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Abstract The number of topics that a test collection contains has a direct im-
pact on how well the evaluation results reflect the true performance of systems.
However, large collections can be prohibitively expensive, so researchers are bound
to balance reliability and cost. This issue arises when researchers have an existing
collection and they would like to know how much they can trust their results, and
also when they are building a new collection and they would like to know how
many topics it should contain before they can trust the results. Several measures
have been proposed in the literature to quantify the accuracy of a collection to
estimate the true scores, as well as different ways to estimate the expected ac-
curacy of hypothetical collections with a certain number of topics. We can find
ad-hoc measures such as Kendall tau correlation and swap rates, and statistical
measures such as statistical power and indexes from generalizability theory. Each
measure focuses on different aspects of evaluation, has a different theoretical basis,
and makes a number of assumptions that are not met in practice, such as normal-
ity of distributions, homoscedasticity, uncorrelated effects and random sampling.
However, how good these estimates are in practice remains a largely open question.

In this paper we first compare measures and estimators of test collection ac-
curacy and propose unbiased statistical estimators of the Kendall tau and tau AP
correlation coefficients. Second, we detail a method for stochastic simulation of
evaluation results under different statistical assumptions, which can be used for a
variety of evaluation research where we need to know the true scores of systems.
Third, through large-scale simulation from TREC data, we analyze the bias of
a range of estimators of test collection accuracy. Fourth, we analyze the robust-
ness to statistical assumptions of these estimators, in order to understand what
aspects of an evaluation are affected by what assumptions and guide in the de-
velopment of new collections and new measures. All the results in this paper are
fully reproducible with data and code available online.
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1 Introduction

The purpose of evaluating an Information Retrieval (IR) system is to predict how
well it would satisfy real users. The main tool used in these evaluations are test
collections, comprising a corpus of documents to search, a set of topics, and a
set of relevance judgments with information as to what documents are relevant
to the topics (Sanderson 2010). Given the documents returned by a system for
a topic, effectiveness measures like Average Precision are used to score systems
based on the relevance judgments. After running the systems with all topics in
the collection, the average score is reported as the main indicator of system effec-
tiveness, estimating the expected performance of the system for an arbitrary new
topic. When comparing two systems, the main indicator reported is the average
effectiveness difference, based on which we conclude which system is better.

A question raises immediately: how reliable are our conclusions about system
effectiveness? (Tague-Sutcliffe 1992). Ideally, we would evaluate systems with all
possible topics that users might conceive; this would imply that the true mean
performance of the systems corresponds to the observed mean scores computed
with the collection. But sure enough, building such a collection is either impractical
for requiring an enormous amount of topics and relevance judgments, or just plain
impossible if the potential set of topics is infinite or not well-defined. Therefore, the
topics in a test collection must be regarded as a sample from a universe of topics,
and the observed mean scores as mere estimates of the true means, erroneous
to some degree. The results may change drastically with a different topic set,
so much that differences between systems could even be reversed. This issue is
closely related to the statistical precision of our estimates. If D1, D2, . . . are the
differences observed between two systems with a test collection, we know that the
observed mean D bears some random error due to the sampling of topics. In fact,
its sampling distribution has variance σ2(D)/nt, where nt is the number of topics,
clearly showing that our confidence in the conclusions depend not only on the
observed score, but also on the variability and the number of topics used. If the
observed difference is large, or the variability small, we can be confident that it is
real. If not, we need to increase the number of topics to gain statistical precision.

We are therefore interested in quantifying and minimizing the estimation er-
ror. On the one hand, researchers want to estimate how well the results from an
existing collection reflect the true scores of systems, that is, the accuracy of the
collection. On the other hand, they want to estimate the expected accuracy of a
collection with a certain number of topics, that is, the reliability of a collection
design. A number of papers in the last fifteen to twenty years have studied this
issue of IR evaluation. Early work suggested the use of ad hoc, easy to under-
stand measures for assessing the accuracy of a test collection, such as the Kendall
τ correlation (Voorhees 1998; Kekäläinen 2005; Sakai and Kando 2008), swap
rates (Buckley and Voorhees 2000; Sakai 2007), sensitivity (Voorhees and Buck-
ley 2002; Sanderson and Zobel 2005; Sakai 2007) or the newer Average Precision
correlation (Yilmaz et al 2008) and drank distance (Carterette 2009). Some oth-
ers suggested the use of measures based on statistical theory, such as procedures
for significance testing (Hull 1993; Zobel 1998; Sakai 2006; Smucker et al 2009)
coupled with power analysis (Webber et al 2008; Sakai 2014a,b) or classical test
theory and generalizability theory (Bodoff and Li 2007; Carterette et al 2009).
Urbano et al (2013b) recently reviewed many of these measures and found that
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they can be quite unstable. They also found clear discrepancies among measures,
as already observed for instance by Sakai (2007).

All measures quantify in some way how close the scores observed with a test
collection are to the true scores. The problem though, is that in practice we do not
know the true system scores, so much of the previous work was devoted to develop
estimators from existing data. Ad hoc measures are not founded on statistical
theory, so they are estimated through extrapolation of the trends observed with
randomized topic set splits, as if one were the actual collection and the other
one were the true scores. Statistical measures, on the other hand, are estimated
via inference using simple equations parameterized by the topic set size. All past
research is thus limited in the sense that we do not know how accurate these
estimators really are, because we just do not know the true system scores and
therefore we can not know how close our estimates are to the true accuracy of the
collections. This is a very important issue in practice, because these estimators
could be biased and tell us that collections are more accurate than they really are,
or that some fixed number of topics is more reliable than it actually is; we just do
not know. For instance, it is impossible to know the true Type I and Type II errors
of significance tests (Cormack and Lynam 2006), so we resort to approximations
such as conflict ratios similarly computed through split-half designs (Zobel 1998;
Sanderson and Zobel 2005; Voorhees 2009; Urbano et al 2013a).

This is particularly important for statistical measures, because they make a
number of assumptions that are, by definition, not met in IR evaluation exper-
iments (van Rijsbergen 1979; Hull 1993). The main reason is that effectiveness
measures produce discrete values typically bounded by 0 and 1 (Carterette 2012).
For instance, some measures of collection accuracy assume that score distribu-
tions are normally distributed1; they are not because they are bounded. Other
measures assume homoscedasticity, that is, equal variance across systems. Webber
et al (2008) showed that IR evaluations violate this assumption as well, which
can be derived again from the fact that scores are bounded. Another typical as-
sumption is that effects are uncorrelated, which again does not hold because of the
bounds2. Finally, all measures assume that the topics are a (uniform) random sam-
ple from the universe of topics and therefore constitute a representative sample.
While it is fair to assume random samples in practice, the process by which topics
are created may result in biased samples because they are created by humans who
incorporate their own biases into the collection (Voorhees 1998). In IR evaluation,
we thus find non-normal distributions, heteroscedasticity, correlated effects and,
usually, random sampling. Fig. 1 shows some examples.

In this paper we study all these issues of test collection reliability. Our main
contributions are:

– A discussion about the concepts of accuracy and reliability of IR test collec-
tions. We review several measures to quantify the accuracy of collections, as
well as estimators of the accuracy of an existing collection, and the expected
accuracy of a particular collection design.

– To overcome the problem of not knowing the true system scores, we propose an
algorithm for stochastic simulation of evaluation results where the true system

1 Actually, they assume that the residuals are normal, not the score distributions.
2 Some models assume independence, which is an even stronger assumption. The statistical

measures we review assume uncorrelated effects, but not independence.
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Fig. 1 Examples of violations of statistical assumptions in some TREC systems. Top: clearly
non-normal distribution of Reciprocal Rank scores for a system, and the corresponding residu-
als that closely resemble a normal distribution; the red line is the density function of a normal
distribution with the same variance and mean zero. Bottom: correlation between topic mean
scores and system residuals, and between the residuals of two systems. See Sect. 3.2 for the
definition of these effects.

scores are fixed upfront. It simulates a collection of arbitrary size from a given
collection representing the systems and universe of topics to simulate from.
The algorithm can simulate collections under all combinations of the above
assumptions, and we show that it produces realistic results.

– Through large-scale simulation, we quantify for the first time the bias of the
estimators of Kendall τ , τAP , Eρ2 and other measures of test collection accu-
racy. In fact, we show that the traditional estimators are biased and tend to
underestimate the true accuracy of collections.

– We also study how robust these estimators are to the assumptions of normality,
homoscedasticity, uncorrelated effects and (uniform) random sampling. Our
results show that the first two do not seem to affect IR evaluation, and that
the effect of non-random sampling appears to be minor.

– We propose two statistical estimators of the Kendall τ and τAP correlations,
called Eτ and EτAP , and show that they are unbiased and behave much better
than the typical split-half extrapolations.

The remainder of the paper is organized as follows. In Sect. 2 we review the
concepts of accuracy and reliability applied to IR evaluation, in Sect. 3 we re-
view several ad hoc and statistical measures proposed in the literature, and in
Sect. 4 we discuss how they are estimated from past data. In Sect. 4.3 we pro-
pose Eτ and EτAP . In Sect. 5 we propose the algorithm for stochastic simulation
of evaluation results. Through large-scale simulation from past TREC data, in
Sect. 6 we review the bias of the estimators of the accuracy of an existing col-
lection, and in Sect. 7 we review their bias to estimate the accuracy of a new
collection of arbitrary size; in both sections, we also review their robustness to
statistical assumptions. Finally, in Sect. 8 and 9 we finish with a discussion of
results, the conclusions of the paper and proposals for further research. All the
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results in this paper are fully reproducible with data and code available online at
http://github.com/julian-urbano/irj2015-reliability.

