
A Compressed Self-Index using a Ziv-Lempel Dictionary

Lúıs M. S. Russo? and Arlindo L. Oliveira

INESC-ID/IST
{lsr,aml}@algos.inesc-id.pt

Abstract. A compressed full-text self-index for a text T , of size u, is a data structure used to
search patterns P , of size m, in T that requires reduced space, i.e. that depends on the empirical
entropy (Hk, H0) of T , and is, furthermore, able to reproduce any substring of T . In this paper
we present a new compressed self-index able to locate the occurrences of P in O((m + occ) log n)
time, where occ is the number of occurrences and σ the size of the alphabet of T . The fundamental
improvement over previous LZ78 based indexes is the reduction of the search time dependency
on m from O(m2) to O(m). To achieve this result we point out the main obstacle to linear time
algorithms based on LZ78 data compression and expose and explore the nature of a recurrent
structure in LZ-indexes, the T78 suffix tree. We show that our method is very competitive in
practice by comparing it against the LZ-Index, the FM-index and a compressed suffix array.

1 Overview

The exact matching problem consists in searching for a short (pattern) sequence P in a longer
(text) sequence T . Naive and linear solutions for this problem can be found in undergraduate
computer science textbooks [1]. This problem has outgrown its initial motivation, text editing
subroutines. Text databases storing large amounts of information such as pitch sequences,
DNA or protein sequences, large natural texts, program code, etc. need fast pattern matching
algorithms. With the increasing amount of digital information available, on-line approaches to
the problem stopped being viable. The study of index data structures, that are able to reduce
the time it takes to locate the occurrences of P , has been the focus of the string processing
community for several years. Classical indexes however have a tendency to be space greedy.
This constitutes a severe problem, since not being able to store indexes in main memory limits
their usage.

In recent years a new and extremely successful approach to this problem has emerged.
Compressed full-text indexes, which use data compression techniques to produce less space
demanding data structures have been proposed by several researchers [2–6]. Usually a text
stored in compress format requires less space than its uncompressed version. The idea is that
an index based on the compressed format may also require less space. In fact, it turns out that
data compression algorithms explore the internal structure of a string much in the same way
that indexes do. An important tool to describe the space of compressed indexes is the k-th
order empirical entropy of T defined by Manzini [7], denoted simply by Hk. The empirical
entropy provides a measure of the complexity of T taken as a finite object. This is opposed
to the classical notion of entropy by Shannon. State of the art compressed indexes consider
T as finite and organise it globally. In a way our contribution is to organise globally Ziv-
Lempel compressed indexes that were only locally organised. The empirical entropy provides
a lower bound to the number of bits needed to compress T using a compressor that encodes

? Supported by the Portuguese Science and Technology Foundation by grant SFRH/BD/12101/2003 in project
POCI 2010 and Project BIOGRID POSI/SRI/47778/2002

each character considering only the context of k characters that follow it in T . Makinen and
Navarro presented a comprehensive survey on compressed full-text indexes [8].

A surprising way to reduce the space requirements of a full-text index, discovered in this
line of research, is to turn it into a self-index. Basically it turned out that with a negligible
amount of information, it is possible to make full-text indexes reproduce any substring of T
without storing T explicitly.

Compressed suffix arrays [6, 2] and the FM-index [3] are the main trends of compressed
indexes. This is partially due to the fact that LZ-indexes [3–5] require a considerable amount
of time to determine the number of occurrences of P in T , denoted by occ. In fact, the index
of Kärkkäinen et al. [5], which was not a self-index, required O(m2 + (m + occ) log u) time
and Navarro’s [4] index required O((m3 log σ) + (m + occ) log u) which was recently improved
to O((m2 log m) + (m + occ) log u) by Arroyuelo et al. [9]. It can be seen that in all these
approaches the dependency on m is at least O(m2). The only LZ based index that was able
to achieve O(m) time was presented by Ferragina et al. [3]. However this index requires a
considerable amount of space, O(uHk(T) logε u) + o(u) bits. In fact the index presented by
Ferragina et al. is not used in practice. Instead they simple add an FM-Index to their structure.
Using an FM-Index may lead to alphabet related problems, i.e. large hidden σ dependencies.
Some solutions have been presented to address this problem [10, 11]. However our approach
is simpler and alphabet independent.

The Ziv-Lempel algorithm is a dictionary based compression method. In essence, the idea
is that, given T , the algorithm infers a suitable dictionary and encodes T accordingly. The
problem with compressed indexes based on this approach is that the encoding of T is not
suitable for pattern matching. In fact the dictionary generated by the Ziv-Lempel algorithm
is dynamically updated at the same time that T is processed. This means that the same string
may be encoded in several different ways, since the dictionary changes from one occurrence, of
the string, to another. This results in an undesirable encoding. The solution to this problem
forces us to destroy the on-line property of the Ziv-Lempel algorithm. Our algorithm runs in
two phases: in the first one we use the LZ78 algorithm to infer a dictionary; in the second
one we organise T in an off-line way.

2 Basic Concepts and Notation

For basic concepts related to strings and suffix trees we refer the reader to Gusfield [12].
We use the following conventions: strings start at index position 0; prefixes, substrings and
suffixes are denoted respectively as S[..i], S[i..j], S[j..]; m is the size of the pattern string P ,
u is the size of the text string T and occ is the number of occurrences of P in T . By suffix
tree we refer to a generalised suffix tree. The terminator symbols are not considered as part of
the edge-labels. A point is a node in the suffix trie. We refer indifferently to points in a suffix
tree and to their path-labels. Sdep(p) is the string depth of point p. Father(v) is the father
node of node v. SuffixLink(v) is v’s suffix link. Letter(v, i) equals v[i], i.e. the i-th letter
of the path-label of node v. Descend?(p, c) is true iff it is possible to descend from point p
with c and Descend(p, c) returns the resulting point. By Dfs(v) we refer to the depth-first
time-stamp [1] of a node v in a suffix tree and by Dfs’(p) to the depth-first time-stamp of a
point p in a suffix trie. As a running example consider T = cbdbddcbababa and T as the suffix
tree in figure 1 (top-right).

Definition 1. The range I(p) of a point p of a suffix tree T is the interval of the Dfs’

values of the points that are descendants of p.

