An Empirical Study of Tokenization Strategies for
Biomedical Information Retrieval

Jing Jiang
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801

jilang4@cs.uiuc.edu

ABSTRACT

Due to the great variation of biological names in biomedical
text, appropriate tokenization is an important preprocess-
ing step for biomedical IR. Despite its importance, there has
been little study on the evaluation of various tokenization
strategies for biomedical text. In this work, we conducted a
careful, systematic evaluation of a set of tokenization heuris-
tics on all the available TREC biomedical IR test collections
with two representative retrieval methods. We also studied
the effect of stemming and stop word removal on the re-
trieval performance. As expected, our experimental results
show that tokenization can significantly affect the retrieval
accuracy; appropriate tokenization can improve the perfor-
mance by up to 80%. In particular, it is shown that different
query types require different tokenization heuristics, stem-
ming is effective only for certain queries, and stop word re-
moval in general does not improve the retrieval performance
in biomedical text.

1. INTRODUCTION

Recently, the growing amount of scientific literature in ge-
nomics and related biomedical disciplines has led to an in-
creasing amount of interest in and need for applying IR
as well as other text management techniques to access the
biomedical textual data. The special language usage in
biomedical literature, such as the frequent occurrences of
gene symbols and the use of inconsistent lexical variants
of the same genes, has raised many new challenges in the
biomedical IR field.

In previous work on biomedical IR, while many efforts have
been put to query expansion and synonym normalization,
little attention has been paid to tokenization and other text
preprocessing steps that transform the documents and the
queries into the bag-of-word representation. Although tok-
enization is not a critical step for retrieval in English text
in general domains, it is not a trivial task for languages
in special domains (sometimes referred to as sublanguages),
largely due to the domain-specific terminologies.

IR methods generally rely on term matching. The purpose
of tokenization is therefore to break down the text into to-
kens (or terms), which are small units of meaningful text,
such that a match between a token in the query and a token
in a document can in general increase our confidence that
the document is relevant to the query. It is often also de-
sirable during the preprocessing stage to normalize tokens
that look similar and convey the same meaning into a sin-

ChengXiang Zhai
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801

czhai@cs.uiuc.edu

gle canonical form. For English text in general domains,
individual English words are naturally used as tokens. To-
kenization can be done by simply using white spaces as de-
limiters, or in a slightly more sophisticated way, by using
all non-alphanumerical characters as delimiters. Stemming
is often used to normalize the morphological variants of the
same base word. In biomedical text, however, the content
words include not only English words, but also many special
terms such as the names of genes, proteins and chemicals.
These names often contain special characters such as numer-
als, hyphens, slashes and brackets, and the same entity often
has different lexical variants. Clearly, a simple tokenizer for
general English text cannot work well in biomedical text.
If all non-alphanumerical characters inside a named entity
are used as delimiters to separate the name into several to-
kens, the proximity of these tokens is lost in the bag-of-word
representation, which may result in a loss of the semantic
meaning of the tokens and cause mismatches. Moreover,
breaking named entities into fragments may affect the tfidf
weighting of the tokens in an unwanted way. On the other
hand, if all the non-alphanumerical characters are kept, it is
hard to capture minor variations of the same name.

Table 1 shows an example taken from Topic 38 of the ad hoc
retrieval task in TREC 2003 Genomics Track, where two
tokenizers produced different matching results. The orig-
inal query contains the gene symbol MIP-1-alpha. There
are three lexical variants of this symbol that appear in the
judged relevant documents, as shown in the 2nd column of
the 3rd, 4th and 5th rows of Table 1. The 2nd column
of the 6th row shows a piece of text that can possibly be-
come a mismatch. Tokenizer 1 uses all non-alphanumerical
characters as token delimiters. Tokenizer 2 removes special
characters such as hyphens and brackets. The 3rd and the
5th columns of Table 1 show the tokenized text. We can see
that Tokenizer 1 captures one lexical variant, but misses the
other two variants and generates one mismatch. Tokenizer
2, however, captures two variants and ignores the mismatch.
Thus Tokenizer 2 is superior to Tokenizer 1 in this particular
case. Because many queries in biomedical IR contain gene
names and symbols like the one in the above example, it is
important to find a suitable tokenization strategy in order
to generate the best retrieval results.

Despite its importance, to the best of our knowledge, there
has not been any work devoted to systematic comparison of
different tokenization strategies for biomedical IR. In this
paper, we present a set of tokenization heuristics that are

Table 1: An Example of The Effect of Two Tokenization Strategies

| Variant H Original Text H Tokenizer 1 [Match? H Tokenizer 2 [Match? ‘
In Query MIP-1-alpha mip 1 alpha N/A miplalpha N/A
Var. 1 MIP-1alpha mip lalpha No miplalpha Yes
Var. 2 (MIP)-1alpha mip lalpha No miplalpha Yes
Var. 3 MIP-1 alpha mip 1 alpha Yes mipl alpha No
Mismatch || MIP-1 beta, IFN-alpha || mip 1 beta ifn alpha Yes miplbeta ifnalpha No

generalized from previous work on biomedical IR, and we
conduct a systematic evaluation of these heuristics. In par-
ticular, we define three sets of break points, three break point
normalization methods, and a Greek alphabet normalization
method. We also study the effect of stemming and stop word
removal for biomedical text as these preprocessing steps may
also affect the retrieval performance. The goal of our study
is to provide a set of standard tokenization heuristics that
are in general suitable for biomedical IR.

