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Abstract

The combination of evidence can increase retrieval effectiveness. In this paper, we investigate the
effectiveness of a decision mechanism for the selective combination of evidence for Web Information
Retrieval and particularly for topic distillation. We introduce two measures of a query’s broadness
and use them to select an appropriate combination of evidence for each query. The results from our
experiments show that there is a statistically significant association between the output of the decision
mechanism and the relative effectiveness of the different combinations of evidence. Moreover, we show
that the proposed methodology can be applied in an operational setting, where relevance information is
not available, by setting the decision mechanism’s thresholds automatically.

Keywords Web information retrieval, Topic distillation, decision mechanism, selective combination
of evidence, query scope, aggregates

1 Introduction

It has been recognised that the combination of different sources of evidence can improve the effectiveness

of Information Retrieval (IR) systems (Croft 2000). In the context of Web IR, and more specifically

topic distillation, in addition to the textual content of documents, there is another source of evidence,

namely the hyperlink structure, which can be employed to refine the content-based retrieval and increase

the precision among the top ranked documents. However, the weaker evidence provided from the hy-

perlink structure and the different types of queries, i.e. specific or broad queries (Kleinberg 1998), or

navigational versus informational queries (Broder 2002), suggest that combining content and hyperlink

analysis in a uniform way, independently from the queries, does not necessarily lead to optimal retrieval

effectiveness (Plachouras et al. 2003, Plachouras and Ounis 2004).
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We propose a decision mechanism for the selective combination of evidence. This decision mechanism

is based on the query scope, which estimates two important statistical aspects of the set of retrieved

documents. The first aspect, query extent, estimates how broad a query is, by counting the number

of documents that contain all the query terms. Query topics that correspond to high query extent are

well covered in the documents collection. Therefore, more evidence from hyperlink analysis can be used

to detect documents of high quality. The second aspect, result extent, counts the number of domains

or directories that contain a high number of retrieved documents. This aspect of the set of retrieved

documents indicates whether there are whole or large parts of sites about the query topic. If this is the

case, then we can employ evidence from the hyperlink or the document structure and retrieve the entry

points of these sites.

The decision mechanism uses the query scope aspects to select an appropriate combination of evidence

for each query. For the evaluation of the decision mechanism, we experiment with the .GOV TREC

Web test collection and the associated topics from the topic distillation tasks of TREC11 (Craswell

and Hawking 2002) and TREC12 (Craswell et al. 2003), respectively. The evaluation of the decision

mechanism takes place in two steps.

In the first step, we use relevance information and evaluate each of the query extent and result extent

independently, by testing a range of different threshold values. We show that improvements are obtained

over the uniform combination of evidence for all queries. Moreover, we find that there is a statistically

significant association between the values of the query scope aspects and the relative effectiveness of the

combinations of evidence. For example, we show that content retrieval is more effective for the queries

that correspond to a low query or result extent values. For the second step of the evaluation, we consider

a more realistic setting, where relevance information is not readily available for tuning the thresholds of

the decision mechanism. We sample terms from the document collection and use them as single-term

queries, an approach similar to that proposed by Cronen-Townsend et al. (2002). After computing the

values of query extent and result extent for the engineered queries, we set the thresholds of the decision

mechanism, so that a given percent of each aspect’s values are below the corresponding threshold. The

results show that we can still obtain improvements in retrieval effectiveness by setting the thresholds

automatically.

The remainder of the paper is organised as follows. In Section 2, we look at the potential benefit

from the selective combination of evidence on a per-query basis, compared to a uniform combination
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of evidence. Section 3 contains the description of the proposed decision mechanism for selecting the

most appropriate combination of evidence for each query. In Sections 4 and 5, we evaluate the decision

mechanism in different settings, using relevance information. Next, in Section 6, we set the decision

mechanism’s thresholds automatically, without relevance information. We continue in Section 7 with a

discussion of interesting points from the experiments. Section 8 contains a brief overview of the related

work, and we close with concluding remarks in Section 9.

2 Combination of Evidence for Topic Distillation

In this section, we investigate the potential benefit from a dynamic selection of sources of evidence for

topic distillation. We evaluate different uniform combinations of evidence, where the same sources of

evidence are used for all queries. Following, we assume that there exists a decision mechanism, which

selects the most appropriate combination of evidence for each query, and we show that there is room for

improvement in retrieval effectiveness over the uniform combination of evidence.

We experiment with the TREC .GOV collection, a crawl of approximately 1.25 million Web docu-

ments from the .gov domain. For indexing the collection, we removed stop-words and applied Porter’s

stemming algorithm. We use the topics1 and the corresponding relevance information from the topic dis-

tillation tasks of TREC11 (Craswell and Hawking 2002) (49 topics2) and TREC12 (Craswell et al. 2003)

(50 topics).

Both used tasks involve finding useful entry points to sites that are relevant to the query topics.

However, a difference between the two tasks is that the relevant documents for the TREC12 topics were

restricted to be homepages of relevant sites. This resulted in a lower number of relevant documents, less

than 10 relevant documents for many topics. Thus, it would not be theoretically possible to obtain 100%

precision at 10 documents, which was the evaluation measure for TREC11. For this reason, the TREC

Web track organisers chose the R-Precision (precision after R documents have been retrieved, where R

is the number of relevant documents for the topic) as the official evaluation measure for the TREC12

topic distillation task. We will use precision at 10 for both TREC11 and TREC12 tasks, and we will

also report R-Precision for the TREC12 experiments.

There are various sources of evidence that can be used for Web IR, in addition to the textual content

1The queries are created from the title of the topics.
2Originally, the task involved 50 topics, but there were no relevant documents for one of them.
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of documents. In this paper, we focus on three different sources of evidence. The first is the textual

content of documents, denoted by C. The second is the anchor text associated with the incoming links of

a document, denoted by A. It has been shown that the anchor text is an effective source of evidence for

topic distillation (Craswell et al. 2003), as well as for other tasks, such as finding homepages (Craswell

et al. 2001). The third source of evidence is the document’s URL (Kraaij et al. 2002, Upstill et al. 2003),

and more specifically the length in characters of its path, since it is likely that homepages of sites will

have URLs with shorter paths. We denote this last source of evidence as U.

From all possible combinations of the sources of evidence mentioned above (C, A, U, CA, CU, AU,

CAU), we will restrict our analysis to three of them, which have proved to be effective for the TREC

tasks we experiment with. More specifically, for the first combination we use only the textual content of

documents C. For the second combination of evidence, we extend each document with the anchor text

of its incoming links (CA). For the third combination of evidence, we combine CA with the length of

the document’s URL (CAU), as follows:

scorei =
sci

log2(urlpath leni + 1)
(1)

where sci is the content analysis score for document di, based on CA, and urlpath leni is the number

of characters in the URL path if di. In order to avoid boosting non-relevant documents, we apply this

approach only to the top 1000 retrieved documents, where content and anchor text is used for retrieval.