0 1 2 3 4 5 6 7 8 9

a b c

da

b

a d

0

1

2

3 4

a b

d

d

b bc

c c

R

R(4) = 7’R(3) = 2’

R(1) = 1’

R(0) = 0’

R(2) = 4’

0*0*

1*
2’

8’7’6’3’2’

8’7’6’3’

8’7’6’

8’7’

8’

8’

7’3’ 6’

5

6 7 8

2*

3*

4*

5*

6*

7*

R(5) = 5’

R(6) = 3’ R(7) = 8’

R(8) = 6’

2*

1*

3*

4*

5*

6*

7*

Fig. 1. (top-right) Suffix tree for strings {a, b, ba, bd, cba, cbd, d}. Suffix link from cb to b shown by a dashed
arrow. Nodes show their Dfs value in T . (top-left) Reverse tree of the suffix tree on the right. Nodes show their
Dfs value in T R. The R mapping is shown and R(3) is indicated by a bold arrow. (bottom-left) Sparse suffix
tree of T , nodes show their DfsST values. Weak descent W (RootST , 2′) shown in bold rectangle. (bottom-
right) Linking points over spaces supported by Dfs’ and DfsST values. Orthogonal range query [5*,5*]:[5,8].

In our example Dfs(c) is undefined, Dfs(cb) = 5, Dfs’(c) = 5, Dfs’(cb) = 6, I(c) = [5, 8].

Definition 2. The reverse tree T R of a suffix tree T is the minimal labelled tree that, for
every node v of T , contains a node vR, where vR denotes the reverse string of v.

The tree T R is shown in figure 1 (top-left). Observe for example that, since cbd is a node of
T , there is a node cbdR = dbc in T R. We define a canonical mapping R that, for every node
v in T , maps Dfs(v) to Dfs(vR) (see figure 1). We will use R(v) to denote R(Dfs(v)). Note
that since the nodes of T form a suffix closed set, the nodes of T R form a prefix closed set.

2.1 Succinct Suffix Trees

Our approach is based on suffix trees. We start by presenting a representation of suffix trees
that is adequate for our goals and analyse its space requirements.

By bitmap B we refer to a string over {0, 1}. Fundamental tools to produce succinct data
structures are the Rank and Select operations over bitmaps. The operation Rank(B, i)

counts the number of 1’s in B[..i − 1] and Select(B, i) returns the smallest j such that
Rank(B, j + 1) = i. Munro [13] showed how to support these operations in O(1) time and
|B| + o(|B|) bits.

Geary et al. [14] presented a succinct representation of ordinal d-node trees in 2d + o(d)
bits, supporting, among others, the following operations in constant time: Anc(v, j) returns
the j-th ancestor of node v (for example Anc(v, 1) is Father(v)); LeftRank(v) returns
Dfs(v); RightRank(v) returns the largest Dfs value among the descendants of v; Select(j)
returns the node with Dfs time j; Child(v, j) returns the j-th child of node v; Deg(v) returns
the number of children of node v; Depth(v) returns the tree depth of node v.

We assume that the tree structure of T and T R are stored using the previous representa-
tion. Arroyuelo et al. [9] proposed a way to represent the R mapping. Since R is a permutation,
R and R−1 can be stored using the representation of Munro et al. [15] in (1 + ε)d log d + o(d)
bits, where ε is fixed and 0 < ε ≤ 1. This way R and R−1 can be computed in O(1) and
O(1/ε) time respectively.

Lemma 1. A suffix tree T with d nodes can be stored in (1 + ε)d(log d) + 5d + o(d) bits. Let
p be a point, c a letter and v a node of T . This representation provides the operations given
by Geary et al. in O(1) time. Moreover it provides Sdep(v) in O(1) time, Suffix Link(v),
Letter(v, i), in O(1/ε) time and Descend?(p, c), Descend(p, c) in O((log σ)/ε) time.

Proof. According to our notation R(v) represents SelectT R(R(LeftRank(v))). Ob-
serve that Sdep(v) can be computed as DepthT R(SelectT R(R(LeftRank(v)))) which
can be represented as DepthT R(R(v)). The operation Suffix Link(v) is computed as
R−1(FatherT R(R(v))). Observe that v[0] represents the letter just below the root. For ex-
ample cbd[0] = c. We define a bitmap D to compute v[0], in a way similar to Sadakane [2].
We have that D[0] = 1 and, for i > 0, D[i] = 0 iff Dfs(v) = i, Dfs(v ′) = i + 1 and
v[0] = v′[0]. In our example D = 11001001. We can compute v[0], when v is not the Root,
in O(1) as the letter in position Rank1(D,Dfs(v)) of Σ. This requires d + o(d) bits. The
operation Letter(v, i) can be computed from R−1(AncT R(R(v), i)). This expression repre-
sents following enough suffix links to make the letter we want appear just bellow the root,
i.e. Letter(v, i) = R−1(AncT R(R(v), i)[0]. When p is not a node, Descend?(p, c) can be
computed in O(1/ε) time by consulting Letter for the point below p. If p is a node, we do
a binary search among the children of p. If we find a child that starts with c, we return true.
Procedure Descend(p, c) updates the value of p. When p is a point, this is done in O(1) time.
When p is a node, we first proceed as Descend?. �

Finally observe that with this representation we cannot compute Dfs’(v). The Dfs’ values
are essential to our algorithm because they serve as a supporting space for range queries.

Lemma 2. For a suffix tree T with d nodes and t points, operations Dfs’(p) and I(p) can
be computed in O(1) time using (2 + dlog te − blog dc)d + o(d) extra bits.

Proof. Observe that the Dfs’(v) values appear sorted in Dfs(v) order. Therefore we can store
the Dfs’(v) values, for the nodes of T , with the representation of Grossi et al. [6, Lemma 2].
For a point p, Dfs’(p) is computed as Dfs’(v) − Sdep(v) + Sdep(p), where v is the highest
node that is a descendant of p. Also I(p) = [Dfs’(p),Dfs’(Select(RightRank(v))]. �

2.2 Descend and Suffix Walks

Given a string P we can traverse a suffix tree T in greedy way, i.e. start at Root and descend
as much as possible. When it is impossible to descend any further, follow suffix-links until
descending becomes possible again, as in Algorithm 1.

Definition 3. The descend and suffix walk of a string P over a suffix tree T is the
sequence p0 . . . p2m of points of T computed by Algorithm 1.

