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Abstract

The team discovery task is concerned with finding a group of experts
from a collaboration network who would collectively cover a desirable set
of skills. Most prior work for team discovery either adopt graph-based
or neural mapping approaches. Graph-based approaches are computa-
tionally intractable often leading to sub-optimal team selection. Neural
mapping approaches have better performance, however, are still limited
as they learn individual representations for skills and experts and are
often prone to overfitting given the sparsity of collaboration networks.
Thus, we define the team discovery task as one of learning subgraph
representations from heterogeneous collaboration network where the sub-
graphs represent teams which are then used to identify relevant teams
for a given set of skills. As such, our approach captures local (node
interactions with each team) and global (subgraph interactions between
teams) characteristics of the representation network and allows us to
easily map between any homogeneous and heterogeneous subgraphs in
the network to effectively discover teams. Our experiments over two
real-world datasets from different domains, namely the DBLP biblio-
graphic dataset with 10, 647 papers and IMDB with 4, 882 movies,
illustrate that our approach outperforms the state-of-the-art baselines
on a range of ranking and quality metrics. More specifically, in terms

*These authors are ordered alphabetically.
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of ranking metrics, we are superior to the best baseline by approx-
imately 15% on the DBLP dataset and by approximately 20% on
the IMDB dataset. Further, our findings illustrate that our approach
consistently shows a robust performance improvement over the baselines.

Keywords: Expert Search, Heterogeneous Graph Embeddings, Task
Assignment, Team Discovery

1 Introduction

The problem of team discovery from an expert network, distinct from tasks
such as expert finding [1] and witness discovery [2], was first introduced by [3].
The major objective of this problem to find a group of collaborative experts
who are able to collectively address a task that requires a set of desirable
skills. Since it is proved that the team discovery problem for finding teams in
the form of subgraphs from a collaboration network is NP-hard, [3] proposed
two optimization functions, namely the diameter communication cost and the
minimum spanning tree communication cost, to find locally optimum sub-
graphs from the collaboration network to serve as teams. Subsequent studies
primarily focused on defining desirable characteristics for teams, such as hav-
ing minimal communication cost [4] or including heterogeneous node types to
support a wider range of applications [5]. However, the limiting aspect of these
approaches is that they are computationally-intractable graph optimization
problems as the cost functions are tailored for each team discovery criteria
and they are NP-hard.

More recently, researchers have adopted neural architectures, such as
autoencoders and variational Bayesian models in order to learn mappings
between different node types within a collaboration network to discover
teams [6, 7]. Despite showing promising results, these methods overlook dif-
ferent types of interactions between different node types in the collaboration
network and solely rely on learning a specific mapping function between the
collaboration network node types (e.g., mapping from skill nodes to expert
nodes). In practice, collaborations between experts can be viewed through
multiple subgraphs in the collaboration network, which necessitates preserving
both local (interactions between skills and team members within each team)
and global (interactions between different teams through overlaps between
their skills and team members) characteristics of the network when finding
teams [8]. Therefore, our work goes beyond the limited mappings of exist-
ing neural team discovery techniques by learning subgraph representations
based on both local (node interactions with each team) and global (sub-
graph interactions between teams) network characteristics for the sake of team
discovery.

More specifically, we learn subgraph representations within heterogeneous
collaboration networks that are then used to identify relevant teams for a given
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set of skills. The crux of our approach is its ability to procure representations
for heterogeneous subgraphs. This allows us to map between homogeneous and
heterogeneous subgraphs of the collaboration network (e.g., mapping from a
skill subgraph consisting of only skill nodes to a team subgraph consisting of
experts, skills, and other node types).

