Noname manuscript No.
(will be inserted by the editor)

Performance Improvements for Search Systems
using an Integrated Cache of Lists+Intersections

Gabriel Tolosa - Luca Bechetti -
Esteban Feuerstein - Alberto
Marchetti-Spaccamela

Received: date / Accepted: date

Abstract Modern information retrieval systems use several levels of caching
to speedup computation by exploiting frequent, recent or costly data used in
the past. Previous studies show that the use of caching techniques is crucial
in search engines, as it helps reducing query response times and processing
workloads on search servers. In this work we propose and evaluate a static
cache that acts simultaneously as list and intersection cache, offering a more
efficient way of handling cache space. We also use a query resolution strategy
that takes advantage of the existence of this cache to reorder the query exe-
cution sequence. In addition, we propose effective strategies to select the term
pairs that should populate the cache. We also represent the data in cache in
both raw and compressed forms and evaluate the differences between them
using different configurations of cache sizes. The results show that the pro-
posed Integrated Cache outperforms the standard posting lists cache in most
of the cases, taking advantage not only of the intersection cache but the query
resolution strategy too.

Keywords information retrieval systems - caching - integrated cache -
performance improvement

Gabriel Tolosa
University of Buenos Aires & National University of Lujan, Argentina
E-mail: tolosoft@unlu.edu.ar

Luca Bechetti
Sapienza University of Rome, Italy
E-mail: becchetti@dis.uniromal.it

Esteban Feuerstein
University of Buenos Aires, Argentina E-mail: efeuerst@dc.uba.ar

Alberto Marchetti-Spaccamela
Sapienza University of Rome, Italy
E-mail: alberto@dis.uniromal.it

2 Gabriel Tolosa et al.

1 Introduction

Modern large-scale information retrieval systems such as Web Search Engines
(WSE) exploit sophisticated techniques for efficiency and scalability purposes:
they crawl and index tens of billions of documents (thus managing a huge
inverted index file) and must answer queries in fast (in a few hundred millisec-
onds) to satisfy users’ expectations.

It is known that the main contributions to the cost of a query are processing
time (C.p,) and disk access times (Cg;s); if many parallel machines cooperate
to answer the query, a communication cost (Ceomm) must be also considered.
C¢pu involves decompressing the posting lists, computing the query-document
similarity scores and determining the top-k documents that form the final an-
swer set. In most cases a conjunctive semantic is considered because intersec-
tions produce shorter lists than unions, which leads to smaller query latencies
[Cambazoglu et al (2010)] and higher precision levels. On the other hand, Cy; s
involves fetching from hard disk the posting lists (usually compressed) of all
the query terms. Finally, C,ypm involves moving data and synchronization
messages between different nodes in the system through the network.

Usually, the architecture of a WSE is formed by a front-end node called
broker and by a large number of machines (search nodes organized in a cluster
that process queries in parallel [Barroso et al (2003)].

Each search node holds only a fraction of the document collection and
maintains a local inverted index that is used to obtain a high query through-
put. Given a cluster of p search nodes and a collection of C' documents and
assuming that these are evenly distributed among the nodes, each one main-
tains an index with information related to only C/p documents. Besides, to
achieve the strong performance requirements, WSE usually implement dif-
ferent optimization techniques such as posting list compression [Zhang et al
(2008)], list pruning [Macdonald et al (2011)], results prefetching [Jonassen
et al (2012)] and caching [Baeza-Yates et al (2007)]. In these cases, caching is
one of the most important and crucial tools to achieve fast response times and
to increase query throughput.

The main goal of a cache is to speedup computation by allowing fast access
to a suitably chosen (frequent, recently used or costly) set of data. The typical
architecture of a search engine involves different cache levels (Figure 1): caching
involves both query result pages (Result Cache) at the broker level and the
posting lists of terms that appear in the queries (List Cache) at search node
level. The first level tries to minimize re-computation of results for queries that
appeared in the past, thus also reducing the workload of back-end servers. The
latter attempts at reducing the amount of disk fetch operations, which are very
expensive compared to CPU processing times. If a list is found in cache, then
disk cost is avoided.

Another approach is Intersection Caching that requires caching portions
of a query (e.g., pairs of terms), as initially proposed in [Long and Suel (2005)]
and extended in [Ding et al (2011)]. The idea in this case is to exploit term
co-occurrence patterns, e.g., by keeping the intersection of the postings lists

Integrated Cache of Lists+Intersections 3

Front-end
Cache

Cache
List
Cache

Local

index Search nodes

Fig. 1: Search Engine Architecture considered in this work

of frequently co-occurring pairs of terms in the memory of the search node, in
order to not only save disk access time, but CPU time too.

In the case of industry-scale web search engines, the entire inverted index
is usually stored in main memory [Dean (2009)]. Under this configuration, the
List Cache becomes useless but the Intersection Cache is still useful [Feuer-
stein and Tolosa (2014)] because it allows to save CPU time (i.e. the cost of
intersecting two posting lists). For more general cases such as medium-scale
systems, only a fraction of the index is maintained in memory while the re-
maining fraction is stored in secondary storage (i.e. HDD of SDD). In this
cases, effective caching architectures becomes essential to mitigate disk laten-
cies, so List and Intersection Caches are both helpful to reduce disk access and
processing time. We consider this scenario in our work.

All types of caches (query results, posting lists, intersections), may be man-
aged using static or dynamic policies, or both. In the static case, the cache
is filled with items previously selected from a training set and its content re-
mains unaltered until the next update. In the dynamic case, the cache content
changes in an online fashion with respect to the query stream, as new entries
may be inserted and existing entries may be evicted. Section 2 summarizes
some work related to ours.

As we mentioned earlier, list and intersection caches are implemented at
search node level. Usually, these are independent and try to give benefits from
two different perspectives. The List Cache achieves a greater hit rate because
the frequency of individual terms is higher than that of pairs of terms, but
each hit in the later entails a higher benefit because the posting lists of two or
more terms are involved and also some computation is avoided.

4 Gabriel Tolosa et al.

Based on the observation that many terms co-occur frequently in different
queries our motivation is to build a cache that may capture the benefits of
both approaches in just one cache (instead of two). To this aim, we adapt
a data structure previously proposed by Lam et al. [Lam et al (2009)]. The
original idea is to merge the entries of two frequently co-occurring terms to
form a single entry to store the inverted files more compactly. We adapt this
structure to a static cache in which the pair of terms (bigram) selected offer
a good balance between hit rate and benefit, leading to an improvement in
the total cost of solving a query. We investigate different ways of choosing and
combining the terms. However, as queries submitted to a search engine have
significantly varying costs in terms of several aspects (e.g., CPU processing
time, disk access time, etc.) and the frequency of the query is not an indicator
of its cost we consider cost-aware caching strategies [Cao and Irani (1997)]
[Young (1998)] which provide further gains, as shown in [Ozcan et al (2011)]
and [Feuerstein and Tolosa (2013)]. Roughly, cost-aware caching selects the
item to be evicted taking into account the costs of each intersection. The
approach is based on the observation that cache misses do not have the same
cost and caching policies that only consider frequency of the items may not
always lead to optimum performance.

Although this approach already reduces the size of the resulting data struc-
ture, compressing the inverted index (namely, each of its posting lists) is a cru-
cial tool used to improve query throughput and fast response times in WSEs.
Data is usually kept in compressed form in memory (or disk) leading to a re-
duction in its size that would typically be about 3 to 8 times, depending on in-
dex structure, stored information and compression method. Usually, document
identifiers, frequency information and positions are stored separately and can
be compressed independently, even with different methods. These techniques
have been studied in depth in the literature [Witten et al (1999)], [Manning
et al (2008)], [Baeza-Yates and Ribeiro-Neto (2011)]. Among the compres-
sion methods for posting lists we mention the classical Elias [Elias (2006)] and
Golomb [Golomb (1966)] encoding and the more recent ones Simple9 [Anh and
Moffat (2005)], and PForDelta [Zukowski et al (2006)] encodings. In this work,
we also evaluated the compressed version of our proposal using the state-of-the
art PForDelta method which improves the tradeoff between compression ratio
and decompression speed.

