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Abstract We consider the following autocompletion search scenario: imagine a user of a

search engine typing a query; then with every keystroke display those completions of the

last query word that would lead to the best hits, and also display the best such hits. The

following problem is at the core of this feature: for a fixed document collection, given a set

D of documents, and an alphabetical range W of words, compute the set of all word-

in-document pairs (w, d) from the collection such that w [ W and d [ D. We present a new

data structure with the help of which such autocompletion queries can be processed, on the

average, in time linear in the input plus output size, independent of the size of the

underlying document collection. At the same time, our data structure uses no more space

than an inverted index. Actual query processing times on a large test collection correlate

almost perfectly with our theoretical bound.

Keywords Autocompletion � Index data structure � Prefix search � Output-sensitive

1 Introduction

Autocompletion, in its most basic form, is the following mechanism: the user types the first

few letters of some word, and either by pressing a dedicated key or automatically after each

keystroke a procedure is invoked that displays all relevant words that are continuations of

the typed sequence. The most prominent example of this feature is the tab-completion

mechanism in a Unix shell. In the recently launched Google Suggest service completion is

to frequently asked queries. Algorithmically, this basic form of autocompletion is easy: it

merely requires two searches in a precompiled sorted list of strings, in order to find the first

and the last completion from that list.
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1.1 Problem definition

The problem we consider in this paper is derived from a more sophisticated form of

autocompletion, which takes into account the context in which the to-be-completed word

has been typed. Here, we would like an (instant) display of only those completions of the

last query word which lead to hits, as well as a display of such hits. For example, if the user

has typed search autoc, context-aware completions might be autocomplete and

autocompletion, but not autocratic. The following definition formalizes the core

problem in providing such a feature.

Definition 1 An autocompletion query is a pair (D, W), where W is a range of words (all

possible completions of the last word which the user has started typing), and D is a set of

documents (the hits for the preceding part of the query). To process the query means to

compute the set of all word-in-document pairs (w, d) with w [ W and d [ D.

Given an algorithm for solving autocompletion queries according to the definition

above, we obtain the context-sensitive autocompletion feature as follows:

For the example query search autoc, W would be all words from the vocabulary

starting with autoc, and D would be the set of all hits for the query search. The output

would be all word-in-document pairs (w, d), where w starts with autoc and d contains w as

well as a word starting with search.1

Now if the user continues with the last query word, e.g., search autoco, then we can

just filter the sequence of word-in-document pairs from the previous queries, keeping only

those pairs (w0, d0), where w0 starts with autoc. If, on the other hand, she starts a new query

word, e.g., search autoc pub, then we have another autocompletion query according to

Definition 1, where now W is the set of all words from the vocabulary starting with pub,

and D is the set of all hits for search autoc. For the very first query word, D is the set of

all documents.

In practice, we are actually interested in the best hits and completions for a query. This

can be achieved by the following standard approach. Assume we have precomputed scores

for each word-in-document pair. Given a sequence of pairs (w, d) according to Definition

1, we can then easily compute for each word w0 occurring in that sequence an aggregate of

the scores of all pairs (w0, d) from that sequence, as well as for each document d0 an

aggregate of the scores of all pairs (w, d0). The precomputation of scores for word-

in-document pairs such that these aggregations reflect user-perceived relevance to the

given query is a much-researched area in information retrieval (Witten et al. 1999), and

beyond the scope of this paper. It is for these reasons that the ranking issue is factored out

of Definition 1.

To answer a series of autocompletion queries, we can obtain the new set of candidate

documents D from the sequence of matching word-in-document pairs for the last query

by sorting the matching (w, d) pairs. This sort takes time Oðð
P

w2W jD \
DwjÞlogð

P
w2W jD \ DwjÞÞ and would in practice be done together with the ranking of

the completions and documents. The time for this sort is also included in the running

times of our experiments in Sect. 6, but is dominated by the work to find all matching

word-in-document pairs.

1 We always assume an implicit prefix search, that is, we are actually interested in hits for all words starting
with search, which is usually what one wants in practice. Whole-word-only matching can be enforced by
introducing a special end of word symbol $:
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A related user study (Bast and Weber 2007) shows that a new interactive and proactive

user interface built on top of this autocompletion feature is (i) preferred by the users over

classical Google-like search boxes and (ii) leads to more relevant documents being found.

1.2 Main result

Theorem 1 Given a collection with n documents, m distinct words, N C 25� m word-
in-document pairs, and a (constant) average number of distinct words per document
L = N/n, there is a data structure AUTOTREE with the following properties:

(a) AUTOTREE can be constructed in O(N) time.

(b) AUTOTREE uses at most Ndlog2ne bits of space (which is the space used by an
ordinary uncompressed inverted index).2

(c) AUTOTREE can process an autocompletion search query (D, W) (according to
Definition 1) in time

O ðaþ bÞjDj þ Uð Þ;

where U ¼
P

w2W jD \ Dwj and Dw is the set of documents containing word w. Here
a = N|W|/(mn), which is bounded above by 1, unless the word range is very large (e.g.,
when completing a single letter), and by L, regardless of assumptions about W. If we
assume that the words in a document with l words are a random size-l subset of all words,

b is at most 2 in expectation. In our experiments, b is indeed around 2 on the average and
about 4 in the (rare) worst case; our analysis implies a general worst-case bound of
min(log(mn/N), Lmax), where Lmax is the maximum document length.

Note that for constant a and b, the running time is asymptotically optimal, as it takes

X(|D|) time to merely read in all of D and it takes X(U + |W| + |D|) = X(U) time to output

the result.3 Also note that asymptotically, as the corpus grows, N, n, m and W will become

large but Lmax, the maximum document length, and hence L, the average document length,

can be assumed to remain bounded. In that case, alpha and beta are bounded even in the

theoretical worst case. The necessary ingredients for the proof of Theorem 2 are developed

in the next sections and they are finally assembled in Sect. 5.