1.1 Research Objectives and Contributions

The main objective of this paper is to design a team discovery method from
heterogeneous collaboration networks in such a way that it would take the
intricacies of expert collaboration into account. We are specifically focused on
several key characteristics when designing our team discovery method, which
we enumerate as follows:

1. a successful team would need to be able to deliver and accomplish the goals
of the task that it is formed to fulfil. In other words, the main purpose
of a team is to accomplish a task; therefore, the team members, either
individually or collectively, need to possess the right skill sets to accomplish
the goals of the task;

2. an efficient team would be one that not only possesses the right skill sets
but also consists of team members who are able to work with each other
efficiently and have a collaborative team work spirit. A sign of a poten-
tially successful team is one that incorporates members that have effectively
worked with each other in the past. As such, a desirable team would be one
that has members with fruitful past collaborations;

3. finally, most collaboration networks have two key characteristics: (1) they
are quite sparse, i.e., the number of past collaborations between experts as
well as the number of skills per expert is low compared to the number of
experts and skills in the collaboration network; (2) the size of collaboration
networks in terms of the total number of skills, experts and past collabo-
ration is large. These two characteristics make a collaboration network to
be a large yet sparse network, which makes designing efficient methods for
such graphs difficult. For a team discovery method to be useful in practice,
it has to have a reasonable execution time despite having to work on such
a large-sparse network structure.

On the basis of these key characteristics, the goal of this paper is to design
a team discovery method that is able to efficiently work with large sparse
collaboration networks in order to identify teams (subgraphs) whose nodes
would collectively satisfy a set of requirements (i.e., cover a set of skills) and
that these nodes have effective past interactions (i.e., show past collaboration
history). As such, we define the problem of team discovery in collaboration net-
works as one of learning subgraph representations from heterogeneous graphs
where the heterogeneous graph denotes the collaboration network and the sub-
graphs represent teams. We will both theoretically and empirically show that
our work offers the following key contributions:
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• While existing neural mapping approaches for team discovery learn individ-
ual representations for skills and experts, we learn subgraph representations
for teams who have collaborated in the past and skills that were observed in
tandem in past teams. For this reason, our approach is able to learn team
structure through subgraph representation learning, which is not possible
when using neural mapping approaches.

• Our approach learns subgraph representations based on a heterogeneous
graphical model rather than directly learning a mapping from the skill space
to the expert space in a supervised way. For this reason, our approach
is able to overcome the collaboration network sparsity problem and avoid
overfitting; hence, addressing the challenge that neural mapping techniques
face with regard to overfitting in the face of sparsity.

• Our proposed method also distinguishes itself from existing heterogeneous
subgraph representation learning techniques [9, 10] in that it generates
embedding vectors for each subgraph by considering node interactions
within each subgraph and the interaction of subgraphs with other sub-
graphs, which has not been captured before.

• Through a range of experiments over real-world datasets, we report that our
proposed approach provides significant performance improvements for the
team discovery task over the state-of-the-art neural, graph-based and sub-
graph representation-based techniques. We demonstrate that these observed
gains are consistent across different ranking and quality-based metrics.

The rest of the paper is organized as follows. Section 2 reviews the related
work. Section 3 describes the preliminaries and problem definition. Our pro-
posed team discovery learning method is explained in Section 4. Section 5
presents our experiments. Finally, Section 6 sheds light on the future work
and concludes the paper.

2 Related Work

In this paper we propose a heterogeneous subgraph representation learning
technique for team discovery. In this section, we review the related works in
two areas: team discovery and subgraph representation learning.

2.1 Team Discovery

Heuristic-based approaches with multiple objective functions are applied as
the first attempts to solve the team discovery problem. In this group of
approaches, the objective function needed to be optimized using either a lin-
ear or non-linear programming (IP) which was based on human or non-human
factors along with scheduling preferences [11–16]. For example, [11] have used
multiple fuzzy objective functions to solve the team discovery problem. They
have optimized the suitability metric by maximizing members’ fit to the team
according to their levels of expertise (skills). They have also optimized the
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team size by applying human factors (e.g., salary and availability of the candi-
date experts) and non-human factors (e.g., schedule limitations). This line of
work focuses on suggesting experts as the team members individually. Further,
in these studies, the selection of an expert is independent of the selection of
other experts. Therefore, the optimization objectives do not consider social ties
and collaboration between members as effective factors while suggesting team
members. Considering the past collaboration can add significantly important
information to the team proposal, for instance, an unsuccessful or successful
collaboration of the proposed experts in the past can be a good measure of
the future project’s productivity. However, a team is innately a collaboration
among team members and the coherency in the team can effectively define the
performance of the team.