1.1 Our Contribution

This paper includes and extends our preliminary work [Tolosa et al (2014)],
where we introduced the Integrated Cache, a static cache that resides at search
nodes and replaces both list and intersection caches in a single memory space.
To this aim, we use a particular data structure that makes an efficient use
of memory space. Moreover, we design a specific cache management strategy
that avoids the duplication of cached terms and we adapt a query resolution

Integrated Cache of Lists+Intersections 5

strategy that tries to maximize the hit ratio, introduced in [Feuerstein and
Tolosa (2014)].

We also consider different strategies to populate the integrated cache and
we propose three strategies that consider both frequency of term co-occurrence
and postings list size. Furthermore, we propose a novel strategy that relies on
casting the problem of selecting term pairs as a maximum weighted matching,
a well-known combinatorial optimization problem.

We evaluate the proposed framework against a competitive list caching
policy using two real web crawls with different characteristics and a well known
query log over a simulation framework. Rather than hit ratio, we consider as
a performance metric the overall time needed by the different strategies to
process all queries. Experimental evidence shows that substantial savings are
possible using the proposed approach.

We boost our Integrated Caching framework with a compressed version,
and we extend the evaluation comparing this new framework against list
caching. Some structural characteristics of the input imply that compression
methods yield lower compression ratios in this application. However, the eval-
uation shows that compression introduces savings that are still highly useful
to reduce the overall processing time.

The remainder of this paper is organized as follows: in the next section,
we review related work. In Section 3, we provide some background about
query processing and related data structures along with a description of the
datasets used in the analysis and experiments. In Section 4 Integrated Cache
is presented; methods for selecting the items to be placed in the cache are
discussed in Section 5. The subsequent section is devoted to the experimental
setup and the experimental results are summarized in Section 7. Finally, we
introduce the conclusions of our work in Section 8 followed by future work.

2 Related Work

There is a large body of work devoted to caching in text search systems. In
the sequel we summarize the work more relevant to our proposal.

2.1 Posting Lists Caching

In [Baeza-Yates et al (2007)] Baeza et al. analyze the problem of simply caching
posting lists (combined with results caching) that achieves higher hit rates than

simply caching query results. They also propose an algorithm called Q:¢Djy
frequency(t)
size(t)
The most important observation is that the static Q4D algorithm has a
better hit rate than all dynamic versions. They also present a framework for
the analysis of the trade-off between caching query results and caching posting
lists and simulate different architectures both in LAN and WAN environments.

Inverted index compression and list caching techniques are explored in [Zhang

that selects the terms to put in cache according to their ratios.

6 Gabriel Tolosa et al.

et al (2008)]: several inverted list compression algorithms and caching policies
are compared. Namely [Zhang et al (2008)] compares LFU, LRU, Optimized
Landlord, Multi-Queue, ARC.

2.2 Results Caching

Markatos (2001)] is the first paper introducing result caching. Based on the
analysis of a query log and the amount of locality observed, the author proposes
to consider both frequency and recency in the policy and proposes LRU-2S
(two stages LRU) that tries to capture both variables. In 2006, Fagni et al.
[Fagni et al (2006)] propose SDC (Static and Dynamic Cache) to handle both
long term popular queries and shorter query bursts in smaller periods of time.
SDC divides the cache space in two parts: a static one that is filled (offline)
with the results of the most frequent queries (computed on the basis of a query
log), and a dynamic part that is managed with LRU.

Gan and Suel [Gan and Suel (2009)] study the problem of weighted result
caching based on the observation that most previous work focuses only on
optimizing the hit ratio while the processing costs of queries vary according
to lists’ sizes, terms’ popularities, and so on. They propose weighted versions
of LFU, LRU and SDC policies and a Landlord strategy [Young (1998)]. The
main result is the study of the weighted case with the goal of optimizing
the processing cost. In [Ozcan et al (2011)], cost aware strategies for result
caching are extensively evaluated. Authors observe that cache misses have
different costs, and popularity-aware caching policies can not always minimize
the total savings. To overcome this limitation, they propose to incorporate the
query costs into the caching policies and evaluate them in both static, dynamic
and hybrid cases.

2.3 Multilevel Caching

Saraiva et al. propose a two-level caching scheme that combines caching of
search results with the caching of frequently accessed postings lists [Saraiva
et al (2001)]. Subsequently, Long and Suel extend the idea to caching in-
tersections of pairs of terms that are often co-used [Long and Suel (2005)]:
they introduce a three-level caching architecture for a web search engine (re-
sults+intersections+posting lists). The cache is disk-based (about 20% of the
total index space) and the main idea is to save processing cost for high co-
occurrent pairs of terms. They apply a greedy algorithm to select which items
to store in cache, and then evaluate a landlord-based policy. In a more re-
cent work, Ozcan et al. [Ozcan et al (2012)] introduce a 5-level static caching
architecture.

Further studies regarding cost-aware intersection caching are presented in
[Feuerstein and Tolosa (2013)] and [Feuerstein and Tolosa (2014)]. Basically,
these works focus on two different scenarios: with the inverted index residing

Integrated Cache of Lists+Intersections 7

on disk and in main memory. The authors also propose and evaluate different
query resolution strategies specially designed to take advantage of the Inter-
section Cache and explore both static, dynamic and hybrid policies.

2.4 Posting List Compression

Efficient access to the lists data structure is a key aspect for a search system,
mainly when the index resides in hard disk. Many compression techniques
have been developed and evaluated to deal with long lists of integers that
represent the document identifiers and complementary information associated
with each term. For example, classic techniques such us Variable-Byte En-
coding [Williams and Zobel (1999)] and Simple 9 [Anh and Moffat (2005)] or
PForDelta [Zukowski et al (2006)] and its optimized versions are commonly
used.

In [Zhang et al (2008)] the authors explore the combination of inverted
index compression and list caching to improve search efficiency. They compare
several inverted list compression algorithms and list caching policies separately
and finally study the benefits of combining both, exploring how this benefit
depends on hardware parameters (i.e. disk transfer rate and CPU speed).

In [Catena et al (2014)] the authors analyze the performance of modern
integer compression schemes across different types of posting information (doc-
ument identifiers, frequencies and positions). They analyze the space and time
efficiency of the search engine compressing different types of posting informa-
tion. They show that the simple Frame of Reference [Goldstein et al (1998)]
codec achieves the best query response times in all the cases, slightly outper-
forming PForDelta.

3 Preliminaries

In the sequel we provide the background about the data structures and algo-
rithms used to solve a query in a distributed search system. We also provide
the details of the datasets used in the subsequent studies and the evaluation of
the proposed algorithms. In general, we consider a query q = {t1,t2,t3,...,tn}
as a set of terms that represents the users information need, expressed as the
intersection (] ¢;, where ¢; corresponds to the posting list of term ¢;.

3.1 Background

Inverted Indexes: The main data structure used in information retrieval
systems is the inverted index. This data structure enables full-text indexing
and retrieval using free text queries and phrases [Zobel and Moffat (2006)].
Basically, it contains the set of all unique terms in the document collection
(vocabulary) associated to a set of entries that form a posting list. Each entry
represents the occurrence of a term ¢ within a document d. Usually, a posting

8 Gabriel Tolosa et al.

is composed by a document identifier (DocID) and a payload that is used
to store information about the occurrence of ¢ within d (frequency, positions,
etc.). Each posting list is sorted in increasing order of DocID or score according
to different solving strategies. As we observed, the inverted index is usually
stored in compressed form.

