best solution encountered thus

far in the evolution. The selected set, of the same size of
the initial population, χ , is subjected to the crossover
operation. First, the binary strings are coupled at ran-
dom. Second, for each pair of strings, an integer posi-
tion along the string is selected uniformly at random.
Two new strings are composed by swapping all bits
between the selected position and the end of the string.
This operation is applied to the couples with probability
Pc less than one.

By means of the mutation operation, every bit in
every string of the population may be changed from 1
to 0, or vice versa, with a very small probability, Pm .

Finally, since crossover and mutation operators may
cause the new string to be infeasible, this string is set as
the initial state of the HNN, and the result of the neural
algorithm substitutes it in the new population.

3.3. The Complete Algorithm

The complete algorithm for the FAPSC is formed by
mixing the GA and the HNN, and performs in the fol-
lowing way: First, the GA population is initialized at
random. At this stage, the individuals are not feasible
solutions, so, every individual is passed to the HNN,
which obtains a feasible one, and the fitness value as-
sociated to the individual is calculated. Once the GA
population is formed only by feasible solutions to the
problem, the genetic operators, selection, crossover and
mutation, are applied as was explained in Section 3.2.
Since the genetic operators modify the individuals,
some of them might become infeasible. Thus, the indi-
viduals are again passed to the HNN and a new step of
the NG algorithm begins.

Figure 5 shows a flowchart for the NG, and in pseu-
docode, it can be written as follows:

NG Algorithm
Initialize GA population at random
while (max. number of generations not reached) do

for (every individual F̃)
Run the HNN to obtain a feasible F̃ .
Obtain F from F̃ and calculate the fitness

value of the individual through it.
Substitute the individual in the GA by the

feasible F̃ .
endfor

selection
crossover
mutation

end while
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Figure 5. Flowchart for the NG algorithm.

4. Experiments

In order to test the performance of our Neural-Genetic
algorithm, a set of benchmark problems from [8] have
been selected. There are two easy problems, #1 and
#2, one problem of medium difficulty, #3 and two hard
problems, #4 and #5. A further description of these
problems and their interference matrices can be found
in [8]. In addition, four new hard problems have been
added to the set of benchmark problems, and the al-
gorithm in [8] has been programmed and applied to
them for comparison purposes. The main characteris-
tics of the benchmark problems are shown in Table 1.
Note that problem #1 has been used as an example in
Section 2.1.

The population of the GA was fixed to 50 individuals
(χ = 50), with a stop criterion based on the number of
generations (maximum 1000). The best individual was
passed to the next generation as has been pointed out
in Section 3.2. Probabilities of crossover and mutation
were fixed to Pc = 0.6 and Pm = 0.01, respectively.

Table 1. Main features of the set of benchmark problems.

Range of Range of
Problem # Carriers Segments carrier interfer.

1 4 6 1–2 5–55

2 4 6 1–2 1–9

3 10 32 1–8 1–10

4 10 32 1–8 1–100

5 10 32 1–8 1–1000

6 18 60 1–8 1–50

7 20 100 1–8 1–100

8 15 50 1–7 1–1000

9 50 200 1–8 1–1000

4.1. Results

Table 2 shows the results obtained by our NG algorithm
and a comparison with other algorithms results for the
benchmark problems considered, when total interfer-
ence (objective function γ1) is considered. The results
shown in this table correspond to the best solutions
encountered by the algorithms. In low difficulty prob-
lems, our NG algorithm achieves equal solution than
the best existing algorithm, whereas in harder prob-
lems, #4 to #9, NG algorithm improves the results of
other existing methods. The solution achieved by NG
algorithm in problem #4 is 5% better than the best so-
lution found by the best existing algorithm, 21% in
problem #5, 12% in #6, 17% in #7, 21% in #8 and
11% better in problem #9. These results show that NG
algorithm performs well in difficult problems, achiev-
ing better results and being much more scalable than
existing algorithms.

Table 2. Comparison of the results obtained by the NG algorithm
with previous approaches (total interference, γ1). Problems #1 to #9.

Mizuike and Ito Funabiki and Nishikawa
Problem # [9] [8] NG

1 100 100 100

2 13 13 13

3 100 85 85

4 929 880 838

5 10330 8693 6851

6 – 1218 1075

7 – 4633 3860

8 – 16192 12860

9 – 70355 62853



A Hybrid Neural-Genetic Algorithm for the Frequency Assignment Problem in Satellite Communications 213

Table 3. Comparison of the results obtained by the NG algorithm
with previous approaches (largest interference, γ2). Problems #1 to
#9.

Mizuike and Ito Funabiki and Nishikawa
Problem # [9] [8] NG

1 30 30 30

2 4 4 4

3 8 8 8

4 67 64 64

5 803 640 640

6 – 49 43

7 – 100 96

8 – 919 687

9 – 1000 938

Table 3 shows the results obtained by the NG al-
gorithm when the objective function γ2 is considered
(largest interference in the assignments). Our algorithm
achieves equal or better results than other algorithms
and the differences are again notorious in the hardest
problems #6 to #9.

Figure 6(a) and (b), shows the best evolution of the
genetic algorithm for problems #4 and #5, respectively
(objective function γ1 is considered). In these figures it
is possible to check the performance of the GA: in gen-
eration 0 (random initialization of GA population) the
best individuals obtained for Problems #4 and #5 have
a value of total interference about 1250 and 11000, re-
spectively. In the last generation of the GA, the quality
of the solution found is much better: 838 and 6851, re-
spectively. These results shown that the GA has a good
performance in both problems.