2 Evaluation Accuracy and Reliability

Let us consider a first scenario where a researcher wants to evaluate a fixed set
of ns systems and there is a test collection X available with nt topics. Let µ be
the vector of ns true mean scores of the systems according to some effectiveness
measure. Our goal when using the collection X is to estimate those true scores
accurately, and this accuracy may be defined differently depending on the needs
and goals of the researcher. For example, if we were interested in the absolute mean
scores of the systems, we could define accuracy as the mean squared error over
systems: MSE(X,µ) = 1

ns

∑
s (Xs − µs)2. If we were interested just in the ranking

of systems, we could use the Kendall τ correlation coefficient instead. In general,
we can define accuracy as a function A that compares the results of a given test
collection with the true scores. The problem is that we can not compute the actual
accuracy A(X,µ) because the true system scores are unknown. The approach here
is to use some function fA as an estimator of the collection accuracy:

Â(X,µ) = fA(X). (1)

The second scenario is that of a researcher building a new test collection X′

to evaluate a fixed set of ns systems, and who wants to figure out a suitable
number of topics to ensure some level of accuracy. In this case, we are not in-
terested in how accurate a particular collection is, but rather in how accurate a
hypothetical collection with n′t topics is expected to be3: En′

t
A(X′,µ). This expec-

tation naturally leads us to consider the reliability of a topic set size: an amount
of topics can be considered reliable to the extent that a new collection of that
size is expected to be accurate. Let us therefore define reliability as a function
RA(X, n′t,µ) = En′

t
A(X′,µ). Unfortunately, we are in he same situation as be-

fore and the true system scores remain unknown. The approach is similarly to use
some function gA as an estimator of the expected collection accuracy:

R̂A(X, n′t,µ) = gA(X, n′t). (2)

An important characteristic of fA and gA is their bias. If we were measuring
collection accuracy in terms of the Kendall τ correlation and the estimator fA were
positively biased, we expect it to be overestimating the correlation. This would
mean that our ranking of systems is not as close to the true ranking as fA tells
us. Similarly, gA would tell us that a certain number of topics, say 50, is expected
to produce a correlation of 0.9, when in reality it is lower. The bias is defined as:

bias(fA) = EX

[
Â(X,µ)−A(X,µ)

]
= EX

[
fA(X)−A(X,µ)

]
, (3)

bias(gA) = EX

[
R̂A(X, n′t,µ)−RA(X, n′t,µ)

]
= EX

[
gA(X, n′t)−En′

t
A(X′,µ)

]
. (4)

3 We loosely use the notation Erf(X) to refer to the expected value of f(X) over the
population, restricted by r, from which X is sampled.
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and we expect bias(fA) = bias(gA) = 0.
In the following section we review different measures of accuracy and then show

how they are estimated with different fA and gA functions. We will see that in
practice fA(X) is defined4 as gA(X, |X|), so if gA is biased so will be fA.

3 Measures of Evaluation Accuracy

As mentioned earlier, we can follow different criteria to quantify how well a test
collection is estimating the true system scores. We may compute the absolute error
of the mean system scores, the ranking correlation, or even test for statistical sig-
nificance. In the following subsections we review different measures of the accuracy
of an IR test collection.

3.1 Ad hoc Measures

These measures are based on the concept of a swap between two systems, that is,
according to the observed scores one system is better than another one when, in
reality, it is the other way around. Some measures are borrowed or adapted from
other fields, such as the Kendall correlation or the Average Precision correlation,
while others like sensitivity are specifically defined for IR.

3.1.1 Kendall tau correlation: τ

The Kendall τ correlation coefficient measures the correlation between the two
rankings of ns systems, computed as the fraction of pairs that are in the same order
in both rankings (concordant) minus the fraction that are swapped (discordant):

τ =
#concordant−#discordant

ns(ns − 1)/2
. (5)

It thus ranges between -1 (reversed ranking) and +1 (same ranking). In Infor-
mation Retrieval, Kendall τ is widely used to measure the similarity between the
rankings of systems produced by two different evaluation conditions, such as dif-
ferent assessors (Voorhees 1998), effectiveness measures (Kekäläinen 2005), topic
sets (Carterette et al 2009) or pool depths (Sakai and Kando 2008). In our case,
we are interested in the correlation between the ranking of systems according to
a given collection and the true ranking of systems.

3.1.2 Average Precision correlation: τAP

In Information Retrieval we are often more interested in the top ranked items. For
instance, effectiveness measures usually pay more attention to the relevance of the
top ranked documents. Similarly, we may tolerate a swap between systems at the
bottom of the ranking, but not between the two best systems. Yilmaz et al (2008)
proposed an extension of Kendall τ to add this top-heaviness component following

4 We use |X| to denote the number of topics in X.
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the rationale behind Average Precision. Instead of comparing every system with
all others, it only compares it with those ranked above it:

τAP =
2

ns − 1

ns∑
s=2

(
C(s)

s− 1

)
− 1, (6)

where C(s) is the number of systems above rank s correctly ranked with respect
to the system at that rank. Note that τAP similarly ranges between -1 and +1, but
it penalizes swaps towards the top of the ranking more than towards the bottom,
making it a more appealing alternative for IR evaluation.

3.1.3 Absolute and Relative Sensitivity: sensabs and sensrel

If the observed difference between two systems is large, it is unlikely that their true
difference has a different sign, because the likelihood of a swap is inversely propor-
tional to the magnitude of the difference. Therefore, another view of accuracy is
establishing a threshold such that if the observed difference between two systems
is larger, the probability of actually having a swap is kept below some level like
5% (Voorhees and Buckley 2002; Buckley and Voorhees 2000). Of course, we want
that threshold to be as small as possible, meaning that we can trust the sign of
most of the observed differences. The smallest threshold that ensures a maximum
swap rate is called the sensitivity of the collection.

Sanderson and Zobel (2005) pointed out that differences between systems are
often reported in relative terms rather than absolute (eg. +12% instead of +0.032),
so we may also be interested in the relative sensitivity of a test collection. In this
paper, we set the maximum swap rate to 5%, and refer to absolute and relative
sensitivity as sensabs and sensrel.

3.2 Statistical Measures

The ad hoc measures of collection accuracy are concerned with possible swaps
between systems, but they neglect the magnitude of their differences as well as
their variability. However, the probability of a swap is inversely proportional to
the true difference between systems and proportional to their variability: if the
observed difference is too small or too variable, they are likely to be swapped. The
statistical measures described in the following are all based on the decomposition of
the variance of the observed scores. Throughout this section we follow the notation
traditionally used in generalizability theory (Brennan 2001; Bodoff and Li 2007).

Because we have a fully crossed experimental design (i.e., all systems evaluated
with the same topics), we can consider the following random effects model for the
effectiveness of system s on topic t:

Xst = µ+ νs + νt + νst, (7)

where µ is the grand mean score of all systems in the universe of topics, νs = µs−µ
and νt = µt − µ are the system and topic effects, and νst is the interaction effect
that would correspond to the residual effect. Note that a system effect is defined as
the deviation of its true mean score µs from the grand average µ, so a system with
better (worse) performance than average has a positive (negative) system effect.
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Topics are defined similarly, that is, a hard (easy) topic has a negative (positive)
topic effect. The residual effects just model the system-topic interactions, where
some systems are particularly good or bad for certain topics. For each effect in
Eq. (7) there is an associated variance of that effect, called the variance component:

σ2(s) = Esν
2
s , σ2(t) = Etν

2
t , σ2(st) = EsEtν

2
st. (8)

Because the effects are defined by subtracting the grand mean µ, they are all
uncorrelated and centered at zero. Therefore, the total variance of the observed
scores can be decomposed into the following components:

σ2(Xst) = EsEt(Xst − µ)2 = σ2(s) + σ2(t) + σ2(st). (9)

Note that this total variance is the variance for single systems on single topics.
However, researchers compare systems based on their mean performance over the
sample of topics in a test collection. The linear model for the decomposition of a
system’s average score over a sample of topics is

XsT = Xs = µ+ νs + νT + νsT , (10)

which is analogous to Eq. (7) except that the index of a topic t is replaced by T
to indicate the mean over a set of topics. From the above model, we can see that
the true mean score of a system s is the expected value, over randomly parallel
sets of topics, of the observed mean scores:

µs = ETXsT . (11)

Because the νT and νsT effects involve the mean over a set of nt independent
topics from the same universe, their corresponding variance components are

σ2(T ) = ET ν
2
T =

σ2(t)

nt
, σ2(sT ) = EsET ν

2
sT =

σ2(st)

nt
, (12)

and as in Eq. (9), the variance of the observed mean scores is decomposed into

σ2(XsT ) = EsET (XsT − µ)2 = σ2(s) + σ2(T ) + σ2(sT ). (13)

From Eq. (13) we can see that the variability of the observed mean scores is de-
composed into the inherent variability among systems, the variability of the mean
topic difficulties, and the variability of the mean system interaction with topics.
The following measures of collection accuracy are defined from these components.

3.2.1 Generalizability Coefficient: Eρ2

Using the above decompositions in variance components, one can define different
measures of accuracy based on the concept of correlation. Let Q be true scores of
some quantity of interest, such as the true mean effectiveness of systems. A test
collection provides us with estimates Q̂ = Q + e, bearing a certain random and
uncorrelated error e. Their correlation is

ρ(Q̂,Q) =
cov(Q̂,Q)

σ(Q̂)σ(Q)
=

cov(Q+ e,Q)

σ(Q̂)σ(Q)
=

σ2(Q)

σ(Q̂)σ(Q)
=
σ(Q)

σ(Q̂)
. (14)
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If we take the square of the correlation, this conveniently simplifies to a ratio of
variance components:

ρ2(Q̂,Q) =
σ2(Q)

σ2(Q̂)
=

σ2(Q)

σ2(Q+ e)
=

σ2(Q)

σ2(Q) + σ2(e)
. (15)

Therefore, one can define a measure of accuracy for some arbitrary quantity of
interest as the squared correlation between the true scores and the estimated
scores which, in turn, can be easily defined as the variance of the true scores to
itself plus error variance (Allen and Yen 1979).

In IR evaluation experiments, we are often interested in the relative differences
among systems, that is, in the system deviation scores µs − µ. When using a test
collection, we estimate this quantity with XsT − µT , so the error of our estimates
and its variance are

δs = (XsT − µT )− (µs − µ) = νsT , (16)

σ2(δ) = σ2(sT ). (17)

Plugging into Eq. (15), we get the following accuracy measure for our estimates
of relative system scores (Brennan 2001):

Eρ2 = ρ2(XsT − µT , µs − µ) =
σ2(s)

σ2(s) + σ2(sT )
. (18)

In generalizability theory literature, this measure is called generalizability co-
efficient. Cronbach et al (1972) introduced the notation Eρ2 to indicate that this
coefficient is approximately equal to the expected value, over randomly parallel
collections of nt topics, of the squared correlation between observed and true scores
(note that this definition is already concordant with our definition of reliability).

3.2.2 Dependability Index: Φ

Sometimes, a researcher is not interest in the system deviation score µs − µ, but
rather in its deviation from a domain-dependent criterion λ, such as the mean
effectiveness of a baseline. In this case, our estimate is XsT − λ, so the error and
its variance are

∆s = (XsT − λ)− (µs − λ) = XsT − µs = νT + νsT , (19)

σ2(∆) = σ2(T ) + σ2(sT ). (20)

Plugging into Eq. (15), we get the following accuracy measure for our criterion-
referenced estimates of system performance (Brennan 2001):

ρ2(XsT − λ, µs − λ) =
σ2(µs − λ)

σ2(µs − λ) + σ2(T ) + σ2(sT )
.