Gap encoding (DGap) is used when the lists are sorted by DocID, [Witten
et al (1999)]. This basically works as follows: the first document identifier is
represented as it is, whereas the remaining identifiers are represented as the dif-
ference with the previous one. For instance: let ¢; = {22, 28,48, 49, 50,51, 52,67},
its DGap’ed version becomes ¢; = {22,6,20,1,1,1,1,5}. This representation
is particularly useful because the compression methods benefit from sequences
of small integers because they may be represented more compactly (i.e., us-
ing short codes). Often, inverted lists are logically divided into blocks (i.e.
128 DGaps each) and skip lists are used [Melink et al (2001)] to speed up
its traversal when searching for a particular DocID. This enables the decom-
pression of only those blocks that are relevant to a particular search. There
is a considerable body of literature on index construction ([Baeza-Yates and
Ribeiro-Neto (2011), Witten et al (1999), Zobel and Moffat (2006)]).

Query Processing: The processing of queries in a distributed search system
as shown in Figure 1 is usually done as follows [Cambazoglu et al (2010)]. First
the broker machine receives the queries and looks for it in its result cache; if
the result is found the answer is immediately returned to the user with no
extra computational cost; otherwise, the query is sent to the search nodes
in the cluster where a distributed version of the inverted index resides. Each
search node fetches the posting lists of the query terms (from disk or cache),
orders them in ascending order of their lengths, executes the intersection of the
lists and finally ranks the resulting set. After that, a list containing the top-k
document-identifiers is sent to the broker which merges it with the lists of other
nodes to obtain the final answer. Loading lists from disk is a time consuming
task that is critically important for the scalability of the system because of disk
accesses (partially affected by the size of the document collection). To mitigate
this situation different cache levels are used to reduce disk costs. This phase
is the focus of our work, where the proposed integrated cache may be used to
improve performance.

A second phase of the computational process consists typically of taking,
at the broker level, the top ranked answers to make the final result page. This
is composed of titles, snippets and URL information for each resulting item.
As the result page is typically made of 10 documents the cost of the processing
may be considered constant.

To solve a query there exist two main strategies, namely Term-at-a-time
(TAAT) and Document-at-a-time (DAAT) [Turtle and Flood (1995)]. In the
TAAT approach, the posting lists of the query terms are sequentially evaluated,
starting from the shortest to the longest one. On the other hand, in the DAAT
approach the posting lists are traversed in parallel for each document and
only the current k-th best candidates are maintained in memory. The Max

Integrated Cache of Lists+Intersections 9

Successor algorithm [Culpepper and Moffat (2007)] is an efficient strategy for
DAAT processing while the WAND strategy [Broder et al (2003)] is a dynamic
pruning approach that allows fast query processing for both conjunctive and
disjunctive queries.

However, the use of an Intersection Cache enables other possibilities such
as the S4 strategy introduced in [Feuerstein and Tolosa (2014)]. This basically
tests all the possible two-term combinations in the cache in order to maximize
the chance of a hit and rewrites the query according to this result. Concretely,
this strategy works as follows:

1. The query is first decomposed in all possible two-term combinations (or
intersections, I;;).

2. Allintersections I;; that are present in the cache are assigned to a candidate-
set, C.

3. C is sorted according to the size of the intersections, from shortest to
longest (C).

4. A new query is built by picking first the intersections from C.

5. The remaining terms (those that are not found in any cached intersection)
are added to the query.

Each time a query is evaluated we need to check (Z) candidate pairs. How-

ever, the distribution of the number of terms in a query shows that 95% have
up to 5 terms, so the computational cost overhead incurred doing this (across
all the queries in the log) becomes negligible.

As an example consider the query ¢ = {t1,¢2,t3,t4} and suppose that
(taNt3), (t3Nty) are cached intersections. We set A < (t2Nt3) and B +
(t3 Nty) and rewrite the query as (A N B) Nty which only needs to fetch and
intersect the posting list of ¢1. It is shown that the S4 strategy allows a per-
formance improvement up to 30% combining it with cost aware cache policies.

3.2 Datasets

We use real datasets of documents and queries to carry out the corresponding
analysis of compression performance, establish baselines, populate the cache
and evaluate our proposal. We select two different document collections with
different characteristics: the first one is a subset of a large crawl of the UK
web obtained by Yahoo! in 2005. The second collection is a crawl derived from
the Stanford WebBase Project! [Hirai et al (2000)]. We select a rather recent
sample (March, 2013), bigger that the previous collection. In the following
we refer to these collections as UK and WB respectively. Table 1 summarizes
collection statistics.

We use the AOL Query Log [Pass et al (2006)] that contains around 20
million queries. All queries are processed using standard approaches: terms
are converted to lower case, stopwords are not eliminated and no stemming
algorithm is applied. Besides, we eliminate all queries that do not match the

1 http://dbpubs.stanford.edu:8091/testbed/doc2/WebBase/

10

Gabriel Tolosa et al.

. Size | Index Size

Dataset | Documents | Total Terms | Unique Terms GB GB
UK 1,479,139 834,510,076 6,493,453 29.1 2.1
WB 7,774,632 9,143,511,516 110,838,794 | 241.0 23.0

Table 1: Collection Statistics. “Size” corresponds to the uncompressed documents in
HTML format.

vocabulary of each document collection. From the resulting query-set we se-
lect a subset of 6M queries to compute statistics and around 2.7M queries as
the test set (AOL-1). Table 2 summarizes query-log statistics. Then, we filter
the file keeping only unique queries. This allows to isolate the effect of the
Result Cache simulating that it captures all query repetitions (in the case of
having a cache of infinite size), thus giving a lower bound on the performance
improvement due to our cache. This second test file is about 800K queries
(AOL-2).

Queries Pairs
Total Unique Total Unique
11,972,277 | 5,722,691 | 42,301,175 | 10,011,656

Table 2: Number of total and unique queries and pairs in the query log.

This dataset has the benefits of being publicly available (and widely used)
and corresponds to real user queries but the indexed collections do not belong
to the same data source. However, the UK collection is contemporary with
the query log (it was crawled in 2005 while the AOL Query log was released
in 2006). Besides, we try to improve the coherence between documents and
queries by eliminating all queries that do not match the vocabulary of each
document collection. This data setup is appropriate to assess efficiency (see
[Webber and Moffat (2005)].

4 Integrated Cache

In [Lam et al (2009)] the authors propose the paired data representation to
design an integrated cache that behaves as list and intersection cache at the
same time. The authors propose an index compression technique based on
pairing posting lists of frequently co-occurring terms obtaining a new paired list
in the inverted index, thus obtaining a compact representation that may reduce
query processing time. This data structure is introduced as a compression
technique for inverted indexes combined with Gamma Coding and Variable
Byte Coding [Baeza-Yates and Ribeiro-Neto (2011)] schemes.

Our main contribution is to extend the approach to an integrated cache
of both lists and intersections. We use the “Separated Union” (SU) [Lam
et al (2009)] representation to maintain an in-memory data structure, which

Integrated Cache of Lists+Intersections 11

replaces both the list and intersection caches. Regarding space savings, the
main idea is to keep in cache those pairs of terms that maximize the hit
ratio of the List Cache and the savings of the most valuable precomputed
intersections. We also avoid the repetition of single term lists when these can
be reconstructed using information held in previous entries. This leads to extra
space savings and a more efficient use of memory, at the expense of some extra
computational cost.

This caching scheme is particularly useful in the case of retrieval systems
that store only a fraction of the inverted index in main memory (according
to the available computing resources), leaving the remaining portion in sec-
ondary storage. Under this consideration, both List and Intersection Caches
are helpful to reduce disk access latencies and processing time, so we move
a step forward by combining them with the main goal of using the memory
space in a more efficient way. However, the success of the Integrated Cache
relies on good strategies to select and combine individual terms that help to
save memory space while using good terms (according to some metric, such as
their individual access frequency). The methods we propose to select the term-
pairs to populate the cache work under these considerations. We are going to
introduce them in short.

Keys (pairs of terms) Integrated Lists
Lt te - b — () 2) l— (61 £2) (1) £2)
2| tsta - £y — (3(la) | €a— (£3()La) (€3 £a)
3| ti,ts - e l5 — (01 ¢s) (1 s)
4| t3,ts - e |e| N

Fig. 2: Data Structure used for the Integrated Cache.