The condition on N is a technicality and is satisfied for any realistic document col-

lection. Details are given in Sect. 5. Intuitively speaking, the condition says that n, the

number of documents grows at least as fast as m, the number of terms (assuming that L, the

average document length, stays constant). This condition will guarantee that AUTOTREE

requires less space than BASIC, which can be understood intuitively as follows: BASIC only

needs to encode, for each word-in-document pair, a single document id (neglecting the

small overhead for storing the list lengths and the word, a list pertains to). Thus its space

requirement directly depends on the number of documents. AUTOTREE, as we will explain

in the following sections, essentially encodes each such pair using its word id.

We implemented AUTOTREE, and in Sect. 6 show that its processing time correlates

almost perfectly with the bound from Theorem 1(c) above. In that Section, we also

compare it to an inverted index, its presumably closest competitor (see Sect. 1.4), which

2 Strictly speaking, an uncompressed inverted index needs even more space, to store the list lengths.
3 The statement about the required time to read in the (usually ‘‘random’’) set D tacitly assumes D is
explicitly represented element-by-element. Of course, for the first prefix, when D is the set of all documents,
this is not the case.
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AUTOTREE outperforms by a factor of 10 in worst-case processing time (which is key for an

interactive feature), and by a factor of 4 in average-case processing time.

1.3 Related work

This article is an extended version of (Bast et al. 2006), with full proofs and an extended

set of experiments. The problem from Definition 1 is at the core of the CompleteSearch

engine, which we have devised and implemented, and which is described in (Bast and

Weber 2006); for a list of available demos, see http://search.mpi-inf.mpg.de.

In the same paper, an alternative data structure (called ‘‘HYB’’) for processing auto-

completion queries is presented, and it is this data structure which underlies the

CompleteSearch engine. Historically, AUTOTREE was developed over a year before HYB,

even if this is not reflected in the order of the relevant publications. HYB focuses on

compressibility (of the data), and locality of access (of the query algorithm), and is not an

output-sensitive algorithm. A direct comparison between the two data structures is given in

(Weber 2007). This comparison shows that, in a general setting, HYB is faster than

AUTOTREE by a factor of roughly 2. Still, there are queries, in particular when |W| is large

and |D| is small, for which AUTOTREE dominates HYB by almost an order of magnitude.

Such queries arise naturally in certain applications, for example, the faceted search

described in (Weber 2007). The design of a data structure which simultaneously achieves

the best of both AUTOTREE (output-sensitivity) and HYB (locality of access and com-

pressibility) remains a core open problem of this line of research.

The most straightforward way to process an autocompletion query (D, W) would be to

explicitly search each document from D for occurrences of a word from W. However, this

would give us a non-constant query processing time per element of D, completely inde-

pendent of the respective |W| or output size U ¼
P

w2W jD \ Dwj. For these reasons, we do

not consider this approach further in this paper. Instead, our baseline in this paper is based

on an inverted index, the data structure underlying most (if not all) large-scale commercial

search engines (Witten et al. 1999); see Sect. 1.4.

Definition 1 looks reminiscent of multi-dimensional search problems, where the col-

lections consists of tuples (of some fixed dimensionality), and queries are asking for all

tuples contained in a tuple of given ranges (Gaede and Günther 1998; Arge et al. 1999;

Ferragina et al. 2003; Alstrup et al. 2000). Provided that we are willing to limit the number

of query words, such data structures could indeed be used to process our autocompletion

queries. If we want fast processing times, however, any of the known data structures uses

space on the order of N1+d, where N is the number of word-in-document pairs in the

collection, and d grows (fast) with the dimensionality. In the description of our data

structures we will point out some interesting analogies to the geometric range-search data

structures from (Chazelle 1988) and (McCreight 1985).

When searching for prefixes (or arbitrary patterns) in a text collection, suffix arrays are a

standard choice (Manber and Myers 1990; Grossi and Vitter 2000; Grossi et al. 2004).

Although these approaches are not directly applicable to our autocompletion problem, we

could indeed use suffix arrays to produce the list of all documents that contain words with a

given prefix (or even infix). This list could then be intersected with the set D. This,

however, does not give output-sensitive behavior. In fact, this is similar to our BASIC

scheme, described in the next section, which computes the list of documents matching a

given prefix by merging a number of precomputed lists, one for each word starting with the

prefix.
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The reason we have taken BASIC as our baseline, and not an algorithm based on suffix

arrays, as just outlined, is as follows. Uncompressed suffix arrays use too much space, as

they index every character of the collection.4 Compressed suffix arrays are not competitive

with respect to running time when it comes to reporting and not just counting the

occurrences of an infix, because each reported occurrence requires a non-constant number

of operations and typically incurs at least one cache miss. Experimental evidence for this is

given in (Puglisi et al. 2006). We also ran a direct head-to-head comparison between suffix

arrays (SSA2, Mäkinen and Navarro 2004) and our AUTOTREE data structure, where both

index structures were used to give the list of documents containing a certain prefix. It again

confirmed that, for the same space consumption5 and even when |D| = n, suffix arrays are

not superior to AUTOTREE in terms of the time requirements for this task. Furthermore,

suffix arrays do not allow an easy integration of scores, which is crucial for our search

engine setting. Details on the experimental comparison are given in (Weber 2007).

Note that the situation would be different if we wanted context-sensitive infix search.

Suffix arrays would give that just as easily as prefix search, but neither AUTOTREE nor the

inverted index easily adapt to that scenario without a significant blowup in either space

consumption or query time. However, the application behind our problem definition really

calls for prefix search and not for infix search. Infix search would return too many, mostly

irrelevant matches. For example, when typing ‘‘search aut’’, we are most certainly not

looking for completions like ‘‘flautist’’ or ‘‘aeronautics’’. (On the other hand, our algorithm

can be easily extended to consider reasonable subwords like the ‘‘vector’’ in ‘‘eigenvec-

tor’’; we can simply add these to the index without increasing the total index size

considerably.)