Because the quantity of interest here is the deviation from a fixed criterion λ,
this measure does include the topic effect, which enters the absolute error variance.
In the above case of deviation from the observed mean score µT , the topic effect
did not enter the error variance in Eq. (18) because it is the same for all systems.
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In the special case when λ = µ, this measure is called the dependability index Φ
(Brennan and Kane 1977):

Φ = ρ2(XsT − µ, µs − µ) =
σ2(s)

σ2(s) + σ2(T ) + σ2(sT )
. (21)

Intuitively, Φ is lower than Eρ2 because it involves not only system differences,
but also topic difficulties. That is, it involves the estimation of absolute system
scores rather than just relative differences among them.

3.2.3 F -Test

Another view of reliability is given by null hypothesis testing (Hull 1993). In the
general case where we compare ns systems, we may state the null hypothesis
whereby all systems have the same true mean scores:

H0 : µ1 = µ2 = · · · = µns .

After evaluating all systems with a test collection, we may test this hypothesis in
search for evidence that at least one of the systems has a different mean from the
others. A common test to use here is the F -test, which involves a decomposition
in variance components as well. In its general form, the F statistic is defined as
the ratio of explained variance to residual variance, which in our case is

F =
explained variance

residual variance
=

between-system variance

within-system variance
. (22)

The numerator is defined as the between systems mean squares, while the denom-
inator is the within systems or error mean squares. Their definition depends on
the variance decomposition. With one-way ANOVA, the experimental design only
considers the system effect, so the topic effect is confounded with the error. In two-
way ANOVA (equivalent to the above variance decomposition), the experimental
design considers both the system and topic effects, so the error mean square is
considerably lower (see Sect. 4.2 for details).

Under the null hypothesis, the F statistic in Eq. (22) follows an F distribution
parameterized by the degrees of freedom in the numerator and in the denominator.
If the observed statistic is larger than the critical value corresponding to those
degrees of freedom and a pre-fixed significance level like α = 0.05, we reject the null
hypothesis that all system means are equal, evidencing that at least one of them is
different from the others. Under this framework, the accuracy of a collection can
be viewed dichotomously: does the F -test come up significant or not?

4 Estimation of Evaluation Accuracy

We could use generic f and g functions to estimate arbitrary measures of accuracy
by using a split-half method that extrapolates observations made from previous
data. The problem is that the model used to extrapolate, as well as how we make
observations from previous data, do not necessarily have a theoretical basis and it
might actually end up producing biased estimates. On the other hand, we could
derive estimators from statistical theory in search for desirable properties like
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unbiasedness or low variance. These estimators are easily defined for statistical
measures of accuracy because they already incorporate the topic set size in their
formulation, but not for ad hoc measures. In the next two sections we review
generic split-half estimators for arbitrary measures, and statistical estimators of
the statistical measures. In Sect. 4.3 we then propose statistical estimators of the
Kendall τ and τAP correlations that, as we will see, behave better than the generic
split-half estimators.

4.1 Extrapolation from Split-Half

A generic estimator found in the literature is based on the extrapolation of the
observed accuracy scores over random splits of the available topic set, such as
in (Zobel 1998; Voorhees 1998; Voorhees and Buckley 2002; Lin and Hauptmann
2005; Sanderson and Zobel 2005; Voorhees 2009; Urbano et al 2013a). Let X be the
matrix of effectiveness scores already available to us from an existing collection
with nt topics. The estimator randomly selects two disjoint subsets of n topics
each, leading to X′ and X′′, and then computes the accuracy A(X′,X′′T ) assuming
that the mean scores observed with X′′ correspond to the true scores. Running this
experiment several times, the mean observed score A is taken as an estimate of the
expected accuracy of a random set of n topics from the same universe. If we repeat
this experiment for subsets of n = 1, 2, . . . , nt/2 topics, we can estimate the relation
between accuracy and topic set size. Fitting a model to these observed scores, we
can extrapolate to the expected accuracy of a collection with an arbitrary number
of topics. In particular, we can estimate the expected accuracy of a collection of the
same size as our initial collection X. This means that we are actually estimating
Â(X,µ) as R̂A(X, |X|,µ), that is, we are implicitly setting fA(X) = gA(X, |X|).

The extrapolation error depends on the number of topics we initially have
for the splits, the number of trials we run, and the model to interpolate. In this
paper, we run a maximum total of 1,000 trials for a given initial collection, for
topic subsets of at most 20 different and equidistant sizes, and 100 random trials
at most for each size. For instance, if we had nt=10 previous topics, we would run
100 random trials at sizes n= 2, 3, 4, 5, for a total of 400 observations. If we had
nt=100 previous topics, we would run 50 random trials of sizes n=3, 6, . . . , 48, 50,
for a total of 1,000 observations. Regarding the interpolation model, we test three
alternatives:

exp1: gA(X, nt) = a · nbt , (23)

exp2: gA(X, nt) = a · exp(b · nt), (24)

logit: logit(gA(X, nt)) = a · log(nt) + b, (25)

where a and b are the parameters to fit. For exp1 and exp2 we use linear regression
on the log-transformed data, and for logit we use generalized linear regression with
binomial errors and logit link. Note that these fits are only valid for measures in
the range [0, 1]. For τ and τAP we first normalize correlation scores between 0 and
1 prior to model fitting, and then transform the predictions back to the range
[−1, 1]. Figure 2 shows sample split-half estimations of τ and sensabs based on the
initial 50 topics of a TREC test collection.
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Fig. 2 Examples of split-half extrapolation of τ and sensrel scores from the TREC 2004
Genomics collection.

4.2 Inference from ANOVA

The statistical measures are based on theoretical principles that allow us to derive
estimators for each statistic of interest. At the top level, we need estimates of each
of the variance components from the results of a previous test collection. There are
several procedures to estimate variance components, such as maximum likelihood
or Bayes, but the most popular is by far the so-called ANOVA procedure (Searle
et al 2006; Brennan 2001). It involves a typical partition of the sums of squares
in the observed data, from which we compute the mean squares of each effect.
Equating these observed mean squares to their expected values, we obtain the
following estimates of the three variance components (Cornfield and Tukey 1956):

σ̂2(s) =
MS(s)−MS(st)

nt
, (26)

σ̂2(t) =
MS(t)−MS(st)

ns
, (27)

σ̂2(st) = MS(st) (28)

It can be shown that the ANOVA procedure gives best quadratic unbiased esti-
mates without any normality assumptions (Searle et al 2006). This is important
because ANOVA is often said to assume normal distributions, when in reality that
assumption is not needed to derive the above estimators; it is the F -test following
ANOVA the one that makes the assumption. It does assume homoscedasticity and
uncorrelated effects, though.

Now that we have estimates of the variance components, we can simply plug
them into Eq. (18) and (21) to estimate the Eρ2 and Φ scores of a collection of
arbitrary size:

Eρ̂2 =
σ̂2(s)

σ̂2(s) + σ̂2(sT )
=

σ̂2(s)

σ̂2(s) + σ̂2(st)
n′

t

, (29)

Φ̂ =
σ̂2(s)

σ̂2(s) + σ̂2(T ) + σ̂2(sT )
=

σ̂2(s)

σ̂2(s) + σ̂2(t)+σ̂2(st)
n′

t

. (30)

Intuitively, we can see that the correlations increase when systems are very different
from each other to begin with (high σ2(s)) and when systems behave consistently
across topics (low σ2(t) and σ2(st)). If there is too much variability among topics
we can increase their number, which will allow us to have even better estimates of
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system effectiveness. As with the split-half estimators, the above equations are also
used to estimate the accuracy of an existing collection as the expected accuracy of
a hypothetical collection of the same size. This means that we are again estimating
Â(X,µ) as R̂A(X, |X|,µ), that is, we are implicitly setting fA(X) = gA(X, |X|).

For the accuracy of a collection in terms of the F -test, we can use the above
mean squares to compute the F statistic

F =
MS(s)

MS(st)
, (31)

which, under the null hypothesis, follows and F distribution with ns − 1 and
ns(nt − 1) degrees of freedom. Intuitively, if the systems are very different from
each other (high numerator), or if there is low error variance because systems do
not vary too much across topics (low denominator), the F -test is more likely to
come up statistically significant.

Under the framework of significance testing, the expected accuracy of a test
collection corresponds to the statistical power of the test (Webber et al 2008).
In order to estimate the power of a new collection with n′t topics, we need to
specify a target effect size. Sakai (2014a) proposed the use of a minimum detectable
difference δmin between the best and the worst systems, assuming that all other
systems are centered in the middle. That is, the best system has an effect δmin/2,
the worst system has an effect−δmin/2, and all others have effect 0. This dispersion
of the system mean scores results in a between-system variance

σ2(s) =

∑
s ν

2
s

ns
=

(δmin/2)2 + (−δmin/2)2

ns
=
δ2min
2ns

(32)

which, standardized with the within-system variance, results in the following target
effect size for power analysis:

F1 =
δ2min

2nsσ̂2(st)
. (33)

The square root of this effect size is coined f1 by Cohen (1988). We must note
that the dispersion of mean system scores assumed above is the one that yields the
smallest between-system variance, and hence the one that yields the least statis-
tical power. That is, it assumes the worst case scenario where all but two systems
have the same mean, but in practice they spread near uniformly throughout the
range. Cohen (1988) defines another two effect sizes assuming intermediate and
maximum between-system variance for a given δmin.

For simplicity, we use this effect size in our experiments, but stress again that
it contemplates a worst-case scenario that will inevitably underestimate reliability;
we leave the topic of appropriate effect size selection for further study. We finally
note that the variance decomposition we employ is based on two-way ANOVA
because we account for the topic effect as well. This results in a smaller error vari-
ance and therefore in higher statistical power than with one-way ANOVA, which
confounds the topic and residual effects. In this sense, our estimates are more in
line with (Sakai 2014b) than with (Sakai 2014a)5. Following the traditional sugges-
tion by Sparck Jones (1974), we set δmin = 0.05 to detect noticeable differences.

5 In both papers, Sakai uses total variance rather than error variance in the denominator
of F1, so statistical power is even more underestimated and there is virtually no difference
between one- and two-way ANOVA. Sakai (2015) reports the results with error variance.
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Note though that this threshold is arbitrary. Urbano and Marrero (2015) recently
suggested an approach to define meaningful thresholds based on expectations of
user satisfaction, but we leave the choice of thresholds to future research.

4.3 Statistical Estimation of Kendall τ and τAP

Even though Kendall τ and τAP are two very popular measures in IR evaluation,
their split-half estimation for arbitrary topic sets can become computationally
expensive for large-scale studies. In addition, as we will see in Sect. 6 and 7, they
produce biased estimates. To partially overcome these problems, we propose here
two statistical estimators of τ and τAP .