In Fig. 7 the best solutions obtained by the NG algo-
rithm for problems #4 (a) and #5 (b), are displayed as
an example (objective function γ1). Note that both so-
lutions are feasible, fulfilling the problem’s constraints
given in Section 2. In the design of real systems, we
would utilize these solutions in the case that the to-
tal interference of the systems must be controlled. In
a system where the primal objective in its design is to
control peaks of interference, the solution provided by
objective function γ2 should be used.

4.2. NG and its Components: Effects of the
Hybridization

As has been shown before, the hybridization of the
HNN and the GA produces a novel algorithm which is

able to improve previous approaches for the FAPSC.
However, it would be also interesting to compare the
results obtained by the NG algorithm with the results
obtained using the HNN on its own. Note that the bi-
nary HNN used in this paper is designed for managing
the FSCRP constraints, without taking into account
the objective function. We can include the objective
function minimization into the binary HNN by adding
a local search heuristic at the end of its dynamics.
Once the HNN is considered converged, a number κ of
swaps between carriers of the same length are applied.
If a better solution is found, it is consider the current
assignment, and the swapping process continues from
it. Worse solutions than the current one are discarded.
Figure 8 shows the process of swapping between carri-
ers of the same length. This figure represents a problem
with 6 carriers and 9 segments, in which the length of
the carriers varies between 1 and 2. Two possible swaps
between carriers of the same length are illustrated.
Note that swapping between carriers of different
length would be a much more complex process, which
would provided unfeasible solutions in the majority of
swaps.

Table 4 shows a comparison between the results ob-
tained by the HNN, the HNN with the local search
heuristic (HNNlocal hereafter) and the NG algorithm.
We launched 5000 HNN and HNNlocal, fixing parame-
ter κ = 100. Function γ1 was used as objective function.
Note that the HNN obtains poor results in the FAPSC.
This result is expected, since the network is designed
for providing feasible solutions without optimizing the
objective function. The inclusion of the local search

Table 4. Comparison of the results ob-
tained with the HNN, the HNN with local
search heuristic incorporated and the NG
algorithm.

Problem # HNN HNNlocal NG

1 100 100 100

2 13 13 13

3 112 87 85

4 1009 903 838

5 9740 7362 6851

6 1390 1263 1075

7 5023 4425 3860

8 18172 16202 12860

9 78558 69831 62853
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Figure 6. (a) Evolution of the best individual in a run of the GA for problem #4; (b) Evolution of the best individual in a run of the GA for
problem #5.

based on swapping carriers improves the HNN perfor-
mance, as can be seen in this table. The results ob-
tained by the HNNlocal are better than the results ob-
tained by the HNN in all cases, but the two first easy
problems, where both networks obtain the same result.
Note that the NG algorithm obtain results which are

better than the HNN, with and without local search
heuristic incorporated. There is a large difference be-
tween the HNN results and the NG results, which
means that the hybridization of the HNN with the GA is
the key for obtaining a powerful hybrid approach for the
FAPSC.
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Figure 7. Best assignments (F̃) achieved by the NG algorithm in Problems #4 (a) and #5 (b), using objective function γ1.
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Figure 8. Example of local heuristic included in the HNN dynamics: (a) initial assignment, (b) final assignment.

4.3. Some Comments About the NG
Algorithm’s Design

The increasing of computational cost is the main draw-
back when using a hybrid algorithm in a combinato-
rial optimization problem as the FAPSC. Thus, the de-
sign of the local and global algorithms to be mixed
must be as accurate as possible, taking into account

the computational cost as a primary factor. The design
of the NG algorithm follows the above hints: first, the
GA uses standard genetic operators, as was shown in
Section 3.2. Second, the HNN used is a fast digital net-
work, with very good properties of convergence. We
found that the HNN always achieves a feasible solu-
tion starting from an unfeasible one codified in the GA.
In addition, the speed of convergence of the network is
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Figure 9. Number of cycles needed for the HNN convergence, in problem #5.

very good: Fig. 9 shows that the 75% of the networks
launched for solving problem #5 converge in 3 cycles
(see Section 3.1 for the definition of a cycle). Over the
23% of the networks launched converge in 4 cycles,
and only about the 2% of the networks run converge in
5 cycles. The updating rule involving a random permu-
tation of rows (see Section 3.1), does not modify these
values, due to it only changes the order of updating, not
the structure of the HNN dynamics. These data show
that the HNN used in this paper fast enough to allow
its mixing with a GA.

5. Conclusions

In this paper, a hybrid Neural-Genetic algorithm for
the frequency assignment problem in satellite com-
munications has been presented. The algorithm con-
sists of a N × M Hopfield neural network (N -carriers,
M-segments) which manages the problem’s con-
straints, hybridized with a genetic algorithm which im-
proves the solution obtained from the network. This
approach for the FAPSC is more scalable than pre-
vious algorithms due to the separate management of
constraints and goal function.

Simulations in a set of benchmark problems have
shown very good performance of the algorithm,

obtaining better solutions in terms of largest and to-
tal interference than existing algorithms, and showing
the differences in scalability between the NG and the
other algorithms.
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Note

1. Recall that the updating of neuron f̃i j will only involves states 1
or 0 (digital network).
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