Before presenting the details of the data structure we illustrate the idea
with an example. Figure 2 shows the SU data representation (entries 1 and 2)
and the improvements we propose (entries 3 and 4). Let’s assume ¢; represents
the inverted list of ¢;. Line 1 shows the entry for terms t; and ts; the line
contains the DocIDs for the first term only (€1 —(¢1 () ¢2)), then the postings of
the second term only (¢o—(¢1 () ¢2)), and, finally, the last area with the postings
common to both terms (i.e. the intersection (¢;()¢2)). Line 2 is analogous
for terms t3 and t4. Note that obtaining the posting list of any single term
requires an extra computational cost for merging lists of the entry; however
this is cheaper than loading it from disk.

12 Gabriel Tolosa et al.

Line 3 shows the entry that contains a previously cached term, 1, (that
already appears in the first intersection). To reduce the memory requirement
of the line we avoid the repetition of part of the postings; namely, we propose
to reconstruct the full posting list of ¢; from the first entry and include in
the entry a redirection (©). All redirections are kept in a simple lookup table
whose structure consists of (¢; — (pair)) and can be accessed in O(1) time
using a hash function. This table is created while filling the static cache during
the initialization step, using Algorithm 1. At running time, it is possible to
test the cache looking for a pair (¢;,t;) or a single term (¢;) using Algorithm
2. If we want to cache a single term, lets say ¢1, the list is completely stored
in the first area and the remaining two are kept empty (t; — [¢1]|®|d|).

Algorithm 1: Insert item in cache

Input: IC: Integrated Cache, (t1,t2): Key (pair of terms), L (posting lists), RT:
Redirection table
Output: IC: Integrated Cache, RT: Redirection table
pair < (t1,t2)
IC{pair} < L
if (lexists(RT, t1)) then
| RT{t1} < (pair)
end
if (lewists(RT, t2)) then
| RT{t2} < (pair)
end
return IC, RT;;

The proposed data structure replaces both the intersection and posting list
caches at the search node level. It is initially intended to support conjunctive
(AND) queries but it also enables the possibility of solving disjunctive queries
(OR) by simply joining the corresponding posting lists. For instance, to solve
the query ¢ = {t1,t2,t3} in disjunctive way (using the same data shown in
Figure 2) it is sufficient to join the lists of ¢; and ¢ (line 1) with the list of
ts (line 2). Clearly, if one of the lists is not present in the cache, it must be
fetched from disk.

The query resolution strategy first decomposes the query in pairs of terms.
Each pair is checked in the Integrated Cache and the final resolution order is
given by first considering the pairs that are present in the cache and afterwards
intersecting them with the remaining ones. “Separate” terms (i.e. terms that
are not present in any pair in the cache) are also checked in the Integrated
Cache as a single term using the redirection table.

For example, given a query g = {t1,t3,t4, %6}, their corresponding posting
lists (¢;) and the configuration of the Intersection Cache as shown in Figure
2, the query is solved in the following way:

1. The pairs are checked in cache and the final resolution order becomes:

(s La) N £2) N o)-

2. The intersection (¢3()¢4) is recovered from cache.

Integrated Cache of Lists+Intersections 13

3. The posting list of ¢; is recovered from the first entry of the cache using
the redirection table (working as a posting list cache).
4. The posting list of tg is recovered from disk.

Algorithm 2: Test item in cache

Input: /C: Integrated Cache, RT: Redirection table, p: search pattern (p = (¢;,t;)
when looking for an intersection or p = t; in the case of a single term)
Output: List 7: The results list (if p is found in cache) or [] (otherwise)

r=;
if (isPair(p)) then
if (found(IC, p)) then
| IC{p}(4: () €5)]
end
else
if (found(RT, p)) then
(tz,ty) < (RT{p})
if (p ==tz) then
|7 IOt)} \ (G U IO (s)} (2 (6]
else
| 1O{(ta,)} \ (e DU TC (s) H (e ()]

end

end
end
return r;

Starting from (3), the corresponding list is intersected with the resulting
one of the previous step. In this example, ¢; incurs in the cost of joining the
contents of the first and third areas ((¢1 —(¢1 () ¢2)) and (¢1 () £2), respectively)
of the first entry in the integrated cache to reconstruct its full posting list.
Finally, only term g incurs in disk access cost.

4.1 Compressing the Integrated Cache

In the standard inverted index postings lists are represented separately while
in the Integrated Cache representation postings lists are paired? in each entry.
This leads to some differences which affect the compression ratio when com-
pressing the data structure. As we observed, DGap encoding is usually used
to represent posting lists because this compression techniques is effective in
compressing lists of relatively small integers.

In the case of the Integrated Cache the original sequence is modified as
shown in the following example. Let ¢; = {10,11,12,13,15,18} and ¢; =
{11,15,21,23} be the posting lists of terms ¢; and ¢; respectively. In the case of

2 The framework also supports the representation of three-term intersections at the ex-
pense of that structure of the integrated lists becomes more complex.

14 Gabriel Tolosa et al.

an inverted index, the DGap’ed representation becomes: ¢; = {10,1,1,1,2, 3}
and ¢; = {11,4,6,2} which are then compressed. However, the Integrated rep-
resentation of a pair of terms (¢;,t;) is as follows:

(¢
(4;
(4

and its DGap’ed version (t;,t;)" becomes:

\ £;) = {10,12,13,18}
\ 4;) = {21,23}
N¢;) = {11,15}

K2

(4 \ ¢;) ={10,2,1,5}
(6 \ 6:)" = {21, 2}
(6i(14;)" = {11,4}

The comparison of both representations shows that ¢, and E; can be bet-
ter compressed using DGaps because these lists contain smaller values than
(tia tj)I'

In order to get a better understanding of this effect, we index the WB
dataset and compute the DGap distribution of both standard compressed post-
ing lists and the integrated (also compressed) representation. In this analysis,
we fill up the Integrated Cache according to a competitive strategy used to
select useful pairs of terms (in the next section we describe this approach in
detail). Figure 3 plots the distribution of DGap values of both representations.
Both series of data follow a power-law distribution f(x) = Cx~# with param-
eter f = 1.34 and 8 = 2.17 for lists and integrated respectively. In the figure,
we can observe that DGap’ed lists have more runs of 1’s (and lower values)
than integrated ones.

10 T T

‘ i 5 i i +++ Integrated
1080 e . o . . 1
' : : i i ese |ists

Frequency
=
o
T

i
10° 10
DGap

Fig. 3: DGap value distributions for the Integrated and standard Posting Lists

Integrated Cache of Lists+Intersections 15

However, the performance comparison of the two proposals requires to
analyze the compression ratios in both cases. Let ¢; denote the posting list
of term ¢; and I;; an entry in the Integrated cache that represents the pair
x = (t;,t;). Recall that this representation becomes:

Lij =L — (L) Ul — (G N4) UGN E)

Then, we denote their compressed forms as C(¢;) and C(I;;) respectively.
To compare the space used for each representation we use the ratio:

|C(1i;)]
C@N + 106 M

When §, < 1, compressing the Integrated entry is more space-efficient
than compressing the posting lists separately. Otherwise, it uses more space
than the sum of both compressed lists. We should keep in mind that the
Integrated representation stores a precomputed intersection between the terms
that may be still highly useful to save computation time. It is quite clear
that the Integrated representation is more space-efficient when the intersection
(¢; N 4;) is bigger.

However, there is a drawback when compressing I;;. The split of each list
¢; in two pieces (¢; — (¢;()¢;)) and (¢;()¢;) separates sometimes consecutive
DoclDs, leading to shorter runs of 1’s in the DGap representation. As a result
of this split, C'(I;;) gets a lower compression ratio than (C(¢;) + C(¢;)) in
some cases. Therefore, we analyze the ¢ ratio as a function of the size of the
“Intersection Size” (IS) ratio defined as:

144
I8;; = AL
REEIZ]

For each pair of terms in the dataset we compute both I1.S;; and ¢ ratios.
Figure 4 shows the results. Values of 6, > 1 correspond to a worse compression
rate of the integrated representation with respect to the compression of the
separated lists. Looking in detail those values we find that 97% of them occur
when the I.S;; ratio is smaller than 0.15. This means that when I.S;; > 0.15,
the integrated representation is still more space-efficient than the compression
of the lists (¢; and ¢;). This observation shows that the size of the intersection
is a good criterion to select pairs of terms to insert into the Integrated cache
(the bigger ¢;(¢; > 0.15, the better).