Algorithm 1 Descend and Suffix Walk Algorithm
1: procedure Descend&Suffix(P)
2: P ← P.$′

3: j ← 0
4: point ← Root

5: for i← 0, i < |P | do

6: trace left[i] ← point
7: while NOT Descend?(point, P [i]) do

8: trace right[j] ← point
9: j++

10: point ← SuffixLink(point)
11: end while

12: point ← Descend(point, P [i])
13: end for

14: end procedure

i 0 1 2 3 4 5 6 7

P[i] c b d b d d c $’

trace left[i] ε c cb cbd b bd d c

DFS’(father left[i]) 0 0 6 8 2 4 9 0

DFS’(trace left[i]) 0 5 6 8 2 4 9 5

DFS’(child left[i]) 0 6 6 8 2 4 9 6

trace right[i] cbd bd d bd d d c ε

DFS’(father right[i]) 8 4 9 4 9 9 0 0

DFS’(trace right[i]) 8 4 9 4 9 9 5 0

I(trace right[i]) [8,8] [4,4] [9,9] [4,4] [9,9] [9,9] [5,8] [0,9]

DFS’(child right[i]) 8 4 9 4 9 9 6 0

P[i..] cbd.bd.d.c bd.bd.d.c d.bd.d.c bd.d.c d.d.c d.c c ε

tail(P[i..]) c c c c c c c ε

H(P[i..]) 748 448 848 48 88 8 ε ε

R(H(P[i..])) 6’7’8’ udef udef 6’7’ 6’6’ 6’ ε ε

|father left[i]| == i FALSE TRUE TRUE FALSE FALSE FALSE FALSE

W(R(H(P[i..])), R(father left[i])) ∅ [5*,5*] ∅ ∅ ∅ ∅

I(tail(P[i..])) [5,8] [5,8] [5,8] [5,8] [5,8] [5,8] [0,9]

occ’ 0 1 0 0 0 0

Table 2. (Top) Descend and suffix walk of cbdbddc in T . (Bottom) Values for locating type > 1 occurrences.

Definition 4. The right, left traces of a string P over a suffix tree T are the sub-sequences
of the descend and suffix walk, given respectively by lines 6 and 8 of Algorithm 1.

By father right[i] (resp. father left[i]), we refer to the lowest ancestor of trace right[i]
(resp. trace left[i]) that is node of T and by child right[i] (resp. child left[i]), to the highest
descendant of trace right[i] (resp. trace left[i]) that is node of T .

Note that we define in an artificial way SuffixLink(Root) as a node that descends to the
root by every letter including terminator symbols. It is important to notice that Algorithm 1
starts by appending to P a terminator character $′ that fails to match with any other charac-
ter. Observe that in Algorithm 1 the operation SuffixLink is computed for points, not just
nodes. This is done in the classical way. The operation SuffixLink over points doesn’t have
O(1/ε) guaranteed time. However the total time of Algorithm 1 amortises to O((m/ε) log σ)
(see Gusfield [12] for details). Table 2 (top) shows the descend and suffix walk of cbdbddc in
T .

3 A Full-Text Index Using Suffix Tree Dictionaries

In this section we explain the main contribution of this paper. Our data structure is very
similar to an inverted file. We will use this similarity to provide insight into the algorithm.

3.1 Generic Inverted Index

Throughout section 3 we assume that we are given an arbitrary suffix tree T with d nodes,
that we will use as a dictionary. We consider as dictionary words the path-labels of the nodes
of T . The first thing we should do is to organise T according to our dictionary T , much like
what is done in inverted files when given a lexicon.

Definition 5. The T -maximal parsing of string T is the sequence of nodes v1, . . . , vf such
that T = v1 . . . vf and, for every j, vj is the largest prefix of vj . . . vf that is a node of T .

We assume that T is appropriate for T , i.e. that it is possible to parse T in a maximal way.
In our example, the T -maximal parsing of a string T is the sequence cbd, bd, d, cba, ba, ba. We
refer to the elements of the T -maximal parsing of T as blocks. We will store the T -maximal
parsing of T in compact form as a string of numbered blocks.

Definition 6. The translation V (v1 . . . vf) of a sequence v1 . . . vf of nodes is a string such
that V (v1 . . . vf)[i] = Dfs(vi).

We denote by T (T) the translation of the T -maximal parsing of T . Since the T -maximal
parsing of T is the sequence cbd, bd, d, cba, ba, ba, its translation is the string T (T) = 748633.
Note that word ba is associated with two blocks, v5 and v6.

Inverted files usually store a list of occurrences for every word of the dictionary. To play
this role we will use a stronger indexing structure, a sparse suffix tree. For technical rea-
sons we must reverse the string T (T). This is achieved by extending the canonical map-
ping R to sequences in the following way: R(v1 . . . vf) = R(vf) . . . R(v1). In our example
R(T (T)) = R(748633) = R(3)R(3)R(6)R(8)R(4)R(7) = 2′2′3′6′7′8′. This corresponds to the
notion of reverse string, because the concatenation of the path-labels of R(T (T)) in T R is
ab.ab.abc.d.db.dbc = T R.

Definition 7. The sparse suffix tree1 ST of a string T and a suffix tree T is the suffix
tree of R(T (T)).

The sparse suffix tree of our example is shown in figure 1 (bottom-left). We can descend in
the sparse suffix tree in the usual way with DescendST . However, since T R provides the
alphabet for ST , we can also take that into consideration when descending.

1 Similar to a concept defined by Kärkkäinen et al. [16]

Definition 8. The weak descent W (p, vR) for a point p in ST and a node vR in T R is the
interval of DfsST values of the nodes below the following points:

{p.DfsT R(v′) | v′ is a descendant of vR in T R}
For example, W (RootST , 2′) = [1∗, 4∗], since this contains the DfsST values for the nodes
below 2′, 3′ in ST , see figure 1. This can be computed in O((log d)/ε) time. We do two binary
searches in the children of p, searching for LeftRankT R(v) and RightRankT R(v). Then
W (p, vR) = [LeftRankST (v′′),RightRankST (v′′′)], where v′′ and v′′′ are the nodes found
by the binary searches.

In order to find occurrences of strings across more than one block, we will need to store
the relations across contiguous blocks. This motivates the following two definitions.

Definition 9. The head, tail of the T -maximal parsing are respectively sequence v1, . . . , vi

and string vi+1 . . . vf such that v1, . . . , vi is the smallest sequence for which vi+1 . . . vf is a
point in T .

We denote by H(T) the translation of the head of the T -maximal parsing of T . The head
of the T -maximal parsing of T is cbd, bd, d, cba, ba and the tail is the string ba. Hence H(T)
equals 74863.

Next we define a set of points relating the leaves of ST with the points in T .