Community Search as a well-established problem in network science [17],
aims to search for a community of vertices in the graph that can address
an input query. Mostly, the queries contain a certain vertex or a group of
them. In general, the team formation problem can be interpreted as a special
variation of the community search a community, namely attributed community
search [18]. This is because in the team formation problem our objective is
to find a subgraph from the collaboration network that covers the given set
of skills. This can be done using attributed community search where we use
nodes to represent experts and each individual’s skills as the attributes. Using
this analogy, we can search for a community that will cover the input query
in form of a group of attributes [18]. Then, the retrieved communities can be
considered as our potential teams.

In a more recent study, based on [17]’s cocktail party, [19], utilized a mono-
tone optimization function for team discovery. They tried to minimize the
sum of distances between the candidate experts in the induced connected sub-
graphs. In contrast, [3] used MST and shortest diameter variations to discover
potential teams. However, [19] argued that such indexes namely MST and
diameter as communication cost can only reflect a limited aspect of a team’s
communication. [20] proposed a weighted collaboration network where edges
and nodes are weighted with respect to the attributes. Similar to [3] and [17],
weighted edges can be used to demonstrate the level of successful collaboration
in the past and helps minimize the communication cost between proper can-
didates. Moreover, nodes in the collaboration networks are also weighted. [19]
used the h-index in author-network, to represent the importance and seniority
of a candidate in the team. Hence, an optimum team is a subgraph from a col-
laboration network that minimizes the communication cost among weighted
edges and maximized the candidates’ weights within the subgraph based on
their h-index. In another extension to the [3] method, [21, 22] tried to solve
the team discovery problem by predicting explicit candidate collaboration in a
team based on the potential link utilizing a link prediction technique. Follow-
ing heuristic approach proposed by [3], they detected the minimum spanning
subgraph as the optimum team. This is a promising direction for research
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as link prediction based on neural representation of graphs is receiving wider
attention from the community [23].

There is another line of research in team discovery that can be applied to
large-scale collaboration networks. For instance, in community detection algo-
rithms [24–26], compact attributed group detection [27] and keyword search
over attributed graph [28, 29]. In these studies, given a skill set as a query,
the compact groups will consist of a connected subgraph that contains a set
of nodes as experts that are connected via their shortest path. Further, the
size of the groups is often limited by the upper and lower bounds.

Another approach that is applied to solve the team discovery problem
is by defining the problem as a collaborative filtering task [30, 31] in which
the team members are suggested based on the required skills. For example,
[32] utilized an autoregressive model based on LSTM to learn behavioural
patterns in their Recurrent Recommender Networks (RRN) method. Further-
more, recently, [33] tried to generate feature vectors for the entities based
on Bayesian Group Ranking (BGR) and then used them as the input for
learning-to-rank architecture for their recommendation.

There are also some studies that have utilized neural networks to solve
team discovery problem. For example, [34] used a variational inference neural
network to map the given skill set to the experts. Afterwards, using the gen-
erated embeddings, they used the learning to rank method to search over the
collaboration network for potential teams using their embedded vectors. More-
over, [7] trained an autoencoder that gets trained on the adjacency matrix for
team discovery. The model is able to link experts to each other at the inference
phase to build up a team. Lastly, [35] proposed a neural network for gener-
ating representation vectors for experts. Their approach, namely ExEm, uses
the generated embedding later to retrieve experts by calculating the similarity
between required skills and experts.

Our approach is the first work employing the subgraph representation
learning in the task of team discovery to deal with problems caused by the
sparsity of the skill set and the high dimensionality of the expert set while
mining the information from historical collaboration records.