We evaluate the tokenization heuristics on the data from
TREC 2003, 2004 and 2005’s Genomics Track, which in-
cludes all available TREC biomedical IR test collections.
We use two representative retrieval methods. Results from
both retrieval methods show that tokenization strategies can
affect the retrieval performance significantly; good tokeniza-
tion can improve the performance by up to 80%. For differ-
ent types of queries, different sets of tokenization heuristics
should be applied in order to achieve the optimal perfor-
mance. In particular, for queries with only gene symbols,
removing a set of special characters inside the tokens and
replacing Greek letters with Latin letters are shown to be
effective. In contrast, for queries with only full gene names
and for verbose queries that also contain English words to
describe the information need, replacing special characters
with spaces produces the best results. In addition, for ver-
bose queries, stemming further improves the performance.
Stop word removal does not help retrieval in general, except
for verbose queries containing common English words, where
removing stop words may slightly improve the performance.

The rest of the paper is organized as follows: In Section 2, we
survey the tokenization strategies explored in previous work
on biomedical IR. In Section 3 and Section 4, we generalize
the various tokenization strategies into a set of heuristics,
and explain the rationale behind each heuristic. We eval-
uate the different tokenization heuristics in Section 5. In
Section 6, we conclude our work by recommending a set of
suitable tokenization heuristics based on the query types.

2. RELATED WORK

Most previous work on biomedical IR appeared in the Ge-
nomics Track in TREC 2003, 2004 and 2005. To address the
prevalent name variation problem in biomedical text, most
groups focused on query expansion, either by using exter-
nal knowledge bases such as LocusLink to find gene syn-
onyms [2, 6], or by generating lexical variants of the gene
names in the queries using heuristic rules [2, 8]. Tokeniza-
tion of the corpus was not seriously studied, and most groups
did not describe their tokenization strategies in detail.

Among the work that mentioned special tokenization tech-
niques, [14] pointed out that allowing a token to contain

both alphabetical and numerical characters was a little bet-
ter than separating them. In contrast, [10, 4] chose to sep-
arate alphabetical and numerical strings in order to handle
hyphenation of the alphabetical and the numerical parts in
a gene name. But [10] also imposed proximity search to en-
sure that the separated components were close together in
the retrieved documents. [5] allowed the following special
characters to be part of a token provided that they were not
the first or the last character of the token: (,), [,], ’, -,
) and /. Thus names such as 1,25-dihydrozyvitamin and
dead/h would become single tokens.

Some work also considered combining adjacent words that
were separated by spaces into single terms. [13] used a sim-
ple rule to combine a short-length word and its adjacent non-
short-length word into a single keyword. They reported a
15% improvement over the baseline using this simple heuris-
tic. [1] combined adjacent alphabetical chunks and numeri-
cal chunks into token bigrams.

In contrast to the little amount of report on the tokenization
strategies applied to the document collection, there has been
much more report on different ways to tokenize the queries
and to generate alternative gene names using heuristic rules.
[8] defined break-points in tokens where hyphens and spaces
can be inserted or removed without changing the meaning
of the token. [2, 8] also considered replacing Greek letters
with their Latin equivalents to generate lexical variants of
gene names in the queries.

Although Porter stemmer was the most commonly used En-
glish stemmer, a few groups reported experiments with dif-
ferent stemmers on biomedical text. [13] showed that Porter
stemmer could decrease the performance while Lovins stem-
mer improved the performance. [12] showed that S stemmer
sometimes was advantageous over Lovins stemmer. Many
groups also removed stop words from the document collec-
tion using an external stop word list [13, 3, 6]. A com-
monly used stop word list for biomedical text is the one
from PubMed [3]. There has not been any work compar-
ing the retrieval performance with and without stop word
removal.

3. TOKENIZATION HEURISTICS

In this section, we generalize the various tokenization strate-
gies in previous work into a set of organized heuristics. Such
generalization allows us to better understand the rationale
behind each strategy, and to systematically evaluate them.

For all the tokenization strategies we consider, we assume
that the last step of tokenization is to change all upper case
letters into lower cases. This case normalization is done in
the very end because some tokenization heuristics rely on

Table 2: Heuristic Rules to Remove Non-Functional

Characters
1) replace the following characters with spaces: | 7 #

$R&x<=>7Q@\ |~

2) remove the following characters if they are followed
by a space: . : ;

3) remove the following pairs of brackets if the open
bracket is preceded by a space and the close bracket is
followed by a space: () []

4) remove the single quotation mark if it is preceded
by a space or if it is followed by a space: ’

5) remove “’s” and “’t” if they are followed by a space
6) remove slash “/” if it is followed by a space

the cases of letters to determine where to break the text.
Also, the tokenization strategies that we consider do not in-
clude the ones that combine adjacent words originally sepa-
rated by spaces into bigram tokens. We do not include such
strategies in our evaluation because of two reasons: (1) The
candidate tokens to form bigrams are alphabetical strings
followed by numerical strings or vice versa, but numerical
strings appear very frequently in biomedical text, and most
of them are not part of an entity name. (2) Because we
can never be sure that the combined bigrams can replace
the original unigram tokens, we need to keep the original
unigram tokens in the documents. But such arbitrary ex-
pansion of the documents may cause inaccurate estimation
of various numbers that are used in retrieval formulas, such
as the document length in the tfidf method and the term
probability in the language modeling approach.

Before we go into the various tokenization heuristics, we first
define a naive strategy as the very basic baseline to compare
against. This naive method uses only white spaces as the
delimiters to break down the text into tokens.

