
Noname manuscript No.
(will be inserted by the editor)

Improving Ranking Performance with Cost-sensitive
Ordinal Classification via Regression

Yu-Xun Ruan · Hsuan-Tien Lin ·
Ming-Feng Tsai

Received: date / Accepted: date

Abstract This paper proposes a novel ranking approach, Cost-sensitive Ordinal
Classification via Regression (COCR), which respects the discrete nature of ordinal
ranks in real-world data sets. In particular, COCR applies a theoretically-sound
reduction from ordinal to binary classification and solves the binary classifica-
tion sub-tasks with point-wise regression. Furthermore, COCR allows specifying
mis-ranking costs to further improve the ranking performance. Such an opportu-
nity is exploited by deriving a corresponding cost for a popular ranking criterion,
Expected Reciprocal Rank (ERR). The resulting ERR-tuned COCR boasts the
benefits of both efficiency by using point-wise regression and top-rank prediction
accuracy from the ERR criterion. Evaluations on two large-scale data sets, in-
cluding “Yahoo! Learning to Rank Challenge” and “Microsoft Learning to Rank”,
verify the significant superiority of COCR over commonly-used simple regression
approaches. In addition, even better performance can be achieved by the ERR-
tuned COCR approach. More specifically, when comparing on the larger data set of
the Yahoo! Learning to Rank Challenge, we verify that ERR-tuned COCR can be
a promising choice for ensemble learning—improving over a set of popularly-used
LambdaMART models and reaching comparable performance to the top-three en-
tries in the challenge.
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1 Introduction

In web-search engines and recommendation systems, a common practical need is
to learn an effective ranking function for information retrieval. In particular, given
a query, the ranking function can be used to order a list of related documents,
web pages or items by relevance and show users the relevant items on the top of
the ranking list. In recent years, the need has drawn much research attention in
the information retrieval and machine learning communities (Liu, 2009; Lv et al,
2011; Richardson et al, 2006).

Three important characteristics of the practical need will be considered in this
paper. First, the real-world data sets for ranking are usually huge—containing
millions of documents or web pages. This paper focus on such a large-scale rank-
ing problem. Secondly, many of the real-world benchmark data sets for learning
to rank are labeled by human with ordinal ranks—that is, qualitative and dis-
crete judgments like {highly irrelevant, irrelevant, neural, relevant, highly
relevant}. We shall focus on learning to rank from such ordinal data sets. Thirdly,
the effectiveness of the ranking function is often evaluated by the order of the items
in the resulting ranking list, in which those items on the top of the ranking list
are emphasized. Such list-wise evaluation criteria match users’ perception when
using the ranking function for information retrieval. We shall study learning to
rank under the list-wise evaluation criteria.

To tackle the large-scale ranking problem, many learning-based ranking al-
gorithms are based on a long-lasting method in statistics and machine learning:
regression. In particular, these algorithms treat the ordinal ranks as real-valued
scores and learn a scoring function by regression for ranking. Theoretical connec-
tions between regression and list-wise ranking criteria have been studied by Cos-
sock and Zhang (2006). The benefit of regression is that there are some standard
and mature tools that can efficiently deal with large-scale data sets. Nevertheless,
standard regression tools often require some metric assumptions on the real-valued
scores (e.g., rank 4 is twice as large as rank 2), while the assumptions do not nat-
urally fit the characteristics of the ordinal ranks. A few other studies thus try
to resort to ordinal classification, which is more aligned with the qualitative and
discrete nature of the ordinal ranks. Some theoretical connections between classi-
fication and list-wise ranking criteria have been established by Li et al (2007).

In this work, we improve and combine the regression and the classification
approaches to tackle the ranking problem. In particular, we connect the problem
with cost-sensitive ordinal classification, a more sophisticated setting than usual
ordinal classification. Cost-sensitive classification penalizes different kinds of mis-
predictions differently; therefore, it can express the list-wise evaluation criteria
much better. We study theoretical guarantee that allows using cost-sensitive clas-
sification to embed a popular list-wise ranking criterion—expected reciprocal rank
(ERR) (Chapelle et al, 2009). Furthermore, we apply an existing method to reduce
the cost-sensitive ordinal classification problem to a batch of binary classification
tasks (Lin and Li, 2012). The reduction method respects the qualitative and dis-
crete nature of the ordinal ranks. Finally, we keep the benefit of the regression
tools by using them as soft learners for the batch of binary classification tasks.
We name the whole framework Cost-sensitive Ordinal Classification via Regression
(COCR). The framework not only enables us to use the well-established regres-
sion tools without relying on the metric assumptions that the ordinal ranks do
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not carry, but also allows us to better match the list-wise evaluation criteria by
embedding them as costs.

Evaluations on two large-scale data sets, including “Yahoo! Learning to Rank
Challenge” and “Microsoft Learning to Rank”, verify the significant superiority of
COCR over conventional regression approaches. Experimental results show that
COCR can perform better than simple regression approach with some commonly-
used costs. The results demonstrate the importance of treating the ordinal ranks as
discrete rather than continuous. Moreover, when adding ERR-based costs, COCR
can reach even better performance, thereby demonstrating the advantages of con-
necting ranking to cost-sensitive ordinal classification. We further demonstrate
that ERR-tuned COCR can be an useful too for ensemble learning. In particular,
when compared on the larger data set of the Yahoo! Learning to Rank Challenge,
ERR-tuned COCR improves over a set of popularly-used LambdaMART models
and reaches comparable performance to the top-three entries in the challenge.

This paper is organized as follows. First, we introduce the ranking problem
and illustrate related works in Section 2. We formulate the COCR framework
in Section 3. Section 4 derives the cost corresponding to the ERR criterion. We
present the experimental results on some large-scale data sets and conduct several
comparisons in Section 5. Finally, we conclude in Section 6.

