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ABSTRACT
In this paper we tackle the problem of image search when
the query is a short textual description of the image the user
is looking for. We choose to implement the actual search
process as a similarity search in a visual feature space, by
learning to translate a textual query into a visual representa-
tion. Searching in the visual feature space has the advantage
that any update to the translation model does not require to
reprocess the, typically huge, image collection on which the
search is performed. We propose Text2Vis, a neural network
that generates a visual representation, in the visual feature
space of the fc6-fc7 layers of ImageNet, from a short de-
scriptive text. Text2Vis optimizes two loss functions, using
a stochastic loss-selection method. A visual-focused loss is
aimed at learning the actual text-to-visual feature mapping,
while a text-focused loss is aimed at modeling the higher-
level semantic concepts expressed in language and counter-
ing the overfit on non-relevant visual components of the vi-
sual loss. We report preliminary results on the MS-COCO
dataset.

Keywords
image retrieval; cross-media retrieval; text representation

1. INTRODUCTION
Using a textual query to retrieve images is a very common

cross-media search task, as text is the most efficient media
to describe the kind of image the user is searching for. The
actual retrieval process can be implemented in a number of
ways, depending on how the shared search space between
text and images is defined. The search space can be based
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on textual features, visual features, or a joint space in which
textual and visual features are projected into.

Using textual features is the most common solution, spe-
cially at the Web scale. Each image is associated with a set
of textual features extracted from its context of use (e.g.,
the text surrounding the image in the Web page, descrip-
tion fields in metadata), and eventually enriched by means
of classifiers that assign textual labels related to the pres-
ence or certain relevant entities or abstract properties in the
image. The textual search space model can exploit the ac-
tual visual content of the image only when classifiers for the
concepts of interest are available, thus requiring a relevant
number of classifiers; this also requires to reprocess the entire
image collection whenever a new classifier is made available.

On the other side, the visual and joint search spaces rep-
resent each image through visual features extracted from
its actual content. The method we propose in this paper
adopts a visual space search model. A textual query is con-
verted into a visual representation in a visual space, where
the search is performed by similarity. An advantage of this
model is that any improvement in the text representation
model, and its conversion to visual features, has immediate
benefits on the image retrieval process, without requiring to
reprocess the whole image collection.

A joint space model requires instead a reprocessing of all
images whenever the textual model is updated, since the
projection of images into the joint space is influenced also
by the textual model part. It also requires managing and
storing the additional joint space representations that are
used only for the cross-media search.

In this paper we present the preliminary results on learn-
ing Text2Vis, a neural network model that converts textual
descriptions into visual representations in the same space of
those extracted from deep Convolutional Neural Networks
(CNN) such as ImageNet [15]. Text2Vis achieves its goal
by using a stochastic loss choice on two separate loss func-
tions (as detailed in Section 3), one for textual representa-
tions autoencoding, and one for visual representations gen-
eration. Preliminary results show that the produced visual
representations capture the high level concepts expressed in
the textual description.
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2. RELATED WORK
Deep Learning and Deep Convolutional Neural Networks

(DCNNs) in particular, have recently shown impressive per-
formance on a number of multimedia information retrieval
tasks [15, 23, 10]. Deep Learning methods learn representa-
tions of data with multiple levels of abstraction. As a result,
the activation of the hidden layers has been used in the con-
text of transfer learning and content-based image retrieval
[5, 22] as high-level representations of the visual content.
Somewhat similarly, distributional semantic models, such as
those produced by Word2Vec [18], or GloVe [21], have been
found useful in modeling semantic similarities among words
by establishing a correlation between word meaning and po-
sition in a vector space.

In order to perform cross-media retrieval, the two fea-
ture spaces (text and images in our case) should become
comparable, typically by learning how to properly map the
different sources. This problem has been attempted in dif-
ferent manners so far, which could be roughly grouped into
three main variants, depending on whether the mapping is
performed into a common space, the textual space, or the
visual space.

Mapping into a common space: The idea of com-
paring texts and images in a shared space has been investi-
gated by means of Cross-modal Factor Analysis and (Ker-
nel) Canonical Correlation Analysis in [4]. In a similar vein,
Corr-AE was proposed for cross-modal retrieval, allowing
the search to be performed in both directions, i.e., from
text-to-image and viceversa [8]. The idea is to train two au-
toencoders, one for the image domain and another for the
textual domain, imposing restrictions between the two. As
will be seen, the architecture we are presenting here bears
resemblance to one of the architectures investigated in [8],
the so-called Correspondence full-modal autoencoder (which
is inspired by the multimodal deep learning method [19]).
Contrarily to the multimodal architectures though, we apply
a stochastic criterion to jointly optimize for the two modals,
thus refraining from combining them into a parametric sin-
gle loss.