Our data structure is reminiscent of wavelet trees (Grossi et al. 2003; Ferragina et al.

2006). A wavelet tree consists of a tree, built over a fixed alphabet, where each node

contains a bitvector. These bitvectors are ‘‘relative’’ as the bits in the left/right child of a bit

vector in a node correspond to the 1/0 bits in its parent. So the length of a particular bit

vector depends on the number of 1/0 bits of its parent node. To allow for constant-time

rank and select operations on these bit vectors, auxiliary data structures are built (Munro

1996). Our data structure also makes use of relative bitvectors, but these serve a different

purpose than in wavelet trees: in our tree both children of a node store only information

corresponding to the 1 bits of their parent node, and nothing for 0 bits. Furthermore, an

integral part of our data structure is a ‘‘witness’’ stored by each 1 bit (whereas in a wavelet

tree one only obtains the final information after descending to the leaf level).

There is a large body of more applied work on algorithms and mechanisms for pre-
dicting user input, for example, for typing messages with a mobile phone, for users with

disabilities concerning typing, or for the composition of standard letters (Jakobsson 1986;

Darragh et al. 1990; Stocky et al. 2004; Bickel et al. 2005). In (Finkelstein et al. 2001),

contextual information has been used to select promising extensions for a query; the

emphasis of that paper is on the quality of the extensions, while our emphasis here is on

efficiency. An interesting, somewhat related phrase-browsing feature has been presented in

(Paynter et al. 2000; Nevill Manning et al. 1999); in that work, emphasis was on the

identification of frequent phrases in a collection.

4 If the number of characters in the collection is N0, an uncompressed suffix array needs at least
N 0dlog2ðN 0Þe bits, which exceeds the Ndlog2ðnÞe bits required for an inverted index built over the words by
a factor of at least the average word length.
5 The full text as one long string was counted toward the space requirement of AUTOTREE.
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1.4 The BASIC scheme and outline of the rest of the paper

The following BASIC scheme is our baseline in this paper. It is based on the inverted index
(Witten et al. 1999), for which we simply precompute for each word from the collection

the list of documents containing that word. For an efficient query processing, these lists are

typically sorted, and we assume a sorting by document number.

Having precomputed these lists, BASIC processes an autocompletion query (D, W) very

simply as follows: For each word w [ W, fetch the list Dw of documents that contain w,

compute the intersection D \ Dw, and append it to the output.

Lemma 1 BASIC uses time at least Xð
P

w2W minfjDj; jDwjgÞ to process an autocom-
pletion query (D, W). The inverted lists can be stored using a total of at most N � dlog2ne
bits, where n is the total number of documents, and N is the total number of word-in-
document pairs in the collection.

Proof BASIC computes one intersection for each w [ W and any algorithm for intersecting

D and Dw has to differentiate between 2minfjDj;jDwjg possible outputs. For the space usage, it

suffices to observe that the elements of the inverted lists, are just a rearrangement of the

sets of distinct words from all documents, and that each document number can be encoded

with dlog2ne bits (we do not consider issues of compression in this paper). h

Lemma 1 points out the inherent problem of BASIC: its query processing time depends

on the size of both |D| and |W|, and it can become |D| � |W| in the worst case.

In the following sections, we develop a new indexing scheme AUTOTREE, with the

properties given in Theorem 1. A combination of four main ideas will lead us to this new

scheme: a tree over the words (Sect. 2), relative bit vectors (Sect. 3), pushing up the words

(Sect. 4), and dividing into blocks (Sect. 5). In Sect. 6, we will complement our theoretical

findings with experiments on a large test collection.

2 Building a tree over the words (TREE)

The idea behind our first scheme on the way to Theorem 1 is to increase the amount of
preprocessing by precomputing inverted lists not only for words but also for their prefixes.

More precisely, we construct a complete binary tree with m leaves, where m is the number

of distinct words in the collection. We assume here and throughout the paper that m is a

power of two. For each node v of the tree, we then precompute the sort ed list Dv of

documents which contain at least one word from the subtree of that node. The lists of the

leaves are then exactly the lists of an ordinary inverted index, and the list of an inner node

is exactly the union of the lists of its two children. The list of the root node is exactly the

set of all non-empty documents. A simple example is given in Fig. 1.

Fig. 1 Toy example for the data structure of scheme TREE with 10 documents and 4 different words
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Given this tree data structure, an autocompletion query given by a word range W and a

set of documents D is then processed as follows.

1. Compute the unique minimal sequence v1; . . .; v‘ of nodes with the property that their

subtrees cover exactly the range of words W. Process these ‘ nodes from left to right,

and for each node v invoke the following procedure.

2. Fetch the list Dv of v and compute the intersection D \ Dv. If the intersection is empty,

do nothing. If the intersection is non-empty, then if v is a leaf corresponding to word w,

report for each d 2 D \ Dv the pair (w, d). If v is not a leaf, invoke this procedure (step

2) recursively for each of the two children of v.

Scheme TREE can potentially save us time: If the intersection computed at an inner

node v in step 2 is empty, we know that none of the words in the whole subtree of v is a

completion leading to a hit, that is, with a single intersection we are able to rule out a large
number of potential completions. However, if the intersection at v is non-empty, we know

nothing more than that there is at least one word in the subtree which will lead to a hit, and

we will have to examine both children recursively. The following lemma shows the

potential of TREE to make the query processing time depend on the output size instead of

on W as for BASIC. Since TREE is just a step on the way to our final scheme AUTOTREE, we

do not give the exact query processing time here but just the number of nodes visited,

because we need exactly this information in the next section (Fig. 2).

Lemma 2 When processing an autocompletion query (D, W) with TREE, at most
2ðjW 0j þ 1Þlog2jW j nodes are visited, where W0 is the set of all words from W that occur in
at least one document from D.