We also compute the efficiency in the space usage for the Integrated Cache
with respect to the separated posting lists in both uncompressed and com-
pressed representations. To this aim, we join the top-m posting lists in different
groups (where m grows in powers of 10) according to competitive strategies
(as we previously mentioned) and sum the length of the standard (separated)
posting lists (|¢; + £;]) and the integrated representation (|Iij|) respectively.
Finally, we calculated the ratio between both. Table 3 shows the uncompressed
representations. The entries in the table show that the Integrated Cache makes
better use of the space (that decreases according to the downsizing of the I.5;;

0p =

(2)

16 Gabriel Tolosa et al.

ratio). The compressed versions of both representations show a similar be-
haviour (Table 4). However, the ratio is slightly worse in this case due to the
lower compression performance of the integrated representation (C(I;;)) as a
consequence of the DGap value distribution (described above). The perfor-
mance of compressing individual lists is about 8.8% better (on average) than
the compression of the Integrated Cache.

of entries Z [4;] + |45] Z |T;5] ratio
10 9.797.866 5.060.928 0.5165

100 44.227.078 23.899.513 0.5404

1.000 143.357.823 108.769.302 0.7587
10.000 457.975.054 404.064.223 0.8823
100.000 706.712.370 653.568.221 0.9248

Table 3: Sum of posting lists lengths for the uncompressed representation. For different
groups of the top-k lists we show the sum of the lengths of: a) individual lists, b) the
integrated representation and, c) the corresponding ratio.

of entries Z Cle;| + Cle;) Z |C(Lij)] ratio
10 720.395 409.170 0.5680

100 4.570.464 2.685.710 0.5876

1.000 19.833.629 16.817.892 0.8479
10.000 81.141.977 77.938.818 0.9605
100.000 133.297.699 129.155.629 0.9689

Table 4: Sum of posting lists lengths for the compressed representation. For different
groups of the top-k lists we show the sum of the lengths of: a) individual lists, b) the
integrated representation and, c) the corresponding ratio.

The implementation of the uncompressed version of the Integrated Cache
reserves eight bytes for each posting in the pure terms area (DocID and fre-
quency uses four bytes each) while the intersection area requires twelve bytes
because it stores the frequencies of both terms. DocIDs and frequencies are
stored separately to favor the compression process. This allows us to select
different compression codecs for each type of data.

5 Selecting Term Pairs

In this section we describe different approaches used to select the pairs of terms
to fill up the cache. We propose a static posting list cache populated with those
lists that maximize a particular function. We consider the Q¢¢Dy algorithm
[Baeza-Yates et al (2007)] that is one of the best algorithm for maximizing hit
rate and a variant of it in which each postings list is weighted according to
the f(t;) x |¢;] product. In this expression, f(t;) is the raw frequency of term
t; in a query log training set and |¢;| is the length of the posting list of term
t; in the reference collection. Hereafter, we refer to this metric as FxS.

Integrated Cache of Lists+Intersections 17

12 ! ! ‘ !
+ : : :
: : | feee a2
L1f o B o T : o o o o 671’

1.0

0.9 :-:.'. e '. P

d ratio

L S S R

L L e

i i
0.0 0.1 0.2 0.3 0.4 0.5
Intersection size ratio

Fig. 4: Integrated cache compression performance: J, ratio scatter plot. x-axis in log scale
to get a clearer view.

We consider several strategies to select the “best” intersections (bigrams)
to keep in cache. According to the analysis introduced in the previous section
the “best” intersections to populate the cache are those that maximize the
size of the intersection ¢; () ¢;. We also consider the FxS product that weight
each posting list in the baseline method.

5.1 Greedy Methods

We first consider a simple approach that orders posting lists according to their
FxS products (base list) and then merges lists by pairing together consecutive
term pairs as (15¢,274) (374, 4th) . ((n — 1) n'h). The construction time
of this method is O(n) because it requires a single scan through the list of
terms. We refer to this method as PfBT-seq. Note that this approach groups
terms considering their individual FxS products, that becomes a cost effective
approach, but it does not take into account the size of their intersections.

The second approach (PfBT-quad) computes the intersection of each pos-
sible bigram and then selects the pairs that maximize |¢; ()t;| without repeti-
tions of terms.

As this algorithm is time consuming (O(n?)), we run it considering only
sub-groups of lists that we estimate to fit in cache (according to their size).
This approach works as follows: given a cache of size B we pick a number of
lists from the base list (FxS, sorted in decreasing order) such that their total
size exceeds B (3 |¢;| > B) and compute PfBT-quad on this set to reduce the
number of combinations to work on. For example, 1GB cache holds roughly
1000 individual lists for a given collection. So, we compute the top-500 pairs
according to the size of their intersection (the bigger, the better) and then, if

18 Gabriel Tolosa et al.

there is still remaining space, we fill it with pairs picked sequentially (using
the same criteria as in PfBT-seq).

The third approach (named PfBT-win) is a particular case of the previous
one that tries to maximize the space saving among a group of posting lists.
It sets a window of w terms (instead of all terms) selected from the base list
and computes the intersection of each possible pair. The intention behind this
approach is to bound the computational cost required to get the best candidate
term pairs. Finally, it selects the definitive term pairs using the same criterion
as before.

The last greedy approach we propose, is one that chooses the pairs of
terms that maximize the value w;; = |€;({;] x f(ti,t;), where f(¢;,¢;) is
the frequency of the pair (¢;,¢;) in the query log. This approach offers two
differences with regard to the previous ones: On one hand, it weights each pair
considering its historical frequency. On the other hand, it allows that some
terms may be repeated in different pairs (e.g. term ¢5 in line 3 of Fig. 2).
However, the redirection strategy in the implementation of the Integrated
Cache avoids the use of extra space in the memory. This last greedy approach
is named PfBT-greedy-sf.

5.2 Term Pairing as a Matching Problem

The fifth approach (PfBT-mwm-is) considers the term pairing as an optimiza-
tion problem, reducing it to the Maximum Weighted Matching (MWM). We
formalize the problem as follows: Let G(T, E) be a graph with vertex set the
set T of terms and such that, for every t;,t; € T', there is edge e;; € E exists
with weight [¢; (¢t;| if and only if |¢;(t;| > 0. We cache the pairs of terms
corresponding to edges of the maximum weighted matching in G.

Following the same idea than before (PfBT-quad), we compute the match-
ing considering only sub-groups of lists that we estimate to fit in cache (ac-
cording to their size), by picking a number of lists from the baseline (FxS)
whose total size exceeds the considered cache size B (3 |¢;| > B). Using this
strategy the matching is computed on a subset of a priori good lists (accord-
ing to their FxS product). In our experiments we use the matching algorithm
proposed by Edmonds [Edmonds (1965)] for general graphs. This is an exact
algorithm that runs in O(n?) time; however the size of our graphs (thousands
of vertices) makes it computationally tractable. The algorithm is executed of-
fline: the solution gives the set of pairs of terms that are used to populate the
static cache.

This approach is similar to that proposed in [Lam et al (2009)] but we
apply a slightly different weighting criteria. While in that work the weight e;;
measures the benefit of pairing two terms (in number of bits) and considering
the encoding method used for representing the lists, we directly define the
weight as the size of the intersection |¢; ()t;].

We also consider a variation of the previous MWM approach using the
same objective function as the PfBT-greedy-sf approach. That is, the weight

Integrated Cache of Lists+Intersections 19

of each edge of the graph is here w;; = |€;(¢;| x f(ti,t;), where f(t;,t;) is
the frequency of the pair (¢;,¢;) in the query log. We name this last approach
PfBT-mwm-sf.