2 Setup and Related work

We work on the following ranking problem. For a given query with index q, consider

a set of documents {xq,i}N(q)
i=1 , in which N(q) is the number of documents related

to q and each document xq,i is encoded as a vector in X ⊆ RD. For the task,
we attempt to order all xq,i according to their relevances to q. In particular, each
xq,i is assumed to be associated with an ideal ordinal relevance value yq,i ∈ Y =
{0, 1, 2, · · · ,K}. Below is a data set containing Q queries with labeled document-
relevance examples:

D =
{

(xq,i, yq,i) : q = 1, 2, · · · , Q; i = 1, 2, · · · , N(q)
}
.

The goal of the ranking problem is to use D to obtain a scoring function (ranker)
r(x) : X → R, and the ranker can obtain an ordering introduced by the predicted
value of r(xq,i) that is close to the ordering by target value yq,i.

For simplicity, we use n to denote the abstract pair (q, i), let N =
∑Q
q=1N(q),

and name D = {(xn, yn)}Nn=1. Learning-based approaches for the ranking problem
can be classified into the following three categories (Liu, 2009):

– Point-wise: The approaches aim at directly predicting the score of x. In other
words, they learn r(xq,i) ≈ yq,i to make the orderings introduced by r and
that by y as close as possible. When y is real-valued, the goal is similar to the
traditional regression; thus, several well-established tools in regression can be
applied directly. A representative regression approach for point-wise ranking
has been studied by Cossock and Zhang (2006). When the target value y is
within an ordinal set {0, 1, · · · ,K}, the ranking problem can be reduced to
ordinal regression (also called ordinal classification) such as McRank (Li et al,
2007) and Pranking (Crammer and Singer, 2002).
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– Pair-wise: In this category, the ranking problem is transformed into a binary
classification one that decides whether xq,i is preferred over xq,j . In other
words, the aim is to learn a ranker r such that

sign
(
(xq,i)− r(xq,j)

)
≈ sign

(
yq,i − yq,j

)
,

which captures the local comparison nature of ranking. The approaches usually
need to construct pairs (xq,i,xq,j) between those examples with different y.
Then, given a query with N(q) documents, the number of pairs can be as many
as Ω

(
N(q)2

)
, which makes pair-wise approaches inefficient for large-scale data

sets. Representative approaches in this category include RankSVM (Joachims,
2002), RankBoost (Freund et al, 2003) and RankNet (Burges et al, 2005).

– List-wise: While point-wise ranking considers scoring each instance xq,i by itself
and pair-wise ranking tries to predict the local ordering of the pair (xq,i,xq,j),

list-wise ranking targets at the total ordering of {xq,i}N(q)
i=1 introduced by the

ranker r. The approaches attempt to find the best ranker r by optimizing
some objective function that can evaluate the effectiveness of different permu-
tations/orderings introduced by different rankers. The objective function can
be a list-wise ranking criterion, and the direct optimization allows the learning
process to take the structure of all {xq,i} into account. However, since there
are

(
N(q)

)
! possible permutations over N(q) documents, list-wise ranking can

be computationally even more expensive than pair-wise ranking. Some repre-
sentative work includes LambdaRank (Burges et al, 2006), BoltzRank (Volkovs
and Zemel, 2009), and NDCGBoost (Valizadegan et al, 2000).

This study focuses on how to improve point-wise ranking by incorporating
structural information. In specific, we propose to transform the list-wise ranking
criterion as cost, and then put the cost into the reduction process for ordinal
ranking. The proposed approach not only inherits the benefit of point-wise ranking
in terms of dealing with large-scale data sets, but also possesses the advantage of
list-wise ranking to take the structure of the whole ranking list into account.

3 Cost-sensitive Ordinal Classification via Regression

In this section, we formulate the COCR framework. We first describe how to reduce
a ranking problem from cost-sensitive ordinal classification to binary classification,
which is based on the work of (Lin and Li, 2012). Then, we discuss how the
reduction method can be extended to pair with regression algorithms instead of
binary classification ones.

3.1 Reduction to Binary Classification

We first introduce the reduction method in (?), which belongs to point-wise rank-
ing and solves the ordinal classification problem. Considering a data set D =
{(xn, yn)}Nn=1 and possible ordinal ranks Y = {0, 1, · · · ,K}, the reduction method
learns a ranker r : X → Y from D such that r(x) is close to y ∈ Y. In the work, the
task of learning a ranker r is decomposed to K simpler sub-tasks, and each sub-
task learns a binary classifier gk : X → {0, 1}, where k = 1, 2, · · · ,K. In specific,
the k-th sub-task is to determine the following question:
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“Is x ranked higher than or equal to rank k?”

Each binary classifier gk is learned from the transformed data set:

D(k) =
{(

xn, b
(k)
n

)}N
n=1

,

where

b(k)n = Jyn ≥ kK (1)

encodes the desired answer for each xn on the associated question. If all binary
classifiers gk answer most of the associated questions correctly, it has been theo-
retically proved (?) that a simple “counting” ranker

rg(x) =
K∑
k=1

gk(x) (2)

can also predict the rank y closely.
In addition to the reduction from the ordinal classification task to binary clas-

sification ones, the method also allows to specify the costs charged on different
kinds of mis-ranking errors. In particular, each example (xn, yn) can be coupled
with a cost vector cn whose k-th component cn[k] denotes the penalty for scoring
xn as k. The value of cn[k] reflects the degree of the difference between yn and
k. Thus, it is common to assume that cn[k] = 0 when k = yn. In addition, the
cost cn[k] is assumed to be larger when k is further away from yn. Two common
functions satisfy the requirements and have been widely used in practice:

– absolute cost vectors:

cn[k] = |yn − k| . (3)

– squared cost vectors:

cn[k] = (yn − k)2. (4)

For instance, suppose that the highest relevance K = 4. Given an example (xn, yn)
with yn = 3, the absolute cost is (3, 2, 1, 0, 1) and the squared cost is (9, 4, 1, 0, 1).
Note that the squared cost charges more than the absolute cost when k is further
away from yn. The cost vectors give the learning algorithm some additional infor-
mation about the preferred ranking criterion, and can be used to boost ranking
performance if they are chosen or designed carefully.