Proof A node at height h has at most 2h nodes below it. So each of the nodes v1,…,vl has

height at most blog2jWjc. Further, no three nodes from v1,…,vl have identical height, which

implies that l� 2blogjWjc. Similarly, for each word in W0 we need to visit at most two

additional nodes, each at height below blogjW jc. h

The price TREE pays in terms of space is large. In the worst case, each level of the tree

would use just as much space as the inverted index stored at the leaf level, which would

give a blow-up factor of log2 m.

3 Relative bitvectors (TREE+BITVEC)

In this section, we describe and analyze TREE+BITVEC, which reduces the space usage

from the last section, while maintaining as much as possible of its potential for a query

processing time depending on W0, the set of matching completions, instead of on W
(Sect. 2). The basic trick will be to store the inverted lists via relative bit vectors. The

Fig. 2 The data structure of TREE+BITVEC for the toy collection from Fig. 1
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resulting data structure turns out to have similarities with the static 2-dimensional

orthogonal range counting structure of Chazelle (Chazelle 1988).

In the root node, the list of all non-empty documents is stored as a bit vector: when N is

the number of documents, there are N consecutive bits, and the ith bit corresponds to

document number i, and the bit is set to 1 if and only if that document contains at least one

word from the subtree of the node. In the case of the root node this means that the ith bit is

1 if and only if document number i contains any word at all.

Now consider any one child v of the root node, and with it store a vector of N0 bits, were

N0 is the number of 1-bits in the parent’s bit vector. To make it interesting already at this

point in the tree, assume that indeed some documents are empty, so that not all bits of the

parent’s bit vector are set to one, and N0\ N. Now the jth bit of v corresponds to the jth 1-

bit of its parent, which in turn corresponds to a document number ij. We then set the jth bit

of v to 1 if and only if document number ij contains a word in the subtree of v.

The same principle is now used for every node v that is not the root. Constructing these

bit vectors is relatively straightforward; it is part of the construction given in Sect. 4.1.

Lemma 3 Let stree denote the total lengths of the inverted lists of algorithm TREE. The
total number of bits used in the bit vectors of algorithm TREE+BITVEC is then at most
2stree plus the number of empty documents (which cost a 0-bit in the root each).

Proof The lemma is a consequence of two simple observations. The first observation is

that wherever there was a document number in an inverted list of algorithm TREE there is

now a 1-bit in the bit vector of the same node, and this correspondence is 1-1. The total

number of 1-bits is therefore stree.

The second observation is that if a node v that is not the root has a bit corresponding to

some document number i, then the parent node also has a bit corresponding to that same

document, and that bit of the parent is set to 1, since otherwise node v would not have a bit

corresponding to that document.

It follows that the nodes, which have a bit corresponding to a particular fixed document,

form a subtree that is not necessarily complete but where each inner node has degree 2, and

where 0-bits can only occur at a leaf. The total number of 0-bits pertaining to a fixed

document is hence at most the total number of 1-bits for that same document plus one.

Since for each document we have as many 1-bits at the leaves as there are words in the

documents, the same statement holds without the plus one. h

The procedure for processing a query with TREE+BITVEC is, in principle, the same as

for TREE. The only difference comes from the fact that the bit vectors, except that of the

root, can only be interpreted relative to their respective parents.

To deal with this, we ensure that whenever we visit a node v, we have the set I v of those

positions of the bit vector stored at v that correspond to documents from the given set D, as

well as the jI vj numbers of those documents. For the root node, this is trivial to compute.

For any other node v, I v can be computed from its parent u: for each i 2 Iu, check if the ith
bit of u is set to 1, if so compute the number of 1-bits at positions less than or equal to i, and

add this number to the set I v and store by it the number of the document from D that was

stored by i. With this enhancement, we can follow the same steps as before, except that we

have to ensure now that whenever we visit a node that is not the root, we have visited its

parent before. The lemma below shows that we have to visit an additional number of up to

2 log2m nodes because of this.

Lemma 4 When processing an autocompletion query (D, W) with TREE+BITVEC, at
most 2(|W0| + 1)log2|W| + 2log2m nodes are visited, with W0defined as in Lemma 2.
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Proof By Lemma 2, at most 2(|W0| + 1)log2 |W| nodes are visited in the subtrees of the

nodes v1,…,vl that cover W. It therefore remains to bound the total number of nodes

contained in the paths from the root to these nodes v1,…,vl.

First consider the special case, where W starts with the leftmost leaf, and extends to

somewhere in the middle of the tree. Then each of the v1,…,vl is a left child of one node

of the path from the root to vl. The total number of nodes contained in the l paths from

the root to each of v1,…,vl is then at most d - 1, where d is the depth of the tree. The

same argument goes through for the symmetric case when the range ends with the
rightmost leaf.

In the general case, where W begins at some intermediate leaf and ends at some other

intermediate leaf, there is a node u such that the leftmost leaf of the range is contained in

the left subtree of u and the rightmost leaf of the range is contained in the right subtree

of u. By the argument from the previous paragraph, the paths from u to those nodes from

v1,…,vl lying in the left subtree of u then contain at most du - 1 different nodes, where

du is the depth of the subtree rooted at u. The same bound holds for the paths from u to

the other nodes from v1,…,vl, lying in the right subtree of u. Adding the length of the

path from the root to u, this gives a total number of at most 2d - 3. h

4 Pushing up the words (TREE+BITVEC+PUSHUP)

The scheme TREE+BITVEC+PUSHUP presented in this section gets rid of the log2|W|

factor in the query processing time from Lemma 4. The idea is to modify the
TREE+BITVEC data structure such that for each element of a non-empty intersection, we
find a new word-in-document pair (w, d) that is part of the output. For that we store with

each single 1-bit, which indicates that a particular document contains a word from a

particular range, one word from that document and that range. We do this in such a way

that each word is stored only in one place for each document in which it occurs. When

there is only one document, this leads to a data structure that is similar to the priority

search tree of McCreight, which was designed to solve the so-called 3-sided dynamic

orthogonal range-reporting problem in two dimensions (McCreight 1985).