For the content analysis, we consider three diverse and statistically independent weighting schemes.

The first one is the well-known BM25 weighting scheme (Robertson and Walker 1994), with b set empiri-

cally to 0.72. The other two are from Amati and Van Rijsbergen’s (2002) Divergence From Randomness

(DFR) probabilistic framework, namely PL2 and I(ne)C2. The weight of a query term t that occurs in

a document is given by the following formulae:

weightPL2(t) =
(

tfn1 · log2
tfn1

λ
+ (λ + 1

12·tfn1

− tfn1) · log2 e

+0.5 · log2(2π · tfn1)
)

· 1
tfn1+1

weightI(ne)C2(t) = col freq+1
doc freq·(tfn2+1)

·
(

tfn2 · ln
N+1

ne+0.5

)

where:

• tfn1 = term freq · log2

(

1 + c · average document length

document length

)

,

• tfn2 = term freq · ln
(

1 + c · average document length

document length

)

,
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• ne = N ·
(

1 −
(

1
N

)col freq
)

,

• N is the size of the collection,

• col freq is the within-collection term-frequency,

• term freq is the within-document term-frequency,

• doc freq is the document-frequency of the term and

• λ = col freq/N , which is the mean and variance of a Poisson distribution, with col freq � N .

The only parameter of the system is automatically set to c = 1.28, using the approach proposed by He

and Ounis (2003). The final score of a document d corresponds to the sum of the weights of all terms

that occur in the query q and in the document:

weightx(d|q) =
∑

t∈q∧t∈d

weightx(t) (2)

where x corresponds to BM25, PL2, or I(ne)C2.

In Table 1, we present the evaluation of the three selected combinations of evidence, when applied

for all queries uniformly. We can see that for TREC11, using the textual content of documents is

sufficiently effective and any of the two other combinations yields lower precision at 10. The results for

TREC12 show that when the relevant documents are only homepages of sites, then the most effective

combination of evidence uses all three sources of evidence. For both TREC11 and TREC12, employing

content and anchor text (CA) is the second most effective combination of evidence. Before continuing,

it is worth noting that the best official run submitted for the TREC11 topic distillation task achieved

0.2510 precision at 10 (Craswell and Hawking 2002). The highest precision at 10 and R-Precision,

achieved by the official runs submitted for the TREC12 topic distillation task, were 0.1280 and 0.1636

respectively (these two numbers correspond to two different runs) (Craswell et al. 2003).

In what follows, we investigate whether the selective application of a combination of evidence on a

per-query basis can lead to improvements in retrieval effectiveness. We assume that there is a decision

mechanism MAX(X, Y,. . .) that will select on a per-query basis the most effective combination of evidence

from X, Y,. . ., where each of X, Y,. . . corresponds to one of the combinations of evidence C, CA, or

CAU. In this way, we would obtain the highest possible retrieval effectiveness on average with the given

setting. Table 2 contains the results of the decision mechanism MAX(X, Y,. . .) for different weighting

schemes and all possible pairs of the three combinations of evidence C, CA and CAU. For example, we

can see that MAX(CPL2, CAPL2), which selects between C and CA, using the weighting scheme PL2,
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Table 1. The evaluation of the uniform application of C, CA and CAU for the topic distillation tasks of TREC11
and TREC12.

TREC11 TREC12

Run Precision at 10 Precision at 10 R-Precision

CPL2 0.2694 0.0680 0.0730
CAPL2 0.2551 0.1020 0.1325
CAUPL2 0.1367 0.1400 0.1369

CBM25 0.2408 0.0720 0.0934
CABM25 0.2408 0.1020 0.1293

CAUBM25 0.1000 0.1180 0.1216

CI(ne)C2 0.2490 0.0680 0.0732
CAI(ne)C2 0.2388 0.0940 0.1222
CAUI(ne)C2 0.1061 0.1160 0.1284

results in 0.2898 average precision at 10 for TREC11. In addition, we can see that CPL2 performs better

for 9 queries, while CAPL2 is more effective for 8 out of 49 queries in total. From the same table, we can

see that for TREC11, the decision mechanism MAX is most effective, when we use CPL2 and CAUPL2,

resulting in 0.2959 average precision at 10. Similarly for TREC12, the decision mechanism MAX is

most effective when we employ CAPL2 and CAUPL2, achieving 0.1680 average precision at 10 and 0.1880

average R-Precision. For the two other weighting schemes, namely BM25 and I(ne)C2, we observe that

improvements are also obtained over the uniform combination of evidence for all queries.

Table 2. The evaluation of the decision mechanism MAX that selects the most effective combination of evidence on a
per-query basis for TREC11 and TREC12. The first (second) number in parentheses denotes the number of queries
for which the combination of evidence X (Y) in MAX(X,Y) outperforms Y (X).

TREC11 TREC12

Hypothetical Run Precision at 10 Precision at 10 R-Precision

MAX(CPL2, CAPL2) 0.2898 (9, 8) 0.1120 (5, 18) 0.1400 (2, 17)
MAX(CPL2, CAUPL2) 0.2959 (28, 8) 0.1600 (8, 24) 0.1699 (7, 23)
MAX(CAPL2, CAUPL2) 0.2673 (29, 5) 0.1680 (11, 19) 0.1880 (9, 16)

MAX(CBM25, CABM25) 0.2531 (5, 5) 0.1080 (3, 13) 0.1321 (1, 13)
MAX(CBM25, CAUBM25) 0.2571 (31, 5) 0.1500 (11, 22) 0.1714 (7, 18)
MAX(CABM25, CAUBM25) 0.2571 (32, 5) 0.1620 (16, 19) 0.1796 (10, 15)

MAX(CI(ne)C2, CAI(ne)C2) 0.2612 (9, 5) 0.1000 (3, 13) 0.1303 (3, 14)
MAX(CI(ne)C2, CAUI(ne)C2) 0.2612 (29, 5) 0.1460 (10, 22) 0.1597 (7, 22)
MAX(CAI(ne)C2, CAUI(ne)C2) 0.2551 (29, 5) 0.1580 (15, 19) 0.1830 (10, 17)

For a more realistic decision mechanism, we would have to choose the combinations of evidence to use

among all the possible ones. We could employ two approaches to perform this selection. First, we could

use the average retrieval effectiveness of the decision mechanism MAX, and select the combinations of

evidence that would result in the highest retrieval effectiveness. As we can see from Table 2, for the
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TREC11 topic distillation task, MAX(CPL2, CAUPL2) outperforms MAX(CPL2, CAPL2), even though

CAUPL2 is less effective than CAPL2 (0.1367 with respect to 0.2551 average precision at 10, from Table 1).