For simplicity, let us assume that systems are already sorted by their mean
observed score, so that for any two systems i and j, i < j implies Xi > Xj . Let
Wij be a random variable that equals 1 if systems i and j are swapped (i.e. µi < µj)
and 0 if they are not (i.e. µi > µj). These variables follow a Bernoulli distribution
with parameter wij equal to the probability of swap, so their expectation and
variance are simply

E[Wij ] = wij , Var[Wij ] = wij(1− wij). (34)

These probabilities can be estimated with the scores observed in an existing col-
lection. Let Dt = Xit − Xjt be the difference between both systems for topic t.
By the Central Limit Theorem, the sampling distribution of D is approximately
normal when nt is large. Therefore, we can estimate wij as

wij = P (µi − µj ≤ 0) ≈ Φ
(
−
√
n′t

D

sd(D)

)
, (35)

where Φ is the cumulative distribution function of the standard normal distri-
bution. Therefore, an existing collection allows us to estimate the variability of
the differences between systems (i.e. sd(D)), which we can use to estimate the
probability that systems will be swapped with an arbitrary number of topics n′t.

4.3.1 Expected Kendall τ correlation: Eτ

The Kendall τ correlation can be formulated in terms of concordant pairs alone:

τ =
#concordant−#discordant

n(n− 1)/2
=

2 ·#concordant

n(n− 1)/2
− 1, (36)

which for our purposes would be defined as:

τ =
4
∑
i=1

∑
j=i+1 1−Wij

ns(ns − 1)
− 1. (37)

Given a test collection, we can estimate the probability of swap between every
pair of systems, so we can estimate the τ correlation as well. The expectation and
variance are

Eτ ≡ E[τ ] =
4
∑
i=1

∑
j=i+1 1− wij

ns(ns − 1)
− 1, (38)

Var[Eτ ] ≈
16
∑
i=1

∑
j=i+1 wij(1− wij)

n2
s(ns − 1)2

. (39)
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As mentioned above, using Eq. (35) we can easily estimate the probability of
swap with an arbitrary number of topics. Thus, Eq. (38) becomes an estimator
of the expected τ correlation when using an arbitrary number of topics, that is,
En′

t
τ(X′,µ). Additionally, Eq. (39) allows us to compute a confidence interval as

well, but this is a line we do not explore in this paper.

4.3.2 Expected AP correlation: EτAP

The τAP correlation can also be defined in terms of concordant pairs:

τAP =
2

ns − 1

∑
i=2

(∑i−1
j=1 1−Wij

i− 1

)
− 1. (40)

Having a test collection, we can again estimate the probabilities of swap, so we
can estimate the τAP correlation as well. Expectation and variance are

EτAP ≡ E[τAP ] =
2

ns − 1

∑
i=2

(∑i−1
j=1 1− wij
i− 1

)
− 1, (41)

Var[EτAP ] ≈ 4

(ns − 1)2

∑
i=2

(∑i−1
j=1 wij(1− wij)

(i− 1)2

)
. (42)

Similarly, Eq. (41) is an estimator of the expected τAP correlation when using
an arbitrary number of topics, that is, En′

t
τAP (X′,µ).

5 Stochastic Simulation of Evaluation Results

In order to evaluate the possible bias of each Â and R̂, we need to be able to
compute the true A(X,µ) scores, which means that we need to know the true
effectiveness of systems. For instance, to assess the possible bias of the exp1 split-
half estimator of the τ correlation coefficient, we actually need to compute the
correlation between the true ranking of systems and the ranking produced by a
test collection. In principle, we thus need to know the true effectiveness of systems
and a way to obtain randomly parallel test collections of varying sizes where topics
are sampled from the same universe of topics. Finally, we also want to be able to
control which statistical assumptions are violated in the creation of these test
collections, so we can assess the robustness of the estimators to each of these
violations. Unfortunately, there is no way of knowing the true effectiveness of
systems, certain assumptions are not met by definition, and there is no archive
of past evaluation data large enough to serve our needs. Instead, we resort to
stochastic simulation.

Let X be the nt×ns matrix of effectiveness scores obtained by a set of systems
with an existing set of topics. Our goal is to simulate a new matrix Y with scores by
the same set of systems with a randomly parallel set of n′t topics. The complexity
of course resides in making this simulation realistic. There are four main points
we must consider:

– We need to know the exact true mean scores of systems µ, each of which must
equal XsT in expectation: µs = ETXsT , which implies µ = ETEsXsT . This
will allow us to compute the actual accuracy of the simulated collections.
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– Regardless of the assumptions, topic effects must be sampled from a fixed true
distribution of the universe of topics.

– The dependence structure underlying topic and residual effects must be pre-
served to maintain the possible correlations between systems and topics (see
the bottom plots in Figure 1). This will allow us to preserve the inherent simi-
larity between systems by the same group, or the interaction between systems
and topic difficulty, for example.

– Even though the residual distributions can sometimes be approximated by
certain families of well-known distributions, we need to adhere to their true
distributions, especially when we do not want the homoscedasticity or normal-
ity assumptions to hold.

One could just set one Beta distribution for each system and draw random
variables, but the resulting residuals would not necessarily follow the realistic
distributions. Even if one estimates each residual distribution and draws samples
from those estimates, the expected topic effects would all be zero. If one also
estimates the topic effect distribution and draws from it as well, the dependence
structure would still be ignored. In the next section we outline the method we
follow to simulate realistic evaluation results.

5.1 Outline of the Simulation Method

Algorithm 1 details the full simulation method. For the time being, let us describe
it without paying attention to how statistical assumptions are dealt with; they
will be covered in Sect. 5.2. We begin by considering again the model in Eq. (7)
to decompose effects in the existing collection. For our purposes, we will fix the
true grand average and the true system effects as the observed mean scores in X
(lines 5–6):

µ ≡ Xst =
1

nsnt

∑
s

∑
t

Xst, (43)

νs = µs − µ ≡ Xs − µ =
1

nt

∑
t

Xst − µ (44)

Fixing µ and νs allows us to compute the actual accuracy of a simulated randomly
parallel collection Y. The following mixed effects model will serve as the basis to
simulate such collection

Yst = µ+ νs + Tt + Est, (45)

where Tt and Est are random variables corresponding to the topic and residual
effects. Let FT be the true cumulative distribution function of topic effects, let
FEs

be the true cumulative distribution function of residual effects for system s,
and let F−1

T and F−1
Es

be their inverses (i.e., the quantile functions). Under this
model, each topic t corresponds to a random vector (E1t, . . . , Enst, Tt) from a joint
multivariate distribution F whose marginal distributions are (FE1

, . . . , FEns
, FT ).

The simulation mainly consists in generating such random vectors and plugging
them in Eq. (45).

If we just drew independent random variables from the distributions of top-
ics and residuals, we would lose their inherent correlations. To avoid this, we use
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copulas. A copula is a multivariate distribution that describes the dependence be-
tween random variables whose marginals are all uniform. By Sklar’s theorem, any
joint multivariate distribution, like our F distribution, can be defined in terms of
its marginal distributions and a copula describing their dependence structure (Joe
2014). Copulas are used as follows. Let (A1, A2, . . . ) be a random vector where
each variable follows some distribution FAi

. By the probability integral transform,
if we pass each of them through their distribution function, we get a random vec-
tor where the marginals are uniform: Ui = FAi

(Ai) ∼ Uniform(0, 1). Now, let C
be the copula of the multivariate distribution of (U1, U2, . . . ); it contains the de-
pendence structure between all Ui and its marginals are all uniform. We can now
use the copula to generate a random vector (R1, R2, . . . ), which maintains the
dependence structure and can be transformed back to our original distribution. In
particular, we now compute A′i = F−1

Ai
(Ri) to obtain a random vector with the

same marginals: A′i ∼ FAi
.

There are many families of copulas to model different types of dependence
structure. Here we will use Gaussian copulas because they are easy to work with
and they maintain the correlation between variables. First, we use kernel density
estimation to estimate and fix the true marginals of the topic and residual effects;
let F̂T and F̂Es

be our estimates (lines 11–12). Now, we need to generate n′t ran-
dom vectors from a Gaussian copula with the same variance-covariance matrix as
our topic and residual effects (note from line 13 that topic effects are appended to
residual effects). We achieve this by generating independent standard normal vec-
tors and multiplying them by the Cholesky factorization of the variance-covariance
matrix Σ̂ (lines 13, 22–24). Next, we pass each of the resulting Rs vectors through
the normal cumulative distribution function Φ with mean 0 and variance Σ̂s,s,
which results in the uniform random vectors generated from the copula (line 25).

These random vectors have the desired correlations, but not the marginals
yet, so we pass each of them through the inverse distribution function of the
corresponding residual or topic effect (line 29). Each of the resulting variables
Zst (s ≤ ns) corresponds to the residual effect of system s for the new topic t,
and the Zns+1,t are the new topic effects. The simulated score Yst of system s for
topic t is computed by adding these two random effects to the fixed grand mean
µ and the fixed true system effect νs (line 33).

5.2 Dealing with Statistical Assumptions

The basic algorithm presented so far allows us to simulate the effectiveness scores
obtained by a certain set of systems on an arbitrarily large set of topics from the
same universe. In this section we describe how this basic algorithm is expanded to
simulate data following various combinations of statistical assumptions.

Normality. In line 29 of the algorithm, we pass each of the random vectors
generated with the copula through the inverse distribution functions of the residual
and topic effects, so the marginals are the same as in our original data. If we want
to force the normality assumption, all we have to do is substitute all F̂Es

(and their
inverses) with the normal distribution function with mean 0 and variance Σ̂s,s, so
the resulting residuals are all normal and with the original variance (lines 26–28).
Note that the transformation of the topic effects is still done with F̂−1

T , because the
normality assumption applies only to the residuals. If, on the other hand, we do
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Algorithm 1 Stochastic simulation of evaluation results with n′t new topics, given
the results with a previous test collection X.