The reduction method transforms the cost vector cn to the weight of each

binary example
(
xn, b

(k)
n

)
to indicate its importance. The weight is defined as

w(k)
n =

∣∣∣cn[k]− cn[k − 1]
∣∣∣. (5)

Intuitively, when the difference between the k-th and the (k− 1)-th costs is large,
a ranker will attempt to answer the k-th associated question correctly. The the-

oretical justification for using the weights is shown by (?). The weights w
(k)
n are

included as an additional piece of information when training gk. Many existing
binary classification can take the weights into account by some simple changes in
algorithm or by sampling.
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Therefore, the reduction method from cost-sensitive ordinal classification to
weighted binary classification takes a cost-sensitive data set of the form D =
{(xn, yn, cn)}Nn=1 and transforms D to weighted binary classification data sets

D(k) =
{(

xn, b
(k)
n , w

(k)
n

)}N
n=1

, each of which is used to learn a binary classifier

gk that will be combined to get the ranker rg in (2). Note that the absolute

cost simply results in w
(k)
n = 1 (equal weights) and leads to the simple weight-

less version introduced in this section. Many existing approaches (Li et al, 2007;
Mohan et al, 2011) also decompose the ordinal classification problem to a batch of
binary classification sub-tasks in a weight-less way and thus implicitly considers
only the absolute cost. The reduction method, on the other hand, provides the
opportunity to use a broader range of costs in a principled way.

3.2 Replacing Binary Classification with Regression

The reduction method learns a hard ranker rg from X to Y = {0, 1, 2, · · · ,K};
that is, many different instances xq,i can be mapped to a same rank. While such
a ranker carries a strong theoretical guarantee, it results in ties of ordering, and
thus is usually not preferred in practice. Next, we discuss how we can obtain a soft
ranker from X to R instead.

The basic idea is as follows. We replace gk : X → {0, 1} with soft binary classi-
fiers hk : X → [0, 1], where Jhk(x) ≥ 0.5K is the hard classifier gk(x) in prediction
while the value of |hk(x)− 0.5| represents the confidence of the prediction. Note
that the hard ranker rg in the reduction method is composed by a batch of hard
binary classifiers gk. To use the detailed confidence information after getting hk,
we propose to keep Equation (2) unchanged. That is, the soft ranker will be con-
structed by

rh(x) =
K∑
k=1

hk(x). (6)

Below we show that rh can be a reasonable ranker by using the above equation.
The common way to learn the soft binary classifiers hk is to use regression. Tradi-
tional least-squared regression, when applied on the binary classification problem
from x to some binary label b ∈ {0, 1}, can be viewed as learning an estimator
of the posterior probability P (b = 1|x). Following the same argument, each soft
binary classifier hk(x) in our proposed approach estimates the posterior proba-
bility P (y ≥ k|x). Let us first assume that each hk is perfectly accurate on the
estimation. That is, let Pk = P (y = k|x),

P1 + P2 + · · ·+ PK = h1(x)

P2 + · · ·+ PK = h2(x)

· · · = · · ·
PK = hK(x).

Take a summation on both sides of the equations,

P1 + 2P2 + · · ·+KPK =
K∑
k=1

hk(x) = rh(x).
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Note that the left-hand-side is the expected rank:

E(y|x) =
K∑
k=0

k · P (y = k|x).

In other words, when all soft binary classifiers hk(x) perfectly estimate P (y ≥ k|x),
the soft ranker rh(x) can also perfectly estimate the expected rank given x.

In practice, however, soft binary classifiers hk(x) may not be perfect and can
make errors in estimating P (y ≥ k|x). In such a case, the next theorem shows that
rh(x) is still guaranteed to be close to the expected rank given x.

Theorem 1 Consider any binary classifiers hk : X → R for k = 0, 1, · · · ,K.
Assume that

K∑
k=1

(
hk(x)− P (y ≥ k|x)

)2
≤ ε2.

Then, (
rh(x)− E(y|x)

)2 ≤ Kε2.
Proof (

rh(x)− E(y|x)
)2

=

(
K∑
k=1

hk(x)−
K∑
k=1

P (y ≥ k|x)

)2

≤

(
K∑
k=1

12

)(
K∑
k=1

(
hk(x)− P (y ≥ k|x)

)2)
(7)

≤ Kε2.

Note that (7) comes from the Cauchy-Schwarz inequality.

Theorem 1 shows that when soft binary classifiers hk can estimate the posterior
probability P (y ≥ k|x) correctly, the soft ranker rh will also obtain the expected
rank of x closely. According to the theorem, we propose to replace the binary
classification algorithm in the reduction method with a base regression algorithm
Ar. The base regression algorithm attempts to learn soft binary classifiers hk and
obtain a soft ranker rh by using Equation (6). Algorithm 1 summarizes the pro-
cess of the proposed Cost-sensitive Ordinal Classification via Regression (COCR)
framework.

4 Costs For ERR Criterion

In this section, we study how to embed a list-wise ranking criterion as the costs in
the COCR framework. We focus on a popular criterion: Expected Reciprocal Rank
(ERR), which has been widely used in the Yahoo! Learning to Rank Challenge1.

1 http://learningtorankchallenge.yahoo.com/index.php
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Algorithm 1 The COCR Framework

Input: D = {(xn, yn, cn)}Nn=1

for k = 1, 2, · · · ,K do
1. Transform the cost-sensitive data set to a weighted binary classification data set

D(k) =
n“

xn, b
(k)
n , w

(k)
n

”oN
n=1

with (1) and (5).