This suggests that employing the average retrieval effectiveness of MAX for selecting the combinations

of evidence to use is prone to over-fitting. The second approach is based on selecting those combinations

of evidence that result in the highest average retrieval effectiveness. For the remainder of the paper, we

will employ the second approach and select the two combinations of evidence with the highest average

precision at 10 retrieved documents, as shown in Table 1. Therefore, for TREC11, we will employ CPL2

and CAPL2, while for TREC12, we will use CAPL2 and CAUPL2.

So far, we have looked at the potential improvements from the decision mechanism MAX, where

the combinations of evidence use the same weighting scheme. In Table 3, we consider some cases,

where a different weighting scheme is used for each of the two combinations of evidence. For example,

MAX(CPL2, CAI(ne)C2) corresponds to the case, where the decision mechanism MAX selects either

content-only retrieval with PL2, or content and anchor text retrieval with I(ne)C2. Among the results

shown in Table 3, the most effective pair of combinations of evidence for TREC11 is CPL2 and CABM25,

which results in 0.3041 average precision at 10. For TREC12, the highest R-Precision is obtained when

CAPL2 and CAUI(ne)C2 are used.

Table 3. The evaluation of the decision mechanism MAX that selects the most effective combination of evidence on
a per-query basis for TREC11 and TREC12 topic distillation tasks. The combinations of evidence are based on
different weighting schemes.

TREC11 TREC12

Hypothetical Run Precision at 10 Precision at 10 R-Precision

MAX(CPL2, CAI(ne)C2) 0.2938 (15, 8) 0.1100 (7, 17) 0.1342 (3, 16)
MAX(CPL2, CABM25) 0.3041 (15, 11) 0.1120 (5, 17) 0.1362 (3, 16)

MAX(CAPL2, CAUI(ne)C2) 0.2694 (31, 5) 0.1620 (15, 18) 0.1901 (12, 17)
MAX(CAPL2, CAUBM25) 0.2673 (31, 4) 0.1620 (16, 16) 0.1817 (12, 15)

MAX(CAI(ne)C2, CAUPL2) 0.2551 (26, 7) 0.1660 (10, 21) 0.1825 (8, 17)
MAX(CABM25, CAUPL2) 0.2633 (26, 8) 0.1680 (11, 19) 0.1875 (9, 16)

By comparing the results in Tables 1 and 2, we can see that there is room for improvement between

the uniform combination of evidence and an appropriate combination of sources of evidence on a per-

query basis. Based on this conclusion, we will introduce in the next section a simple decision mechanism

for selecting an appropriate combination of evidence on a per-query basis. In our experiments, we will

employ the weighting scheme PL2, which has been shown to be effective for both used TREC topic

distillation tasks. We will also report results from experiments with different weighting schemes.
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3 Decision Mechanism

We have shown in the previous section that not all queries benefit equally from the same combination

of evidence. In this section, we introduce a decision mechanism that aims to apply an appropriate

combination of evidence for each query. For example, we employ content-only retrieval for specific

queries, while we use evidence from the hyperlinks, or the URLs, for more generic queries. The decision

mechanism is based on the query scope, which addresses two important statistical aspects of the set of

retrieved documents.

The first aspect, query extent, is related to the number of retrieved documents. We assume that for

the more generic queries, there will be many documents that contain all the query terms. In these cases,

the queries address a topic that is widely covered in the collection. Therefore, evidence from hyperlink

analysis may be more useful in detecting high quality documents, or homepages of relevant sites. The

query extent is the number of retrieved documents {di} that contain all the query terms, normalised

between 0 and 1 by dividing with a given percentage α of the total number of documents in the test

collection:

query extent = min

(

|{di|di contains all query terms}|

α · N
, 1

)

(3)

where N is the number of documents in the collection (N = 1, 247, 553 for the .GOV collection). The

query extent does not depend on the relevance scores assigned to documents. The normalisation is

introduced as most of the queries retrieve only a small fraction of documents from the collection and

therefore, dividing by α leads to a better distribution of the query scope values. The parameter α

can take values from the range (0, 1]. Because for each query from both TREC11 and TREC12 topic

distillation tasks, the retrieved documents that contain all the query terms are on average fewer than 1%

of the collection size, we will only test α values less or equal to 0.01. For the remainder of the paper, the

query extent will be writen as query extentα, in order to denote the used value of α clearly. A similar

measure, without the normalisation, has been introduced by Amitay et al. (2003), simultaneously to

that defined by Plachouras et al. (2003).

For the second query scope aspect, result extent, we take a different perspective and consider addi-

tional structural information. Indeed, hypertext and the Web encourage authors to organise documents

in several different ways. First, documents are grouped in sites, where most of the documents cover
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either a specific topic, or a series of related topics. Within sites, documents are usually organised in a

hierarchical directory structure. In addition, a document may correspond to more than one Web page.

This is different from classical IR document collections, where each physical document constitutes a

logical document (Eiron and McCurley 2003a). There have been different efforts towards the automatic

identification of aggregates of hypertext, or Web pages. Botafogo and Shneiderman (1991) have employed

a graph theoretic approach in order to identify aggregates. Differently, Eiron and McCurley (2003a),

and Li et al. (2000), define heuristics based on observations of the structure of sites. In the context of

TREC experiments, grouping documents according to their domain has been employed in order to limit

the redundancy of retrieving many documents from a given site (Kwok et al. 2002).

We define result extent, so that it indicates whether there are aggregates of documents, devoted to

the query’s topic. If there exist aggregates with a high number of documents containing all the query

terms, we expect that their entry points will be more useful than other documents. We denote by sizej

the number of documents from the aggregate aj . In addition, let µsize and σsize be the average and the

standard deviation respectively of sizej for j ∈ [1, n], where n is the number of aggregates formed from

the set of retrieved documents that contain at least one query term. We define the result extent as the

number of aggregates aj for which sizej is higher than µsize + 2 · σsize:

result extent = |{aj |sizej > µsize + 2 · σsize}| (4)

The result extent does not depend on the relevance scores assigned to documents. We form the aggre-

gates in two different ways. First, a coarse-grained approach is adopted, where an aggregate is formed

by grouping all the retrieved documents that belong to the same domain. In this case, result extent

is denoted as result extent(domains). Alternatively, we take a more granular approach and define

aggregates as groups of documents from the same directory. In this case, result extent is denoted as

result extent(directories).