Definition 10. The linking points set of the T -maximal parsing v1 . . . vf of T is the fol-
lowing set:

L =

{

〈Dfs(R(V (v1 . . . vi))),Dfs’(pi)〉 pi is the largest prefix of vi+1 . . . vf

that is a point in T , for 0 < i ≤ f

}

The set L is shown in figure 1 (bottom-right) and consists of the following points:

– 〈Dfs(R(V (cbd, bd, d, cba, ba, ba))),Dfs’(ε)〉 = 〈Dfs(2′2′3′6′7′8′), 0〉 = 〈2∗, 0〉
– 〈Dfs(R(V (cbd, bd, d, cba, ba))),Dfs’(ba)〉 = 〈Dfs(2′3′6′7′8′), 3〉 = 〈3∗, 3〉
– 〈Dfs(R(V (cbd, bd, d, cba))),Dfs’(ba)〉 = 〈Dfs(3′6′7′8′), 3〉 = 〈4∗, 3〉
– 〈Dfs(R(V (cbd, bd, d))),Dfs’(cba)〉 = 〈Dfs(6′7′8′), 7〉 = 〈5∗, 7〉
– 〈Dfs(R(V (cbd, bd))),Dfs’(d)〉 = 〈Dfs(7′8′), 9〉 = 〈6∗, 9〉
– 〈Dfs(R(V (cbd))),Dfs’(bd)〉 = 〈Dfs(8′), 4〉 = 〈7∗, 4〉

We need to process the linking points to be able to compute orthogonal range queries.
Chazelle [17] presented a minimal space structure for computing range queries in a [1, f]×[1, f]
grid, that uses f log f(1 + o(1)) bits and O(f log f) time to be built. It reports points in
O((1+occ′) log f) time, where occ′ is the number of points reported. We want to use this data
structure for the [0, d′−1]×[0, t−1] space, where d′ is the number of nodes of ST . However we
only need to store f points. Therefore we must reduce the support spaces to rank spaces. The
space [0, d′ − 1] can be reduced to [1, f] in O(1) time, with Rank over a bitmap of d′ + o(d′)
bits. The space [0, t − 1] requires more bits to be reduced. We store an array containing the
Dfs’ values of the linking points. This array requires (2+ dlog te−blog fc)f + o(f) extra bits
using the representation of Grossi et al. [6]. The reduction is obtained in O(log f) time with
a binary search over this array.

We propose an index data structure composed of the dictionary T , the sparse suffix
tree ST and the linking points L. We will now explain how to use this index to solve the
exact matching problem. Our search algorithm proceeds differently depending on whether the
pattern is completely contained inside a block or spans more than one block. We refer to this
as type 1 and type > 1 occurrences.

3.2 Occurrences Lying Inside a Single Block

The algorithm for finding occurrences inside a single block starts by identifying all the words
in the dictionary T that contain P as a substring. Since T is a suffix tree, it is possible to
achieve this in a simple way.

– Descend by P in T . If this is impossible then there are no type 1 occurrences of P.

– Start a depth-first traversal of the sub-tree below P .

– For each node v reached compute the range query W (RootST , pR) : [0, t].

The search in T consists in considering words that start with P and appending some letters.
The weak descend and the range query consist in prepending some letters to the words found
on the search in T . For example, consider P = b. By reading b, we reach node 2 of T ,
see figure 1. The search on T returns nodes 2, 3, 4, i.e. leads us to consider words b, ba, bd.
This originates the following weak descends: W (RootST , 4′) = ∅, W (RootST , 2′) = [1∗, 4∗],
W (RootST , 7′) = [6∗, 7∗]. We don’t need to consider words that start with b, since they
don’t correspond to blocks; there may be occurrences of ba or cba because of ba; there may
be occurrences of bd and cbd because of bd. The range queries return no occurrences for
b, occurrences 2∗, 3∗ and 4∗ for ba and occurrences 6∗ and 7∗ for bd. This corresponds to
occurrences cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba for ba and occurrences
cbd.bd.d.cba.ba.ba, cbd.bd.d.cba.ba.ba, for bd.

Theorem 1. The above procedure is correct and complete.

Proof. (Correct) Clearly every reported block is α.P.β for some α,β and hence it contains an
occurrence of P . (Complete) Suppose block vi = α.P.β, hence α.P.β is a node in T . Since
T is a suffix tree, P.β is also a node in T . Node P.β is reached by the search in T , since
it starts by P . Every node v of ST for which v[0] = Dfs((α.P.β)R) has its DfsST time in
W (RootST , (P.β)R), hence block vi is found in the range query. �

This algorithm was essentially presented by Navarro [4], except that the range queries were
computed as depth-first searches in a trie similar to T R. In Navarro’s algorithm each node of
that trie stored one block. Therefore the time of theses searches was bounded by the number
of type 1 occurrences of p, denoted by occ1. We do not have a direct correspondence between
the nodes of T R and the blocks of T -maximal parsing, which means that this approach has
no worst case guarantees. In essence the problem is that we may be executing more range
queries than the number of occurrences found.

Definition 11. A spurious entry for string T in the suffix tree T is a leaf v of T such that
vR is a leaf of T R and v is not a block in the T -maximal parsing of T .

For a dictionary T without spurious entries, we can guarantee that some orthogonal range
queries must return occurrences.

Lemma 3. Assuming T has no spurious entries for T and v is a leaf of T , then the query
W (RootST , vR) : [0, t] returns at least one linking point.

Proof. There is some α such that (α.v)R is a leaf in T R. Since T is a suffix tree and v is
a leaf of T , then α.v is also a leaf of T . Hence, at least one linking point will be found by
W (RootST , vR) : [0, t], since DfsST ((α.v)R) ∈ W (RootST , vR). �

Spurious entries may be safely removed from the dictionary. Removing spurious entries can be
done by considering T and T R as a DAG, i.e. a node w in the DAG represents simultaneously
v and vR; there is an edge from w to w′ if that edge exists in T or in T R. To remove spurious
entries we perform a DFS over this DAG. We remove nodes that do not have blocks and
are sinks or unary and the edge comes from T . The nodes are checked and removed in their
finishing time (see Cormen et al. [1] for definitions). This procedure runs in O(d) time. Note
that the resulting structure remains a suffix tree.

3.3 Occurrences Spanning more than a Single Block

In this section we focus on finding occurrences that span two or more consecutive blocks, i.e.
type > 1. The ideas presented in this section are similar to those of Kärkkäinen et al. [16]
and related with the approach proposed by Ferragina et al. [3].