3.1 Removal of Non-Functional Characters
In biomedical text, although non-alphanumerical characters
are frequently used to help represent various kinds of en-
tities and other biomedical information, the most impor-
tant special characters that make retrieval difficult are those
that frequently occur in gene names and protein names,
such as hyphens, slashes, and brackets. Many other non-
alphanumerical characters such as '=" and '#’ usually do not
occur inside an entity name or convey any important seman-
tic meaning. These “non-functional” characters can thus be
excluded from the tokens. Previous work that had special
handling of non-alphanumerical characters also only focused
on a subset of non-alphanumerical characters. Therefore, as
a first step, we manually identified a set of special charac-
ters that we believe can be safely discarded, and we defined
a set of rules in the form of regular expressions to remove
these special characters. Table 2 lists the heuristic rules
we defined to remove such non-functional characters. How
much the retrieval performance is affected by removing these
non-functional characters will be determined by empirical
experimental results.

3.2 Break Points

After the non-functional characters are removed, the re-
maining text consists of alphanumerical characters and a

Table 3: Special Characters Left in the Text after

Removal of Non-Functional Characters
Special Character Set 1 | Special Character Set 2

Ofll--/ T

set of special characters as listed in Table 3. The special
characters in set 1 are often used to separate the several
components of an entity name, such as in (MIP)-1alpha,
pRB/p105, and TrpFEb_1. The special characters in set 2 are
not very frequently used for gene names, but rather mostly
used inside numbers like 0.20 and 20,000, inside chemical
formulas like the ions Ca2+ and Na+, or inside names of
chemical compounds and DNA sequences to describe the
structure of those entities, like in 1,2,3,4-TeCDD, 2,3,7,8-
TeCDD and 2’°,5°-linked 3’-deoxyribonucleotides. In most of
these cases, it is not necessary to divide the two alphanu-
merical strings around those special characters in set 2 into
different components.

Besides these special characters listed in Table 3, there are
also other places within strings where we should consider
breaking the strings into smaller tokens. These are the
places where an alphabetical character changes to a numer-
ical character and vice versa, or where a sequence of upper
case letters changes to a sequence of lower case letters and
vice versa. Formally, following the work in [8], we use the
following rules to define three kinds of hidden places where
strings can be further broken down: (1) between an alpha-
betical character on the left(right) and a numerical character
on the right(left), (2) between a lower case letter on the left
and an upper case letter on the right, and (3) between an
upper case letter on the left and a lower case letter on the
right, unless the upper case letter is preceded by a space,
or by a numerical character or another lower case letter (in
which case the upper case letter will be separated from its
previous lower case letter by rule (2)). With these rules, gene
symbols such as MIP-1alpha and MIP-1-alpha can both be
broken down into MIP 1 alpha, making it possible to match
them.

Borrowing the term from [8], we refer to all the special
characters listed in Table 3 and the three kinds of hidden
places defined above as break points. The break points are
the places where an entity name can be potentially broken
down into smaller components such that if we connect these
smaller components differently, we could form a lexical vari-
ant of the original name. Because of the different degrees
to which we believe these break points should be used, we
consider three sets of break points. Break Point Set 1 (BP1)
consists of the special characters in Special Character Set 1
in Table 3, Break Point Set 2 (BP2) consists of both Special
Character Set 1 and Special Character Set 2 in Table 3, and
Break Point Set 3 (BP3) consists of all special characters in
BP2 and the hidden break points defined by the three rules.

3.3 Break Point Normalization

With the break points we defined in the last section, we
can now normalize the different lexical variants of the same
entity by normalizing the break points into the same repre-
sentation. There are different ways to normalize the break
points. One way is to replace all the break points with a sin-

gle special character, such as a hyphen, and keep these break
points designated by hyphens in the final tokens. Thus, if
we use Break Point Set 3, gene symbols MIP-1-alpha, MIP-
lalpha and (MIP)-1alpha will all become the same single
token MIP-1-alpha. Another way to normalize the break
points is to replace all of them with spaces. Thus, using BP3,
gene symbols MIP-1-alpha, MIP-1alpha and (MIP)-1alpha
will all become three tokens: MIP, 1, and alpha. There are
advantages and disadvantages of both normalization meth-
ods. For the first one, the proximity of the components of a
gene name is preserved, ensuring high precision in matching
entity names. However, it could not handle the case when
one lexical variant contains a space while another lexical
variant has a break point in the place of the space, such as
in MIP-1 alpha and MIP-1-alpha. The second normalization
method can handle this case well because all break points
are replaced with spaces. However, proximity of the compo-
nents of the name is lost, which may cause mismatches.

There is another problem with the two normalization meth-
ods described above. Sometimes a hidden break point can-
not be captured by the three rules we defined in Section 3.2.
For example, the topics in TREC 2003 Genomics Track con-
tain these gene alias symbols: Pkca and Prkca (for the gene
“Protein kinase C, alpha”), Tcra and Tcralpha (for the gene
“T-cell receptor alpha”), and Ifnb2 (for the gene “Interleukin
6 (interferon, beta 2)”). We can see that the Greek letters
alpha and beta, or their Latin equivalents a and b, cannot be
clearly distinguished from the rest of the text in these sym-
bols. Thus if a hyphen is inserted into such a hidden break
point, this hyphenated variant cannot be matched with the
one without the hyphen by either of the normalization meth-
ods we described above. Because such hidden break points
are too hard to detect by any simple regular expressions,
one way to solve the problem is to normalize all variants
into the form without hyphens or other special characters.
We have not seen such an approach in any previous work,
but we think this approach is a reasonable solution to the
problem with undetectable break points.