After defining query extent and result extent, we introduce a simple decision mechanism, which

uses either of the two query scope aspects, to select an appropriate combination of evidence on a per-

query basis. In order to evaluate the effectiveness of each measure separately, we employ a simple

approach, where the value of one of the measures, computed for the retrieved documents, is compared to

a threshold. According to the result of this comparison, we assign one of the available combinations of
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Table 4. Algorithm SelectCombinationOfEvidence.

Algorithm SelectCombinationOfEvidence

Input: The query q under consideration,
the combinations of evidence E1 and E2,
the query scope aspect qscope of the query and
a threshold value t

Output: The set of retrieved documents, ranked according
to the selected approach

Method:

1. if qscope(q) ≤ t then

2. apply combination of evidence E1 for query q
3. else

4. apply combination of evidence E2 for query q

evidence to the query. In this work, we consider two possible combinations of evidence, the selection of

which is initially based on thresholds obtained by using relevance information. It should be noted that

this selection mechanism can be extended, in order to use more query scope aspects and combinations

of evidence. For example, we can select from more than two combinations of evidence, or employ both

query scope aspects in the selection process. The selection mechanism is shown in Table 4.

For each query, we compute the value of the query scope aspect qscope, given the set of retrieved

documents and then, we compare its value to the threshold t. If qscope(q) ≤ t then we select E1 as

the most appropriate combination of evidence for query q, otherwise we select E2. Note that the order

in which specific combinations are assigned to E1 and E2 may significantly affect the effectiveness of

the selection mechanism. This order should be consistent with the basic assumptions underlying the

employed query scope aspect and each of the combinations of evidence. If there is an inconsistency, then

we should expect a detrimental effect in the retrieval effectiveness.

In the remainder of the paper, we experiment and evaluate the effectiveness of the decision mechanism

SelectCombinationOfEvidence, or SCE for brevity, in two steps. For the first step, Sections 4

and 5 contain the results from experiments, where we test query extent and result extent for different

threshold values, under the assumption that there exists relevance information. The second step involves

a method for setting the thresholds automatically, without relevance information (Section 6).
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4 Evaluation of the Decision Mechanism

In this section, we aim to evaluate how effective the decision mechanism and each of query extent and

result extent are in identifying appropriate combinations of evidence for each query. For each TREC

topic distillation task, we use the two most effective combinations of evidence, according to the evaluation

presented in Table 1. For TREC11, we employ CPL2 and CAPL2, while for TREC12, we use CAPL2 and

CAUPL2. We test each of query extent0.01, result extent(domains) and result extent(directories) for a

range of 100 threshold values, from each measure’s minimum value, to its maximum value, as computed

for the queries3. Because the values of the different query scope aspects are not in the same range, the

threshold values in subsequent figures will be normalised between 0 and 1. This linear transformation

of the threshold values does not affect the results. The normalised values are also reported in all

corresponding tables, in order to facilitate reading the figures.

The results from the experiments on TREC11 data are shown in Figure 1 and Table 5. Both measures

based on the result extent are more effective, with result extent(domains) achieving 0.2796 average pre-

cision at 10, when the threshold values are in the range [20.04, 23.88]. The threshold values in this range,

which result in the highest average precision at 10, correspond to the 11% of the tested threshold values,

showing that result extent(domains) can give stable improvements. According to Fisher’s exact test,

which determines if there is any non-random association between categorical variables, when the thresh-

old t is in the range [20.04, 23.88], the decision mechanism that uses result extent(domains), selects the

most appropriate combination of evidence for a statistically significant number of queries (p = 0.0294),

for which there is a difference in C and CA’s performance. This means that the queries for which CPL2

is more effective than CAPL2 are more likely to correspond to low values of result extent(domains) and

vice versa, enabling us to use result extent(domain) to select an appropriate combination of evidence.

In Figure 1, and in subsequent figures, the range of threshold values, where there is such a significant

association, is marked with a bold line.

From Figure 1 and Table 5, we can also see that the decision mechanism, which uses query extent0.01,

performs as well as CPL2 only when the threshold t = 1. We believe that this is due to an inconsis-

tency between the assumption underlying query extent and the two combinations of evidence, CPL2 and

CAPL2. If we swap the combinations of evidence in the decision mechanism, so that CAPL2 is applied

3If the minimum and maximum values of a query scope aspect, as computed for the queries, are min and max respectively,
the n-th tested threshold value is given by min + (n− 1) max−min

99
.
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when qscope(q) ≤ t, otherwise CPL2 is applied, we are able to improve precision at 10 over that of CPL2,

as discussed by Plachouras et al. (2004).
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Figure 1. Evaluation of the decision mechanism for the TREC11 topic distillation task. The evaluation measure is
precision at 10.

Table 5. The highest precision at 10, the corresponding thresholds for the TREC11 topic distillation task, as shown
in Figure 1, and the % of threshold values, for which we obtain the highest improvement over the baseline. The
decision mechanism is SCE(q, CPL2, CAPL2, extent, t).

Query Scope Precision at 10 Norm. Threshold Threshold %

CPL2 Baseline 0.2694 – –
MAX(CPL2, CAPL2) 0.2898 – –

query extent0.01 0.2694 1.000 1.000 1%
result extent(domains) 0.2796 [0.475, 0.576] [20.04, 23.88] 11%
result extent(directories) 0.2776 [0.202, 0.253] [31.49, 38.87] 6%

We obtain similar improvements, when we experiment with the topic distillation data from TREC12

(see Figure 2 and Table 6). More specifically, query extent0.01 outperforms the baseline CAU and results

in 0.1460 average precision at 10 for the threshold range [0.097, 0.137] (5% of the tested threshold values).

The corresponding decision mechanism selects the most effective combination of evidence for a statis-

tically significant number of queries, for the threshold ranges [0.097, 0.137] (p = 0.0472), [0.438, 0.498]

(p ≤ 0.0231) and [0.599, 0.639] (p = 0.0140), as we can see from the bold lines in Figure 2, even though
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the last two ranges of thresholds do not correspond to the highest precision at 10. In addition, when

we use result extent(domains), the highest average precision at 10 is 0.1480 for the threshold ranges

[8.17, 9.61] and [12.48, 13.91]. These ranges correspond to the 6% of the tested threshold values. From

Figure 2, Fisher’s exact test shows that for the threshold range [7.45, 13.91] the output of the decision

mechanism is statistically significant, with p ≤ 0.0419. This range of threshold values includes values,

which do not result in the highest precision at 10. When result extent(directories) is used, the highest

average precision at 10 is 0.1400, which is equal to that of CAU.
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Figure 2. Evaluation of the decision mechanism for the TREC12 topic distillation task. The evaluation measure is
precision at 10.

Table 6. The highest precision at 10, the corresponding thresholds for the TREC12 topic distillation task, as shown
in Figure 2, and the % of threshold values, for which we obtain the highest improvement over the baseline. The
decision mechanism is SCE(q, CAPL2, CAUPL2, extent, t).