6 Experimental setup

We use Zettair® to index the collections and to obtain real fetching times of
the posting lists. The size of the (compressed) index for the UK collection is
about 1.8 GB, which grows up to 23 GB for WB. Zettair compresses post-
ing lists using a variable-byte scheme with a B+4Tree structure to handle the
vocabulary.

As we mentioned before, the Integrated Cache reserves eight bytes for each
posting in the pure terms area (DoclID and frequency use four bytes each) while
the intersection area requires twelve bytes because it stores the frequencies
of both terms (DocIDs and frequencies are stored separately). In this case,
we compress each part of the Integrated Cache in two steps using different
codecs: by one hand, DoclIDs are compressed using the PForDelta codec while
frequencies are compressed using variable-byte encoding, as in Zettair. This
process requires to add pointers to the beginning of each compressed part to
allow the reconstruction of the original lists.

We use the cost estimation methodology introduced in [Feuerstein and
Tolosa (2013)] to evaluate the cost of solving a set of queries. In this experi-
ments, we consider conjunctive (AND) queries. The cost of processing a query
in a node is modeled in terms of disk fetch and CPU times: Cy = Cgisk + Cepu-
The first parameter, Cy;si, is calculated fetching all the terms from disk us-
ing Zettair (we retrieve the whole posting list and measure the corresponding
fetching time). To compute C,p, we run a list intersection benchmark using
the well-known Zipper algorithm. It scans both lists as in a binary merging
operation to solve the intersection and runs in O(n + m) time. As we studied
the effects of DGap encoding and compression ratio in the Integrated Cache
we decided to use the mentioned algorithm because it harmonizes well with
the two techniques.

To validate this methodology we run a comparison against a real system
implemented on the top of the Zettair search engine, using a posting list cache
and a small sample of 100.000 queries. The results lead to differences around
2.5% on average between the simulation and the real system and the correla-
tion is R? = 0.9991 which we consider acceptable. The results are shown in
Figure 5.

We provide a simulation-based evaluation of the proposal using both doc-
ument collections. The total amount of memory reserved for the cache ranges
from 100MB to 1GB for the UK data set, and from 100MB to 16GB for the
WB data set. A cache of 16 GB stores about 60% and 70% of the indexes re-
spectively. For each query we log the total costs incurred using a static version

3 http://www.seg.rmit.edu.au/zettair/

20 Gabriel Tolosa et al.

1.0 1 1 T 1 1 1 ‘ u
: e—e Real system
0.9 - e B : | m—a Our model H

0.8

0.7

0.6

0.5

Cost (Normalized)

(o S
03F i

0.2

1 ; ; i ; ; | ; i
100 200 300 400 500 600 700 800 900 1000
Cache Size (MB)

Fig. 5: Comparison between the simulation methodology and a real system

of the List Cache, filling it with the most valuable posting lists and the four
proposed methods to fill data using Integrated Cache; in both case we use the
FxS metric for comparison. We set w = 10 for the PfBT-win method.

It is important to note that we do not use the cache hit-ratio as an evalua-
tion metric because of the intrinsic nature of the S4 strategy that prevents how
to establish the correct relationship between hits and misses, thus modeling
the accurate behaviour of the cache. Finally, we normalize the final costs with
respect to the highest one to get a clearer comparison.

7 Results
7.1 Integrated Cache with uncompressed data

We compared all approaches using the two document collections and the two
query sets. For the AOL-1 query set we test all the approaches against the
baseline, the standard posting list cache sorted according the FxS score. In
our setup, experimental evidence shows that FxS outperforms @Q.rDy when
measuring cost (instead of hit-rate). All evaluated strategies outperform the
baseline and the best strategy is PIBT-mwm-sf. This improvements increase
up to 55% and 66% for the UK (Figure 6) and WB (Figure 7) collections,
respectively. The greedy method PfBT-greedy-sf performs efficiently for cache
sizes up to 4 GB (WB collection) with an average improvement close to 30%.

Integrated Cache of Lists+Intersections 21

10 . : : :
: List cache (FxS)
PfBT-seq
o8l e . . : ; PfBT-win |
PfBT-quad
PfBT-greedy-sf
Tos| 1
©
E
S
£ :
?04f 0 - e ;
o
[}
0.2 I o v : o .1"*‘*«‘1; o -
0.0 L L 1 L L L L L
100 200 300 400 500 600 700 800 900 1000
Cache Size
1.0 T T

T
List cache (FxS)
PfBT-mwm-is
PfBT-mwm-sf

Cost (normalized)

0.0 i i H i i i i i
100 200 300 400 500 600 700 800 900 1000

Cache Size

Fig. 6: Performance of the different approaches using the the AOL-1 query set and the UK
collection: greedy methods (top) and MM-based (bottom).

22 Gabriel Tolosa et al.

10

T T
List cache (FxS)

PfBT-seq
0.8 SRS S - PfBT-win

PfBT-quad
PfBT-greedy-sf

g 0.6

©

E

S

£

% 0.4

o

[}

0.2

~p—
0.0 L L L L L L T
0 2000 4000 6000 8000 10000 12000 14000 16000
Cache Size
1.0

T T
List cache (FxS)
H PfBT-mwm-is
0.8 . B R . PfBT-mwm-sf

0.6

0.4

Cost (normalized)

020 i]

0.0

i i H i i ; -
0 2000 4000 6000 8000 10000 12000 14000 16000
Cache Size

Fig. 7: Performance of the different approaches using the the AOL-1 query set and the WB
collection: greedy methods (top) and MM-based (bottom).

Integrated Cache of Lists+Intersections 23

We complement the analysis comparing average query times for the base-
line method with respect to the greedy approach that obtains the peak per-
formance improvement (PfBT-greedy-sf) and the best maching-based method
(PBT-mwm-sf), using the WB collection and four cache sizes. Figure 8 shows
the results. The best method reduces both average query time and time dis-
persion in all cases, while the greedy method becomes efficient up to a cache
size 4GB and gets a worse performance for bigger ones, as shown in Figure 7.

10 . Cache size: 1 GB . 10 : Cache size: 4 GB
} J
I
I
I
| ' 1 | ! !
0.8 ! | ' 0.8 ' i !
I
I
i
i i
i ' i | ! !
06 | ! 0.6 I i
” I I ” i
8 8 | !
g g I
] s I h
8 8 i I
& I ! & M I !
0.4 ' ' ' 0.4 ' ! !
! ! ! i ! i
! I ! |
i ! i I ! i
| ! | i I I
' ' I i
) Q g 0‘2 Q Q Q:
0.0 0.0
FxS PfBT-greedy-sf PBT-mwm.sf FxS PfBT-greedy-sf PABT-mwm.sf
10 Cache size: 8 GB 10 Cache size: 16 GB
. T - T T T
I I i
i I
I
: | I I |
0.8 ' ! ' 0.8 ' ' '
' | I | |
I
! |
i I i ! |
06 | | N 0.6 I |
w ' v I
H ' ‘ H ! 1
s ' ' s I I |
3 ' I 8 i I I
' i
0.4 : ' : 0.4 H :
] ' | i i
I ! ! i
] I ! i I
]] ! i I
0.2 ' ! 0.2 | !
| I
I
0.0 0.0 El
FxS PfBT-greedy-sf PBT-mwm-sf FxS PABT-greedy-sf PIBT-mwm-sf

Fig. 8: Average query times for baseline, best greedy and best matching-based methods
using the WB collection, the AOL-1 query log and four cache sizes.

In the same experiment, we analyze the impact of the Integrated Cache in a
separate way, that is, when requesting intersections or individual terms to the
cache. We found that 97% of cache hits corresponds to individual terms while
the remaining 3% corresponds to intersections. This is not surprising because
the algorithms used to select the pairs to populate the cache joins terms
that maximize the length of their intersection to optimize the cache memory
occupancy. However, 94% of the total cost saved due to cache hits corresponds
to individual terms while the remaining 6% is given by hits in intersections.
This is an interesting result that reinforces the idea that measuring only cache
hits do not necessarily reflects the impact of caching in the total cost savings.
So, the Integrated Cache not only offers the advantages of a traditional List
Cache, but adds extra savings working as an Intersection Cache, as well.