To summarize, we consider three methods to normalize the
break points. Method one replaces all break points with hy-
phens (or inserts hyphens into hidden break points). We call
this method the Hyphen-Normalization method, or H-Norm.
Method two replaces all break points with spaces (or in-
serts spaces into hidden break points). We call this method
the Space-Normalization method, or S-Norm. Method three
removes all break points (or does nothing to hidden break
points). We call this method the Join-Normalization method,
or J-Norm. Note that all three normalization methods can
be used in conjunction with any of the three sets of break
points, except that when J-Norm is used, BP3 becomes es-
sentially the same as BP2.

3.4 Greek Alphabet Normalization

Another heuristic that has been previously explored is to re-
place Greek letters with their Latin equivalents. In biomed-
ical text, entity names often contain Greek letters such as
alpha, beta, etc. Sometimes these Greek letters are abbrevi-
ated as a, b, etc., but there is no consistent rules as to when
the Greek letters should be abbreviated. A simple method
to tackle this problem is to replace all occurrences of Greek
letters with the Latin letters that are equivalent to them.

Note that sometimes a Greek letter can be embedded in an
alphabetical string and hard to detect, such as in Tcralpha.
We do not try to replace these Greek letters as there is no
easy way to detect these hidden occurrences of Greek letters.
Thus, our replacement rule is to check each maximum span
of consecutive alphabetical letters in the text, and replace
the ones that are in the Greek alphabet. We call this Greek
letter replacement strategy the Greek-Normalization heuris-
tic, or G-Norm. Note that while the three normalization
methods describe in Section 3.3 are mutually exclusive, G-
Norm is orthogonal to those three normalization methods,
and thus can be applied on top of any of them.

4. STEMMING AND STOP WORD REMOVAL

After tokenization, stemming is an optional step to further
normalize the tokens. Based on previous work that explored
stemming algorithms for biomedical IR, we consider three
stemmers in our evaluation: the Porter stemmer [11], the
Lovins stemmer [9], and the S stemmer [7]. S stemmer only
removes a few common word endings. Lovins stemmer is
more aggressive than Porter stemmer, which in turn is more
aggressive than S stemmer.

We also consider two stop word removal methods. One
method uses an external stop word list. In our experiments,
we use the stop word list from PubMed. Since stop words
are essentially the most frequent words in a document col-
lection, the second method we consider uses a stop word list
generated from the document collection itself by extracting
the most frequent k tokens.

S. EVALUATION

In this section, we show our empirical evaluation of the set
of tokenization heuristics we described in Section 3 and Sec-
tion 4. Specifically, our goal is as follows. For removal of
the non-functional special characters, intuitively it should
improve the performance, because most of the noise caused
by punctuation such as periods and commas is removed by
this heuristic. The focus of the evaluation of this heuristic
is thus to see whether this non-functional character removal
step is safe for most of the queries. For the three sets of break
points we defined, BP1, BP2, and BP3, the goal of the evalu-
ation is to see which set gives the best retrieval performance
when it is used in conjunction with break point normal-
ization. Similarly, for the three break point normalization
methods, the goal is the find the best normalization method
for retrieval. For Greek alphabet normalization, we want
to see whether this replacement can improve the retrieval
performance. Lastly, for stemming and stop word removal,
we want to see whether stemming improves the performance
and which stemmer performs the best, and wether removing
stop words improves the performance.

We also need to make our evaluation of tokenization strate-
gies independent of the retrieval method being used so that
the best tokenization strategies we find can be used for any
standard IR method. We thus choose two representative re-
trieval methods to use in our evaluation: a tfidf retrieval
method with BM25 term frequency weighting, and the KL-
divergence retrieval method [15], which represents the lan-
guage modeling approach. The parameters for both meth-
ods are tuned in each experiment for each set of queries
because the parameters are sensitive to the query type and

Table 4: Comparison between Naive Method and Baseline Method

Keyword Queries Verbose Queries
03 Symbol 03 Name 04 05 Gene 05 Non-gene
KL | TFIDF | KL | TFIDF | KL | TFIDF | KL | TFIDF | KL, | TFIDF
Naive 0.1451 | 0.1546 | 0.0833 | 0.0919 0.1672 | 0.1736 | 0.1921 | 0.1929 | 0.1302 | 0.1166
Baseline || 0.1520 | 0.1643 | 0.0892 | 0.0971 | 0.2694 | 0.2700 | 0.2296 | 0.2189 | 0.1549 | 0.1413
% Impr. || 4.76% | 6.27% | 7.08% | 5.66% || 61.1% | 55.5% | 19.5% | 13.5% | 19.0% | 21.2%
Decr. | 23/50 | 22/50 13/50 | 15/50 6/50 5/50 10/39 | 12/39 | 4/10 4/10

to the tokenization heuristics used. We use the Lemur Lan-
guage Modeling Toolkit! for our experiments.

In all our experiments, we use the average MAP measure
over the set of queries as the evaluation metric.

5.1 Document Collections and Queries

The document collections and the queries we use for evalua-
tion are from the ad hoc retrieval task in TREC 2003, 2004
and 2005’s Genomics Track?. The document collection used
in 2003 TREC Genomics Track contains 525,938 MEDLINE
records between April 2002 and April 2003. The collection
used in 2004 and 2005 is a 10-year subset of MEDLINE
records from 1994 to 2003.