2.2 Subgraph Representation Learning

The graph representation learning problem that seeks to learn a low-
dimensional feature representation of nodes or entire graphs has been well
studied. For example, DeepWalk [36] and Node2Vec [37] learn feature repre-
sentation of nodes by applying skip-gram model on the sequences of nodes
generated by random walk strategy. SDNE [38] and LINE [39] learn feature
representation of nodes by optimizing an objective function that preserves
first-order and second-order proximities of the graph. Further, due to the pow-
erful ability of graph neural networks (GNNs) to learn feature representations,
more recent studies have applied GNN-based methods for graph represen-
tation learning [40, 41]. For example, Graph Attention Network (GAT) [41]
leverages masked self-attentional layers to learn the importance of nodes
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by considering the features of neighbors. Similarly, Heterogeneous Atten-
tion network [42] leverages both node-level and semantic-level attentions in a
hierarchical manner to learn the importance of nodes and meta-paths, respec-
tively. Personalized Propagation of Neural Predictions (PPNP) [43] is derived
by incorporating personalized PageRank into graph convolutional networks
(GCNs).

However, although some studies have focused on learning representation
of specific subgraphs (e.g. rooted subgraphs [44] and Graphlet kernels [45])
or have utilized subgraphs to train GNNs [46, 47], few studies have stud-
ied the problem of subgraph representation learning. For example, Sub2Vec
[48], learns feature representation of arbitrary subgraphs by applying Para-
graph2vec [49] over the samples generated by random walks in subgraphs. The
usability of Sub2Vec is shown for community detection and graph classifica-
tion. Recently, SubGNN [8] is a subgraph-level GNN that propagates neural
messages between the subgraph’s components and randomly samples patches
from the whole graph and aggregates their features to learn feature represen-
tations of subgraphs. To improve SubGNN by distinguishing nodes inside and
outside the subgraph, GLASS [50], GNN with LAbeling trickS for Subgraph,
utilizes an expressive and scalable labelling trick to enhance GNNs for sub-
graph representation learning. Very recently, to address the scalability issue in
the subgraph representation learning problem via GNNs, SUREL [51] reduces
the redundancy of subgraph extraction and supports parallel processing by
decoupling the graph structure into sets of walks and reusing the walks to
form subgraphs.

While most subgraph/graph representation learning techniques are
designed for homogeneous graphs and don’t consider different types of nodes
and relations, recently, a number of studies aimed at designing techniques for
heterogeneous graphs [52–54]. For example, MetaGraph2Vec [10] generates
heterogeneous node sequences by applying a meta-graph based random walk
strategy and then the feature representation of nodes are learned by employ-
ing a heterogeneous skip-gram technique over the node sequences. DHNE [9]
is a deep hypernetwork-based method that considers a non-linear tuple-wise
similarity function in its embedding space while capturing both the local and
global structures of a heterogeneous graph. HetGNN [55] applies a random
walk with restart strategy to sample a fixed size of strongly correlated hetero-
geneous neighbors for each node and group them based on node types. Then,
a neural network architecture is designed to aggregate feature information of
the sampled nodes.

Our approach distinguishes itself from existing heterogeneous subgraph
representation learning techniques by generating feature representations for
each subgraph by considering node interactions within each subgraph and the
interaction of subgraphs with other subgraphs, which has not been captured
before.
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Table 1 Summary of Frequently Used Notations.

Symbol Meaning
G the collaboration network
V a set of nodes in G

E a set of edges in G

Y a set of node types in G

U a set of expert nodes in G, U ⊆ V

S a set of skill nodes in G, S ⊆ V

X the features of all nodes in V

xi the features of node vi ∈ V

Ti the team ith in G, Ti ⊆ G

A a set of anchor nodes in G

AS a set of anchor subgraphs in G

C the number of of anchor subgraph (or anchor nodes) in G

Ac the anchor node cth in A, i.e. Ac ∈ A

ASc the anchor subgraph cth in AS, i.e. ASc ∈ AS

ac the representation of the anchor subgraph ASc, ASc ∈ AS

A the packed representation of all anchor subgraphs in AS

Ω a neural encoder for the nodes (node sequences) of ASc, ASc ∈ AS

Γ a neural encoder for subgraph representation learning
ti the final representation of the team Ti

msgintra

i
the local representation of the team Ti

msginter

i
the global representation of the team Ti

3 Preliminaries and Problem Definition

We first introduce notational conventions and then formulate the team discov-
ery problem. Frequently used symbols are summarized in Table 1 for reference.