2. Apply a base regression algorithm Ar on D(k) to get a soft binary classifier hk(x).
end for
return rh with (6).

4.1 ERR: Expected Reciprocal Rank

ERR (Chapelle et al, 2009) is an evaluation criterion for multiple relevance judg-
ments. Consider a ranker r that defines an ordering:

π : {1, 2, · · · , N(q)} → {1, 2, · · · , N(q)},

where π(i) is the position of example (xq,i, yq,i) in the ordering introduced by r,
and the document at the top position 1 has the largest r(xq,i). For simplicity we
use σ(i) to denote π−1(i); then, the ERR criterion can be defined as follows:

ERR(r, q) =

N(q)∑
i=1

1

i
R
(
yq,σ(i)

) i−1∏
j=1

(
1−R

(
yq,σ(j)

))
,

with R(y) =
2y − 1

2K
, y ∈ {0, 1, · · · ,K}. (8)

The function R(y) maps the ordinal rank y to a probability term that models
whether the user would stop at the associated document x. When y is large (highly
relevant), R(y) is close to 1; instead, when y is small (highly irrelevant), R(y) is
close to 0. Note that for ERR higher values indicate better performance. Con-
sidering the ordering produced by r on query q, the criterion can be represented
as:

ERR(r, q) =

N(q)∑
i=1

1

i
P (user stops at position i of ordering).

As suggested by Chapelle et al (2009), ERR reflects users’ search behaviors and
can be used to quantify users’ satisfaction. The main difference between ERR and
other position-based metrics such as RBP (Moffat and Zobel, 2008) and NDCG

(Järvelin and Kekäläinen, 2002) is that the discount term 1
i

∏i−1
j=1

(
1−R

(
yq,σ(j)

))
of ERR depends not only on the position information 1

i , but also on whether there
are highly relevant instances appearing before position i.

Next, we derive an error bound on the ERR criterion. To simplify the deriva-
tion, we work on a single query and remove the query index q from the notation. In
addition, we can permute the index in (8) with π and get an equivalent definition
of ERR as:

ERR(r) =
N∑
i=1

1

π(i)
R(yi)

π(i)−1∏
j=1

(
1−R(yσ(j))

)
. (9)
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4.2 An Error Bound on ERR

In (Cossock and Zhang, 2006), the DCG criterion is shown to be bounded by some
regression loss functions; in (Li et al, 2007), the DCG criterion in list-wise ranking
is also shown to be bounded by a scaled error rate in multi-class classification.
Inspired by the two studies, we derive a bound for ERR in order to find suitable
costs for COCR. Note that (Mohan et al, 2011) makes a similar attempt with some
different derivation steps and shows that ERR is bounded by a scaled error rate
in multi-class classification. Our bound, on the other hand, will reveal that ERR
is approximately bounded by some costs in cost-sensitive ordinal classification.

Let β be a vector with β[i] = 1
i . In addition, define y as a vector with y[i] = yi

and ŷ as a vector ŷ[i] = r(xi). For any vector ỹ of length N , any permutation

π̃ : {1, 2, · · · , N} → {1, 2, · · · , N}

and its inverse permutation σ̃, we define

F (π̃, ỹ) = R
(
y
[
i
]) π̃(i)−1∏

j=1

(
1−R

(
ỹ
[
σ̃(j)

]))
.

We see that (9) simplifies to

ERR(r) =
N∑
i=1

β[π(i)] · Fi(π,y). (10)

We now use the above definitions to derive the upper-bound of the difference
between ERR(r) and the ERR of a perfect ranker.

Theorem 2 For a given set of examples {(xi, yi)}Ni=1, consider a perfect ranker
p such that p(xi) = yi. Assume that the perfect ranker introduces an ordering ρ.
Then,

ERR(p)− ERR(r)

≤

(
N∑
i=1

(
β
[
ρ(i)

]
− β

[
π(i)

])2) 1
2
(
N∑
i=1

(
Fi(ρ,y)− Fi(π, ŷ)

)2) 1
2

Proof

From the definition in Equation (10),

ERR(r)

=
N∑
i=1

β[π(i)] · Fi(π,y)

=
N∑
i=1

β[π(i)] · Fi(π, ŷ) +
N∑
i=1

β[π(i)] ·
(
Fi(π,y)− Fi(π, ŷ)

)
.
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Note that π is the ordering constructed by ŷ. Thus, the sequence Fi(π, ŷ) is non-
decreasing with β[π(i)]. By the rearrangement inequality,

N∑
i=1

β[π(i)] · Fi(π, ŷ) ≥
N∑
i=1

β[ρ(i)] · Fi(π, ŷ). (11)

In addition, ρ is the ordering constructed by y. Thus, for all i,

Fi(π,y) ≥ Fi(ρ,y). (12)

From (11) and (12),

ERR(r)

≥
N∑
i=1

β
[
ρ(i)

]
· Fi(π, ŷ) +

N∑
i=1

β
[
π(i)

]
·
(
Fi(ρ,y)− Fi(π, ŷ)

)
≥

N∑
i=1

β
[
ρ(i)

]
· Fi(ρ,y) +

N∑
i=1

(
β
[
π(i)

]
− β

[
ρ(i)

])
·
(
Fi(ρ,y)− Fi(π, ŷ)

)
= ERR(p) +

N∑
i=1

(
β
[
π(i)

]
− β

[
ρ(i)

])
·
(
Fi(ρ,y)− Fi(π, ŷ)

)
.

Then, by the Cauchy-Schwarz inequality.