In a second experiment we used the dataset of unique queries (AOL-2) and
the best strategy obtained from the previous test (PfBT-mwm-sf). Improve-

24 Gabriel Tolosa et al.

ments range from 7% up to 22% for the UK collection. The behavior is again
different for the WB collection. For smaller cache sizes, the performance is
worse (or just slightly better) up to 1GB cache and it increases up to 30% in
the best case (16GB). This is because this collection has longer posting lists
and only a few are loaded in smaller caches. These results are shown in Fig. 9.

1.0 T T T T T T T T
: List cache (FxS)
PfBT-mwm-is
08l PfBT-mwm-sf ||
PfBT-greedy-sf
T 06
©
E
[=]
£
7 0.4
[=]
[§)
0.2
0.0 L L 1 L L L L L
100 200 300 400 500 600 700 800 900 1000
Cache size
1.0 T T
List cache (FxS)
; PfBT-mwm-is
0.8 R A N i PfBT-mwm-sf ||
! ; PfBT-greedy-sf
_ |l
T o6
©
E
o
£
B 0.4 o
o \
(] \
A
02l -.--\N‘#;' 2
——
0.0 L L i L I i T
0 2000 4000 6000 8000 10000 12000 14000 16000
Cache Size

Fig. 9: Performance of the best approaches using the the AOL-2 query set for the UK
collection (top) and WB collection (bottom).

Integrated Cache of Lists+Intersections 25

7.2 Integrated Cache with compressed data

Compression techniques are used to reduce the size of each inverted list thus
enabling the possibility of storing more data in memory. For this reason we
evaluate the performance of our method when inverted lists are compressed.
In this case we compare the baseline method (FxS) against three methods
for selecting term pairs: the best greedy algorithm and the two MM-based
approaches.

In these experiments we used the WB collection which contains longer
posting lists than UK that may still require lots of space in the cache when
compressed. Figure 10 (top) shows the results for the AOL-1 query set. The
best strategy in this case becomes PfBT-mwm-sf with improvements up to
70% in the best case (cache sizes between 800 MB and 1GB). PfBT-greedy-sf
is also much better than the baseline but worse than PfBT-mwm-is for cache
sizes greater than 2 GB.

In the case of the second query set (AOL-2) the behaviour is different
(Figure 10, bottom). The best strategy is PfBT-mwm-is in all cases (up to 57%
better than the baseline). The second strategy PfBT-mwm-fs only outperforms
the baseline for cache sizes greater than 800 MB, while the PfBT-greedy-sf do
not perform well (on average).

7.3 Integrated Cache and Result Cache

To obtain a complete evaluation of the effectiveness of Integrated Cache we
consider another set of experiments in which the Integrated Cache is combined
with a Result Cache. For this reason we add a dynamic LRU-based Result
Cache to our simulation framework. LRU is a popular recency-based approach
that chooses the least recently used items for replacement when the cache is
full and works well in different domains.

In this experiments, we assume a Result Cache of limited size, contrasting
with the experiments that use the filtered AOL-2 query set that simulates a
cache of infinite size. We consider two cache sizes (250K and 500K) for the
experiments and compare the same strategies used in the previous section.
Figure 11 shows the results for cache sizes of 250K and 500K entries.

All the strategies outperform the baseline for the result cache of 250K
entries. Both new strategies that include the frequency of the pair in its ob-
jective function (PfBT-mwm-sf and PfBT-greedy-sf) are the best on average
except for the last case (16GB of cache size) where the simplest approach gets
the better results. According to [Skobeltsyn et al (2008)], more sophisticated
strategies are better when the cache capacity is small, due to the optimized
space usage. However, when the cache capacity is big enough a simpler strat-
egy is still useful because the hit rate of the result cache approaches to its
upper bound.

Although there are some differences in the remaining case (500K entries),
the results show that PfBT-mwm-sf and PfBT-greedy-sf are again the best

26

Gabriel Tolosa et al.

Cost (normalized)

Cost (normalized)

10

0.8

I3
o

o
ES

0.2

0.0

10

: List cache (FxS)
PfBT-mwm-is
PfBT-mwm-sf

PfBT-greedy-sf

i
2000

i
4000

1 —= ;
6000 8000 10000 12000 14000 16000

Cache Size (MB)

List cache (FxS)
PfBT-mwm-is
PfBT-mwm-sf

PfBT-greedy-sf

0.0

2000

4000

6000 8000 10000 12000 14000 16000

Cache Size (MB)

Fig. 10: Performance of the different approaches using compressed data (WB collection)
for AOL-1 (top) and AOL-2 (bottom) query sets.

strategies. The best performance improvement is achieved with an Integrated
Cache of 4GB, achieving an improvement close to 70%. When considering all
the settings and cache sizes, PfBT-mwm-sf becomes the best strategy with
a performance improvement around 49% (averaged over the entire range of

cache sizes).

Integrated Cache of Lists+Intersections

1.0 T r r r
: List cache (FxS)
PfBT-mwm-is
0.8 PfBT-mwm-sf

PfBT-greedy-sf

Cost (normalized)

0.0 L L L L T T
0 2000 4000 6000 8000 10000 12000 14000 16000
Cache Size (MB)

1.0 T T T T
List cache (FxS)
PfBT-mwm-is

0.8 PfBT-mwm-sf ||
PfBT-greedy-sf

0.6

Cost (normalized)

0.0

0 2000 4000 6000 8000 10000 12000 14000 16000
Cache Size (MB)

Fig. 11: Performance of the different approaches using compressed data (WB collection)
and the AOL-1 query set, combined with a Result Cache of 250K entries (top) and 500K
entries (bottom).

28 Gabriel Tolosa et al.

8 Conclusions and Future Work

We have proposed Integrated Cache a method to improve the performance of
a search system using the memory efficiently to store the lists of pairs of terms
based on a paired data structure along with a resolution strategy that takes
advantage of an intersection cache. We consider several heuristics to populate
the cache, including one based on casting the problem as a maximum weighted
matching one. We provide an evaluation of our architecture using two different
document collections and subsets of a real query log considering several sce-
narios. We also represent the data in cache in both raw and compressed forms
and evaluate the differences between them using different configurations of
cache sizes. Besides, we consider the existence of a Result Cache in the archi-
tecture of the search system that filters out a significant number of repeated
queries. The experimental results show that the proposed method outperforms
the standard posting lists cache in most of the cases, taking advantage not only
of the intersection cache but the query resolution strategy too.

Several interesting open problems remain. First, it would be interesting
to extend the approach by considering trigrams and other combinations of
terms. Besides, the evaluation of different compression encoders according to
the distribution of the DocIDs in the integrated representation is an issue
for future work. It would be interesting to model this problem analyzing the
space-time tradeoff. Another interesting open question concerns the design and
implementation of a dynamic version of this cache. Here, the admission and
eviction policies should contemplate not only the terms but also the pairs.

Acknowledgements This work was partially supported by EU-IRSES project EUSACOU
247574, by EU FET project MULTIPLEX 317532 and byUBACyT Project 20020120100058
“Herramientas algoritmicas avanzadas para aplicaciones de buiisqueda en Internet - Parte 2”.

References

Anh VN, Moffat A (2005) Inverted index compression using word-aligned binary codes. Inf
Retr 8(1):151-166

Baeza-Yates R, Ribeiro-Neto B (2011) Modern Information Retrieval: The Concepts and
Technology behind Search, 2nd edn. Addison-Wesley Prof., Inc.