Mapping into the textual space: The BoWDNN method
trains a deep neural network (DNN) to map images directly
into a bag-of-words (BoW) space, where the cosine similar-
ity between BoWs representations is used to generate the
ranking [1]. Somehow similarly, a dedicated area of related
research is focused on generating captions describing the
salient information of an image (see, e.g., [13, 7]).

Two other important examples along these lines are De-
ViSE [9] and ConSE [20]. Both methods build upon the
higher layers of the convolutional neural network of [15]; the
main difference lies on the way both methods treat the last
layer of the net. Whereas DeViSE replaces this last layer
with a linear mapping (thus fine-tuning the whole network)
ConSE, on the other side, directly takes the outputs of the
last layer and learns a projection to the textual embedding
space.

Mapping into the visual space: Our proposal Text2Vis
belongs to this group where, to the best of our knowledge,
the only example up to now was a method dubbed Word2VisualVec
[6], which was reported just very recently. There are some
fundamental points where their method and ours differ, though.
On the one hand, their Word2VisualVec takes combinations
of Word2Vec-like vectors as a starting point, thus reducing
the dimensionality of the input space; we directly start from

the bag-of-words vector encoding of the textual space, as we
did not observed any improvement in pre-training the tex-
tual part. On the other, they build a deep network on top of
the textual representation. As shall be seen, our Text2Vis is
much shallower, as we found the net to be capable of map-
ping textual vectors into the visual space quite efficiently,
provided that the model is properly regularized; an issue on
which we focused our attention.

3. GENERATING VISUAL REPRESENTA-
TIONS OF TEXT

In this section we describe the architecture of our Text2Vis
network. Our idea is to map textual descriptions to high-
level visual representations. As the visual space we used
the fc6 and fc7 layers of the Hybrid network [24] (i.e., an
AlexNet [15] trained on both ImageNet1 and Places2 datasets).
We tested two vectorial representations for the textual de-
scriptions: Text2Vis1 uses simple bag-of-words vectors that
mark with a value of one the positions that are relative to
words that appear in the textual description and leave to
zero all the others; Text2VisN adds a bit text structure info
by considering also N-grams for a selection of part-of-speech
patterns3. Text2VisN is a first approach at modeling text
structure into the input vectorial representation, which dif-
ferentiates the task of search from detailed/complex textual
description we aim at from the traditional keyword search.

We have also investigated the use of pre-trained word em-
beddings, representing the textual description as the average
of the embeddings of the words composing the description
(see Equation 1 in [6]), but we have not observed any im-
provement. Generating the word embeddings is an addi-
tional cost, and the fitness of the embeddings for the task
depends on the type of documents they are learned from.
For example, an 11% improvement in MAP is reported in
[2] from learning embedding from Flickr tags compared to
learning them from Wikipedia pages. The direct use of bag-
of-words vectors in Text2Vis removes the variable of select-
ing an appropriate document collection to learn the embed-
ding and its learning cost.

As described in the following, Text2Vis actually learns a
description embedding space that is able to reconstruct both
the original description and the visual description. To reach
this, we started with a simple regressor model (Figure 1,
left) trained to directly predict the visual representation of
the image associated with the textual input. We observed a
strong tendency to overfit (Figure 1, right), thus degrading
the applicability of the method to unseen images.

We explained this overfitting with the fact that a visual
representation keeps track of every element that appears in
the image, regardless of their semantic relevance within the
image, while a (short) textual description is more likely fo-
cused on the visually relevant information, disregarding the
secondary content of the image, as shown in Figure 4.6. As
the learning iterations proceed, the simple regressor model
starts capturing secondary elements of the images that are
not relevant for the main represented concept, but are some-
what characteristic in the training data.

1http://image-net.org
2http://places.csail.mit.edu/index.html
3We considered the part-of-speech patterns: ‘NOUN-
VERB’, ‘NOUN-VERB-VERB’, ‘ADJ-NOUN’, ‘VERB-
PRT’, ‘VERB-VERB’, ‘NUM-NOUN’, and ‘NOUN-NOUN’.
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Figure 1: Overfitting of a simple regressor model with one hidden layer of size 1024.