ERR(p)− ERR(r)

≤

(
N∑
i=1

(
β
[
ρ(i)

]
− β

[
π(i)

])2) 1
2
(
N∑
i=1

(
Fi(ρ,y)− Fi(π, ŷ)

)2) 1
2

4.3 Optimistic ERR Cost

Next, we use the bound in Theorem 2 to derive the costs for the ERR criterion.
In specific, we attempt to minimize the right-hand-side of the bound with respect
to r. The term

N∑
i=1

(
β[ρ(i)]− β[π(i)]

)2
in the bound depends on the total ordering introduced by r and is difficult to be
calculated in a point-wise manner by COCR. Thus, we turn to minimize the term:(

Fi(ρ,y)− Fi(π, ŷ)
)2

=

(
2y[i] − 1

2K

ρ(i)−1∏
j=1

(
1− 2y[ρ−1(j)] − 1

2K

)

−2ŷ[i] − 1

2K

π(i)−1∏
j=1

(
1− 2ŷ[π−1(j)] − 1

2K

))2

.
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Consider an assumption that we consider only rankers that produce correct
rank r(xi) ≈ yi. Then, the ordering π introduced by r will be close to the ordering
ρ introduced by the prefect ranker p. Thus,

ρ(i)−1∏
j=1

(
1− 2y[ρ−1(j)] − 1

2K

)
≈
π(i)−1∏
j=1

(
1− 2ŷ[π−1(j)] − 1

2K

)

If the ranker predicts r(xi) = k,(
Fi(ρ,y)− Fi(π, ŷ)

)2
≈

(2y[i] − 1

2K
− 22K

− 1

2K

)
·
π(i)−1∏
j=1

(
1− 2ŷ[π−1(j)] − 1

2K

)2

∝
(

2yi − 2k
)2

To minimize the bound in Theorem 2, we define the optimistic ERR (oERR) cost
vector by:

ci[k] =
(

2yi − 2k
)2
. (13)

When the optimistic ERR cost is minimized, each(
Fi(ρ,y)− Fi(π, ŷ)

)2
is approximately minimized and the right-hand-side of the bound in Theorem 2 is
small. Then, ERR(r) would be close to the ideal ERR of the perfect ranker. For
K = 4, given an example (xn, yn) with yn = 3, the squared cost is (9, 4, 1, 0, 1)
and the oERR cost is (64, 36, 16, 0, 64). We see that, when normalized by the
largest component in the cost, the oERR vector charges more penalty for mis-
ranking errors than the squared cost. Next, we conduct experiments to validate the
effectiveness of the oERR cost when it is integrated with the COCR framework.

5 Experiments

We carry out several experiments to verify the following claims:

1. For large-scale list-wise ranking problems with ordinal ranks, with a same base
regression approach, the proposed COCR framework can outperform a direct
use of regression (Cossock and Zhang, 2006).

2. The derived oERR cost in (13) can be coupled with COCR to boost the quality
of ranking in terms of the ERR criterion.

3. The COCR framework with the proposed oERR cost can also be applied for
ensemble learning to get even better ranking performance.

We will first introduce the data sets and the base regression algorithms used
in our experiments. Then, we compare COCR with different costs and discuss the
results. In the end, we validate that COCR with oERR cost is also a valuable and
efficient approach for ensemble learning.
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5.1 Data sets

Four benchmark real-world large-scale data sets are used in our experiments. The
statistics of the benchmark data sets are described below.

– Yahoo! Learning To Rank Challenge Data sets:2

In 2010, Yahoo! held the Learning to Rank Challenge for improving the ranking
quality in web-search systems. There were two data sets in the competition:
the bigger one was used for track 1 and named LTRC1 in our experiments; the
smaller one (LTRC2) was used for track 2. Both LTRC1 and LTRC2 are divided
into the three parts—training, validation and test. For training/validation/test
respectively,
– LTRC1 contains Q=19,944/2,994/6,983 queries

and N=473,134/71,083/165,660 examples
– LTRC2 contains Q=1,266/1,266/3,798 queries

and N=4,815/34,881/103,174 examples
In both two data sets, the number of features D is 700 and all of the features
have been scaled to [0, 1]. The relevance values yn range from 0 to K = 4, with
0 meaning irrelevant and 4 meaning highly relevant.

– Microsoft Learning to Rank Data sets:3

The data sets were released by Microsoft Research in 2010. There are two data
sets MS10K and MS30K.
– MS10K contains Q=10,000 queries and
N=1,200,192 examples.

– MS30K contains Q=31,531 queries and
N=3,771,125 examples.

The MS10K data set is constructed by a random sampling of 10,000 queries
from MS30K. There are D = 136 features and we normalize the features to
[0, 1]. Each data set is divided to five standard parts for cross-validation. The
ordinal relevance values in the data sets also range from 0 to 4.

5.2 Base Regression Algorithms

Three base regression algorithms are considered in our experiments, including
linear regression (Hastie et al, 2003), M5’ decision tree (M5P) (Wang and Witten,
1997) to Gradient Boosted Regression Trees (GBRT) (Friedman, 2001). In the
experiments, we use WEKA (Hall et al, 2009) for the linear regression and M5P,
and use RT-Rank (Mohan et al, 2011) implementation for GBRT.

– Linear regression is arguably one of the most widely-used algorithm for regres-
sion. It learns a simple linear model that combines the numerical features in
x to make the prediction. We take the standard least-squared formulation of
linear regression (Hastie et al, 2003) as the baseline algorithm in our experi-
ments.

– M5P is a decision tree algorithm based on an earlier M5 (Quinlan, 1992) al-
gorithm. M5P produces a regression tree such that each leaf node consists of

2 http://learningtorankchallenge.yahoo.com/datasets.php
3 http://research.microsoft.com/en-us/projects/mslr/default.aspx
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a linear model for combining the numerical features. M5P can do nonlinear
regression with the partitions provided by the internal nodes and is thus more
powerful than linear regression. We will consider a single M5P tree as well as
multiple M5P trees combined by the popular Booststrap Aggregation (bagging)
method (Breiman, 1996).

– GBRT aggregates multiple decision trees with gradient boosting to improve the
regression performance (Friedman, 2001). The aggregation procedure generates
diverse decision trees by taking the regression errors (residuals) into account,
and can thus produce a more powerful regressor than bagging-M5P. GBRT is
a leading algorithm in the Yahoo! Learning To Rank Challenge (Mohan et al,
2011) and is thus taken into our comparisons.