3.1 Notations

Definition 1 (Collaboration Network) The collaboration network G(V,X , E) is
a heterogeneous graph where V = ¶v1, v2, ..., vN ♢ denotes the set of N nodes,
X ∈ R

Nxd denotes the node features with d-dimension, and E denotes the edges.
Furthermore, each vi ∈ V is affiliated with a type y denoted as vy

i , which is mapped
using the transfer function ψ(v) : V → Y, where Y represents the set of all possible
node types.

The heterogeneous collaboration network G may consists of different types
of nodes, including two mandatory types: (i) skills, S = ¶si♣si ∈ V♢, and (ii)
experts, U = ¶uj ♣uj ∈ V♢; and other additional types: (iii) the product of
collaboration (e.g., a paper, a movie, a software product), (iv) the type of the
product (e.g., the field of the paper or the genre of the movie), (v) the venue in
which the team collaborated (e.g., a conference, a movie studio, or a software
lab).

DBLP is a typical example of a collaboration network in the computer
science bibliography whose experts correspond to the authors (researchers)
and the skills can be considered as the terms extracted from the papers. In
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addition, there are two other types of nodes in the DBLP dataset which are the
paper and the venue. In this dataset, three types of edges can be formed such as
paper-author to represent the co-authorship relation, paper-skill representing
the skills required to write the paper and paper-venue to represent the place
where the paper is published.

Definition 2 (Team) A team Ti = ¶v ∈ V♢ is the ith subgraph in the collaboration
network G that contains a set of n experts denoted as U(Ti) = ¶u1, u2, . . . , un♢;
U(Ti) ̸= ∅ who collectively cover a predefined set of m required skills denoted as
S(Ti) = ¶s1, s2, . . . , sm♢; S(Ti) ̸= ∅.

The collaboration network G can also be represented as a set of M teams,
i.e., G = ¶(Ti)♢

M
i=1, where M ≤ N . It is noted that, these teams may have

some inter-team connections based on their shared nodes.
Given the DBLP dataset as a collaboration network and a set of terms as

the required skills to write a specific paper, a team is formed as a minimal
set of author nodes who have co-authored a paper related to the input skills.
Figure 1a depicts an example on the DBLP dataset. The collaboration network
G consists of four different node types (e.g., paper, author, term and venue). In
the network G, there are three teams ¶T1, T2, T3♢ (shown as grey dashed circles
in Figure 1a) which is defined based on the collaboration project (e.g., an
academic paper). Each team is formed by a group of experts/authors (yellow
nodes) and it covers a set of skills/terms (green nodes). We may observe that
the team T1 and T2 both possess skills (a) and (b). Meanwhile, the expert (4)
works in two teams, T2 and T3.

Definition 3 (Meta-path-based subgraph) Given a network G and a meta-path P,
a meta-path-based subgraph in G, denoted as ASi, is a graph constructed by a set
of nodes ¶v ∈ V♢ which are connected to each other via the meta-path P.

A set of some possible meta-paths of the DBLP dataset is depicted in
Figure 1b. Considering the two meta-paths P1 (author-paper-author) and P3

(author-paper-term-paper-author) with lengths 3 and 5 in this set, two cor-
responding meta-path-based subgraphs, AS1 starting from node (1) and AS2

initiating at node (5), can be formed, as shown in Figure 1d. The length of
the path and the size of its corresponding subgraph are equal.