Our Text2Vis proposal to contrast such overfitting is to
add a text-to-text autoencoding branch to the hidden layer
(Figure 2, left), forcing the model to satisfy two losses: one
visual (text-to-visual regression) and one linguistic (text-to-
text autoencoder). The linguistic loss works at higher level
of abstraction than the visual one, acting as a regularization
constraint on the model, and preventing, as confirmed by our
experiments, overfitting on the visual loss (Figure 2, right).
As detailed in the next section, we implemented the use of
the two losses with a stochastic process, in which at each
iteration one of the two is selected for optimization.

3.1 Text2Vis

Text2Vis consists of two overlapped feedforward neural
nets with a shared hidden layer. The shared hidden layer
causes a regularization effect during the combined optimiza-
tion; i.e., the hidden state is constrained to be a good repre-
sentation to accomplish with two different goals. The feed-
forward computation is described by the following equations:

z = ReLU(W1tin + b1) (1)

t′ = ReLU(W2z + b2) (2)

v′ = ReLU(W3z + b3) (3)

where tin represents the bag-of-words encoding for the tex-
tual descriptor given as input to the net, z is the hidden
representation, v′ and t′ are the visual and textual predic-
tions, respectively, obtained from the hidden representation
z, Θ = {Wi, bi}i∈{1,2,3} are the model parameters to be
learned, and ReLU is the activation function, defined by
ReLU(x) = max{0, x}.

Both predictions v′ and t′ are then confronted with the ex-
pected outputs (i) the visual representation v corresponding
to the fc6 or fc7 layers of [15], and (ii) a textual descriptor
tout that is semantically equivalent to tin. We used the mean
squared error (MSE) as the loss function in both cases:

L(x, y; Θ′) = MSE(x, y) =
1

n

n∑
i=1

(xi − yi)2 (4)

The model is thus multi-objective, and many alternative
strategies could be followed at this point in order to set the Θ
parameters so that both criteria are jointly minimized. We
rather propose a much simpler, yet effective, way for carry-
ing out the optimization search, that consists of considering
both branches of the net as independent, and randomly de-

ciding in each iteration which of them is to be used for the
gradient descend optimization.

Let thus define Θt = {Wi, bi}i∈{1,2} and Θv = {Wi, bi}i∈{1,3}
as the model parameters of each independent branch. The
optimization problem has two objectives (Equations 5 and
6), and at each iteration, a random choice decides which of
them is to be optimized. We call this heuristic the Stochastic
Loss (SL) optimization.

Θt̂ = argminΘtLt(tout, t
′; Θt) (5)

Θv̂ = argminΘvLv(v, v′; Θv) (6)

Note that the net is fed with a triple 〈v, tin, tout〉 at each
iteration. When tout = tin the text-to-text branch is an
autoencoder. It is also possible to have tin 6= tout, with
the two pieces of text been semantically equivalent (e.g.,
tin =“a woman cutting a pizza with a knife”, tout =“a
woman holds a knife to cut pizza”) then the text-to-text
branch might be reminiscent of the Skip-gram- and CBOW -
like architectures. The text-to-image branch is, in any case,
a regressor. The SL causes the model to be co-regularized.
Notwithstanding, since our final goal is to project the tex-
tual descriptor into the visual space, the text-to-text branch
might be though as a regularization to the visual reconstruc-
tion (and, more specifically, to its internal encoding) which
responds to constrains of linguistic nature.

4. EXPERIMENTS

4.1 Datasets
We used the Microsoft COCO dataset (MsCOCO4 [17]).

MsCOCO was originally proposed for image recognition,
segmentation, and caption generation. Although other datasets
for image retrieval exist (e.g., the one proposed in [11]),
they are more oriented to keyword-based queries. We be-
lieve MsCOCO to be more fit to the scenario we want to
explore, since the captions associated to the images are ex-
pressed in natural language, thus semantically richer than a
short list of keywords composing a query.

MsCOCO contains 82.783 training images (Train2014 ),
40.504 validation images (Val2014 ), and about 40K and 80K
test images corresponding to two different competitions [3]
(Test2014 and Test2015 ). Because MsCOCO was proposed
for caption generation, the captions are only accessible in

4Publicly available at http://mscoco.org/
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Figure 2: Our proposed Text2Vis which controls overfitting by adding an autoencoding constraint on the
hidden state.

the Train2014 and Val2014 sets, while they are not yet re-
leased for Test2014 and Test2015. We have thus taken the
Train2014 set for training, and split the Val2014 into two
disjoint sets of 20K images each for validation and test.