Let us start with the root node. Each 1-bit of the bit vector of the root node corresponds

to a non-empty document, and we store by that 1-bit the lexicographically smallest word

occurring in that document. Actually, we will not store the word but rather its number,

where we assume that we have numbered the words from 0,…,m - 1.

More than that, for all nodes at depth i (i.e., i edges away from the root), we omit the

leading i bits of its word number, because for a fixed node these are all identical and can be

computed from the position of the node in the tree. However, asymptotically this saving is

not required for the space bounds in Theorem 1 as dividing the words into blocks will

already give a sufficient reduction of the space needed for the word numbers.

Now consider anyone child v of the root node, which has exactly one half H of all words

in its subtree. The bit vector of v will still have one bit for each 1-bit of its parent node, but

the definition of a 1-bit of v is slightly different now from that for TREE+BITVEC.

Consider the jth bit of the bit vector of v, which corresponds to the jth set bit of the root

node, which corresponds to some document number ij. Then this document contains at least

one word—otherwise the jth bit in the root node would not have been set—and the number

of the lexicographically smallest word contained is stored by that jth bit. Now, if document

ij contains other words, and at least one of these other words is contained in H, only then

the jth bit of the bit vector of v is set to 1, and we store by that 1-bit the lexicographically
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smallest word contained in that document that has not already been stored in one of its
ancestors (here only the root node).

Figure 3 explains this data structure by a simple example. The construction of the data

structure is relatively straightforward and can be done in time O(N). Details are given in

Sect. 4.1.

To process a query we start at the root. Then, we visit nodes in such an order that

whenever we visit a node v, we have the set I v of exactly those positions in the bit vector

of v that correspond to elements from D (and for each i 2 I v we know its corresponding

element di in D). For each such position with a 1-bit, we now check whether the word w
stored by that 1-bit is in W, and if so output (w, di). This can be implemented by random

lookups into the bit vector in time OðjI vjÞ as follows. First, it is easy to intersect D with the

documents in the root node, because we can simply lookup the document numbers in the

bitvector at the root. Consider then a child v of the root. What we want to do is to compute

a new set Iv of document indices, which gives the numbering of the document indices of D
in terms of the numbering used in v. This amounts to counting the number of 1-bits in the

bitvector of v up to a given sequence of indices. Each of these so-called rank computations

can be performed in constant time with an auxiliary data structure that uses space sublinear

in the size of the bitvector (Munro 1996).

Consider again the check whether a word w stored by a 1-bit corresponding to a

document from D is actually in W. This check can only fail for relatively few nodes,

namely those with at least one leaf not from W in their subtree. These checks do not

contribute an element to the output set, and are accounted for by the factor b mentioned in

Theorem 1, and Lemmas 5 and 7 below.

Lemma 5 With TREE+BITVEC+PUSHUP, an autocompletion query (D, W) can be
processed in time O jDj � bþ

P
w2W jD \ Dwj

� �
, where b is bounded by log2 m as well as

by the average number of distinct words in a document from D. For the special case, where
W is the range of all words, the bound holds with b = 1.

Proof As we noticed above, the query processing time spent in any particular node v can

be made linear in the number of bits inspected via the index set I v. Recall that each i 2 I v

corresponds to some document from D. Then for reasons identical to those that led to the

space bound of Lemma 3, for any fixed document d [ D, the set of all visited nodes v
which have an index in their I v corresponding to d form a binary tree, and it can only

happen for the leaves of that tree that the index points to a 0-bit, so that the number of these

0-bits is at most the number of 1-bits plus one.

Fig. 3 The data structure of TREE+BITVEC+PUSHUP for the example collection from Fig. 1. The large
bitvector in each node encodes the inverted list. The words stored by the 1-bits of that vector are shown in
gray on top of the vector. The word list actually stored is shown below the vector, where A = 00, B = 01,
C = 10, D = 11, and for each node the common prefix is removed, e.g., for the node marked C-D, C is
encoded by 0 and D is encoded by 1. A total of 49 bits is used, not counting the redundant 000 vectors and
bookkeeping information like list lengths etc.
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Let again v1,…,vl denote the at most 2log2m nodes covering the given word range W
(see Sect. 2). Observe that, by the time we reach the first node from v1,…,vl, the index set

I v will only contain indices from D0, as all the 1-bits for these nodes correspond to a word

in W0. Strictly speaking, this is only guaranteed after the intersection with this node, which

accounts for an additional D in the total cost. Thus, each distinct word w we find in at least

one of the nodes can correspond to at most jD \ Dwj 1-bits met in intersections with the

bitvectors of other nodes in the set, and each 1-bit leads to at most two 0-bits met in

intersections. Summing over all w [ W gives the second term in the equation of the lemma.

The remaining nodes that we visit are all ancestors of one of the v1,…,vl, and we have

already shown in the proof of Lemma 4 that their number is at most 2log2m. Since the

processing time for a node is always bounded by O(|D|), that fraction of the query pro-

cessing time spent in ancestors of v1,…,vl is bounded by O(|D|log2m). h

Lemma 6 The bit vectors of TREE+BITVEC+PUSHUP require a total of at most
2N + n bits.

Proof Just as for TREE+BITVEC, each 1-bit can be associated with the occurrence of a

particular word in a particular document, and that correspondence is 1 - 1. This proves

that the total number of 1-bits is exactly N, and since word numbers are stored only by

1-bits and there is indeed one word number stored by each 1-bit, the total number of word

numbers stored is also N. By the same argument as in Lemma 3, the number of 0-bits is at

most the number of 1-bits plus 1 for each document. This can alternatively be seen as

follows: Start with an empty document and, iteratively, insert the lexicographically

smallest of its words, which has not been inserted yet. Each such word-in-document pair,

which corresponds to a 1 in a bit vector, will be pushed up in the tree as far as possible,

thereby replacing one 0-bit and creating (at most) two new 0-bits in its children. Less than

two 0-bits (and in fact none at all) will only be created, if the 1-bit was already at the

bottom level. h

4.1 The index construction for TREE+BITVEC+PUSHUP

The construction of the tree for algorithm TREE+BITVEC+PUSHUP is relatively

straightforward and takes constant amortized time per word-in-document occurrence

(assuming each document contains its word sorted in ascending order).