Query Scope Precision at 10 Norm. Threshold Threshold %

CAUPL2 Baseline 0.1400 – –
MAX(CAPL2, CAUPL2) 0.1680 – –

query extent0.01 0.1460 [0.091, 0.131] [0.097, 0.137] 5%
result extent(domains) 0.1480 [0.101, 0.121], [0.161, 0.181] [8.17, 9.61], [12.48, 13.91] 6%
result extent(directories) 0.1400 [0.152, 0.162] [19.33, 20.56] 3%

For the TREC12 experiments, we also consider R-Precision as the evaluation measure (Figure 3 and
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Table 7). All three query scope aspects result in improvements over the baseline CAU for a wide range

of threshold values. The highest average R-Precision is 0.1701, obtained with query extent0.01 for the

threshold range [0.378, 0.388]. Following, result extent(domains) results in 0.1612 R-Precision for the

threshold range [8.17, 8.89]. In both cases, the association between the relative performance of CA and

CAU, and the output of the decision mechanism that uses query extent0.01 or result extent(domains),

is non-random, according to Fisher’s exact test, with p equal to 0.0414 and 0.0403 respectively. These

results were obtained for 2% of the tested threshold values (Figure 3). When result extent(directories)

was employed, we obtained 0.1539 R-Precision for only 1% of the tested threshold values.
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Figure 3. Evaluation of the decision mechanism for the TREC12 topic distillation task. The evaluation measure is
R-Precision.

Table 7. The highest R-Precision, the corresponding thresholds for the TREC12 topic distillation task, as shown in
Figure 3, and the % of threshold values, for which there is an improvement over the baseline. The decision mechanism
is SCE(q, CAPL2, CAUPL2, extent, t).

Query Scope R-Precision Norm. Threshold Threshold %

CAUPL2 Baseline 0.1369 – –
MAX(CAPL2, CAUPL2) 0.1880 – –

query extent0.01 0.1701 [0.374, 0.384] [0.378, 0.388] 2%
result extent(domains) 0.1612 [0.101, 0.111] [8.17, 8.89] 2%
result extent(directories) 0.1539 [0.273, 0.283] [34.00, 35.22] 1%
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In this section, we have investigated the effectiveness of both query extent and result extent for

the TREC11 and TREC12 topic distillation tasks. We have shown that improvements are obtained for

wide ranges of thresholds. Moreover, according to Fisher’s exact test, we have found that there is a

statistically significant association between the output of the decision mechanism, which employs either

query extent or result extent, and the relative effectiveness of the employed combinations of evidence.

Thus, the two query scope aspects are successful in capturing how broad a query is, and the decision

mechanism can effectively identify an appropriate combination of evidence for each query.

5 Additional experiments with the Decision Mechanism

So far, we have shown that the decision mechanism that employs either query extent or result extent

improves the retrieval effectiveness. In this section, we focus our analysis on how different parameters of

the decision mechanism, such as the normalisation of the query extent, or employing different weighting

schemes, affect its effectiveness. The remainder of this section is organised as follows. Section 5.1 contains

experiments, where we examine the effect of using different α values for normalising query extent. In

Section 5.2, we test the effect of using different weighting schemes for each combination of evidence.

Section 5.3 contains experiments, where we show how the query scope aspect values change when we

use both content and anchor text for their calculation.

5.1 Normalisation of query extent

In this section, we focus on query extent and the effect of the normalising parameter α. So far, we have

set α = 0.01. In the following experiments, we set α equal to 0.001, 0.002, 0.005 in addition to 0.01, and

observe the effect on the performance of our decision mechanism. Figure 4 and Table 8 show the results

for the TREC11 topics. Moreover, Figure 5 and Table 9 contain the results for the TREC12 topics,

when precision at 10 is employed for the evaluation, and Figure 6 and Table 10 contain the results for

the TREC12 topics, considering R-Precision as the evaluation measure.

For the TREC11 experiments (Table 8), we can see that, for all the tested values of α, the highest

obtained average precision at 10 is 0.2694 for the threshold t = 1. However, the effect of changing the

value of α is demonstrated in Figure 4 by the shifting of the curves corresponding to different α values.

More specifically, when we decrease the value of α, the ratio |{di|di contains all query terms}|
α·N

in Equation (3)
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Figure 4. Evaluation of the decision mechanism and query extent for the TREC11 topic distillation task, using
different values for the normalising parameter α. The evaluation measure is precision at 10.

increases and therefore, query extent becomes more sensitive to specific queries.

This is more evident in the TREC12 experiments, for both precision at 10 (Figure 5 and Table 9) and

R-Precision (Figure 6 and Table 10). We observe that the shift of the optimal thresholds is approximately

reciprocal to the ratio between the different α values used. Indeed, we can see from Table 5 that when

α = 0.01, 0.005 and 0.002 respectively, the middle values of the threshold ranges are 0.117, 0.233 and

0.585, from which we have:

0.01

0.005
= 2 ≈

0.233

0.117
,

0.01

0.002
= 5 ≈

0.585

0.117

The shifting is also reflected on the threshold ranges, for which there is a statistically significant associa-

tion between the relative effectiveness of CA and CAU, and the output of SCE(q, CAPL2, query extentα,

t), as shown by the bold parts of the lines in Figure 5. This is expected because α is in the denominator

of the ratio |{di|di contains all query terms}|
α·N

in Equation (3).

Similar results are obtained when we use R-Precision for the evaluation (Figure 6 and Table 10).

Additionally, we can see the effect of selecting unsuitable parameter values. As α decreases, the highest
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Table 8. The highest precision at 10, the corresponding thresholds for the TREC11 topic distillation task, as shown
in Figure 4, and the % of threshold values, for which there is an improvement over the baseline. The decision
mechanism used is SCE(q, CPL2, CAPL2, query extentα, t). The last four rows of the table are equivalent because
we report the highest obtained precision at 10.

Query Scope Precision at 10 Norm. Threshold Threshold %

CPL2 Baseline 0.2694 – –
MAX(CPL2, CAPL2) 0.2898 – –

query extent0.001 0.2694 1.000 1.000 0%
query extent0.002 0.2694 1.000 1.000 0%
query extent0.005 0.2694 1.000 1.000 0%
query extent0.01 0.2694 1.000 1.000 0%

Table 9. The highest precision at 10, the corresponding thresholds for the TREC12 topic distillation task, as shown
in Figure 5, and the % of threshold values, for which there is an improvement over the baseline. The decision
mechanism is SCE(q, CAPL2, CAUPL2, query extentα, t).