We are now faced with the problem of retrieving the words in our dictionary that appear
concatenated in T (T) and have P as a substring. Suppose that P = cbdbddc and that we split
P in two as cbdbdd and c. We will now search for c in T and for cbdbdd in ST . The point c in
T induces the range I(c) = [5, 8]; on the other hand string cbdbdd is parsed into cbd, bd, b and
hence will be translated into 748. To search on the sparse suffix tree, we need R(748) = 6 ′7′8′.
This will induce the range [5∗, 5∗]. Finally, to solve our problem we perform the orthogonal
range query [5∗, 5∗] : [5, 8] over the linking points L. This corresponds to the question: is the
string cbdbdd, parsed as cbd.bd.d, ever followed by a block that starts by c? The answer is yes,
since there is a linking point in [5∗, 5∗] : [5, 8]. This point corresponds to cbd.bd.d.cba.ba.ba.

We will now explain how to determine in which points to break P . The pattern should
be separated in the head and tail of P [i..], for every 0 < i < m, to account for every possible
translation that can occur. These points can be determined using the following dynamic
programming equations:

tail(P [i..]) =

{

trace right[i] , if |trace right[i]| = m − i
tail(P [i + |father right[i]|..]) , otherwise

H(P [i..]) =

{

ε , if |trace right[i]| = m − i
father right[i].H(P [i + |father right[i]|..]) , otherwise

We use Algorithm 2 to locate points R(H(P [i..])) in ST . Whenever it is not possible to
descend by a letter, the DescendST procedure returns the udef state. See table 2 (bottom)
for an example of this computation. Assume that the descend and suffix walk of P is already
computed. Hence the arguments of DescendST are available when DescendST is executed.
Therefore Algorithm 2 runs in O((m/ε) log d) time, since it runs m times the DescendST

operation, which requires O((log d)/ε) time. Having located tail(P [i..]) in T and R(H(P [i..]))
in ST , we know where to break the pattern. Now all that we need are the ranges for the
range query. The range for T is simply I(tail(P [i..])). Whenever P [..i − 1]R is a node of T R

the range for ST is W (R(H(P [i..])), P [..i − 1]R).
Let us consider for example the case of i = 3. We have that H(P [3..]) = 48 and

R(H(P [3..])) = 6′7′. Hence W (6′7′, (cbd)R) = [5∗, 5∗], since 8′ is the only descendant of
itself in T R. This means that, when we are extending bd.d to the left by prepending a word
from our dictionary that terminates in cbd, the only such word is cbd. Therefore we end up
considering only the node cbd.bd.d.

Our algorithm for finding type > 1 occurrences of P proceeds as follows:

Algorithm 2 Locate R(H(P [i..])) Algorithm
1: procedure Locate HPI
2: for i← m− 1, 0 < i do

3: R(H(P [i..]))← RootST

4: if |trace right[i]| < m− i then

5: R(H(P [i..]))← DescendST (R(H(P [i + |father right[i]|..])), father right[i])
6: end if

7: end for

8: end procedure

– Compute the descend and suffix walk of P in T .
– Compute tail(P [i..]) from the descend and suffix walk of P .
– Locate the R(H(P [i..])) points in ST .
– If |father left[i]| = i then P [..i − 1]R = R(father left[i]),

compute W (R(H(P [i..])), R(father left[i])).
– Compute I(tail(P [i..])) from tail(P [i..]).
– Compute the orthogonal range queries W (R(H(P [i..])), R(father left[i])) : I(tail(P [i..])).

An example of our algorithm is shown in Table 2 (bottom). The only range query that finds
occurrences (occ’) is the [5∗, 5∗] : [5, 8] query, as we have explained in this Section.

4 A Compressed Self-Index based on LZ78 Dictionaries

We found it interesting to present this work in a general form, since it seems relevant to
explore other techniques for inferring dictionaries, given a text T . We will now give a concrete
instantiation of the above algorithm, using the Ziv-Lempel 78 Algorithm [18].

Definition 12. The LZ78 parsing of a string T is the sequence Z1, . . . , Zn of strings such
that T = Z1 . . . Zn and for every i, Zi = Zjc where Zj is the largest prefix of Zi . . . Zn among
the Z1, . . . , Zi−1.

Given a string T , we proceed as follows: compute the LZ78 parsing of T R = Z1 . . . Zn, then
consider the suffix tree for strings {ZR

1 , . . . , ZR
n } as our dictionary, denoted by T78. In our

example T R is parsed into a, b, ab, abc, d, db, dbc and the resulting dictionary can be seen in
figure 1 (top-right). The following lemmas expose why the dictionary we propose is adequate
in terms of space.

Lemma 4. If the number of blocks of the LZ78 parsing of T is n then the T78 has at most
2n nodes, i.e. d ≤ 2n.

Proof. Observe that every suffix of a ZR
i is a ZR

j for some j. Therefore the set {ZR
1 , . . . , ZR

n }
is suffix closed. Hence a suffix tree based on {ZR

1 , . . . , ZR
n } will have at most 2n nodes. �

Lemma 5. If the number of blocks of the LZ78 parsing of T is n then the T78-maximal parsing
of T has at most n blocks, i.e. f ≤ n.

Proof. The idea is to show that if a block vi of the T78-maximal parsing is a substring of some
ZR

j then it is a suffix. Suppose that vi is a substring of ZR
j . We have that ZR

j = α.vi.β. Since

the dictionary is a suffix tree and ZR
j is a node, viβ is also a node and hence a dictionary

word. Since the parsing is maximal, we have that vi.β = vi, i.e. that vi is a suffix of ZR
j . �

4.1 Space and Time Complexity

We will refer to the index that uses LZ78 dictionaries as the Inverted-LZ-Index. The next
theorem gives an overview of the space/time complexity of this structure.

Theorem 2. Let d and d′ be the number of nodes of T78 and ST 78 respectively. Let t be the
number of points of T78. Let f be the size of the T78-maximal parsing of T . The space/time
trade-off of the Inverted-LZ-Index can be summarised as follows:

Space in bits [d
n
(dlog te−blog dc

log u
+ 1 + ε) + d′

n
(1 + ε) + f

n
(dlog te−blog fc

log u
+ 1)]uHk

+o(u log σ)
Time to count O((occ + m/ε) log n)
Time to locate free after counting
Time to display l chars O(l/ε), improvable to O(l/(ε logσ u)) with 3u extra bits
Conditions k = o(logσ u), σ = O(n), 0 < ε ≤ 1, ε is constant

Proof. (Space) The space requirements come from adding up the space of T78, ST 78 and
the range data structure. Ziv et al. [18] showed that

√
u ≤ n ≤ u/ logσ u, and, therefore

n = o(u log σ). The relation between n and Hk was established by Kosaraju et al. [19] who
showed that n log u = uHk + o(u log σ) for k = o(logσ u).