1. Process the documents in order of ascending document numbers, and for each

document d do the following.

2. Process the distinct words in document d in order of ascending word number, and for

each word w do the following. Maintain a current node, which we initialize as an

artificial parent of the root node.

3. If the current node does not contain w in its subtree, then set the current node to its

parent, until it does contain w in its subtree. For each node left behind in this process,

append a 0-bit to the bit vector of those of its children which have not been visited.

Note: for a particular word, this operation may take non-constant time, but once we go
from a node to its parent in this step, the old node will never be visited again. Since we
only visit nodes, by which a word will be stored and such nodes are visited at most
three times, this gives constant amortized time for this step.

4. Set the current node to that one child which contains w in its subtree. Store the word w
by this node. Add a 1-bit to the bit vector of that node.
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5 Divide into blocks (TREE+BITVEC+PUSHUP+BLOCKS)

This section is our last station on the way to our main result, Theorem 1.

For a given B, with 1 B B B m, we divide the set of all words in blocks of equal size B.

We then construct the data structure according to TREE+BITVEC+ PUSHUP for each

block separately. As we only have to consider those blocks, which contain any words from

W, this gives a further speedup in query processing time. An autocompletion query given

by a word range W and a set of documents D is then processed in the following three steps.

1. Determine the set of ‘ (consecutive) blocks, which contain at least one word from W,

and for i ¼ 1; . . .; ‘, compute the subrange Wi of W that falls into block i. Note that

W ¼ W1 _[ � � � _[W‘.

2. For i ¼ 1; . . .; ‘, process the query given by Wi and D according to TREE+

BITVEC+PUSHUP, resulting in a set of matches Mi :¼ fðw; dÞ 2 C : w 2 Wi; d 2 Dg,
where C is the set of word-in-document pairs.

3. Compute the union of the sets of matching word-in-document pairs [‘i¼1Mi (a simple

concatenation).

Lemma 7 With TREE+BITVEC+PUSHUP+BLOCKS and block size B, an autocom-
pletion query (D, W) can be processed in time O jDj � ðaþ bÞ þ

P
w2W jD \ Dwj

� �
, where

a = |W|/B and b is bounded by log2B as well as by the average number of distinct words
from W1 [W‘ (the first and the last subrange from above) in a document from D.

Proof Let Wi denote the subset of W pertaining to block i. Since each block contains at most B
words, according to Lemma 5, we need time at most OðjDjlog2Bþ

P
w2Wi
jD \ DwjÞ for a

block i. However, for all but at most two of these blocks (the first and the last) it holds that all

words of the blocks are in W, so that according to the special case in Lemma 5, the query

processing time for each of the at most |W|/B inner blocks is actually OðjDj þ
P

w2Wi
j

D \ DwjÞ. Summing these up gives us the bound claimed in the lemma. h

Lemma 8 TREE+BITVEC+PUSHUP+BLOCKS with block size B requires at most 2N þ
n � dm=Be bits for its bit vectors and at most Ndlog2Be bits for the word numbers stored by
the 1-bits. For B C mn/N, this adds up to at most 4N for the bit vectors, and Nð4þ
dlog2BeÞ bits in total. The auxiliary data structure (for the constant-time rank computa-
tion) requires at most an additional N bits.

Proof To count the number of bits in the relative bitvectors, we use the same argument as

for Lemma 6: there is exactly one 1-bit for each of the N word-in-document occurrences.

The total number of 0-bits is at most the total number of bits in the roots of the blocks

(which gives n � dm=Be), plus the total number of 1-bits. So the total space for the bit

vectors is bounded by N þ ndm=Be þ N� 2N þ ndN=ne� 4N. The space for the word

numbers is exactly Ndlog2Be, as it requires dlog2Be bits to encode a word in a block of size

B. Finally, as the total length of the bit vectors is bounded by 4 N, we can construct the

auxiliary data structure to require at most N bits (Munro 1996).6 h

With all the required machinery in place, we can now prove Theorem 1. Part (a) of

Theorem 1 is established by the construction given in Sect. 4.1. Part (b) of Theorem 1

follows from Lemma 8 by choosing B ¼ dnm=Ne. This choice of B minimizes the space

6 Note that we do not count book keeping information (neither for AUTOTREE nor for BASIC), such as space
needed to store the lengths of the bit vectors (or the lengths of the inverted lists), as this additional space is
asymptotically negligible.
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bound of Lemma 8, and we call the corresponding data structure AUTOTREE. Note that it is

here that we use the fact N C 25 � m, as it ensures 5 + log2(nm/N) B log2n and ultimately

5þ dlog2Be� dlog2ne. Part (c) of Theorem 1 follows from Lemma 7 and the following

remarks. If the words in a document with L words are a random size-L subset of all words,

then the average number of words per document that fall into a fixed block is at most 1. In

our experiments, the average value for b was 2.2.

As mentioned just before Lemma 5, b counts the number of bitvector lookup

operations for a candidate document in D, which do not contribute any element to the

result set. If the wordrange W spans multiple tree blocks of size B ¼ dnm=Ne ¼ dm=Le,
then such ‘‘useless’’ bitvector lookups can also occur at the root nodes of the inter-

mediate tree blocks. However, these comparisons are accounted for by the factor a,

which bounds the number of such intermediate blocks, and b only counts such bitvector

lookups in the boundary blocks, which also contain at least one word not in W. Note

that a is trivially bounded by the total number of blocks, which is dm=Be� 1þ L,

which is constant.