3.2 Team Discovery Problem

Given the collaboration network, G, the team discovery problem is defined as
a non-linear mapping function f : P(S) → P(U) that maps skill powerset to
expert powerset. More specifically, this problem can be formalized as follows.

Definition 4 (Team Discovery Problem) Given the collaboration network G and
a project Q that requires a pre-defined set of skills SQ, team discovery problem is
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(a) Collaboration Network. (b) Meta-paths.

(c) Team discovery problem. (d) Anchor subgraphs.

Fig. 1 Example of definitions in the DBLP dataset.

defined to assign a group of experts UQ in the collaboration network that covers the
skills SQ to the project Q.

An illustration of the team discovery problem in the DBLP dataset is
shown in Figure 1c. Given a set of desirable skills, the team discovery problem
tries to form a set of experts whose skills are similar to the given skill set. An
optimal solution for retrieving experts from the skill sets ¶a, b♢, ¶a, b, c♢ and
¶a♢, is the group of experts ¶1, 2♢, ¶3, 4♢ and ¶4, 5♢, respectively.

Simply put, we define the problem of team discovery as retrieving sub-
graphs from within a collaboration network, such that each of the subgraphs
represents a team whose experts cover the specified skills. Prior work has
already shown that the search for optimal subgraphs is an NP-hard prob-
lem [56, 57] and hence opting for solutions which are heuristic-based and
sub-optimal [58, 59] to perform graph traversal. For this reason, we propose
to learn subgraph representations from heterogeneous collaboration networks,
such that relevant subgraphs can be seamlessly identified and retrieved (see
Section 4.2).

4 Team Discovery Learning

In this section, we first give an overview of our framework for team discovery
learning. Then, We provide more details about two modules of our framework:
team representation learning and team retrieval.

4.1 Overview

Existing neural team discovery techniques from heterogeneous collaboration
networks rely only on learning a specific mapping function between the node
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types (e.g., mapping from skill nodes to expert nodes) and overlook the interac-
tions between nodes. To go beyond such limited mapping, our team discovery
approach learns subgraph representations within heterogeneous collaboration
networks based on both local (node interactions with each team) and global
(subgraph interactions between teams) characteristics of the network that are
then used to retrieve relevant teams for a given set of skills.

More specifically, we formulate the team discovery problem as a low-
dimensional subgraph representation learning problem. The representation
learning generates similar embedding for teams that share similar semantics
in the collaboration network G. Intuitively, the semantics of the team can be
the profile of the experts in the team, the skills required in the project or the
topic of the project. Therefore, given a project with a set of required skills, the
latent representation should be encoded in such a way that it allows retriev-
ing the team with a similar profile covering the specified skills and the formed
team should be more likely to provide the output (e.g., a published paper) in
the specific domain.

We hypothesize that the representation of teams with similar semantics
should be highly correlated to each other regardless of their position in the
collaboration network. For example, if two groups covering the set of skills
which are related, even if they stay multiple hop away, they should still have
similar embeddings. Conventional GNNs fail to capture this semantic, as they
are based on one-hop message passing, where nodes receive latent representa-
tions from their immediate neighbors [60]. Thus, to reduce the bias caused by
Conventional GNNs, our idea is to encode a set of sample subgraphs (called
anchor subgraphs) to capture the semantics of a team and then propagate
the neural messages between the team components. Hence, for team repre-
sentation learning, we propose to utilize a message passing technique [61] to
share the messages generated by a meta-path guided random walker [62, 63]
among the anchor subgraphs to effectively capture properties of the team.
As a result, the message including the features can be propagated from the
source subgraphs which are the anchor subgraphs to the targets which are the
subgraphs represented for the teams. On this basis, we generate embedding
vectors for each team by employing a hierarchical meta-path aware random
walker [64, 65], which is used for generating messages for each team (local
interactions within a team or the intra-level team information) and for rout-
ing the messages throughout the collaboration network between teams (global
interactions across teams or the inter-level team information). More details
about our team representation learning approach is explained in Section 4.2.