The topics used in the three years’ Genomics Track rep-
resent different types of queries and different information
need. The 50 topics from TREC 2003 each consist of a
gene and an organism name with the specific retrieval task
formally stated as follows: For gene X, find all MEDLINE
references that focus on the basic biology of the gene or its
protein products from the designated organism. Basic bi-
ology includes isolation, structure, genetics and function of
genes/protiens in normal and disease states. Because this
information need is very broad but at the same time centered
around the topic genes, we use only the gene names to form
keyword queries. We do not use the names of the organ-
isms because our preliminary experiment results show that
including the organism names may hurt the performance.
For the gene in each topic, several types of names are given,
including the official name, the official symbol, the alias sym-
bols, the product, etc. These types of names fall into two
categories: the gene names and gene products are usually
long, descriptive names, such as chemokine (C-C motif) lig-
and 3, and the gene symbols are short, symbolic names, such
as CCL3 and MIP1A. We thus form two groups of keyword
queries from the 2003 topics. For each 2003 topic, we use the
union of the topic gene’s descriptive names to form a name
query, and we use the union of the gene’s symbolic names to
form a symbol query. In the end, we get 50 keyword name
queries and 50 keyword symbol queries from the 2003 topics.
This separation presumably captures two possible types of
real-world queries from biology researchers.

The 50 topics from TREC 2004 each consist of a title field,
an information need field, and a context field. These top-
ics may or may not contain a gene or protein name. Our
preliminary experiment results show that using only the in-
formation need field to form queries gives the best retrieval

"http://www.lemurproject.org/
http://ir.ohsu.edu/genomics/

performance. We thus use the text in the information need
field only to form 50 verbose queries. These queries often
contain common English words as background words, such
as about in the query “Find articles about Ferroportin-1, an
iron transporter, in humans.”

The 50 topics from TREC 2005 are structured topics with
templates. There are 5 templates representing 5 kinds of
information need. For example, one template is “Provide
information about the role of the gene X involved in the dis-
ease Y.” We exclude those template background words such
as provide and information when forming the queries. After
removing the background words, most queries still contain
more than 5 words, including some English words, so we
still consider them verbose queries. We further divide the
queries into two groups: queries that involve at least one
gene (queries belonging to Templates 2, 3, 4 and 5), and
queries that do not involve any gene (queries belonging to
Template 1). We exclude Topic 135 because it does not have
any judged relevant document. We thus get 39 gene queries
and 10 non-gene queries from the 2005 topics.

To summarize, we use 5 sets of queries for evaluation: 50

keyword gene symbol queries from TREC 2003, 50 key-

word gene name queries from TREC 2003, 50 verbose mixed

queries from TREC 2004, 39 verbose gene queries from TREC
2005, and 10 verbose non-gene queries from TREC 2005.

The 2004 queries are more verbose than the 2005 queries.

We do not consider query expansion because the goal of our

study is not to improve the absolute retrieval performance,

but rather to compare the tokenization strategies.

5.2 Tokenization Heuristics

To evaluate the tokenization heuristics, we first compare the
retrieval performance before and after the removal of non-
functional characters. Concluding that removing the non-
functional characters is safe, we then further apply the three
break point normalization methods in conjunction with the
three sets of break points. This gives us 9 sets of experi-
ments. We then evaluate the Greek alphabet normalization
heuristic by applying it on top of each break point normal-
ization method in conjunction with the best set of break
points. All experiments are run on each set of queries.

5.2.1 Removal of Non-Functional Characters

Table 4 shows the comparison of the retrieval performance
between the naive tokenization method and the tokenization
method that removes the non-functional characters. We re-
fer to the latter method as the baseline method because
it is applicable to general English text as well. The 3rd
row shows the relative improvement brought by the baseline

Table 5: Comparison Among Three Sets of Break Points

Keyword Queries Verbose Queries
03 Symbol 03 Name 04 05 Gene 05 Non-gene

KL | TFIDF | KL | TFIDF || KL |[TFIDF| KL |[TFIDF | KL [TFIDF
BP1 || 0.1548 0.1642 | 0.0890 | 0.0978 || 0.2695 0.2663 | 0.2431 0.2421 0.1569 | 0.1415
H-Norm | BP2 || 0.1530 | 0.1625 | 0.0976 | 0.0940 0.2702 | 0.2676 | 0.2431 0.2421 0.1569 | 0.1415
BP3 || 0.1598 | 0.1614 | 0.0872 0.0904 0.2678 0.2671 0.2447 | 0.2442 | 0.1567 | 0.1414
BP1 || 0.1466 | 0.1512 | 0.1056 | 0.1070 || 0.3015 | 0.3202 | 0.2807 | 0.2756 | 0.1836 | 0.1664
S-Norm | BP2 || 0.1434 | 0.1465 | 0.1078 | 0.1045 0.2986 | 0.3122 | 0.2793 | 0.2745 | 0.1835 | 0.1650
BP3 || 0.1276 0.1016 | 0.0969 | 0.0900 0.2406 0.2339 | 0.2757 | 0.2578 | 0.1795 | 0.1654
BP1 || 0.1751 | 0.1750 | 0.0874 | 0.0930 || 0.2742 0.2824 | 0.2474 | 0.2469 | 0.1571 | 0.1417
J-Norm | BP2 || 0.1738 0.1735 | 0.0869 | 0.0894 0.2749 | 0.2838 | 0.2475 | 0.2469 | 0.1569 | 0.1417
BP3 || 0.1738 0.1735 | 0.0869 | 0.0894 0.2749 | 0.2838 | 0.2475 | 0.2469 | 0.1569 | 0.1417