(Count/Locate) We have already seen that Algorithm 1 runs in O((m/ε) log σ) time. The
time to find occurrences of type 1 is O((1 + occ1) log n). Observe that the number of queries
computed is less than or equal to twice the number of leaves below P . By lemma 3 we know
that the queries at the leaves must return occurrences. Therefore the total time amortises to
O((1 + occ1) log n). The time to find occurrences of type > 1 is the time of Algorithm 2, plus
m weak descents and m range queries. Therefore the total time for occurrences of type > 1
is O((occ>1 + m/ε) log n), where occ>1 is the number of type > 1 occurrences.

(Display) Observe that even though we don’t store R(T78(T)) explicitly, we have O(1/ε)
access time to it. The idea is to store a pointer to the leaf of ST 78 with path-label R(T78(T)),
denoted by FirstLeafST . Therefore R(T78(T))[i] = LetterST (FirstLeafST , i). Hence we
can compute the j-th letter of R(T78(T))[i] in as Letter(LetterST (FirstLeafST , i), j), in
O(1/ε) time. To achieve optimal O(l/(ε logσ u)) time we use an approach based on the work of
Sadakane [20], similar to Arroyuelo et al. [9]. We define a new bitmap D ′ similar to bitmap D
used to retrieve the first log u bits of a node v instead of the first letter. This requires d+o(d)
bits. We also need a bitmap Q that indicates which sequences of log u bits do appear as the
first bits of some v. By (i)2 we denote the binary representation of i, with log u bits. The Q
bitmap is defined as Q[i] = 1 iff (i)2 is the prefix of some (v)2 padded with zeros. Bitmap Q
contains 2log u = u bits and can therefore be stored in u + o(u) bits. With these bitmaps we
are able to retrieve log u bits from a block in O(1) time, i.e. logσ u letters. We repeat these
bitmaps for ST 78 and hence are able to retrieve log u bits from consecutive blocks. Finally we
need another bitmap to be able to skip blocks. We use a bitmap V that marks the beginnings
of the blocks in R(T78(T)). This requires another u + o(u) bits. As pointed out by Arroyuelo
et al. [9], this bitmap can be used to report the occurrences of P as positions in T instead of
as a block and an offset. �

The worst case of the space expression is (6.5+4ε)Hk +o(u log σ). However the worst example
we were able to find, based on De Bruijn cycles, yielded (5.5 + 3ε)Hk + o(u log σ) bits. In the
next section we show concrete values for the space expression.

5 Practical Issues and Testing

We implemented a prototype for testing these ideas. It was pointed out by Navarro [4] that
the range data structure was space consuming and actually slower in practice than to do a
complete scan choosing the range that required less work. Therefore we did not implement
the range data structure. Observe that this way we have no worst case guarantees for the
search time.

The sparse suffix tree ST 78 is stored in a suffix array fashion. The nodes of the T R
78 are

stored as ranges over ST 78, that correspond to the elements of ST 78 that are traversed by the
type 1 searches (see figure 1 for the range of node 2′). The T78 tree is implemented in a pointer
like fashion. Every node is stored in a memory cell indexed by its breath-first time-stamp. For
example, node 6 will be stored in cell 3. The Letter operation is replaced by a Head pointer,
that, for every node v with father node v[..i−1], points to node v[i..]. This information suffices
to be able to read of edge-labels, by using suffix links. Every node stores its Dfs time, a suffix
link, the string depth, the Head pointer and the range of its corresponding R node.

We compared our implementation, Inverted-Lempel-Ziv-Index (ILZI), against Navarro’s
implementation of the FM-index (FMI), Sadakane’s CSArray (CSAx1,CSAx8) and Navarro’s
LZ-Index (LZI), all of which are publicly available [21], using the files from the Pizza&Chili
corpus [22]2.

We show the size of different indexes along with experimental values for the terms of the
theoretical space requirements of our index, table 3. The FM-Index and the compressed suffix
array needed to be parametrised. The parameters we used are also shown in table 3 in the
par line. The parameter of the FM-Index was chosen with minimum value of 5 so that its size
is close to the size of ILZI. The parameter of CSAx1 (resp. CSAx8) was chosen so that its
size is close to the size of ILZI with L = D (resp. L = 8 × D). We used all the indexes to
determine occ and reported this time divided by m as the counting time per character (c).
We used all indexes to report occurrences, subtracted the counting time and divided by the
number of occurrences found. We report this time as the reporting time per occurrence (r).
Finally we used the indexes to display part of the text around the occurrences, subtracted the
counting and reporting times, divided by the number of occurrences and letters. We report
this time as the displaying time per character (o), also in table 3. The reporting time per
occurrence is shown for different values of m, since for the LZ-based indexes this value is not
constant. The time per occurrence and displaying time per character are relatively constant
for different values of m and therefore we only present their values for m = 20.

In the space column of table 3 we present the ratios of the space size in bits with u8
and uHk. In this, way for the raw string, we obtain the numbers of letters that should fit
into a byte. Observe that our index has acceptable space requirements both in theory and in
practice. For example for the xml file the practical value is 2.65uHk bits and the theoretical
value is (2.62 + 1.62ε)uHk + o(u log σ) bits.

The counting time per character of LZ-based indexes is affected by occ, whereas the FM-
index and CSArray have a fairly constant value. This can be seen by the fact that the counting
time per character decreases for larger values of m, where occ is smaller. By looking at the c
lines of table 3 it can be seen that our reduction of the dependency on m from O(m2) to O(m)
had significant impact in the query time. This makes our index up to an order of magnitude
faster than LZI for counting when m is large. Also, for a large m, our index sometimes qualifies