Next, to retrieve the relevant experts to a project that requires a set of
predefined skills, we consider the set of skills as a subgraph and infer its
representation via the learned encoder in the former phase. Finally, given the
representation of the past teams generated in our team representation learning,
we retrieve similar teams to the skills and then select the top-k experts involved
in these teams as potential experts for the project.
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Fig. 2 The overview of our team representation learning approach. (1) Anchor Sub-
graph Encoder: is a three-phase encoder. The anchor nodes shown in the red dashed circles
are selected in the first phase. It is then followed by the meta-path-based anchor subgraph
selection phase. Two subgraphs highlighted by the blue and pink regions in the figure are
generated by the anchor nodes and meta-paths illustrated in Figure 1d. The final phase
involves the sequential encoder to embed the meta-path-based subgraphs into latent space.
(2) Team Encoder: includes intra and inter message passing schemes. The red dashed
arrows show an example of how to gather the messages from the two sampled anchor sub-
graphs to the team T1 in two different levels. (3) Information Fusion: aggregates the two
types of representation to produce the final representation for the team

4.2 Team Representation Learning

Given a collaboration network G represented as a set of M teams, i.e., G =
¶(Ti)♢

M
i=1, our goal is to map each team to its representation in latent space,

i.e., Φ(T → R
d′

), where d′ ≪ N . The overview of our team representation
learning approach is illustrated in Figure 2. As Figure 2 shows, our proposed
encoder Φ consists of three main components: (i) Anchor Subgraph Encoder :
in this component, we first select a set of anchor nodes; then sample a set
of anchor subgraphs starting from the sampled anchor nodes by a meta-path
random walker; and finally build a meta-path based neural encoder to learn the
embeddings of the anchor subgraphs. (ii) Team Encoder : in this component,
the embedding features are propagated from the anchor subgraphs to the
targeted teams (or subgraphs) in intra-level and inter-level interactions for
encoding the intra-team information and inter-team information, respectively.
(iii) Information Fusion: This component is used to fuse the two types of
information to get the unified embeddings for each team.
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4.2.1 Anchor Subgraph Encoder

Our anchor subgraph encoder includes three main tasks: (i) Anchor node
selection, (ii) Meta path-based anchor subgraph selection, and (iii) Anchor
subgraph embedding.

Anchor node selection. Given G = ¶(Ti)♢
M
i=1, we first select a set of

sampled nodes, which are referred to as anchor nodes A. For anchor node

selection, we employ a meta-path aware random walker that crawls through
each team individually to find the set of anchor nodes in G. By this strategy, the
anchor nodes are selected such that their relative position are corresponding
to the position of the teams and they also widely spread across entire the
network [66]. These sampled anchor nodes are crucial since they acts like
the seed nodes for selecting the anchor subgraphs which are used in order to
navigate the messages through the collaboration network G.

The random walker applies the following probability to determine its next
node:
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where vi
y denotes the ith node in a given meta-path P with node type y. Here,

Ny+1

(

vi
y

)

specifies all the next (neighbor) nodes of the node vi
y based on the

specific meta-path P. For the sake of a continuous walk, we design a symmetric

meta-path schema with the intent that the ending node can be also a starting
node for further walks. Thus, in our meta-path patterns, given a metapath P
with length L, the first node type ψ(v1) is the same as the last node in the
meta-path ψ(vL) [67, 68].