Query Scope Precision at 10 Norm. Threshold Threshold %

CAUPL2 Baseline 0.1400 – –
MAX(CAPL2, CAUPL2) 0.1680 – –

query extent0.001 0.1460 [0.949, 0.990] [0.953, 0.991] 5%
query extent0.002 0.1460 [0.465, 0.677] [0.482, 0.688] 22%
query extent0.005 0.1460 [0.182, 0.192] [0.193, 0.272] 9%
query extent0.01 0.1460 [0.091 ,0.131] [0.097, 0.137] 5%

precision decreases as well, because query extent becomes more sensitive to specific queries, and the

decision mechanism applies CAUPL2 for more queries, even though CAPL2 may be more effective.

Table 10. The highest R-Precision, the corresponding thresholds for the TREC12 topic distillation task, as shown in
Figure 6, and the % of threshold values, for which there is an improvement over the baseline. The decision mechanism
is SCE(q, CAPL2, CAUPL2, query extentα, t).

Query Scope R-Precision Norm. Threshold Threshold %

CAUPL2 Baseline 0.1369 – –
MAX(CAPL2, CAUPL2) 0.1880 – –

query extent0.001 0.1569 [0.949, 0.990] [0.953, 0.991] 5%
query extent0.002 0.1635 [0.758, 0.778] [0.766, 0.785] 3%
query extent0.005 0.1701 [0.747, 0.768] [0.751, 0.771] 3%
query extent0.01 0.1701 [0.374, 0.384] [0.378, 0.388] 2%

Overall, we have seen that the normalisation of query extent by dividing with α affects the decision

mechanism’s effectiveness. Employing an inappropriate value may lead to a decision mechanism with

reduced potential for improvement. Therefore, in an operational environment, it is important to select

an appropriate value for α, so that the highest possible retrieval effectiveness is obtained within the

threshold range and the decision mechanism is effective for a wider range of threshold values. We believe
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Figure 5. Evaluation of the decision mechanism and query extent for the TREC12 topic distillation task, using
different values for the normalising parameter α. The evaluation measure is precision at 10.

that a reasonable value for the normalising parameter should not be significantly higher than the average

number of documents containing all query terms.

5.2 Employing different weighting schemes

In our experiments, we have used the same weighting schemes for the different combinations of evidence.

However, in Section 2, we saw that using different weighting schemes for each combination of evidence

may result in even higher retrieval effectiveness (see Table 3).

In the following experiments, we employ different weighting schemes for both TREC11 and TREC12.

More specifically, we show that if we use CPL2 and CAI(ne)C2, with result extent(domains) for TREC11,

we get improvements over the highest average precision obtained when we employ only PL2 for both

C and CA (0.2837, as shown in Table 11, with respect to 0.2796 average precision at 10, as shown in

Table 5). Both query extent0.01 and result extent(directories) are also more effective than when they

are used with CPL2 and CAPL2. When we employed other combinations of weighting schemes, for both

tested tasks, the correspondence between the query scope aspect values and the relative effectiveness of

the combinations of evidence was weak, and the decision mechanism did not perform better than the
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Figure 6. Evaluation of the decision mechanism and query extent for the TREC12 topic distillation task, using
different values for the normalising parameter α. The evaluation measure is R-Precision.

baselines.

Table 11. The highest precision at 10, the corresponding thresholds for the TREC11 topic distillation task, as shown
in Figure 7, and the % of threshold values, for which there is an improvement over the baseline. The decision
mechanism used is SCE(q, CPL2, CAI(ne)C2, extent, t).

Query Scope Precision at 10 Norm. Threshold Threshold %

CPL2 Baseline 0.2694 – –
MAX(CPL2, CAI(ne)C2) 0.2938 – –

query extent0.01 0.2714 [0.232, 0.242] [0.237, 0.247] 2%
result extent(domains) 0.2837 [0.475, 0.576] [20.04, 23.88] 11%
result extent(directories) 0.2796 [0.263, 0.303] [40.34, 46.24] 5%

These experiments, where we employed different weighting schemes, show that significant improve-

ments can be obtained when we use the weighting schemes PL2 and I(ne)C2. Further experiments

are required in order to establish a relation between the independence of weighting schemes and their

effectiveness in the context of the decision mechanism.
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Figure 7. Evaluation of the decision mechanism for the TREC11 topic distillation task, using different weighting
schemes. The evaluation measure is precision at 10.

5.3 Using content and anchor text for computing the query scope

The values of the query scope aspects depend only on the retrieved documents for each query. For our

last experiments, we investigate how the values of the query scope aspects change if we use a different

document representation, where the document is extended by adding the anchor text of its incoming

hyperlinks. Indeed, employing the anchor text is an effective retrieval approach for finding entry points

of sites (Craswell et al. 2001, Craswell et al. 2003).

In Table 12, we show that the mean values of the query scope aspects for both TREC11 and

TREC12 tasks, computed using either document representations, are similar. According to the p values

of Wilcoxon’s signed rank test for paired samples, which determines if the medians of two distribu-

tions are different, there is no significant change in the values of result extent(domains) for the two

tested document representations. On the other hand, the values of query extent0.01 are significantly

different when anchor text is used, in addition to the content of documents. Moreover, the values of

result extent(directories) for the two document representations are significantly different only for the

TREC12 topic distillation queries. These differences are due to the fact that when we employ content
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Table 12. The effect of using different document representations on the values of the query scope aspects and the
% of thresholds, for which there is a difference in the average retrieval effectiveness of the decision mechanism. The
level of the difference is shown in the parenthesis.

Mean p values % thresholds

C CA Precision at 10 R-Precision

TREC11

query extent0.01 0.3386 0.3390 p < 10−4 0% -
result extent(domains) 13.43 13.43 p = 1.000 0% -
result extent(directories) 27.10 27.68 p < 10−4 1% (≤ 0.0143) -

TREC12

query extent0.01 0.3827 0.3832 p < 10−4 3%(≤ 0.0020) 3%(≤ 0.0029)
result extent(domains) 14.96 14.98 p = 0.750 3%(≤ 0.0060) 3%(≤ 0.0044)
result extent(directories) 30.08 30.22 p = 0.031 6%(≤ 0.0060) 5%(≤ 0.0075)

and anchor text, the number of documents with all query terms can only increase.

We compare the effect of the different document representations on the decision mechanism. The

setting of the decision mechanism is the same as in Section 4. Moreover, we test the same threshold

values for the query scope aspects, for both document representations. We have found that the highest

obtained retrieval effectiveness remains the same, independently of the used document representations

(the highest obtained values are the same as in Tables 5, 6 and 7). From the last two columns of

Table 12, we can see that the average retrieval effectiveness of the decision mechanism is the same when

we use query extent0.01 or result extent(domains) for TREC11, and it changes for 3% of the tested

thresholds for TREC12. When we use result extent(directories) for TREC11, there is a difference

for 1% of the tested thresholds. For TREC12, the average precision at 10 of the decision mechanism

with result extent(directories) changes for 6% of the tested thresholds. If we consider R-Precision for

TREC12, there is a change in the average effectiveness of the decision mechanism for 5% of the tested

thresholds.