2 Tested on Pentium 4, 3.2 GHz, 1 MB of L2, 1Gb of RAM, with Fedora Core 3, compiled with gcc-3.4 -O9.

File Space Time

english Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 54.3 81.1 66.8 55.6 56.3 c 5 1.77e-3 6.78e-4 1.30e-6 3.41e-6 3.85e-6
i/u8 1.00 1.09 1.62 1.34 1.11 1.13 c 10 4.33e-5 4.08e-5 1.36e-6 3.30e-6 3.80e-6
i/uHk 2.76 2.99 4.47 3.69 3.07 3.11 c 20 3.35e-6 3.01e-5 1.19e-6 2.92e-6 3.48e-6
par 5 17 7 c 40 1.98e-6 3.17e-5 1.06e-6 2.43e-6 3.18e-6
d/n d′/n f/n Dfs’ L total r 20 3.32e-7 1.48e-7 3.21e-5 7.28e-6 3.23e-6
0.64 1.33 0.94 0.08 0.04 2.99 + 1.96 ε o 20 3.09e-7 2.85e-7 2.04e-7 1.28e-6 9.16e-7

xml Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 26.1 44.5 64.9 26.2 25.8 c 5 4.37e-4 5.11e-4 1.23e-6 1.90e-5 5.02e-6
i/u8 1.00 0.52 0.89 1.30 0.52 0.52 c 10 1.45e-4 1.69e-4 1.30e-6 1.41e-5 4.93e-6
i/uHk 5.08 2.65 4.52 6.60 2.67 2.62 c 20 3.25e-5 4.49e-5 1.31e-6 1.14e-5 4.86e-6
par 5 44 19 c 40 6.18e-6 2.84e-5 1.23e-6 8.64e-6 4.68e-6
d/n d′/n f/n Dfs’ L total r 20 3.40e-7 4.67e-7 3.25e-5 2.00e-5 8.35e-6
0.54 1.08 0.87 0.12 0.08 2.62 + 1.62 ε o 20 2.84e-7 2.05e-7 1.24e-7 2.99e-6 1.97e-6

dna Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 44.0 60.9 63.4 45.1 37.0 c 5 1.93e-2 7.44e-3 1.17e-6 2.85e-6 4.72e-6
i/u8 1.00 0.88 1.22 1.27 0.90 0.74 c 10 4.44e-4 1.76e-4 1.42e-6 3.57e-6 5.32e-6
i/uHk 3.63 3.19 4.42 4.60 3.27 2.69 c 20 3.51e-6 1.09e-5 1.26e-6 3.46e-6 5.16e-6
par 5 26 11 c 40 1.66e-6 1.14e-5 1.10e-6 2.94e-6 4.92e-6
d/n d′/n f/n Dfs’ L total r 20 3.61e-7 3.98e-7 3.76e-5 1.37e-5 1.05e-5
0.92 1.20 0.97 0.08 0.04 3.20 + 2.12 ε o 20 2.93e-7 2.62e-7 7.78e-7 2.44e-6 2.66e-6

proteins Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 63.7 102.8 152.9 100.9 104.8 100.1 c 5 4.71e-4 1.88e-4 1.27e-6 3.12e-6 3.43e-6
i/u8 1.00 1.61 2.40 1.58 1.64 1.57 c 10 3.77e-6 1.92e-5 1.15e-6 2.98e-6 3.37e-6
i/uHk 1.88 3.04 4.52 2.98 3.10 2.96 c 20 2.43e-6 2.16e-5 1.03e-6 2.51e-6 3.10e-6
par 10 13 6 c 40 1.80e-6 2.30e-5 9.53e-7 1.88e-6 2.80e-6
d/n d′/n f/n Dfs’ L total r 20 4.15e-7 6.00e-7 1.69e-5 8.20e-6 6.47e-6
0.85 1.22 0.98 0.04 0.04 3.11 + 2.07 ε o 20 3.12e-7 4.27e-7 5.86e-7 1.11e-6 1.16e-6

pitches Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 53.2 84.7 124.8 86.8 85.6 86.1 c 5 2.58e-4 1.19e-4 1.47e-6 2.87e-6 3.06e-6
i/u8 1.00 1.59 2.34 1.63 1.61 1.62 c 10 2.78e-5 3.78e-5 1.34e-6 2.68e-6 2.94e-6
i/uHk 1.99 3.16 4.66 3.24 3.19 3.21 c 20 1.15e-5 3.34e-5 1.18e-6 2.21e-6 2.60e-6
par 9 12 5 c 40 6.78e-6 3.23e-5 1.05e-6 1.60e-6 2.21e-6
d/n d′/n f/n Dfs’ L total r 20 3.39e-7 4.85e-7 1.66e-5 5.60e-6 2.22e-6
0.76 1.25 0.94 0.08 0.08 3.08 + 2.01 ε o 20 2.66e-7 1.45e-7 6.33e-7 5.30e-7 4.06e-7

sources Raw ILZI LZI FMI CSAx1 CSAx8 m ILZI LZI FMI CSAx1 CSAx8
i/223 50.0 53.5 80.9 68.1 53.3 54.6 c 5 8.91e-4 3.66e-4 1.40e-6 3.16e-6 3.48e-6
i/u8 1.00 1.07 1.62 1.36 1.07 1.09 c 10 1.22e-4 6.43e-5 1.42e-6 3.00e-6 3.45e-6
i/uHk 2.80 3.00 4.53 3.81 2.99 3.06 c 20 1.58e-5 3.19e-5 1.27e-6 2.68e-6 3.21e-6
par 5 17 7 c 40 3.60e-6 2.95e-5 1.13e-6 2.30e-6 2.89e-6
d/n d′/n f/n Dfs’ L total r 20 3.33e-7 4.56e-7 3.67e-5 7.17e-6 3.01e-6
0.60 1.19 0.90 0.08 0.04 2.78 + 1.79 ε o 20 2.83e-7 2.70e-7 2.36e-7 1.15e-6 7.92e-7

Table 3. Results for test files. On the left we show the space values and on the right the time values in seconds
(s). In the space column we show the space requirements of different indexes, the original string (Raw), the
Inverted-LZ-Index (ILZI), Navarro’s LZ-index (LZI), Navarro’s implementation of the FM-index (FMI) and
Sadakane’s CSArray (CSAx1,CSAx8). Variable i represents the size of the different indexes in bits. Therefore
i/223 gives the size in Megabytes (MB), i/u8 gives the ratio with the original string, i/uHk gives the ratio
with a compressed string, where Hk is estimated as (n log u)/n. The par line gives the parameters used for
indexes that require it. For the CSArray we give the D value, for CSAx1 we have that L = D and for CSAx8
that L = 8×D. The bottom part of the space column shows empirical values for the space terms of our index,
d/n, d′/n, ((dlog te−blog dc)/ log u) in column Dfs’, ((dlog te−blog fc)/ log u) in column L, (f/n) and in total
the empirical value of the space expression. In the time column we show the time results for several query
types. Lines labelled by c contains the counting cost per character, lines labelled by r the reporting time per
occurrence, lines labelled by o the displaying time per character. The column labelled by m indicates the size
of the pattern string used in the queries. The best values among different indexes are displayed in bold and
the second best are underlined.

second, being faster than the CSArray. For m = 40 it is very close to the best counting time,
expect for the xml and the pitches file where it is respectively around 5 times and 6.5 times
slower than the FM-Index. Contrarily, for small patterns, m = 5, it is up to 2.6 times slower
than LZI and up to four orders of magnitude slower than the FM-Index and the CSArray.