Below we conduct several comparisons using the above base regression algo-
rithms under the COCR framework with different costs.

5.3 Comparison Using Linear Regression

Table 1 shows the average test ERR of direct regression and three COCR settings
on the four data sets when using linear regression as the base algorithm. Bold fonts
indicate that the COCR setting significantly outperforms direct regression. The
corresponding p-values are also listed in the table for reference. First of all, we see
that COCR with the squared cost is better than direct regression on all the data
sets. COCR with the absolute cost, which is similar to the McRank approach (Li
et al, 2007), can also achieve a higher ERR over direct regression on some data
sets. The results verify that it is important to respect the discrete nature of the
ordinal-valued yn instead of directly treating them as real values for regression. In
particular, the reduction method within COCR properly takes the discrete nature
into account and should thus be preferred over direct regression on the data sets
with ordinal ranks.

From Table 1, COCR with the oERR cost not only is better than direct re-
gression, but can further boost the ranking performance over the absolute and the
squared costs to reach the best ERR on all data sets except the smallest data set
LTRC2. On larger data sets like MS10K and MS30K, the difference is especially
large and significant. We further compare COCR with different costs to COCR
with the oERR cost with a one-tailed t-test and list the corresponding p-values
in Table 3(a). The results show that COCR with the oERR cost is definitely the
best choice within the three COCR settings on LTRC1, MS10K and MS30K. The
results justify the usefulness of the proposed oERR cost over the commonly-used
absolute or square costs.

Another metric for list-wise ranking is Normalized DCG (NDCG) (Järvelin and
Kekäläinen, 2002). In order to verify if COCR can also enhance NDCG, we list
the NDCG@10 results in Table 2. Note that higher NDCG values indicate better
performance. For NDCG@10, COCR with the squared cost is better than direct
regression on all data sets. In addition, COCR with the squared cost is better than
COCR with the absolute cost on MS10K and MS30K, and better than COCR with
the oERR cost on LTRC1 and LTRC2. The findings suggest that COCR with the
squared cost is the best of the three settings. On the other hand, COCR with the
oERR cost is less strong in terms of the NDCG criterion. Thus, the flexibility of
COCR in plugging in different costs is important. More specifically, the flexibility
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Table 1 ERR Comparison Using Linear Regression

data set direct COCR

regression absolute, p-value squared, p-value oERR, p-value

LTRC1 0.4470 0.4484, 3.00 ∗ 10−4 0.4490, 2.23 ∗ 10−5 0.4505, 3.65 ∗ 10−6

LTRC2 0.4440 0.4465, 3.00 ∗ 10−4 0.4472, 1.00 ∗ 10−4 0.4461, 1.42 ∗ 10−2

MS10K 0.2643 0.2642, 5.67 ∗ 10−2 0.2697, 2.25 ∗ 10−20 0.2792, 1.12 ∗ 10−35

MS30K 0.2748 0.2748, 2.88 ∗ 10−1 0.2828, 2.38 ∗ 10−116 0.2942, 1.09 ∗ 10−161

Table 2 NDCG@10 Comparison Using Linear Regression

data set direct COCR

regression absolute, p-value squared, p-value oERR, p-value

LTRC1 0.7638 0.7652, 5.34 ∗ 10−5 0.7652, 1.20 ∗ 10−3 0.7636, 4.05 ∗ 10−1

LTRC2 0.7519 0.7552, 5.96 ∗ 10−6 0.7562, 3.01 ∗ 10−6 0.7518, 4.74 ∗ 10−1

MS10K 0.3916 0.3915, 3.02 ∗ 10−1 0.3945, 1.90 ∗ 10−11 0.3931, 5.79 ∗ 10−2

MS30K 0.4025 0.4026, 2.33 ∗ 10−1 0.4061, 1.44 ∗ 10−49 0.4060, 3.40 ∗ 10−11

Table 3 One-Tailed Test that Compare the oERR Cost to Other Costs

(a) Linear Regression

data set absolute squared

LTRC1 2.70 ∗ 10−3 1.51 ∗ 10−2

LTRC2 3.12 ∗ 10−1 7.48 ∗ 10−2

MS10K 1.85 ∗ 10−36 7.73 ∗ 10−22

MS30K 8.12 ∗ 10−161 3.51 ∗ 10−81

(b) M5P

data set absolute squared

LTRC1 2.80 ∗ 10−1 6.03 ∗ 10−2

LTRC2 1.03 ∗ 10−5 1.62 ∗ 10−1

MS10K 8.10 ∗ 10−3 4.56 ∗ 10−8

MS30K 3.85 ∗ 10−2 1.37 ∗ 10−5

allows us to obtain better rankers towards the application needs (NDCG or ERR)
by tuning the costs appropriately.

5.4 Comparison Using M5P

The M5P decision tree comes with a parameter M , which stands for the minimum
number of instances per leaf when constructing the tree. A smaller M results in
a more complex (possibly deeper) tree while a larger M results in a simpler one.
Figure 1 shows the results of tuning M when applying M5P in direct regression
and COCR with the oERR cost on the LTRC1 data set. The M -values of 4, 256,
512, 1024 and 2048 are examined. The default M in WEKA is 4.

Figure 1(a) shows that direct regression with M5P can reach the best test per-
formance on the default value of M = 4. However, as shown in Figure 1(b), COCR
with the oERR cost can overfit when M = 4. Its training ERR is dramatically
high, but the test ERR is extremely low. The findings suggest a careful selection
of the M parameter. We conduct a fair selection scheme using the validation ERR.