Baeza-Yates R, Gionis A, Junqueira F, Murdock V, Plachouras V, Silvestri F (2007) The
impact of caching on search engines. In: Proc. of the 30th annual Int. Conf. on Research
and Development in Information Retrieval

Barroso LA, Dean J, Holzle U (2003) Web search for a planet: The google cluster architec-
ture. IEEE Micro 23(2):22-28

Broder AZ, Carmel D, Herscovici M, Soffer A, Zien J (2003) Efficient query evaluation using
a two-level retrieval process. In: Proceedings of the Twelfth International Conference on
Information and Knowledge Management, ACM, New York, NY, USA, CIKM ’03, pp
426-434

Cambazoglu BB, Zaragoza H, Chapelle O, Chen J, Liao C, Zheng Z, Degenhardt J (2010)
Early exit optimizations for additive machine learned ranking systems. In: Proc. of the
third ACM Int. Conf. on Web search and data mining

Cao P, Irani S (1997) Cost-aware www proxy caching algorithms. In: Proceedings of
the USENIX Symposium on Internet Technologies and Systems on USENIX Sympo-
sium on Internet Technologies and Systems, USENIX Association, Berkeley, CA, USA,
USITS’97, pp 18-18, URL http://dl.acm.org/citation.cfm?id=1267279.1267297

Integrated Cache of Lists+Intersections 29

Catena M, Macdonald C, Ounis I (2014) On inverted index compression for search engine
efficiency. In: de Rijke M, Kenter T, de Vries A, Zhai C, de Jong F, Radinsky K, Hofmann
K (eds) Advances in Information Retrieval, Lecture Notes in Computer Science, vol 8416,
Springer International Publishing, pp 359-371

Culpepper JS, Moffat A (2007) Compact set representation for information re-
trieval. In: Proc. of the 14th International Conf. on String Processing
and Information Retrieval, Berlin, Heidelberg, SPIRE’07, pp 137-148, URL
http://dl.acm.org/citation.cfm?id=1778666.1778679

Dean J (2009) Challenges in building large-scale information retrieval systems: Invited talk.
In: Proc. of the Second ACM International Conf. on Web Search and Data Mining,
ACM, New York, NY, USA, WSDM 09, pp 1-1

Ding S, Attenberg J, Baeza-Yates R, Suel T (2011) Batch query processing for web search
engines. In: Proc. of the Fourth ACM International Conf. on Web Search and Data
Mining, New York, NY, USA, WSDM 11, pp 137-146

Edmonds J (1965) Maximum matching and a polyhedron with 0,1 vertices. J of Res the
Nat Bureau of Standards 69 B:125-130

Elias P (2006) Universal codeword sets and representations of the integers. IEEE Trans Inf
Theor 21(2):194-203

Fagni T, Perego R, Silvestri F, Orlando S (2006) Boosting the performance of web search
engines: Caching and prefetching query results by exploiting historical usage data. ACM
Trans Inf Syst 24(1):51-78

Feuerstein E, Tolosa G (2013) Analysis of cost-aware policies for intersection caching in
search nodes. In: Proc. of the XXXII Conf. of the Chilean Society of Computer Science,
SCCC’13

Feuerstein E, Tolosa G (2014) Cost-aware intersection caching and processing strategies for
in-memory inverted indexes. In: In Proc. of 11th Workshop on Large-scale and Dis-
tributed Systems for Information Retrieval, New York, LSDS-IR’14

Gan Q, Suel T (2009) Improved techniques for result caching in web search engines. In:
Proc. of the 18th Int. Conf. on World wide web, WWW ’09, pp 431-440

Goldstein J, Ramakrishnan R, Shaft U (1998) Compressing relations and indexes.
In: Proceedings of the Fourteenth International Conference on Data Engineering,
IEEE Computer Society, Washington, DC, USA, ICDE ’98, pp 370-379, URL
http://dl.acm.org/citation.cfm?id=645483.656226

Golomb S (1966) Run-length encodings. In: IEEE Trans Info Theory, vol 12

Hirai J, Raghavan S, Garcia-Molina H, Paepcke A (2000) Webbase: A repository of web
pages. In: Proc. of the 9th International World Wide Web Conf. on Computer Networks,
North-Holland Publishing Co., URL http://dl.acm.org/citation.cfm?id=347319.346288

Jonassen S, Cambazoglu BB, Silvestri F (2012) Prefetching query results and its impact
on search engines. In: Proc. of the 35th Int. Conf. on Research and Development in
Information Retrieval, USA, SIGIR ’12, pp 631-640

Lam HT, Perego R, Quan NT, Silvestri F (2009) Entry pairing in inverted file. In: Proc. of
the 10th International Conf. on Web Information Systems Engineering, Springer-Verlag,
Berlin, Heidelberg, WISE ’09, pp 511-522

Long X, Suel T (2005) Three-level caching for efficient query processing in large web search
engines. In: Proc. of the 14th Int. Conf. on World Wide Web, USA, WWW ’05, pp
257266

Macdonald C, Ounis I, Tonellotto N (2011) Upper-bound approximations for dynamic prun-
ing. ACM Trans Inf Syst 29(4):17:1-17:28

Manning CD, Raghavan P, Schiitze H (2008) Introduction to Information Retrieval. Cam-
bridge University Press, New York, NY, USA

Markatos E (2001) On caching search engine query results. Comput Commun 24(2):137-143

Melink S, Raghavan S, Yang B, Garcia-Molina H (2001) Building a distributed full-text
index for the web. ACM Trans Inf Syst 19(3):217-241

Ozcan R, Altingovde IS, Ulusoy O (2011) Cost-aware strategies for query result caching in
web search engines. ACM Trans Web 5(2):9:1-9:25

Ozcan R, Sengor Altingovde I, Barla Cambazoglu B, Junqueira FP, Ulusoy O (2012) A
five-level static cache architecture for web search engines. Information Processing &
Management 48(5):828-840

30 Gabriel Tolosa et al.

Pass G, Chowdhury A, Torgeson C (2006) A picture of search. In: Proc. of the 1st Interna-
tional Conf. on Scalable Information Systems, ACM, InfoScale '06

Saraiva PC, Silva de Moura E, Ziviani N, Meira W, Fonseca R, Riberio-Neto B (2001) Rank-
preserving two-level caching for scalable search engines. In: Proc. of the 24th annual Int.
Conf. on Research and Development in Information Retrieval, USA, SIGIR ’01, pp 51-58

Skobeltsyn G, Junqueira F, Plachouras V, Baeza-Yates R (2008) Resin: A combination of
results caching and index pruning for high-performance web search engines. In: Pro-
ceedings of the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, ACM, New York, NY, USA, SIGIR 08, pp 131—
138

Tolosa G, Becchetti L, Feuerstein E, Marchetti-Spaccamela A (2014) Performance improve-
ments for search systems using an integrated cache of lists+intersections. In: Proceedings
of the 21st International Symposium on String Processing and Information Retrieval -
Volume 8799, Springer-Verlag New York, Inc., New York, NY, USA, SPIRE 2014, pp
227-235

Turtle H, Flood J (1995) Query evaluation: Strategies and optimizations. Information Pro-
cessing and Management 31(6):831-850

Webber W, Moffat A (2005) In search of reliable retrieval experiments. In: ADCS 2005,
Proceedings of the Tenth Australasian Document Computing Symposium, December
12, 2005, pp 26-33

Williams HE, Zobel J (1999) Compressing integers for fast file access. The Computer Journal
42:193-201

Witten TH, Moffat A, Bell TC (1999) Managing Gigabytes (2Nd Ed.): Compressing and
Indexing Documents and Images. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA

Young NE (1998) On-line file caching. In: Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, SODA ’98, pp 82-85, URL
http://dl.acm.org/citation.cfm?id=314613.314658

Zhang J, Long X, Suel T (2008) Performance of compressed inverted list caching in search
engines. In: Proc. of the 17th Int. Conf. on World Wide Web, USA, WWW ’08, pp
387-396

Zobel J, Moffat A (2006) Inverted files for text search engines. ACM Comput Surv 38(2)

Zukowski M, Heman S, Nes N, Boncz P (2006) Super-scalar ram-cpu cache compression. In:
Proceedings of the 22Nd International Conference on Data Engineering, IEEE Computer
Society, Washington, DC, USA, ICDE ’06, pp 59—