On the other hand LZ-based indexes are extremely fast at reporting occurrences. In fact
they are the only self-indexes using O(uHk) bits able to spend O(log n) time per occurrence.
This is also visible in table 3 as our index and LZI rank first and second and are one to two
orders of magnitude faster than the alternatives.

The displaying time per character is not a very decisive factor to tell indexes apart since
all of them are very fast. The FM-index performed extremely well on natural language based
files. The LZ-based indexes had more stable performance and are among the fastest for all
samples.

6 Conclusions

This paper presents two fundamental observations on LZ78 based compressed indexes. The
first one is that our dictionary T78 is a suffix tree. This structure was first presented by
Kärkkäinen [5] but this version required T to be present and since it was based in LZ77, it
was not necessarily a suffix tree. In the work presented by Navarro [4] the structure is called
RevTrie but its suffix tree nature is not explored and, in fact, reading an edge-label requires
O(m2). In the work presented by Ferragina and Manzini [3] it appears as an FM-Index of T R

$.
They present an argument to prove that its space requirements can be related to the entropy
of the text T . However its suffix tree structure is also not explored. The second observation is
about the way the same string appears in the LZ78 parsing. A string S may appear in O(m)
different ways as the concatenation of LZ78 blocks. This, in turn, forces algorithms based
on the LZ78 parsing to have quadratic behaviour. We solve this problem by discarding the
original parsing and using a maximal parsing. In the maximal parsing, a string S appears
in at most one way as the concatenation of blocks. Navarro uses the original LZ78 parsing.
Ferragina and Manzini discard the parsing and solve the problem by using an FM-index, i.e.
resorting to the Burrows-Wheeler transformation.

Our index is a significant contribution to LZ-based compressed indexes. We improved the
counting time performance of LZ-based indexes to linear time. At the same time, the structure
we propose is smaller than LZI, for all the files we tested. In theory, with the terms we obtained
in table 3, we can choose an ε to make the index smaller than 4uHk + o(u log σ). In practice
it can be seen in table 3 that ILZI is always smaller than LZI. However a new version of the
LZ-index proposed by Arroyuelo et al. [9] requires only (2+ε)uHk +o(u log σ) with worst case
guarantees. Without worst case guarantees it requires (1 + ε)uHk + o(u log σ) bits and it has
O(m2) average search time for m ≥ 2 logσ u. It is interesting to notice that Arroyuelo et al.
independently explored the suffix tree structure of T78 to reduce the time to read an edge-label
to O(m). We cannot achieve the reduced space requirements of Arroyuelo et al. essentially
because we are storing more structures. In fact, as a second contribution of this paper, we
pointed out a possible representation of suffix trees (lemma 1). This representation is not
very competitive when compared to the compressed suffix trees presented by Sadakane [23].
Nevertheless it is adequate for our goals. For suffix trees, in general, it requires more space
than the representation of Sadakane. In fact, the problem is the space required to store R and
R−1, (1 + ε)n log n bits. Arroyuelo et al. [9] showed how to reduce the space requirements of
R. However even with such an improvement it is still not comparable to Sadakane’s approach

in terms of space. We expect further work based on this approach to produce a competitive
representation.

Acknowledgements

We are deeply grateful to Gonzalo Navarro for several reasons: organising the Workshop on
Compression, Text, and Algorithms at DCC in November of 2005 that motivated stimulating
discussions on compressed indexes; providing prototypes together with Sadakane; creating
the Pizza&Chili Corpus together with Ferragina; for suggestions and corrections along with
Arroyuelo and several anonymous reviewers. We would like to thank Luis Coelho for countless
discussions about our index.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. Second edn. McGraw
(2001)

2. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J. Algorithms 48(2)
(2003) 294–313

3. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4) (2005) 552–581
4. Navarro, G.: Indexing text using the Ziv-Lempel trie. J. Discrete Algorithms 2(1) (2004) 87–114
5. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index structures for string matching.

In: Proceedings of the 3rd South American Workshop on String Processing, Carleton University Press
(1996) 141–155

6. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications to text indexing and
string matching. SIAM J. Comput. 35(2) (2005) 378–407

7. Manzini, G.: An analysis of the burrows-wheeler transform. J. ACM 48(3) (2001) 407–430
8. Makinen, V., Navarro, G.: Compressed full text indexes. Technical Report TR/DCC-2006-6, Dept. of

Computer Science, University of Chile (2006) 2nd version.
9. Arroyuelo, D., Navarro, G., Sadakane, K.: Reducing the space requirement of LZ-index. In: Proceedings

of CPM 2006. LNCS 4009 (2006) 319–330
10. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: An alphabet-friendly FM-index. In: Proceedings of

SPIRE 2004. LNCS 3246, Springer (2004) 150–160 Extended version to appear in ACM TALG.
11. Grabowski, S., Mäkinen, V., Navarro, G.: First Huffman, then Burrows-Wheeler: an alphabet-independent

FM-index. In: Proceedings of SPIRE 2004. LNCS 3246, Springer (2004) 210–211
12. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press (1999)
13. Munro, J.I.: Tables. In Chandru, V., Vinay, V., eds.: Proceedings of FSTTCS 1996. Volume 1180 of

LNCS., Springer (1996) 37–42
14. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor queries. In: SODA, SIAM

(2004) 1–10
15. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of permutations. In: ICALP.

Volume 2719 of LNCS., Springer (2003) 345–356
16. Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: COCOON. Volume 1090 of LNCS., Springer (1996)

219–230
17. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM

J. Comput. 17(3) (1988) 427–462
18. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions on

Information Theory 24(5) (1978) 530–536
19. Kosaraju, S.R., Manzini, G.: Compression of low entropy strings with lempel-ziv algorithms. SIAM J.

Comput. 29(3) (1999) 893–911
20. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds. In: SODA, ACM Press

(2006) 1230–1239
21. (http://www.dcc.uchile.cl/˜gnavarro/eindex.html)
22. (http://pizzachili.dcc.uchile.cl/)
23. Sadakane, K.: Compressed suffix trees with full functionality. (to appear in Theory of Computing Systems)