Table 6: Comparison Among Break Point Normalization Methods

Keyword Queries Verbose Queries
03 Symbol 03 Name 04 05 Gene 05 Non-gene

KL | TFIDF | KL | TFIDF || KL |[TFIDF| KL |[TFIDF | KL [TFIDF
H-Norm || 0.1548 0.1642 | 0.0890 | 0.0978 0.2695 0.2663 | 0.2431 0.2421 0.1569 | 0.1415
BP1 | S-Norm || 0.1466 0.1512 | 0.1056 | 0.1070 || 0.3015 | 0.3202 | 0.2807 | 0.2756 | 0.1836 | 0.1664
J-Norm || 0.1751 | 0.1750 | 0.0874 | 0.0930 0.2742 0.2824 | 0.2474 | 0.2469 | 0.1571 0.1417
H-Norm || 0.1530 | 0.1625 | 0.0976 | 0.0940 |l 0.2702 | 0.2676 | 0.2431 | 0.2421 | 0.1569 | 0.1415
BP2 | S-Norm || 0.1434 | 0.1465 | 0.1078 | 0.1045 || 0.2986 | 0.3122 | 0.2793 | 0.2745 | 0.1835 | 0.1650
J-Norm || 0.1738 | 0.1735 | 0.0869 | 0.0894 0.2749 | 0.2838 | 0.2475 0.2469 | 0.1569 | 0.1417
H-Norm || 0.1598 0.1614 | 0.0872 0.0904 || 0.2678 0.2671 0.2447 | 0.2442 | 0.1567 | 0.1414
BP3 | S-Norm || 0.1276 0.1016 | 0.0969 | 0.0900 0.2406 0.2339 | 0.2757 | 0.2578 | 0.1795 | 0.1654
J-Norm | 0.1738 | 0.1735 | 0.0869 | 0.0894 | 0.2749 | 0.2838 | 0.2475 | 0.2469 | 0.1569 | 0.1417

method. The 4th row shows the number of queries whose
baseline MAP measure is lower than the naive MAP mea-
sure, out of the total number of queries in each query set.
We can see that in all sets of queries, the baseline method
outperforms the naive method. The improvement is espe-
cially substantial with the verbose queries. The explanation
is probably that there are more English words in the ver-
bose queries than in the keyword queries. A tokenization
method that separates words from punctuation can make the
term frequencies and inverted document frequencies more
accurate, especially for English words. Therefore, baseline
method has more impact on verbose queries.

It is shown in Table 4 that for each query set, there are still
some queries whose baseline MAP measure is lower than
the naive MAP measure. We randomly picked some of these
topics and did an error analysis. We found that in most cases
the performance drop was not caused by bad tokenization,
but rather by some information need that was not captured
in the queries. We can thus still conclude that it is in general
safe to remove those non-functional characters.

5.2.2 Break Points

Table 5 shows the comparison among the three sets of break
points when one of H-Norm, S-Norm and J-Norm is used in
conjunction. The best performance among the three sets for
each set of queries is shown in bold font. The pattern is not
consistent, but we can see that BP1 performs the best for
the most number of experiments, especially when S-Norm is
used, or when J-Norm is used for the keyword queries. As

we will show next, S-Norm and J-Norm are preferred over
H-Norm. Thus we can conclude that BP1 is the best set of
break points to use.

5.2.3 Break Point Normalization

Table 6 shows the comparison among the three break point
normalization methods when each set of break points is used
in conjunction. It is very clear from Table 6, especially from
the three rows with BP1 and the three rows with BP2, that
for the symbol queries, J-Norm performs the best, and for
the name queries and the verbose queries, S-Norm performs
the best. This suggests that for gene symbols that are com-
binations of alphabetical characters, numerical characters
and special characters such as hyphens, removing the spe-
cial characters is the most effective way to normalize differ-
ent lexical variants of the same name. For keyword name
queries and verbose queries, however, most of the query
words are not gene symbols. Replacing special characters
such as hyphens and slashes with spaces is the most effective
normalization method. This is probably not only because S-
Norm may help normalize the gene names but also because
it effectively separates hyphenated compound words such as
CCAAT /enhancer-binding and azaserine-induced, which are
better to be separated for retrieval purpose.

5.2.4 Greek Alphabet Normalization

In Table 7, we show the effect of applying G-Norm on top
H-Norm, S-Norm and J-Norm when the best set of break
points, BP1, is used. Although the pattern is not very clear
in the comparison, we can see that in most cases, Greek

alphabet normalization does not improve the performance.
However, for keyword symbol queries, when J-Norm is used,
G-Norm does improve the performance a little bit. Since
J-Norm is the best break point normalization method for
keyword symbol queries, we can conclude that we should
apply G-Norm on top of J-Norm when the queries are key-
word symbol queries.

5.2.5 Improvement Summary

From the above comparisons, we can draw the following con-
clusions. First, we can safely remove those non-functional
characters as defined in Section 3.1. Second, BP1 is the
best set of break points to use for break point normaliza-
tion. Third, for keyword symbol queries, J-Norm is the
most effective break point normalization method, and for
keyword name queries and verbose queries, S-Norm is the
most effective normalization method. Fourth, Greek alpha-
bet normalization in general is not effective except when
J-Norm is used for the keyword symbol queries.