1: function Simulate(X,n′t)
2: if not normality then
3: X← logit(X)
4: end if
5: µ← Xst

6: νs ← Xs

7: if homoscedasticity then
8: σ2

p ← 1
ns

∑
s σ

2(Es)

9: Es ← Es/
√
σ2(Es) ·

√
σ2
p . σ2(Es) = σ2

p

10: end if

11: F̂T ← KernelEstimation(νt) . F̂T ≈ FT
12: F̂Es ← KernelEstimation(Es) . F̂Es ≈ FEs

13: Σ̂← Cov[(E1, . . . ,Ens ,T)] . Σ̂ ≈ Σ
14: if uncorrelated effects then
15: ∀i 6= j : Σ̂ij ← 0
16: end if

17: if random sampling then
18: n′′t ← n′t
19: else
20: n′′t ← max(400, 4n′t)
21: end if
22: C← Cholesky(Σ̂) . Σ̂ = CTC
23: R← (R1, . . . ,Rns ,Rns+1) . |Ri| = n′′t , R ∼ Normal(0, I)

24: R← R×C . Cov[R] ≈ Σ , R ∼ Normal(0, Σ̂)

25: U← (Φ(R1; 0, Σ̂1,1), . . . , Φ(Rns+1; 0, Σ̂ns+1,ns+1)) . Ui ∼ Uniform(0, 1)

26: if normality then
27: F̂Es ← Φ0,Σ̂s,s

28: end if
29: Z←

(
F̂−1
E1

(U1), . . . , F̂−1
Ens

(Uns ), F̂−1
T (Uns+1)

)
. Cov[Z] ≈ Σ̂

∀i ≤ ns : Zi ∼ F̂Ei
, Zns+1 ∼ F̂T

30: if not random sampling then
31: Z← BetaSampling(Z, n′t)
32: end if

33: Yst ← µ+ νs + Zns+1,t + Zst
34: if not normality then
35: Y ← logit−1(Y)
36: end if
37: return Y
38: end function

not force the normality assumption, the residuals will have the correct marginals,
but the actual scores may fall outside the [0, 1] range when adding all effects,
resulting in unrealistic data. To avoid this, we first transform the original scores
X with the logit function, so the range becomes (−∞,+∞) instead of [0, 1] (lines
2–4). The algorithm proceeds the same way to generate the new data Y in logit
units, and the inverse logit function is used at the end to transform the simulated
scores back to the [0, 1] range (lines 34-36). Through appropriate transformation,
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Fig. 3 Sample Beta distributions used for non-random sampling of topic effects; they define
the probability that certain quantiles of the topic effects distribution will be sampled. For
instance, with α = 0.01 and β = 8 (solid green line) we are most likely to select topics from
the lower quantiles, that is, harder topics. A uniform distribution (dashed gray line) would
achieve random sampling.

we can thus simulate data with residuals following normal distributions or realistic
distributions as in the original data.

Homoscedasticity. Because we use the variance-covariance matrix of the orig-
inal data throughout the algorithm, the simulated scores have the same within-
system variance as in the original data. This implies that if the original data is
heteroscedastic, the simulated data will be heteroscedastic too. If we want to force
homoscedasticity, we can re-scale all the residuals to have a common (pooled)
variance σ2

p (lines 7–10). Note that the transformed residuals are still centered at
zero, and the correlations among residual and topic effects do not change because
this transformation is linear.

Uncorrelated effects. The use of copulas in the algorithm is motivated by
the observation that IR evaluation scores do present a certain level of correlation
that we want to preserve. If we still want to force uncorrelated effects we can simply
set all the off-diagonal components of the variance-covariance matrix to zero, so
that we maintain the residual variances but not their correlations (lines 14–16). An
alternative is to just generate and transform independent normal random variables
with the appropriate variances instead of using the copula, but we prefer to modify
the variance-covariance matrix for simplicity.

Random sampling. The simulated topic effects are sampled uniformly from
the fixed F̂T distribution, so the simulated data assumes random sampling by
default. If we want to force non-random sampling, we can just simulate data for
many more topics, say, four times as many (lines 17–21), and by the end of the
algorithm sample non-uniformly from them (lines 30–32). From line 29, our simu-
lated n′′t topic effects are in vector Zns+1. The objective is to select a non-random
sample of n′t such topic effects and their corresponding residuals. To do so, we gen-
erate n′′t random variables from a skewed Beta distribution, which will represent
different quantiles of the empirical topic effects distribution. Our final sample will
contain the topics at those quantiles. The shape parameters α and β of the Beta
distribution are randomly chosen from [0.01, 2] and [2, 8], and swapped randomly
as well. Figure 3 shows examples of Beta distributions with the extreme combi-
nations of shape parameters. Recall though that the figure only shows the most
extreme Beta distributions; we actually sample using random shape parameters
within the pre-fixed intervals.



20 Julián Urbano

Track Measure ns nt σ2(s) σ2(t) σ2(st)
Enterprise 2006 (expert) Average Precision 68 (91) 49 24% 33% 43%
Genomics 2004 (ad hoc) Average Precision 35 (47) 50 6% 58% 35%
Robust 2003 Average Precision 58 (78) 100 1% 80% 19%
Web 2004 (home + named) Reciprocal Rank 55 (73) 150 6% 41% 53%

Table 1 Summary of the four TREC test collections used in the paper. The Enterprise,
Genomics and Robust collections represent low, intermediate and high difficulty for evaluation,
respectively. The Web collection merges the 75 topics for homepage finding and the 75 topics
for named page finding. Numbers in parentheses indicate the original number of systems before
dropping the bottom 25%.

5.3 Data

In principle, the stochastic simulation algorithm can be applied to an arbitrary
previous collection given that all systems are evaluated with the same topics. To
assess how realistic the simulated evaluation scores are, we use four representative
TREC test collections. Note that for our purposes we are interested in collections
that are representative in terms of score distributions, not in terms of task or
retrieval techniques. In particular, we are interested in how difficult they are to
evaluate, as opposed to how difficult the task is.

A brief analysis of over 45 past TREC test collections, reveals that the av-
erage variance components across collections are σ2(s) = 7%, σ2(t) = 57% and
σ2(st) = 36%, with ns = 49 systems on average. Based on this, we selected three
collections with small, intermediate and large system effects, each representing var-
ious levels of difficulty, and a fourth collection of intermediate difficulty but with
an effectiveness measure whose score distributions diverge largely from a normal
distribution. As Table 1 shows, the selected test collections are from the Enter-
prise 2006 expert search, Genomics 2004 ad hoc search, Robust 2003, and Web
2004 collections. In order to avoid possibly buggy system implementations, we
drop the bottom 25% of systems from each collection, as done in previous studies
such as (Voorhees and Buckley 2002; Sanderson and Zobel 2005; Bodoff and Li
2007; Voorhees 2009; Urbano et al 2013b).

For each of the four initial collections we ran 100 random trials of the simulation
algorithm for each of the 16 combinations of statistical assumptions (normality,
homoscedasticity, uncorrelated effects and random sampling), and for target topic
sets of n′t = 5, 10, 15, 20, 25, 35, 50, 100, 150, 200, 250, 350 and 500 topics.
Therefore, the results presented in this paper comprise 20,800 simulations for each
original test collection and a total of 83,200 overall.

5.4 Results

In order to diagnose the simulations, we use several indicators to compare every
simulated collection with its original one under different criteria. In this analysis
we do not include simulated collections of 5 and 10 topics because they are highly
unstable to begin with.
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Fig. 4 Distributions of first diagnosis indicators: deviation between observed and true system
scores (left, top and middle), τAP correlations (left, bottom), distance between observed and
original distributions of topic effects (right, top and middle), and distance between observed
and original distributions of residuals (right, bottom).

5.4.1 Quality of the Simulations

The first indicator measures the deviation of the observed mean scores of systems
with respect to their true mean scores: Es(µ̂s−µs) = Es(XsT −µs). For instance,
if the deviation is positive it means that the effectiveness of systems is larger than
it should; as mentioned before, this deviation should be zero in expectation. The
top-left plot in Figure 4 shows the distributions of deviations for each original
collection and when the random sampling assumption holds or not. As expected,
we see that the deviation is near zero in all cases, meaning that the mean system
scores are unbiased. We can see that single deviations are much more variable in
the absence of random sampling, because individual collections contain a biased
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sample of topics that biases the mean system scores. The middle-left plot shows
deviations as a function of the number of topics in the simulated collection. We
can see that not only is the mean deviation zero, but also that it is less and less
variable as we increase the collection size. This evidences that larger collections
are more reliable to estimate the true system scores. Finally, because larger collec-
tions ensure smaller deviations, we should observe in general that the estimated
rankings of systems are closer to the true ranking. The bottom-left plot confirms
that the τAP correlations between the simulated and the original collections do
indeed increase with the topic set size. As expected, correlations are higher under
random sampling.

Even though the mean system scores are unbiased, it is still possible that the
distributions differ largely from the original ones, so the next indicators compare
the topic and residual distributions. In particular, we compute the Cramér-von
Mises ω2 distance (Cramér 1928; von Mises 1931) between the true distributions in
the original collection and the distributions observed in each simulated collection;
let F be the one from the original and F̂ be the corresponding one from the
simulation. The distance can be estimated from the empirical distributions as

ω̂2 =
1

n

∑
i

(F̂ (i)− F (i))2,

where i iterates the n scores in the larger collection, original or simulated. The
top-right plot in Figure 4 shows the distributions of ω̂2 distances in the topic
effect distributions, for each original collection and under random sampling or
not. We can observe that the distributions of topic effects in the simulations are
fairly similar to the originals (small distances), and that non-random sampling
produces more different distributions. In the middle-right plot we can see that the
distributions get steadily closer to the originals as the number of topics increases.
Finally, in the bottom-right plot we show the distance between the distributions of
residuals, and similarly observe that they get closer to the originals as we increase
the number of topics, and that they are also closer under random sampling.

Another aspect of interest is the percentage of total variance due to the sys-
tem, topic, and system-topic interaction effects (σ2(s), σ2(t) and σ2(st)). These
values should be preserved in the simulated collections except with non-random
sampling, which biases the distribution of topic effects and, by extension, the con-
tribution to total variance of the system and system-topic interaction effects. We
similarly compute a deviation score like σ̂2(s)−σ2(s) between the simulation and
the original. For instance, a positive deviation in the system variance component
would mean that systems are farther apart in the simulation than in the original.
The three left plots in Figure 5 show these deviations for all three components
and for each original collection. When random sampling is in place the deviations
are all very close to zero. When random sampling is not assumed the topic effect
is larger in the original collection (negative deviation) because it uniformly covers
the full support of the true topic effect distribution, while the simulated collections
are skewed towards low or high quantiles (compare for instance the blue and gray
distributions in Figure 3). In turn, the system and system-topic interaction effects
are larger in the simulated collections (positive deviations).