These small changes occur because there are only few documents for which the query terms do not

appear in their body, but appear only in the anchor text of their incoming hyperlinks. For the used

.GOV collection, one possible explanation is that this collection contains high quality documents from

controlled sites. If we use a less controlled Web test collection, where there is greater variability in

the anchor text, we may find that using the content of documents and their anchor text for computing

query extent and result extent might have an impact on their values.
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6 Setting thresholds without relevance information

In the first step of the decision mechanism’s evaluation, we have employed relevance information, in

order to choose the two most effective combinations of evidence for each task, and to select the threshold

ranges for which we obtain improvements in effectiveness. However, in an operational environment, where

relevance information is not readily available, we should be able to select the combinations of evidence

E1 and E2 used in the decision mechanism of Table 4, as well as automatically set the thresholds to

values, which would result in improved retrieval effectiveness.

For selecting the most effective combinations of evidence to use in the decision mechanism, it is

reasonable to assume that we can perform experiments with a set of training queries. From the results,

we could obtain the more appropriate combinations of evidence for the queries that users submit to our

retrieval system.

In order to predict appropriate threshold values, we employ an approach, based on the sampling

method introduced by Cronen-Townsend et al. (2002). We approximate the process of querying, by

sampling terms from the vocabulary of the test collection, and submitting them to our retrieval system

as single-term queries. The intuition for sampling single-terms to set the decision mechanism’s threshold

for multi-term queries is that in both cases we use the same vocabulary for querying and therefore, we

expect to obtain a similar distribution of query scope aspect values. From the set of retrieved documents,

we compute the values of query extent and result extent. In our experiments, we have sampled the

terms with document frequency in the range [500, 40000], in order to obtain approximately the number

of retrieved documents with all query terms for the TREC11 and TREC12 topic distillation queries.

After sampling the terms from the vocabulary, we estimate the probability densities for the number

of documents containing a term, result extent(domains) and result extent(directories). We employ

kernel density estimation with Gaussian kernels and automatic setting of the bandwidth (Scott 1992).

The estimated probability densities for the number of documents containing all the query terms (in this

case, this corresponds to the probability density of the document frequency), result extent(domains)

and result extent(directories) are shown in Figure 8. Because query extent, as defined in Equation (3),

is not a continuous function of the number of documents that contain all the query terms, the estimation

of its probability density would not be precise for values close to 1. Therefore, we have estimated the

probability density for the document frequency and we compute the values of query extent from the
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number of documents containing a term by using Equation (3). We set α = 0.01, which is not significantly

higher than the average percentage of documents containing all the query terms for the TREC11 and

TREC12 topic distillation queries.

From the estimated probability densities, we compute the threshold values at the points where n

percent of the values are lower than the threshold, for n = 25%, 50%, 75%. The values for the estimates

query extent0.01, and result extent for both domains and directories are shown in Table 13.

Table 13. The thresholds at given points of the estimated probability densities, shown in Figure 8.

Percent Documents query extent0.01 result extent(domains) result extent(directories)

25% 795.66 0.064 4.61 8.01
50% 1407.70 0.113 9.02 15.54
75% 3549.86 0.285 17.09 31.57

Next, we employ the estimated threshold values in the decision mechanism. Table 14 contains the

results for the TREC11 topics, while Table 15 contains the results for the TREC12 topics, using either

precision at 10 or R-Precision for the evaluation. We can see that improvements over the baselines (C

for TREC11 and CAU for TREC12) are obtained, when the thresholds are set automatically. Further-

more, the entry in bold shows that the association between the relative effectiveness of the different

combinations of evidence and the output of the decision mechanism for the corresponding thresholds is

statistically significant.

More specifically, we can see from Table 14 that improvements are obtained for all query scope aspects,

and especially for the higher threshold values of result extent(domains) and result extent(directories).

According to Fisher’s exact test, the decision mechanism SCE(CPL2, CAI(ne)C2, result extent(domains),

t) with the corresponding 75% threshold, selects the most effective combination of evidence for a statis-

tically significant number of queries (p = 0.0329).

Table 14. TREC11 Precision at 10 with automatically set thresholds. Entries in bold correspond to the cases where
Fisher test is statistically significant.

Precision at 10

25% 50% 75%

SCE(CPL2, CAPL2, query extent0.01, t) 0.2530 0.2530 0.2551
SCE(CPL2, CAPL2, result extent(domains), t) 0.2571 0.2653 0.2755
SCE(CPL2, CAPL2, result extent(directories), t) 0.2673 0.2694 0.2776
SCE(CPL2, CAI(ne)C2, result extent(domains), t) 0.2388 0.2653 0.2816

SCE(CPL2, CAI(ne)C2, result extent(directories), t) 0.2571 0.2673 0.2775
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Figure 8. The estimated probability densities from the sampling of terms as queries.
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The results for the TREC12 queries are similar. As shown in Table 15, we obtain improvements in pre-

cision at 10 over the baseline CAU for both query extent0.01 and result extent(domains). According to

Fisher’s exact test, the decision mechanism that uses either query extent0.01 or result extent(domains)

with the 50% threshold, selects the most effective combination of evidence for a statistically significant

number of queries (p = 0.0472 and p = 0.0086 respectively). We obtain the highest R-Precision when we

use result extent(domains) and the 50% threshold. Thus, result extent(domains) proves to be more

effective and stable than query extent or result extent(directories).

Table 15. TREC12 results with automatically set thresholds. Entries in bold correspond to the cases where Fisher
test is statistically significant.

Precision at 10

25% 50% 75%

SCE(CAPL2, CAUPL2, query extent0.01, t) 0.1440 0.1460 0.1360
SCE(CAPL2, CAUPL2, result extent(domains), t) 0.1360 0.1480 0.1160
SCE(CAPL2, CAUPL2, result extent(directories), t) 0.1380 0.1280 0.1220

R-Precision

SCE(CAPL2, CAUPL2, query extent0.01, t) 0.1369 0.1569 0.1651
SCE(CAPL2, CAUPL2, result extent(domains), t) 0.1340 0.1582 0.1382
SCE(CAPL2, CAUPL2, result extent(directories), t) 0.1340 0.1318 0.1472

Overall, we can say that the sampling of terms from the collection’s vocabulary, in order to set the

decision mechanism’s thresholds automatically, without relevance information, is an effective approach.