In Table 8, we show the relative improvement brought by
each tokenization heuristic and the overall improvement over
the naive method. Except for the overall improvement,
the percentage of improvement shown in the table is the
improvement with respect to the previous row. The key-
word name queries from 2003 and the verbose queries are
grouped into a single category (the non-symbol queries) be-
cause the same set of heuristics work the best on them. The
gene queries and the nongene queries from 2005 are also
combined. We can see from the table that when a set of
suitable tokenization heuristics are used for each type of
queries, the performance can improve by at least 15% for all
sets of queries. The improvement is mostly substantial for
the 2004 and 2005 queries, which are verbose queries. For
2004 queries, the improvement is mostly brought by removal
of the non-functional characters. The reason may be that
2004 queries contain more background English words than
the 2005 queries. It therefore suggests that the more ver-
bose a query is, i.e., the more background English words a
query contains, the more important it is to carefully remove
the non-functional characters when doing tokenization. For
2003 name queries and 2005 queries, however, the break
point normalization step contributes more than removal of
the non-functional characters to the final improvement. This
suggests that for queries containing gene names, normaliza-
tion of break points is important in tokenization.

5.3 Stemming and Stop Word Removal
5.3.1 Stemming

In this section, we compare non-stemming and stemming

performance, and compare the different stemming algorithms.

We apply three stemmers, the Porter stemmer, the Lovins
stemmer, and the S stemmer, on top of the best tokeniza-
tion strategy for each set of queries. The performance is
shown in Table 9. We can see that for keyword queries, all
stemmers decrease the performance. However, for verbose
queries, in most cases all three stemmers improve the per-
formance. Porter stemmer and Lovins stemmer are shown
to be better than the S stemmer. The comparison between
the Porter stemmer and the Lovins stemmer is mixed.

5.3.2 Stop Word Removal

In this section, we compare the two stop word removal meth-
ods. Method one uses the PubMed stop word list, which
consists of 132 common English words. Method two uses
a collection-based stop word list, i.e., the most frequent k&
words in the same document collection for retrieval. We use
different values of k to see how this cutoff number affects
the performance. Table 10 shows the performance on each
query set before and after stop word removal. The best per-
formance in each column is shown in bold font. We can
see that except for 2004 queries, stop word removal either
does not improve the performance, or only slightly improves
the performance when a few number of collection-based stop
words are removed. For 2004 queries, however, using the ex-
ternal stop word list is better than using the collection based
stop words. This may be because of some common English
words in 2004 queries that are not captured by the collec-
tion based stop word list. For example, the word about in
the query “Find articles about Ferroportin-1, an iron trans-
porter, in humans.” is in the PubMed stop word list, but is
only the 434th frequent word in the document collection.

6. CONCLUSIONS

Because of the irregular forms of entity names and their lex-
ical variants in the biomedical text, appropriate tokeniza-
tion is an important preprocessing step in biomedical IR.
In this paper, we systematically evaluated a set of tokeniza-
tion strategies generalized from existing work, including a
non-functional character removal step, a break point nor-
malization step with three possible normalization methods
and three possible sets of break points, and a Greek alpha-
bet normalization step. We also empirically studied the ef-
fect of stemming and stop word removal for biomedical IR.
Our evaluation was conducted on all the available TREC
biomedical IR test collections, and we employed two rep-
resentative retrieval methods. Results from both retrieval
methods show that tokenization can significantly affect the
retrieval performance, as we expected; appropriate tokeniza-
tion can improve the retrieval performance by up to 80%.

Our findings provide guidelines on how to do tokenization
for IR and text mining on biomedical text. In particular, the
general recommendations are: First, non-functional charac-
ters should be removed from the text using a set of heuristic
rules. Second, for different types of queries, different tok-
enization heuristics should be applied. For queries that con-
tain only gene symbols, removing brackets, hyphens, slashes
and underlines in the tokens and replacing Greek letters with
their Latin equivalents are useful. For queries that contain
only full gene names and for verbose queries that also con-
tain English words, replacing brackets, hyphens, slashes and
underlines with spaces should be used. Numerical charac-
ters should not be separated from alphabetical characters.
Third, for verbose queries, Porter or Lovins stemmer can
be used to further improve the performance. Finally, stop
word removal should not be performed except for verbose
queries containing common English words, in which case an
external stop word list may help.