Each image in MsCOCO has 5 different captions associ-
ated. Let 〈I, C〉 be any labeled instance in MsCOCO, where
I is an image and C = {c1..c5} is a set of captions describ-
ing the content of I. Given a 〈I, C〉 pair, we define a labeled
instance in our model as 〈v, tin, tout〉, where v ∈ R4096 is the
visual representation of the image I taken from the fc6 layer
(or fc7, in separate experiments) of the Hybrid network [24];
tin and tout are two textual descriptors from C representing
the input and output descriptors for the model, respectively.
During training, tin and tout are uniformly chosen at random
from C (thus tin and tout are not imposed to be different).
Note that the number of training instances one could ex-
tract from a given 〈I, C〉 amounts to 25, which increases the
variability of the training set along the different epochs.

4.2 Training
We solve the optimization problems of Equations 5 and

6, using the Adam method [14] for stochastic optimization,
with default parameters (learning rate α = 0.001, β1 = 0.9,
β2 = 0.999, and ε = 1e−0.8). Note that there are two in-
dependent instances of the Adam optimizer, one associated
to Lt (Equation 5) and other for Lv (Equation 6). In this
preliminary study we decided to set for the SL an equal se-
lection probability to both Lt and Lv; different distributions
will be investigated in future research.

We set the size of the training batch to 100 examples. We
set the maximum number of iterations to 300.000, but apply
an early stop when the model starts overfitting (as reflected
in the validation error). The training set is shuffled each
time a complete pass over all images is completed.

All the Θ parameters have been initialized at random ac-
cording to a truncated normal distribution centered in zero
with standard deviation of 1√

n
, where n is the number of

columns. The biases have all been initialized to 0.
The vocabulary size is 10,358 for Text2Vis1 after removing

terms appearing in less than 5 captions. For Text2VisN we
considered the 23,968 uni-grams and N-grams appearing at
least in 10 captions. Since the number of units in the hidden
and output layers are 1024 and 4096, respectively, the total
number of parameters of the models amount to 25.4M in
Text2Vis1 and 53.3M in Text2VisN .

A Tensorflow implementation of Text2Vis is available at
https://github.com/AlexMoreo/tensorflow-Tex2Vis.

4.3 Evaluation Measures
Image retrieval is performed by similarity search in the

visual space, using Euclidean distance on the l2-normalized
visual vectors to generate a ranking of images, sorted by
closeness. We measure the retrieval effectiveness of the vi-
sual representations produced from textual descriptions by
our Text2Vis network by means of the Discounted Cumula-
tive Gain (DCG [12]), defined as:

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(7)

where reli quantifies the relevance of the retrieved element
at rank position i with respect to the query, and p is the
rank at which the metric is computed; we set p = 25 in our
experiments, as was done in related research [11, 6].

Because the rel values are not provided in the MsCOCO,
we estimate them by using theROUGEL [16] metric. ROUGEL

is one of the evaluation measures for the MsCOCO caption
generation competition5 [3]. We compute reli = ROUGEL(tin, Ci),
where tin is the query caption, and Ci are the 5 captions
associated to the retrieved image at rank i. This caption-
to-caption relevance model is thus aimed at measuring how
much the concepts expressed in the query appear as relevant
parts of the retrieved images.

4.4 Results
We compared the performance of Text2Vis1 and Text2VisN

models against: RRank, a lower bound baseline that pro-
duces a random ranking of images, for any query; VisSim,
a direct similarity method that computes the Euclidean dis-
tances using the original fc6, or fc7, features for the image
that is associated to query caption in MsCOCO; and VisReg,
the text-to-image regressor described in Figure 1.

Table 4.4 reports the averaged DCG scores obtained by
the compared methods. These results show a significant
improvement of our proposal with respect to the compared
methods. When using fc6 as the visual space, Text2Vis1 ob-
tains a 8.51% relative improvement with respect to VisSim
and 1.40% over VisReg. The improvements of Text2VisN
are respectively of 8.08% and 0.94%. When using fc7 as the

5https://github.com/tylin/coco-caption
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Figure 3: Cumulative probability distribution of the
difference in performance of our Text2Vis1 with re-
spect to VisSim (upper plot) and VisReg (lower
plot), on fc6. Positive differences mean Text2Vis ob-
tained a better ranking score than VisSim or VisReg
(resp. 69.2% and 58.1% of cases, shadowed region).

visual space it is Text2VisN that obtains, yet by a small mar-
gin, the best result. The relative improvements of Text2Vis1

over emphVisSim and VisReg are respectively of 8.48% and
0.97%, and for Text2VisN respectively of 8.60% and 1.09%.