Improving Ranking Performance with COCR 15

Fig. 1 Effects of Tuning the Parameter M of M5P on LTRC1
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(b) COCR with oERR cost

Table 4 ERR Results of Tuning the Parameter M of M5P on LTRC1

parameter M direct COCR

regression absolute squared oERR

4 (validation) 0.4432* 0.4381 0.4381 0.4393

256 (validation) 0.4365 0.4410 0.4425 0.4432

512 (validation) 0.4382 0.4426 0.4437 0.4438

1024 (validation) 0.4408 0.4445* 0.4453* 0.4453*

2048 (validation) 0.4400 0.4426 0.4431 0.4447

test by best validation 0.4499 0.4526 0.4521 0.4530

p-value 2.60 ∗ 10−3 1.05 ∗ 10−2 8.00 ∗ 10−4

(* represents the best validation result)

In particular, we check the models constructed by M = 4, 256, 512, 1024 and 2048;
pick the model that comes with the highest validation ERR; report its correspond-
ing test ERR. The results on LTRC1 is listed in Table 4. The first five rows show
the validation results of different algorithms, and the last row show the test result
when using the best model in validation. The results demonstrate that when M is
carefully selected, all COCR settings outperform direct regression significantly on
LTRC1 and COCR with the oERR achieves the best ERR of the three settings.

With the parameter selection scheme above, Table 5 lists the test ERR on the
four data sets. The results in the table further confirms that almost all COCR set-
tings are significantly better than direct regression on all data sets, except COCR
with the absolute cost on the smallest LTRC2. Furthermore, COCR with oERR
cost achieves the best ERR performance on all data sets. After comparing COCR
with the oERR cost to COCR with other costs using a one-tailed t-test, as shown
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Table 5 ERR Comparison Using M5P

data set direct COCR

regression absolute, p-value squared, p-value oERR, p-value

LTRC1 0.4499 0.4526, 2.60 ∗ 10−3 0.4521, 1.05 ∗ 10−2 0.4530, 8.00 ∗ 10−4

LTRC2 0.4489 0.4499, 2.26 ∗ 10−1 0.4533, 7.00 ∗ 10−4 0.4538, 2.00 ∗ 10−4

MS10K 0.3014 0.3129, 3.11 ∗ 10−13 0.3101, 3.04 ∗ 10−8 0.3156, 3.38 ∗ 10−17

MS30K 0.3298 0.3438, 4.32 ∗ 10−54 0.3423, 4.23 ∗ 10−43 0.3451, 1.74 ∗ 10−59

Table 6 NDCG@10 Comparison Using M5P

data set direct COCR

regression absolute, p-value squared, p-value oERR, p-value

LTRC1 0.7680 0.7695, 9.01 ∗ 10−2 0.7698, 1.26 ∗ 10−2 0.7698, 7.26 ∗ 10−2

LTRC2 0.7535 0.7519, 2.26 ∗ 10−1 0.7565, 7.49 ∗ 10−2 0.7567, 6.39 ∗ 10−2

MS10K 0.4233 0.4327, 8.07 ∗ 10−11 0.4295, 1.31 ∗ 10−5 0.4284, 4.00 ∗ 10−4

MS30K 0.4545 0.4645, 5.32 ∗ 10−34 0.4614, 6.79 ∗ 10−18 0.4589, 1.20 ∗ 10−7

in Table 3(b), we verify that the differences are mostly significant, especially on
MS30K and MS10K. The results again confirm that the oERR cost is a competitive
choice in the COCR settings.

Table 6 shows the test NDCG results. Both COCR with the squared and the
oERR costs can be better than direct regression on all data sets. In addition,
COCR with the absolute cost can be better than direct regression on all data sets
except the smallest LTRC2. The finding echoes the results in Table 2 about the
benefit of COCR on improving NDCG with a carefully chosen cost.

5.5 Comparison Using Bagging-M5P

One concern about the comparison using M5P is that the COCR framework ap-
pears to be combining K decision trees while direct regession only uses a single
tree. To understand more about the effect on different number of trees, we com-
bine the bagging algorithm (Breiman, 1996) with M5P. In particular, we run T
rounds of bagging. In each round, a boostrapped 10% of the training data set is
used to obtain a M5P decision tree. After T rounds, the trees are averaged to form
the final prediction. Then, bagging-M5P for direct regression generates T decision
trees and bagging-M5P for COCR generates TK trees. Figure 2(a) compares di-
rect bagging-M5P to COCR-bagging-M5P with the oERR cost under the same
T . That is, for the same horizontal value, the corresponding point on the COCR
curve uses K times more trees than the point on the direct regression curve. The
figure shows that the whole performance curve of COCR is always better than
direct regression. On the other hand, Figure 2(b) compares the two algorithms
under the same total number of trees. That is, COCR with T rounds of bagging-
M5P is compared to direct regression with TK rounds of bagging-M5P. The figure
suggests that the performance of COCR with the oERR cost is still much better
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Fig. 2 Effects of Number-of-rounds and Number-of-trees in Bagging-M5P
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(b) Comparison under the Same Number-
of-trees

Table 7 ERR Comparison Using GBRT (LTRC1)

step size direct COCR

regression absolute, p-value squared, p-value oERR, p-value

0.1 0.4590 0.4595, 1.74 ∗ 10−1 0.4602, 1.42 ∗ 10−2 0.4603, 2.38 ∗ 10−2

0.05 0.4576 0.4587, 2.82 ∗ 10−2 0.4596, 2.46 ∗ 10−4 0.4602, 2.02 ∗ 10−4

0.02 0.4547 0.4566, 4.87 ∗ 10−5 0.4575, 2.16 ∗ 10−8 0.4583, 6.96 ∗ 10−7

Table 8 ERR Comparison Using GBRT (LTRC2)

step size direct COCR

regression absolute, p-value squared, p-value oERR, p-value

0.1 0.4563 0.4571, 2.26 ∗ 10−1 0.4579, 6.87 ∗ 10−2 0.4597, 9.00 ∗ 10−4

0.05 0.4584 0.4586, 3.72 ∗ 10−1 0.4599, 3.97 ∗ 10−2 0.4598, 5.29 ∗ 10−2

0.02 0.4601 0.4603, 3.59 ∗ 10−1 0.4599, 4.67 ∗ 10−1 0.4600, 4.75 ∗ 10−1

than direct regression. The results demonstrate that COCR with the oERR cost is
consistently a better choice than direct regression using bagging-M5P, regardless
of whether we compare under the same number of bagging rounds or the same
number of M5P trees.