7. REFERENCES
[1] R. K. Ando, M. Dredze, and T. Zhang. TREC 2005
genomics track experiments at IBM Watson. In
TREC-2005.

Table 7: The Effect of Greek Alphabet Normalization

Keyword Queries Verbose Queries
03 Symbol 03 Name 04 05 Gene 05 Non-gene {
G-Norm | KL | TFIDF | KL |TFIDF | KL |[TFIDF | KL |TFIDF | KL | TFIDF
H-Norm No 0.1548 | 0.1642 0.0890 | 0.0978 || 0.2695 | 0.2663 | 0.2431 | 0.2421 | 0.1569 | 0.1415
Yes 0.1541 0.1649 | 0.0870 0.0952 0.2674 | 0.2646 0.2426 0.2415 0.1563 0.1415
S-Norm No 0.1466 | 0.1512 0.1056 | 0.1070 || 0.3015 | 0.3202 | 0.2807 0.2756 | 0.1836 | 0.1664
Yes 0.1452 0.1516 | 0.1034 0.1033 0.2997 | 0.3186 0.2812 | 0.2754 | 0.1836 | 0.1663
J-Norm No 0.1751 0.1750 0.0874 | 0.0930 || 0.2742 | 0.2824 0.2474 | 0.2469 | 0.1571 | 0.1417
Yes 0.1784 | 0.1780 | 0.0854 0.0908 0.2741 0.2833 | 0.2435 0.2415 0.1565 0.1417
Table 8: The Relative Improvement Brought by Each Tokenization Heuristic
Keyword Symbol Queries Non-Symbol Queries
03 03 04 05
KL TFIDF KL TFIDF KL TFIDF KL TFIDF
Naive 0.1451 0.1546 Naive 0.0833 | 0.0919 | 0.1672 | 0.1736 | 0.1795 | 0.1773
Baseline 0.1520 | 0.1643 Baseline 0.0892 | 0.0971 | 0.2694 | 0.2700 | 0.2143 | 0.2031
% Impr. 4.76% | 6.27% % Impr. 7.08% | 5.66% | 61.1% | 55.5% | 19.4% | 14.6%
BP1+J-Norm 0.1751 | 0.1750 BP1+4S-Norm 0.1056 | 0.1070 | 0.3015 | 0.3202 | 0.2608 | 0.2533
% Impr. 15.2% | 5.61% % Impr. 18.4% | 10.2% | 11.9% | 18.6% | 21.7% | 24.7%
+G-Norm 0.1784 | 0.1780
% Impr. 1.88% | 1.71%
Overall % Impr. Overall % Impr.
over Naive 23.0% | 15.1% over Naive 26.8% | 16.4% | 80.3% | 84.5% | 45.3% | 42.9%

[2] S. Buttcher, C. L. A. Clarke, and G. V. Cormack.
Domain-specific synonym expansion and validation for
biomedical information retrieval. In TREC-200/.

[3] B. Carpenter. Phrasal queries with LingPipe and
Lucene: Ad hoc genomics text retrieval. In

TREC-2004.

[4] C. Crangle, A. Zbyslaw, J. M. Cherry, and E. L.
Hong. Concept extraction and synonym management
for biomedical information retrieval. In TREC-200/.

[5] A. Dayanik, C. G. Nevill-Manning, and R. Oughtred.
Partitioning a graph of sequences, structures and
abstracts for information retrieval. In TREC-2003.

[6] S. Fujita. Revisiting again document length
hypotheses TREC-2004 genomics track experiments at
patolis. In TREC-2004.

[7] D. Harman. How effective is suffixing? Journal of the
American Society for Information Science, 42(1):7-15,

1991.

[8] X. Huang, M. Zhong, and L. Si. York University at
TREC 2005: Genomics track. In TREC-2005.

[9] J. Lovins. Development of a stemming algorithm.
Mechanical Translation and Computational
Linguistics, 11:22-31, 1968.

[10]

A. Pirkola and E. Leppanen. TREC 2003 genomics

track experiments at UTA. In TREC-2003.

[11]

M. Porter. An algorithm for suffix stripping. In

Readings in Information Retrieval, pages 313-316.
Morgan Kaufmann Publishers Inc.

[12] J. Savoy, Y. Rasolofo, and L. Perret. Report on the
TREC 2003 experiment. In TREC-2003.

[13] Y.-I. Song, K.-S. Han, H.-C. Seo, S.-B. Kim, and
H.-C. Rim. Biomedical text retrieval system at Korea

University. In TREC-20083.

[14] S. Tomlinson. Robust, web and genomics retrieval
with Hummingbird SearchServer at TREC 2003. In

TREC-2003.

C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval.
In CIKM-2001.

Table 9: The Effect of Stemming

Keyword Queries

Verbose Queries

03 Symbol 03 Name 04 05 Gene 05 Non-gene
KL TFIDF KL | TFIDF KL TFIDF KL | TFIDF KL TFIDF
Best Tokenization || 0.1784 | 0.1780 | 0.1056 | 0.1070 || 0.3015 | 0.3202 | 0.2807 | 0.2756 | 0.1836 | 0.1664
+Porter 0.1751 0.1741 0.1052 0.1023 0.3380 | 0.3329 | 0.2901 0.2872 0.2094 | 0.1601
+Lovins 0.1726 | 0.1755 | 0.1054 | 0.1016 0.3130 | 0.3165 | 0.2966 | 0.2965 | 0.2036 | 0.1755
+S 0.1757 | 0.1747 | 0.1045 0.1028 0.3234 | 0.3297 | 0.2840 | 0.2850 | 0.1962 | 0.1683
Table 10: The Effect of Stop Word Removal
Stop Keyword Queries Verbose Queries
Word k 03 Symbol 03 Name 04 05 Gene 05 Non-gene
List KL TFIDF KL TFIDF KL TFIDF KL TFIDF KL TFIDF
No 0 0.1784 | 0.1780 | 0.1056 | 0.1070 | 0.3380 | 0.3329 | 0.2901 | 0.2874 | 0.2094 | 0.1601
PubMed | 132 || 0.1772 | 0.1780 | 0.1028 | 0.1071 | 0.3487 | 0.3366 | 0.2916 | 0.2846 | 0.1962 | 0.1581
5 0.1777 | 0.1780 | 0.1061 | 0.1070 | 0.3389 | 0.3330 | 0.2936 | 0.2873 | 0.2098 | 0.1602
Collection | 10 || 0.1786 | 0.1780 | 0.1047 | 0.1070 | 0.3393 | 0.3330 | 0.2925 | 0.2873 | 0.1964 | 0.1604
Based 20 0.1777 | 0.1780 | 0.1046 | 0.1070 | 0.3374 | 0.3317 | 0.2921 | 0.2829 | 0.1768 | 0.1508
100 || 0.1769 | 0.1780 | 0.0872 | 0.0990 | 0.3264 | 0.3242 | 0.2770 | 0.2744 | 0.1533 | 0.1393