Yet another indicator of interest is the variability in the distribution of residual
variances: sd(Esσ

2(νst)). Under the homoscedasticity assumption, this standard
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Fig. 5 Distributions of second diagnosis indicators: deviation between observed and true vari-
ance of the system, topic and system-topic interaction effects (left), deviation in the variability
of system residual variances (right, top and middle), and correlation between correlation ma-
trices in the simulated and original collections (right, bottom).

deviation should be zero because the variances of the system residuals are all the
same. With heteroscedasticity we should observe a non-zero standard deviation
because the variances of the residuals are not necessarily the same. In this case
we also compute a deviation score between a simulated collection and its corre-
sponding original collection. The top-right plot show that when heteroscedastic-
ity is present the deviations are nearly zero, meaning that the variability of the
variances is virtually the same as in the original collection. When homoscedastic-
ity is assumed, the variability of variances is smaller in the simulated collections
(negative deviation), as expected. The center-right plot shows that the indicator
deviations need a certain number of topics to converge because small collections
are unstable and the indicators are too variable. Here we can similarly observe that
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Effect µs τAP ω̂2
t ω̂2

st σ2(s) σ2(t) σ2(st) sd(Esσ2(νst)) cor
Normality <1% 2% 2% 15% 2% <1% 1% <1% <1%
Homoscedasticity <1% <1% <1% 1% <1% <1% <1% 31% <1%
Uncorrelated effects <1% 2% <1% <1% 2% <1% <1% <1% 98%
Random sampling <1% 6% 45% 14% 44% 70% 62% <1% <1%
n′t <1% 38% 2% 21% <1% <1% <1% 16% <1%
Collection <1% 23% 7% 6% 4% 2% 3% 11% <1%
residual 99% 29% 44% 42% 48% 27% 33% 42% 1%
Total variance 0.022 0.028 3e-4 2e-5 0.002 0.034 0.026 4e-5 0.36

Table 2 Variance decomposition analysis of the distributions of simulation diagnostic indica-
tors. Each cell represents the contribution of an effect (row) to the variation in the scores of
an indicator (column) between the original and the simulated collections.

under heteroscedasticity the convergence is at zero, and under homoscedasticity it
is at a negative quantity.

The final indicator is the correlation among residual effects in the simulation
and the effects in the original collection. Let Σ be the correlation matrix among
residuals in the original collection, and Σ̂ among residuals in the simulation. The
indicator is itself the correlation between the off-diagonal components of these
matrices, that is, how well the correlations among effects are preserved in the
simulated collection. The bottom-right plot shows that when we assume uncor-
related effects the correlation is indeed nearly zero, meaning that no dependence
is preserved among systems. When correlated effects are assumed, the indicator
approaches one because the correlation matrices are very similar between the sim-
ulation and the original collections.

5.4.2 Robustness of the Simulation Algorithm

In order to confirm what factors affect the quality of the simulations, and to what
extent, we next perform a variance decomposition analysis to see how much of
the variability of each indicator is due to each of the main factors. If a factor
has a large effect it means that the indicator varies too much across the different
levels of the factor. For instance, if the topic set size has a large effect on the τAP
indicator, it means that there is a large difference in τAP across topic set sizes.
Similarly, if the homoscedasticity assumption has a negligible effect, it means that
the τAP scores do not vary depending on whether we assume homoscedasticity or
not. The overall correlations may be large or small, but they do not depend on
the homoscedasticity assumption.

Table 2 lists the results of the variance decomposition analysis for each indi-
cator. The first column shows that virtually all the variability in the µs indicator
falls under the residual effect. This residual effect merges the variation across the
100 random trials of the simulation algorithm for each condition, as well as the
interactions among factors, which were not fitted. What the table tells us is that
none of the main effects has a relevant effect on the deviation of the µs scores,
so the mean of the deviations remains the same regardless of the original collec-
tion, topic set size, etc. This was already suggested in Figure 4, because the mean
deviations were all around zero. The second column shows that both the original
collection to simulate from and the number of topics to simulate, affect the corre-
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lation. This is expected because difficult collections need many topics to produce
accurate estimates and high correlations with the original ranking.

The third column shows that the similarity between the topic effect distribu-
tions is affected by whether random sampling is in place or not: as we saw, non-
random collections differ more than the random ones. The fourth column shows
that the similarity between the system residual distributions is also affected by
the random sampling assumption, but also by the normality assumption and the
number of topics to simulate. This is also expected, as the normality assumption
directly transforms the residual distributions. The fifth to seventh columns show
that the system, topic and system-topic variance components are only affected
by the random sampling assumption, as we saw in Figure 5. The second to last
column shows that the homoscedasticity assumption has the largest effect on the
variability of residual variances, followed by the topic set size and the particular
original collection (the degree to which it is heteroscedastic itself). Finally, we see
that virtually all the variability in the correlation indicator is in fact due to the
uncorrelated effects assumption.

In summary, the diagnosis results confirm that the proposed algorithm for
stochastic simulation of evaluation results produces realistic effectiveness scores
and behaves as expected under the combination of statistical assumptions in place.
In addition, we have seen that it is robust to the characteristics of the original
collection to simulate from.

6 Accuracy of an Existing Test Collection

Here we consider the first scenario where an IR researcher has an existing test
collection with nt topics and wants to estimate its accuracy. In particular, we are
interested in how well our Â(X,µ) estimates of accuracy reflect the true accu-
racy of the collection. To this end, we compute the bias of our estimates as in
Eq. (3). Recall that in this study we can compute the actual accuracy scores be-
cause, thanks to the simulation algorithm, the true system scores are fixed and
known. First, we evaluate the bias of the estimators in the arguably most realis-
tic scenario of non-normal distributions, heteroscedasticity, correlated effects and
random sampling. Second, we evaluate how robust they are to these assumptions.

6.1 Bias of the Accuracy Estimates

For each measure of accuracy, we take the 100 randomly simulated collections
for each of the 13 topic set sizes, but only under non-normal distributions, het-
eroscedasticity, correlated effects and random sampling. This makes a total of 1,300
datapoints for each original TREC collection and 5,200 overall for each measure.

The top plots in Fig. 6 show the bias in the estimates of the Kendall τ corre-
lation of the simulated collections. We can observe that the exp1 and logit models
are extremely similar (the log transformation of Eq. (23) is actually very similar
to Eq. (25)), and that both of them consistently underestimate the true τ scores of
the collections (negative bias). On the other hand, the exp2 model underestimates
the correlation for small collections and overestimates it for large collections, ap-
parently converging to a constant positive bias. These behaviors are consistent
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Fig. 6 Bias of the estimators of τ (top) and τAP (bottom) scores for the simulated collec-
tions originating from each TREC collection. The plots only show simulated collections under
realistic statistical assumptions.

with Fig. 2. Finally, Eτ also overestimates the true correlations, but less so than
the other estimators. Even though the estimation error is still large for small topic
sets, we can see that for a realistic collection of 50 or more topics the estimation
error is negligible. The bottom plots in Fig. 6 show remarkably similar trends for
the τAP correlation, where the proposed EτAP estimator behaves better than the
split-half estimators again. In all cases we can see that the estimators are less bi-
ased with the Enterprise collections than with the Robust collections, most likely
because the former are easier for evaluation due to the high system effect variance.

Fig. 7 similarly shows the bias of the absolute (top plots) and relative sensi-
tivity (bottom) estimators. Both exp1 and logit tend to overestimate the actual
sensitivity of the collections, therefore underestimating their accuracy. The pat-
tern is again consistent with Fig. 2: exp2 gives lower estimates than logit, which
gives lower estimates than exp1. As expected, split-half estimates of sensitivity are
less accurate than estimates of correlation because they involve not only for the
signs of system differences, but also for their magnitudes (in addition, recall that
correlations range between -1 and +1, while sensitivity ranges between 0 and 1).
Nonetheless, the exp2 estimates are very close to the actual values for collections
with a realistic number of topics.

Fig. 8 shows the bias of the Eρ2 (top plots) and Φ (middle) estimates. Unlike
in the previous measures, estimates of Eρ2 tend to underestimate accuracy, even
though for large collections it provides fairly good estimates. While Φ is similarly
underestimated, bias is generally larger, especially in the difficult Robust collec-
tions where the topic effect is large. This is consistent with generalizability theory
literate stating that Eq. 29 and 30 in fact biased (Webb et al 2006). The bottom
plots of the same figure show the bias of the F measure (recall that this is actually
the power of the F -test). We note that the actual power in the Enterprise collec-
tions is always 1 because there is a large between-system variance; in the other
cases, and especially in the Robust collection, several dozen topics are needed for
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Fig. 7 Bias of the estimators of sensabs (top) and sensrel (bottom) scores for the simulated
collections originating from each TREC collection. The plots only show simulated collections
under realistic statistical assumptions.

the F -tests to come up significant. We can see that the F1 estimator has a very
clear bias, highly underestimating the accuracy of test collections. As a result, it
suggests the use of many more topics than actually needed to achieve a certain
level of power in the F -test. This behavior is consistent with our comments in
Sect. 4.2. In particular, it evidences that the use of the F1 effect size can be mis-
leading. It is defined from a minimum detectable difference δmin between the best
and worst systems, and the power analysis tells us how many topics we need to
detect that difference. However, if the true difference between the best and worst
systems is larger than δmin to begin with, as is in our collections, the accuracy of
the collection is systematically underestimated.

6.2 Robustness to Statistical Assumptions

The previous section showed the bias of the estimators in the arguably most re-
alistic scenario of non-normal distributions, heteroscedasticity, correlated effects
and random sampling. We now study their robustness to these statistical assump-
tions, taking the full set of 83,200 simulated collections. In particular, for each
estimator we run again a variance decomposition analysis over the distribution
of estimation errors, thus showing how much of the variability in the estimation
error is attributable to each assumption, the topic set size, and the original TREC
collection. This allows us to detect effects that influence the estimation errors.

Table 3 shows the variance components for the τ and τAP measures. In the
case of the split-half estimators, we see that the largest non-residual effect is the
topic set size, confirming our previous observation that estimates with a handful
of topics are very unstable to begin with. On the other hand, our proposed Eτ
and EτAP estimators are significantly more robust to the topic set size, meaning
that they can generally be trusted even for small collections. They are also more
robust in general, as shown by the smaller total error variance. This means that
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Fig. 8 Bias of the estimators of Eρ2 (top), Φ (middle) and F (bottom) scores for the simulated
collections originating from each TREC collection. The plots only show simulated collections
under realistic statistical assumptions.