Method fc6 fc7
RRank 1.524 1.524
VisSim 2.150 2.180
VisReg 2.317 2.359
Text2Vis1 2.350 2.382
Text2VisN 2.339 2.385

Table 1: Performance comparison of the different
methods in terms of averaged DCG

In addition to the averaged performance, we also investi-
gated how often the ranking produced by Text2Vis is more
relevant (according to DCG) than those produced by VisSim
and VisReg. Figure 3 indicates that in 69.2% of the cases,
the ranking of Text2Vis1 was found more relevant than Vis-
Sim (see Figure 3). The same happens in 58.1% of the cases
when comparing Text2Vis to VisReg.

4.5 Why Stochastic Loss?
Text2Vis uses two independent optimizers to optimize the

visual (Lv) and the textual (Lt) losses, based on a stochas-

tic choice at each iteration (SL, section 3.1). Previous ap-
proaches to multimodal learning relied instead on a unique
aggregated loss (typically of the form L = Lv +λLt) that is
minimized by a single optimizer [8, 19]. We compared the
two approaches on the case of equal relevance of the two
losses (λ = 1, uniform distribution for SL). SL better opti-
mizes the two losses (Figure 4), and is less prone to overfit.

We deem that SL allows to model in a more natural way
the relative relevance of the various losses that are combined,
i.e., by selecting the losses in proportion to the assigned rel-
evance, whereas the numeric aggregation is affected by the
relative values of losses and the differences in their variation
during the optimization (e.g., a loss that has a large im-
provement may compensate for another loss getting worse).
SL is also computationally lighter than the aggregated loss,
as SL updates only a part of the model on each iteration.

4.6 Visual comparison
Figure 5 show a few samples6 that highlight the differences

in results from the three compared methods. In all the cases
results from the VisSim method are dominated by the main
visual features of the images: a face for the first query, the
content of the screen for the second query, an outdoor image
with a light lower part, plants, people and a bit of sky in the
third one. The two text based methods obtains results that

6More results at https://github.com/AlexMoreo/
tensorflow-Tex2Vis

Figure 4: Validation loss for Lv and Lt, optimizing
on a linear combination of losses (blue) or using two
optimizers with stochastic loss selection (SL, red).

https://github.com/AlexMoreo/tensorflow-Tex2Vis
https://github.com/AlexMoreo/tensorflow-Tex2Vis


Query Method 1st 2nd 3rd 4th 5th 

 

VisSim 

     
 
 

a chubby 
toddler is 

chewing on a 
toothbrush 

VisReg 

     

Text2Vis 

     
 

 

VisSim 

     
 
 

a large screen 
monitor on a 

desk hooked up 
to a laptop 

VisReg 

     

Text2Vis 

     
 

 

VisSim 

     
 
 

a man gets 
ready to throw a 

frisbee 

VisReg 

     

Text2Vis 

     

Figure 5: Examples of search results from the three compared methods.

more often contain the key elements of the description. For
the first query, Text2Vis retrieves four relevant images out
of five, one more that VisReg. For the other two queries the
results are pretty similar, with Text2Vis placing in second
position an image that is a perfect match for the query, while
VisReg places it in fifth position.

5. CONCLUSIONS
The preliminary experiments indicate our method pro-

duces more relevant rankings than those produced by sim-
ilarity search directly on the visual features of a query im-
age. This is an indication that our text-to-image mapping
produces better prototypical representations of the desired
scene than the representation of a sample image itself. A
simple explanation of this result is that textual descriptions

strictly emphasize the relevant aspects of the scene the user
has in mind, whereas the visual features, directly extracted
from the query image, are keeping track of all the informa-
tion that is contained in that image, causing the similar-
ity search to be potentially confused by secondary elements
of the scene. The Text2Vis model also improved, yet by
a smaller margin, over the VisReg model , showing that an
auto-enconding branch in the network is useful to avoid over-
fitting on visual features. We also found that combing losses
in a stochastic fashion, rather than numerically, improves
both the effectiveness and efficiency of the system. In the
future we plan to compare Text2Vis against the recently pro-
posed Word2VisualVec [6] model. We also intend to improve
the modeling word order information in Text2Vis, likely by
adding a recurrent component to the network architecture.
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