5.6 Comparison Using GBRT

Next, we compare COCR settings with direct regression using GBRT (Friedman,
2001) as the base regression algorithm. Because GBRT requires longer to train
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Table 9 Values Setted of Parameters

parameter value

numbers of leaves from 50 to 200 in steps of 30

min percentage of observations per leaf 0.12, 0.25, 0.5

learning rate 0.01, 0.05, 0.1, 0.3, 0.5

sub-sampling rate 0.3, 0.5, 1.0

feature-sampling rate 0.1, 0.3, 0.5, 1.0

number of trees 3000

Table 10 LambdaMART ERR Results for Ensemble Learning (LTRC1)

model ERR result

LambdaMART (i) 0.4652

LambdaMART (ii) 0.4648

LambdaMART (iii) 0.4648

LambdaMART (iv) 0.4659

LambdaMART (v) 0.4656

LambdaMART (vi) 0.4663

than bagging-M5P, M5P or linear regression, we only conduct the experiments on
the data sets: LTRC1, LTRC2. We follow the setting in (Mohan et al, 2011) for the
parameters of GBRT—the number of iterations is set to 1000; the depth of every
decision tree is set to 4; the step size of each GBRT iteration is set to either 0.1,
0.05 or 0.02. Table 7 and Table 8 respectively show the ERR results on LTRC1
and LTRC2. In Table 7, no matter what the value of step size, COCR with any
costs perform significantly better than direct regression with GBRT in most case.
In Table 8, when using a larger step size 0.1 or 0.05, COCR with the squared or
the oERR costs perform significantly better than direct regression with GBRT;
COCR with the absolute cost is similar to direct regression with GBRT. When
using a smaller step size 0.02, however, all four algorithms in Table 8 can reach
similar ERR on the small data set. Because COCR with the oERR cost setting
always enjoys a similar or better performance than direct regression or COCR with
other costs, it can be a useful first-hand choice for a sophisticated base regression
algorithm like GBRT.

5.7 Ensemble learning using COCR with oERR cost

The experimental results above validate that the proposed oERR-tuned COCR
is effective for enhancing the ranking performance. Next, we demonstrate that
oERR-tuned COCR is also a promising choice for ensemble learning. We consider
a popularly-used ranking model, LambdaMART (Burges, 2010), as the base learner
for ensemble learning, and run the experiments on the Yahoo! LTRC1 data set. We
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Table 11 ERR Results for Ensemble Learning (LTRC1)

combined model set ERR result

Set I 0.4663

Set II 0.4662

Set III 0.4673

Table 12 The Top 5 Accuracies on the Leader Board of LTRC (track 1)

rank ERR result

1 0.468605

2 0.467857

3 0.466954

4 0.466776

5 0.466157

use the open-source library4 to training LambdaMART, and follow the settings
in (Burges et al, 2011; Ganjisaffar et al, 2011) for tuning the parameters (see
Table 9).

We select some LambdaMART models from the various parameter combina-
tions. The corresponding test ERR of those models are shown in Table 10. We then
take oERR-tuned COCR with linear regression to combine the models within those
sets. Then, we consider three sets of LambdaMART models: Set I (LambdaMART
model (i), (ii), (iii), (iv), (v)), Set II (LambdaMART model (i), (ii), (iii), (iv), (v),
(vi)), Set III (LambdaMART model (i), (iii), (iv), (vi)).

Table 11 shows the test ERR of the three sets. Several findings are highlighted
as follows:

– The ensemble from Set I, which contains some “weaker” LambdaMART mod-
els, is comparable to the best single LambdaMart (vi). The result demonstrate
that oERR-tuned COCR is a reasonable approach for ensemble learning.

– The ensemble from Set II, which contains Set I plus the “strong” Lamb-
daMART (vi), there is no significant improvement over Set I.

– The ensemble from Set III, which comes from selecting a subset of models in
Set II, we can reach significantly better performance. The result of 0.4673 in
ERR beats the best single LambdaMART model with a p-value 1.18 ∗ 10−2.

Table 12 lists the top five ERR results on the competition of “Yahoo! Learning
to Rank Challenge”. As shown in the table, our experimental result on Set III
(0.4673) reaches comparable performance to the top-three entries on the compe-
tition data set. Therefore, it demonstrates that oERR-tuned COCR can be an
effective technique for combining weaker, possibly cost-insensitive base learners.

4 http://code.google.com/p/jforests/
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6 CONCLUSIONS

We propose a novel COCR framework for ranking. The framework consists of three
main ingredients: decomposing the ordinal ranks to binary classification labels to
respect the discrete nature of the ranks; allowing different costs to express the
desired ranking criterion; using mature regression tools to not only deal with large-
scale data sets but also provide good estimates of the expected rank. In addition
to the sound theoretical guarantee of the proposed COCR, a series of empirical
results with different base regression algorithms demonstrate the effectiveness of
COCR. In particular, COCR with the squared cost can usually do better than
direct regression, a commonly-used baseline, on both the ERR criterion and the
NDCG criterion.

In addition, we prove an upper bound of the ERR criterion and derive the
optimistic ERR cost from the bound. Experimental results suggest that COCR
with the optimistic ERR cost not only outperforms direct regression but also
reaches better ERR than COCR with the absolute or the squared costs often.
Furthermore, we verify that COCR with the optimistic ERR improves over a set
of popularly-used LambdaMART models and is a promising for ensemble learning.
Future work includes coupling the proposed COCR framework with other well-
known regression algorithms and deriving costs that correspond to other pair-wise
or list-wise ranking criteria of interest.
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