Formally, b is defined as the number of bitvector lookups that need to be performed in

the boundary blocks (of which there are at most two) for a candidate document in D until

either (a) this document can be ruled out as an element of D0 (as it contains no valid

completions) or (b) a relevant completion is reported from this document (at which point

the total number of additional bitvector lookups is bounded by twice the number of

matching output elements for this document). A small, constant b thus indicates a strong

output-sensitive behavior of the algorithm. Note that b is bounded by 2Lmax, the maximum

number of words in any document.

Finally, it remains to explain, how to obtain W0 and D0 from U. Theoretically, this can

be done by having two bit vectors of lengths m and n respectively, which are to be reused

for all queries. Note that the extra space required is negligible compared to the size of the

data structure itself. Then, while inspecting the elements (w, d) [ U, we set the bit cor-

responding to w in the bit vector of dimension m to 1, if it is not set already, and add w to

the set W0. In a similar fashion, we proceed for D0. This takes time H(|U|). Finally, to be

able to reuse the two bit vectors, we pass through all elements in D0 and W0 and reset the

corresponding bits to 0. These passes take time O(|U|). In the end, the elements of W0 and in

particular of D0 will be unsorted. At first glance, this could cause a problem, as D0 will be

the input D for following autocompletion queries. But AUTOTREE does not require the

elements of D to be sorted (unlike BASIC).

In practice, we simply sort the elements (w, d) [ U by w within each block, to obtain

the set W0. Similarly, to obtain D0, we merge the output lists of elements (w, d) for

individual nodes as, if D is sorted, these will be sorted by d.7 We chose this approach

mainly as (i) it makes the use and aggregation of scores easier, (ii) we can, in fact, use

the same sorting/scoring methods for documents for BASIC and AUTOTREE (which made

software maintenance easier), (iii) the absolute time for sorting is small compared to the

time to find the matches, and, (iv) the logarithmic factor in the time required for sorting

is small compared to constant costs for, e.g., copying and other simple manipulations, so

that we still obtain an almost perfect linear correlation with the size of the U, even as the

size of U varies.

7 Interestingly, the total number of such lists is bounded by L � 2Lmax , as each of the L blocks contributes at
most 2Lmax non-empty nodes. This is independent of n, m, N or W, which might seem trivial, but which is
something that BASIC fails to achieve.
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6 Experiments

We tested both AUTOTREE and our baseline BASIC on two corpora. First, on the corpus of the

TREC 2004 Robust Track (ROBUST’04), which consists of the documents on TREC disks

4 and 5, minus the Congressional Record (Voorhees 2004). Second, on the English (WI-

KIPEDIA), using only article pages and not discussion or user pages.

In both cases, we implemented AUTOTREE with an optimal block size (according to

Sect. 5), which was 4096 for the ROBUST’04 collection and 65,536 for WIKIPEDIA.

Block sizes were rounded to the nearest power of two.

The following Table 1 gives details on the collections and on the space consumption of

the two schemes; as we can see, AUTOTREE does indeed use no more space (and for both

collections, in fact, significantly less) than BASIC, as guaranteed by Theorem 1.

For the ROBUST’04 collection, queries are derived from the 200 ‘‘old’’8 queries (topics

301-450 and 601-650) of the TREC Robust Track in 2004 (Voorhees 2004). For the

WIKIPEDIA collection, we generated 200 queries randomly as follows: For each query we

picked a random document with uniform probability and sampled 4 terms of length at least

4 from it. Terms were sampled according to their tf-idf values, i.e., each term had a

probability of being sampled proportional to tf � log(n/df), where tf is the number of

occurrences in the given document, n is the total number of documents and df is the

number of documents containing this particular term. See Table 2 for some examples of

such random queries.

In both cases, these queries were then ‘‘typed’’ from left to right, taking a minimum

word length of 4 for the first query word, and 2 for any query word after the first. From

these autocompletion queries we further omitted those, which would be obtained by simple

filtering from a prefix according to the explanation following Definition 1. This filtering

procedure is identical for AUTOTREE and BASIC and takes only a small fraction of the time

for the autocompletion queries processed according to Definition 1, which is why we

omitted it from consideration in our experiments. To give an example, for the ad hoc query

world bank criticism, we considered the autocompletion queries worl; world ba, and

world bank cr. For the ROBUST’04 collection, we considered a total number of 513 such

autocompletion queries. For the WIKIPEDIA collection, exactly 800 such autocompletion

queries were obtained (as all of the 200 ‘‘raw’’ queries contained exactly 4 words).

We implemented BASIC and AUTOTREE in C++ and measured query processing times on

a Dual Opteron machine, with 2 Intel Xeon 3 GHz processors, 8 GB of main memory,

running Linux. We measured the time for producing the output according to Definition 1.

The time for scoring and ranking would be identical for AUTOTREE and BASIC, and would,

according to a number of tests, take only a small fraction of the aforementioned processing

time. We therefore excluded it from our measurements. For BASIC, we implemented a fast

Table 1 The characteristics of our test collections: n = number of documents, m = number of distinct
words, N/n = (rounded) average number of distinct words in a document, B* = space-optimal choice for
the block size. The last two columns give the space usage of BASIC and AUTOT(REE) in bits per word-in-
document pair

Collection Raw size n m N/n B* BASIC AUTOT

ROBUST’04 1.9 GB 528,025 771,189 219 4,096 20.0 13.9

WIKIPEDIA 6.0 GB 2,363,363 7,138,267 128 65,536 22.0 17.3

8 They are ‘‘old’’ as they had been used in previous years for TREC.
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linear-time intersect, which, in preliminary experiments not reported here, turned out to be

faster than its asymptotically optimal relatives (Demaine et al. 2000).