τ τAP
Effect exp1 exp2 logit Eτ exp1 exp2 logit EτAP
Normality <1% <1% <1% 1% <1% <1% <1% 2%
Homoscedasticity <1% <1% <1% <1% <1% <1% <1% <1%
Uncorrelated effects 8% 6% 7% 7% 8% 6% 7% 7%
Random sampling 10% 9% 10% 13% 10% 9% 10% 14%
nt 25% 22% 24% 9% 24% 26% 24% 9%
Collection 8% 4% 8% 11% 9% 4% 9% 6%
residuals 48% 59% 50% 57% 49% 56% 50% 62%
Total error variance 0.021 0.022 0.020 0.013 0.018 0.020 0.017 0.012

Table 3 Variance decomposition of the error of the τ and τAP estimates of an existing col-
lection. Each cell represents the contribution of a main effect (row) to the variation in the
estimation error of an estimator (column).

they are not only less biased, but also more stable. All estimators are slightly
affected by the uncorrelated effects assumption, probably because swaps among
systems are not independent of each other (eg. a swap between the third and
sixth systems probably implies a swap between the third and the fourth as well).
As expected, the normality and homoscedasticity assumptions do not affect the
estimators, although they are all affected to some degree by the random sampling
assumption. In any case, we note that the random sampling assumption has an
effect as important as the topic set size or even the original collection itself.
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sensabs sensrel
Effect exp1 exp2 logit exp1 exp2 logit
Normality < 1% < 1% < 1% < 1% 1% 1%
Homoscedasticity < 1% < 1% < 1% < 1% < 1% < 1%
Uncorrelated effects 5% 5% 2% 9% 9% 5%
Random sampling 2% 4% 3% 4% 5% 8%
nt 32% 5% 12% 27% 10% 10%
Collection 18% 3% < 1% 3% 3% 1%
residual 43% 83% 83% 56% 72% 75%
Total error variance 0.005 0.002 0.003 0.023 0.018 0.022

Table 4 Variance decomposition of the error of the sensabs and sensrel estimates of an
existing collection. Each cell represents the contribution of a main effect (row) to the variation
in the estimation error of an estimator (column).

Effect Eρ2 Φ F1

Normality <1% <1% <1%
Homoscedasticity <1% <1% <1%
Uncorrelated effects 7% <1% <1%
Random sampling 15% 80% <1%
nt 5% 5% 35%
Collection 3% <1% 24%
residuals 70% 15% 40%
Total error variance 0.024 0.225 0.104

Table 5 Variance decomposition of the error of Eρ2, Φ and F estimates of an existing col-
lection. Each cell represents the contribution of a main effect (row) to the variation in the
estimation error of an estimator (column).

Table 4 shows the results of a similar analysis for the sensabs and sensrel
measures. The first difference we notice is that absolute sensitivity has smaller
error variance and is therefore more robust in general. The exp1 estimators are
the most clearly affected by the topic set size, as evidenced in Fig. 7 as well.
The uncorrelated effects and random sampling assumptions appear to affect the
estimators as well, though most of the observed variability in the estimation errors
falls under the residual effect, especially for the exp2 and logit estimators. The
normality and homoscedasticity assumptions do not affect the estimates.

Table 5 similarly shows the results for the Eρ2 and Φ measures. We can see
that both measures are slightly affected by the topic set size, but the largest
non-residual source of variability is the random sampling assumption. Its effect
is remarkably large in Φ because, unlike Eρ2 it estimates the topic difficulties,
which can vary considerably with non-random samples (see Sect. 5.4). The table
also lists the results for the F -test measure, showing that its accuracy depends
on the collection (actually, on the ratio of system-variance to topic-variance), and
certainly on the number of topics in the collection. As evidenced by Fig. 8, the F1

estimator is quite unreliable. The normality and homoscedasticity assumptions do
no affect.

7 Expected Accuracy of a Hypothetical Test Collection (Reliability)

Here we consider the second scenario where an IR researcher has access to an
existing collection with nt topics and wants to estimate the expected accuracy of
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a hypothetical collection with n′t topics from the same universe. This scenario is
present for instance when deciding whether to spend resources in judging more
topics for an existing collection. In particular, we are interested in how well our
R̂(X, n′t,µ) estimates of reliability reflect the true reliability of a topic set size n′t.
To this end, we compute the bias of our estimates as in Eq. (4). Recall again that
in this study we can compute the true reliability scores because we know the true
system scores. As before, we first evaluate the bias of the reliability estimates in
the arguably most realistic scenario of non-normal distributions, heteroscedasticity,
correlated effects and random sampling. After that, we evaluate how robust each
estimator is to these assumptions.

7.1 Bias of the Reliability Estimates

For each measure of accuracy, we take the 100 randomly simulated collections for
each of the 13 topic set sizes nt, but only for the case of non-normal distributions,
heteroscedasticity, correlated effects and random sampling. For each of these we
compute the 13 estimates of the reliability of new topic set sizes n′t, and compare
the estimates with the actual accuracy observed with sizes n′t. This is done for
each original collection separately, and then all bias scores are averaged across
them. This makes a total of 16,900 datapoints for each original TREC collection
and 67,600 overall for each measure.

Fig. 9 shows the bias of the estimates of τ (top plots) and τAP (bottom) relia-
bility. For simplicity, we only show the estimates from existing collections of nt =
5, 10, 20, 50, 100 and 200 topics; the trends are evident from the figures. The first
difference we can see is that exp2, which showed good behavior to estimate the
accuracy of an existing collection, is very erratic to estimate the expected accu-
racy of a new collection. This is because of the observed behavior that exp2 is not
consistent: it underestimates accuracy until a certain number of topics is reached,
beyond where it starts overestimating. Since we are now extrapolating to different
topic set sizes n′t, this behavior becomes problematic. As the number of existing
topics nt increases, the exp1 and logit estimators get closer to the estimates of
accuracy from the previous section, where nt = n′t (dashed black line). The ex-
trapolations to large topic sets are quite good provided that we have about 100
topics to begin with, which is hardly ever the case. With smaller existing collec-
tions, both exp1 and logit highly underestimate the expected correlations of large
collections. The proposed Eτ and EτAP show significantly better performance. In
fact, with as little as nt = 20 initial topics the predictions are very good. More
importantly, we can see that the estimators are consistent and, unlike the split-
half estimators, they get closer to the true values as the initial number of topics
increases.

Fig. 10 similarly shows the bias of the absolute (top plots) and relative sensi-
tivity (bottom) reliability estimates. The exp2 estimator shows again very erratic
behavior, especially for small target topic set sizes. On the other hand, the logit
estimator shows very good performance; with as little as nt = 20 initial topics it
provides close estimates of the reliability of larger collections. In the case of exp1,
the convergence is slower; it requires about 50 initial topics for sensabs and about
100 for sensrel. Once again, we appreciate that these split-half estimators also
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Fig. 9 Bias of the estimators of τ (top) and τAP (bottom) of a new collection with n′t topics,
given an existing collection with nt topics. The plots only show simulated collections under
realistic statistical assumptions.
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Fig. 10 Bias of the estimators of sensabs (top) and sensrel (bottom) of a new collection with
n′t topics, given an existing collection with nt topics. The plots only show simulated collections
under realistic statistical assumptions.

estimate the expected (biased) estimate of accuracy instead of the expected (true)
accuracy of a larger collection.

Fig. 11 shows the bias of the Eρ2 and Φ reliability estimates. We can observe
that reliability is generally underestimated. Large initial collections provide better
estimates of new collections, but around nt = 20 initial topics seem sufficient to
have good estimates. These results agree with (Urbano et al 2013b), who analyzed
the effect of the initial collection size on the estimates of the required number of
topics to reach a certain level of reliability. As expected by its poor performance
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Fig. 11 Bias of the estimators of Eρ2, Φ and F of a new collection with n′t topics, given an
existing collection with nt topics. The plots only show simulated collections under realistic
statistical assumptions.

in the previous section, the F1 estimator consistently underestimates the power of
the F -test, regardless of the number of topics in the initial collection.

7.2 Robustness to Statistical Assumptions

In the previous section we evaluated the bias of the reliability estimators in the
scenario of non-normal distributions, heteroscedasticity, correlated effects and ran-
dom sampling. We now study their robustness to these assumptions with the full
set of 83,200 simulated collections. In particular, for each estimator we run a vari-
ance decomposition analysis over the distribution of estimation errors, showing
what fraction of the variability in the estimation error can be attributed to each
assumption, the initial nt and new n′t topic set sizes, and the original TREC
collection. This provides us with a total of 1,081,600 datapoints per measure.

Table 6 shows the results for τ and τAP . We can see that most of the variabil-
ity in the split-half estimators is due to the topic set sizes, either through their
main effects (nt and n′t) or their interaction effect (nt : n′t). This means that
the estimation error depends highly on the number of topics available or under
consideration. This is again a direct consequence of the split-half method. On the
other hand, the proposed Eτ and EτAP are not affected by the size of the new
collection, and evidence only minor dependence on the size of the existing col-
lection. Indeed, through the total error variance we can see that their estimates
clearly outperform the split-half estimators. However, we see a large dependence
on the random sampling assumption, and a noticeable dependence on the uncor-
related effects assumption. The normality and homoscedasticity assumptions have
negligible effects.

Table 7 shows similar results for the sensitivity measures. A very large part of
the variability in the estimation errors is attributable again to the topic set size
effects, evidencing that the accuracy of these estimators depends very much on
the size of available data and the size we want to extrapolate to.

Table 8 shows that the estimation of the expected Eρ2 is very slightly affected
by the topic set sizes to extrapolate from and to. Recall that this does not mean
that the estimates are good across sizes, but that the estimation error remains
the same across sizes. It also shows some dependence on the uncorrelated effects
assumption, but most of the variability in the estimation errors is due to the
random sampling assumption. This is where almost 90% of the variability in Φ
comes from, evidencing stability problems if this assumption is not guaranteed.



Test Collection Reliability: Bias and Robustness 33

τ τAP
Effect exp1 exp2 logit Eτ exp1 exp2 logit EτAP
Normality <1% <1% <1% 2% <1% <1% <1% 3%
Homoscedasticity <1% <1% <1% <1% <1% <1% <1% <1%
Uncorrelated effects 5% 2% 5% 12% 4% <1% 5% 12%
Random sampling 7% 5% 8% 22% 7% 4% 8% 23%
n′t 2% 11% 3% <1% <1% 13% 2% <1%
nt 18% 1% 14% 9% 21% 2% 17% 12%
nt : n′t 6% 9% 3% 2% 8% 10% 5% 2%
Collection 13% 2% 14% 15% 14% 2% 14% 8%
residuals 48% 70% 52% 37% 46% 68% 51% 40%
Total error variance 0.029 0.044 0.027 0.008 0.026 0.048 0.024 0.007

Table 6 Variance decomposition of the estimation error of the expected τ and τAP of a new
collection. Each cell represents the contribution of a main effect (row) to the variation in the
estimation error of an estimator (column).

sensabs sensrel
Effect exp1 exp2 logit exp1 exp2 logit
Normality <1% <1% <1% 2% 3% 4%
Homoscedasticity <1% <1% <1% <1% <1% <1%
Uncorrelated effects 2% 4% 3% 4% 4% 4%
Random sampling 1% 3% 4% <1% <1% 1%
n′t 18% 3% 35% 3% 2% 7%
nt 6% <1% 1% 12% 1% <1%
nt : n′t 21% 30% 4% 11% 5% 2%
Collection 14% 2% 8% 2% 1% 1%
residuals 38% 57% 44% 65% 83% 81%
Total error variance 0.009 0.003 0.002 0.052 0.038 0.036

Table 7 Variance decomposition of the estimation error of the expected sensabs and sensrel
of a new collection. Each cell represents the contribution of a main effect (row) to the variation
in the estimation error of an estimator (column).