These results show that the selective combination of evidence is a method applicable in an operational

environment. From all three query scope aspects we tested, we found that result extent(domains) is

the most effective one in the context of the decision mechanism with the automatically set thresholds.

For the experiments in this section, we have considered single terms from the document collection as

queries. Even though we set the thresholds to a value, so that 75% of the estimated values are lower,

this threshold value is quite low. Especially in the case of query extent0.01, the estimated threshold

values are lower than the ones resulting in optimal precision (Table 7 and Table 13). We believe that

sampling sets of related terms from the collection’s vocabulary may result in a better approximation of the

querying process. Such an approach would require measuring the association between terms (Silverstein

et al. 1999), or using the anchor text of documents (Eiron and McCurley 2003b).
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7 Discussion

We have shown that the decision mechanism from Section 3, when used with the proposed estimates of

how specific or broad a query is, increases retrieval effectiveness for both TREC11 and TREC12 topic

distillation tasks.

Comparing the effectiveness of result extent(domains) with result extent(directories), we can see

that the decision mechanism is more effective for both TREC tasks, when domains are used for forming

the aggregates. A reason for this is that there may exist many directories that contain few documents,

thus biasing the average directory size towards lower values, and resulting in a relatively high value for

result extent(directories). Further research is needed in order to employ more granular approaches for

detecting aggregates of documents (Eiron and McCurley 2003a, Li et al. 2000).

We have found that result extent(domains) has other useful properties. First, its values do not

change significantly when they are computed using a different document representation, such as content

and anchor text. In addition, the average retrieval effectiveness of the decision mechanism changes only

for a small percentage of thresholds when we use result extent(domains) with either document represen-

tations. When we employ it in the decision mechanism, we obtain the highest precision for a wide range

of consecutive thresholds. In addition, when the decision mechanism’s thresholds are set automatically,

it is effective for both tested TREC tasks. Therefore, we believe that result extent(domains) is a robust

query scope aspect, which can be used in a realistic setting.

An interesting generalisation of our methodology would be to investigate the automatic selection

of specific combinations of evidence to use with each query scope aspect. Suppose that there is no

relevance information available. Instead of comparing the relative retrieval effectiveness between two

different combinations of evidence, we could compute a measure of distance between the corresponding

rankings of documents. If the distance between the rankings is correlated with the difference between

the query scope aspect value for a query, and the threshold value of the decision mechanism, then we

would expect that this particular setting of the decision mechanism can be used effectively. In this way,

we would obtain an estimation of how effectively we can use a query scope aspect and two different

combinations of evidence, in the context of the decision mechanism.
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8 Related Work

The combination of evidence from different sources has been employed in various ways in order to

increase retrieval precision (Croft 2000). Belkin et al. (1993) used different query representations, while

Turtle and Croft (1991) proposed a Bayesian inference network in order to combine different query and

document representations. Similarly, Ribeiro-Neto and Muntz (1996) proposed a belief network model

for the combination of different sources of evidence, including the hyperlink structure.

From a different perspective, Bartell et al. (1994) investigated the automatic combination of multiple

retrieval approaches. They model the combination of evidence from individual “experts” as the linear

combination of the individuals’ estimates. Instead of combining the scores of different retrieval ap-

proaches linearly, Aslam and Montague (2001) proposed a method for fusing ranked lists of documents,

an approach with applications in meta-search engines, where the scores of documents are not available.

From the perspective of model selection, He and Ounis (2004) consider applying a different weighting

model per query, by clustering a set of training queries and applying the same weighting model for all

queries in the same cluster.

In the context of Web IR, recent research has focused on detecting when to employ additional evidence

to the textual content of documents. Ogilvie and Callan (2003), and Fagin et al. (2003), investigate a

variety of combinations of evidence in different settings. Other approaches focus on the relation between

the effectiveness of hyperlink analysis and the density of hyperlinks in a test collection (Gurrin and

Smeaton 2003, Fisher and Everson 2003).

There have also been proposed approaches, where the weight of additional evidence from either

hyperlink analysis algorithms HITS or SALSA (Amitay et al. 2002), or other sources of evidence such

as the anchor text and the number of incoming hyperlinks (Amitay et al. 2003), is set on a per-query

basis, according to characteristics of the set of retrieved documents. Differently, our decision mechanism

enables or disables a source of evidence on a per-query basis. This methodology can be seen as a linear

combination of multiple retrieval approaches, where only one coefficient is non-zero. As a result, the

query scope aspect values and the relative effectiveness of the combinations of evidence do not need to be

strongly correlated. A second difference is that we employ evidence from the distribution of aggregates

of documents, in order to model how broad or specific the queries are.

In addition, Kang and Kim (2003) propose a query type classification method. The query type
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corresponds to the retrieval task, and a different combination of evidence is applied for each query type.

On the other hand, our methodology does not consider the query type explicitly, but aims to apply an

appropriate combination of evidence on a per-query basis.

9 Conclusions

In this paper, we have presented a decision mechanism that enables the selective combination of evidence

on a per-query basis, for Web IR, and more specifically, for topic distillation. The decision mechanism is

based on two query scope aspects. The first one is the query extent, which corresponds to the number

of documents in the collection that contain all the query terms. The second aspect is the result extent,

which corresponds to the number of large aggregates in the set of retrieved documents. An aggregate

of documents is a group of related documents, belonging to the same domain (result extent(domains)),

or stored in the same directory (result extent(directories)).

We have shown that the decision mechanism and the query scope aspects can increase the retrieval

effectiveness, compared to the uniform combination of evidence, irrespectively of the queries. Improve-

ments over the baselines are obtained for the TREC11 topic distillation task, when we use the com-

binations C and CA with result extent(domains), as well as for the TREC12 topic distillation task,

when we employ CA and CAU with either query extent or result extent(domains). We have found that

using domain-based aggregates is more effective than directory-based aggregates. The improvements in

retrieval effectiveness correspond to the cases where there is a statistically significant association between

the relative effectiveness of the different combinations of evidence and the output of the decision mech-

anism that uses the query scope aspects. Following, we have tested our methodology by automatically

setting the threshold values, without using relevance information. Overall the most effective query scope

aspect was found to be result extent(domains), and improvements over the baselines were obtained,

proving that our approach can be applied in an operational setting, where relevance information is not

readily available.

In the future, we would like to experiment with larger test collections, such as the .GOV2, or with

other, less controlled test collections, as they become available. Additionally, we would like to gener-

alise our approach, by introducing a measure that estimates the effectiveness of the decision mechanism

without relevance information. Experimentation in the context of different retrieval tasks, such as the fil-
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tering task, where relevance information becomes incrementally available, is another possible application

of our approach.
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