The results from Table 3 conform nicely to our theoretical analysis. Four main obser-

vations can be made: (i) with respect to maximal query processing time, which is key for

an interactive application, AUTOTREE improves over BASIC by a factor of more than 10; (ii)

in average processing time, which is significant for throughput in a high-load scenario, the

improvement is still a factor of 3 for the smaller collection and 13 for the larger collection;

(iii) processing times of AUTOTREE are sharply concentrated around their mean, while for

BASIC they vary widely (in both directions as we checked); (iv) the almost perfect corre-

lation between query processing times and our analytical bounds (explained in the caption

of Fig. 3) demonstrates both the soundness of our theoretical modeling and analysis as well

as the accuracy of our implementation.

Table 4, finally, breaks down query processing times by the number of query words. As

we can see, BASIC is significantly faster than AUTOTREE for the 1-word queries, however,

not because AUTOTREE is slow, but because BASIC is extremely fast on these queries. This is

so, because BASIC does not have to compute any intersections for a 1-word query but

merely has to copy all relevant lists Dw to the output, whereas AUTOTREE has to extract, for

each output element, bits from its (packed) document id and word id vectors. On multi-

word queries, BASIC has to process a much larger volume than AUTOTREE, and we see

essentially the situation discussed above for the overall figures.

We also experimented with AUTOTREE in the setting where the index resides on disk, and

not in main memory as for the experiments reported above.9 To our surprise, the average

Table 2 Five of the random 200 queries generated for the WIKIPEDIA collection. From these queries, we
constructed 800 autocompletion queries as described below

Query 1 Highexplosives normal pyrotechnics primarysources

Query 2 Remained growth overview Europe

Query 3 Legislatures seats typically apportion

Query 4 Salisbury inheriting westmoreland thomas

Query 5 Italy mayor frazioni baroque

Table 3 Processing times statistics of BASIC and AUTOT(REE) for all queries for both test collections. The
6th and 7th column show the kth worst processing time, where k is 10% and 5%, respectively, of the number
of queries. The last column gives the correlation factor between query processing times and total list volumeP

w2W ðjDj þ jDwjÞ for BASIC, and input size plus total output volume jDj þ 10 �
P

w2W jD \ Dwj for
AUTOTREE

Scheme Max (s) Mean (s) StdDev (s) Median (s) 90%-ile (s) 95%-ile (s) Correl.

ROBUST’04 (513 queries)

BASIC 14.8 0.22 0.83 0.042 0.39 0.98 0.99

AUTOT 1.15 0.07 0.12 0.042 0.17 0.24 0.99

WIKIPEDIA (800 queries)

BASIC 71.9 2.20 7.28 0.351 4.77 10.04 0.99

AUTOT 2.17 0.17 0.25 0.032 0.47 0.63 0.99

9 To ensure that the data was not cached by the operating system, before each experiment we read two
different very large (20 GB) files from disk several times in a row. Within each experiment (running all
queries for a collection), nothing was done to prevent caching by the operating system though.
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processing time increased by only about 15%. The reason for this is that, on the average,

the time for reading the whole data of a single block of AUTOTREE from disk (and each

query requires data from one or at most two blocks) is dominated by the computation time

of a query, most notably the time for the random bit vector lookups (see Sect. 4). That is,

on the average, query processing with AUTOTREE is not IO-bound, at least not for the

collection sizes we have experimented with. Since the number of operations required for a

query is proportional to its input + output size, and that in turn is on average roughly

proportional to the size of a block of AUTOTREE, we would expect the same behavior for

larger collections too. The observations just made hold true on the average only. The

smaller the output size of a query, the more IO-bound the processing is going to be. In a

worst case, each step of the algorithm (inspection of a word-in-document pair) might incur

one disk seek. It is an open problem how to make AUTOTREE IO-efficient also for these

kinds of queries.

7 Conclusions

Motivated by a practical search application, we introduced the concept of an autocom-

pletion query, and presented a new data structure AUTOTREE together with an algorithm to

answer such queries efficiently.

We proved that our algorithm can process a given autocompletion query in time pro-

portional to the combined input and output size, for realistic assumptions about the

document collection and the query. We experimentally compared our results to those of a

simple (not output-sensitive) baseline built on an inverted index. We beat this baseline by a

factor of more than 10 in terms of worst-case processing time, on collections of the size of

a few gigabytes. Our running times correlate almost perfectly with the predictions by our

theoretical analysis.

For all our experiments, the data fit into the main memory of the machine we were

using. For much larger amounts of data, locality of access would become the critical issue,

and it would be meaningful to also measure the number of IO operations (Aggarwal and

Vitter 1988). However, the basic operation of our algorithm is to compute the number of 1s

up to a given location in a large bit vector. There is no IO-efficient data structure for this

task, and hence our algorithm is not particularly IO-efficient. We remark that the same

Table 4 Breakdown of query processing for BASIC and AUTOTREE by number of query words

Scheme 1-word (199 queries) Multi-word (314 queries)

Max (s) Mean (s) Max (s) Mean (s)

ROBUST’04 (513 queries)

BASIC 0.11 0.01 14.82 0.35

AUTOTREE 0.67 0.12 1.15 0.05

1-word (200 queries) Multi-word (600 queries)

Max (s) Mean (s) Max (s) Mean (s)

WIKIPEDIA (800 queries)

BASIC 0.23 0.03 71.85 2.92

AUTOTREE 1.36 0.41 2.17 0.09

284 Inf Retrieval (2008) 11:269–286

123



holds for all compressed suffix array algorithms that we know of, which are all based on

wavelet trees or similar ideas.

In (Bast and Weber 2006), we presented a simple scheme which achieves almost perfect

locality of access, and which works well on very large data. However, this scheme is not

output-sensitive—in fact, it has a considerable minimum running time independent of the

output size. This is indeed a problem for a certain class of queries, and there is no easy

solution. We therefore deem it a challenging and important research question to devise an

algorithm for processing autocompletion queries which is both output-sensitive and
IO-efficient.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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