Effect Eρ2 Φ F1

Normality <1% <1% <1%
Homoscedasticity <1% <1% <1%
Uncorrelated effects 7% <1% <1%
Random sampling 19% 86% <1%
n′t 3% 4% 46%
nt 2% <1% <1%
nt : n′t <1% <1% <1%
Collection 4% <1% 31%
residuals 64% 9% 23%
Total error variance 0.019 0.210 0.082

Table 8 Variance decomposition of the estimation error of the expected Eρ2, Φ and F of a
new collection. Each cell represents the contribution of a main effect (row) to the variation in
the estimation error of an estimator (column).

In the case of the F1 estimator, we can clearly see robustness to assumptions,
although the estimation errors are highly dependent on the target topic set sizes.
The normality and homoscedasticity assumptions have negligible effects again.
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8 Discussion

In this paper we were able to study for the first time the true behavior of vari-
ous estimators of test collection accuracy and reliability. Thanks to the proposed
algorithm of stochastic simulation, we were able to simulate arbitrarily large col-
lections where the expected mean system scores are fixed and known upfront. This
allowed us to quantify the bias of the estimates and their robustness to several sta-
tistical assumptions. The results showed that the common estimators used in the
literature are biased. In the particular case of the Kendall τ and τAP correlations,
as well as of the measures from generalizability theory, the estimates tend to be
negatively biased: they underestimate the similarity between the results of a test
collection and the true system scores. This is an important result that requires
further examination, as a number of studies recently suggested that test collec-
tions are generally much smaller than they should, such as (Sakai 2014b; Urbano
et al 2013b; Webber et al 2008).

The results evidence the problems of split-half methods to estimate collection
accuracy. First, the model they internally fit to the observations is usually selected
based on its goodness of fit to sets of up to nt/2 topics, and not on the grounds of
theoretical arguments. For instance, the three models in Figure 2 seem to provide
similarly good fits of the data in the right plot, but the extrapolations diverge quite
significantly as the number of topics increases. There is in principle no theoretical
basis for choosing one or another, but clearly one of them should be better than
the others. One could even say that, visually, the exp1 and logit models (red and
blue) seem to give a better fit, but the results in Sect. 6 and 7 actually show that
it is exp2 (green) the one that is less biased. At the very least, the results confirm
that there is no single model suitable to all measures, and we even find that some
models perform well for estimating the accuracy of an existing collection, but not
to estimate the expected accuracy of a larger collection.

The second problem, already identified for instance by Sanderson and Zobel
(2005), is that the split-half observations are not independent. In any given trial,
the selection of topics for the second split is restricted by the random selection of
topics for the first split, because there is a limited number of existing data. The
consequence is that even if the model to fit is correct, it will be fitted to biased
observations. This distinction is directly accounted for and modeled in statistical
theory when defining measures like Eρ2. As we mentioned earlier, it corresponds
to the expected square of the correlation between the observed scores and the
true scores, but it also corresponds to the expected value of the correlation (not
squared) between the observed scores in pairs of randomly parallel collections of the
same size (Cronbach et al 1972). The former is the quantity we are really interested
in, and the latter is what split-half estimators actually provide (Allen and Yen
1979). We can directly observe this behavior in the estimates of τ in Figure 9. The
Eτ and EτAP estimates converge to the actual expected accuracy En′

t
A(X′,µ),

but the split-half estimates converge to our estimates En′
t
Â(X′,µ) of accuracy.

Because the extrapolation models are rather arbitrary, and the observations used
to fit them are not really independent, their estimates are the expected (biased)
estimate of accuracy and not the expected (true) accuracy. Since Eτ and EτAP are
unbiased, they do estimate the expected true accuracy.
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In terms of statistical assumptions, we have seen that the normality assumption
has negligible effect. This can be explained by the fact that even when the raw ef-
fectiveness distributions diverge largely from normality, the residual distributions
are approximately normal, as in Figure 1. In addition, we note that effectiveness
measures are often defined as the sum of some form of utility across the rank-
ing of documents, suggesting that the Central Limit Theorem may actually be at
play with sufficiently large evaluation cut-offs. The homoscedasticity assumption
had a negligible effect as well. However, we must note that the simulation algo-
rithm is designed to reproduce the actual residual distributions observed in the
original collection, and not some other distributions that maximize the level of het-
eroscedasticity. That is, the simulated collections are heteroscedastic to the same
extend that the original collection is so. In practice, the level of heteroscedasticity
is not necessarily large, so this assumption did not affect estimates significantly.
The levels of divergence from normality and heteroscedasticity are in principle
easy to control in the simulation algorithm, allowing us to simulate some sort
of adversarial systems from the point of view of evaluation. Additionally, we can
study better ways of preserving the dependence structure of the original data. In
the algorithm proposed here we focused on preserving the correlation matrix, but
other aspects may be of interest, especially given that scores are bounded between
0 and 1. These are lines of work we intend to pursue.

We also note that there are several other sources of variability taking place
in IR evaluation. In this paper we only studied the variability due to topics, but
several works have shown that variability due to relevance assessors (Voorhees
1998; Carterette and Soboroff 2010; Bailey et al 2008), document corpus (Robert-
son and Kanoulas 2012; Sanderson et al 2012), effectiveness measures and pool
depth (Buckley and Voorhees 2000; Voorhees 2001; Kekäläinen 2005; Sakai 2006;
Buckley et al 2007), and even users (Carterette et al 2011), are not negligible. It
is certainly worthwhile to extend the simulation algorithm to incorporate all these
factors as well. Also, we note that there are other measures besides the ones we
study here, such as the drank distance (Carterette 2009) or variations of the rank
correlations (Melucci 2007). Similarly, in this paper we focused on the F -test be-
cause we were interested in simultaneously comparing a set of systems, but there
are other statistical tests that can be used to compare individual pairs of systems,
such as the t-test, Wilcoxon, bootstrap or permutation tests (Hull 1993; Sakai
2006; Smucker et al 2007; Urbano et al 2013a), which can be further coupled with
methods to adjust p-values for multiple comparisons (Carterette 2012; Boytsov
et al 2013). We leave these lines for further work as well, especially the study,
via simulation, of the actual Type I and Type II error rates of various statistical
significance tests.

We note that Eτ and EτAP are unbiased provided that the Wij estimates in
Eq. (35) are unbiased too. However, it is hard to ensure unbiasedness for arbitrary
measures producing arbitrary distributions. The Central Limit Theorem applies,
but it requires a couple dozen topics to work well. In particular, Figures 6 and 9
show that the estimates from small available data are biased, probably because
of the difficulty in estimating the population standard deviation from a small
sample. Even though the estimators behave very well with more than 20 topics,
we should study how to compute better estimates of Wij . The estimators can also
be extended to incorporate thresholds below which two systems are considered
equal, therefore accounting for ties.



36 Julián Urbano

Finally, throughout this paper we have worked exclusively with point estimates,
but we should fully consider interval estimates as well. The split-half estimators
can produce intervals from the model they fit internally, confidence intervals have
been derived for the measures from generalizability theory, and simple intervals
can be computed for the proposed Eτ and EτAP estimators. Even though most of
the point estimates are shown to be biased, this bias can probably be corrected in
practice if we use intervals. We leave this line for future work as well.

9 Conclusions

In this paper we discussed the measurement of test collection reliability from the
perspective of traditional ad hoc measures and statistical measures as well. Past
research on this topic was partially limited because we do not know the true mean
effectiveness of systems, so it is impossible to assess how accurate our measure-
ments really are. The best approximation involves split-half methods, but this
approach is unfortunately limited by the lack of a theoretical basis, and the avail-
able data. To overcome this limitation in IR evaluation research, we proposed an
algorithm for stochastic simulation of evaluation results. The algorithm simulates
arbitrarily large test collections for the set of systems and universe of topics rep-
resented by some previously available test collection, allowing us to fix the true
system scores upfront and to control what statistical assumptions hold. Through
several indicators, we diagnosed how realistic the simulations are and how close
they resemble real TREC evaluation data. The results showed that the simulated
collections are indeed realistic, opening new opportunities for IR evaluation re-
search where it is necessary to know the true effectiveness of systems.

Through large-scale simulation from TREC data, we evaluated the bias of
estimators in a first scenario where we are interested in the accuracy of an existing
test collection. The results showed that ad hoc measures tend to underestimate the
actual reliability of collections, especially when the number of topics is rather small.
As a consequence, they suggest the use of more topics than actually needed. On
the other hand, the statistical measures from generalizability theory provide much
better estimates, even though for very small collections they tend to underestimate
reliability as well. Finally, we saw that the proper definition of target effect sizes
is a non-trivial problem when estimating the power of the F -test.

We also evaluated the bias of the measures in a second scenario where we want
to estimate the expected accuracy of a new test collection of arbitrary size based
on the data available from previous collections. The results confirm that the esti-
mates depend largely on the amount of data previously available. For instance, the
τ and τAP correlations of hypothetical large collections are very underestimated
unless we have about 100 topics already. In fact, there is a very clear correlation
between the number of topics available from the previous collection, and the bias
of the estimates, indicating that predictions of the required number of topics to
include in a collection under development are highly overestimated. For the gen-
eralizability theory measures we found much smaller biases, especially for small
numbers of topics. In general, with initial collections of about 50 topics we get
quite accurate estimates. To overcome the limitations of the split-half extrapola-
tion of τ and τAP , we proposed two new estimators, called Eτ and EτAP , based on
statistical principles. The results confirm that they are unbiased and consistent
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estimators, behaving much better than the split-half alternatives and at a smaller
computational expense.

Finally, we studied how robust these measures are to violations of statistical
assumptions. In general, we found that all measures are robust to the normality
and homoscedasticity assumptions, because the actual distributions do not depart
much from these assumptions in practice. We found a slight effect of the uncorre-
lated effects assumption, especially on the ad hoc measures in the first scenario and
the statistical measures in the second scenario. In terms of random sampling, we
found generally small effects except with the statistical measures. Even though the
effects are smaller than in principle thought, when absolute scores are of interest
we can have very high errors if random sampling is not guaranteed. The split-half
estimation of the ad hoc measures partially alleviates this problem because they
actually involve a form of resampling. In both scenarios, the most important factor
is usually the amount of available data.

We created several scripts for the statistical software R to easily simulate new
collections and help researchers analyze the reliability of test collection designs.
They can be downloaded from http://github.com/julian-urbano/irj2015-reliability.
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