Meta path-based anchor subgraph selection. Let A =
¶A1, A2, . . . , AC♢ be a set of anchor nodes selected in the anchor node selec-
tion task, where C is size of the set. For each anchor node Ac ∈ A, in order
to select an anchor subgraph ASc corresponding to it, a meta-path-based
random walker following the same strategy in Equation 1 is employed to
generate a length L walk sequence (Ac1

, Ac2
, . . . , AcL

) initiated at the anchor
node Ac (Ac1

≡ Ac) and followed a specific meta-path P. The subgraph
ASc ∈ AS, which is also referred as a meta-path-based anchor subgraph,
is then formed by the node sequence (Ac1

, Ac2
, . . . , AcL

). We denote a set
of (meta-path-based) anchor subgraphs corresponding to the set of anchor
nodes A as AS = ¶AS1, AS2, . . . , ASC♢. It is worth to note that the number
of anchor nodes equals to the number of anchor subgraphs. In this scenario,
the meta-paths are critical in the way that they can capture the semantic
relationship between different types of entities in the heterogeneous network
which provides more insights for network search and mining. For example,
the meta-path ‘A(uthor)-P(aper)-S(kill)-P-A’ allows to search the authors
who share the same skill set or the meta-path ‘P-A-P’ semantically captures
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the works of an author. Subsequently, these anchor subgraphs are responsible
for sharing properties of each team to others through message passing in the
team encoder to achieve more inclusive and efficient team representations.

Anchor subgraph embedding. Once we have the meta-path-based
anchor subgraphs, their node sequence information and initial features, we
learn an encoder Ω to embed the anchor subgraphs which can capture their
semantic meaning. To encode messages of each anchor subgraph or the fea-
tures represented the messages at the subgraph, we learn an encoder that
first iteratively generates sequential messages received by each node within
the node sequence (or subgraph), and then aggregate the message from all
nodes to use as the anchor subgraph representation. More specifically, the
encoder Ω : R

Lxd → R
d1 encodes the sequence of messages represented as

¶xc1
, xc2

, . . . , xcL
♢ (where xcL

represents the features of AcL
residing L hops

away from Ac) to produce the representation hci
of the ith node in the sampled

sequence as follows:
hci

= Ω(xc1
, xc2

, . . . , xcL
) (2)

where Ω can be any predefined function that provides for aggregating
incremental messages from previously visited nodes. Function Ω can be imple-
mented through an attention mechanism [69] or a long short-term memory
network [8]. In this work, we follow the work of [8] that propose to adopt a
long short-term memory for this purpose. Now, in order to fuse node embed-
dings into one representation ac for anchor subgraph ASc, we incorporate a
READOUT(.) function [70].

ac = READOUT (
{−→
h cl
∥
←−
h cl

}L

t=1
) (3)

where
−→
h cl

,
←−
h cl

are the output of forward and backward of the mes-
sage sequences, respectively, and ∥ denotes the aggregation operation. The
READOUT (.) function can be any aggregation function, such as summation,
maximum, last or average.

We pack the representation of all anchor subgraph computed by Equation 3
and denote as A.

4.2.2 Team Encoder

Given the collaboration network G = ¶(Ti)♢
M
i=1 and the embedding of selected

anchor subgraphs A generated by the anchor subgraph encoder Ω, we define
a team encoder which is composed of two separate components to utilize two
types of message passing techniques (i.e., Γintra for intra-level message passing

and Γinter for inter-level message passing) in order to learn the representa-
tion of each team Ti based on the local and global structural characteristics of
the teams. Intuitively, the team representation is characterized locally by the
nodes within the team and globally by the connections with the other nodes.
Thus, our proposed approach for learning the team representation relies on the
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messages propagated from two distinct sources, intra and inter team, by defin-
ing two separate properties of anchor subgraphs for a team: intra connection

and inter connection, to capture its local and global interactions, respectively.

Definition 5 (Intra Connection Property) Given a team Ti in a collaboration net-
work G, the intra connections of Ti, denoted by CPintra

Ti
, are defined as the set of

connections within the team Ti.

Definition 6 (Inter Connection Property) Given a team Ti ∈ G, the direct edges
connecting the team Ti and the nodes in the network that do not belong to it forms
the set of inter connections of that team, denoted by CPinter

Ti
.

The definition of intra and inter connection properties can be generalized
to the concept of subgraphs in the network. Therefore, we note that for each
anchor subgraph ASj ∈ AS in the network G, there are also two corresponding
types of connection property which are intra connections denoted as CPintra

ASj

and inter connections CPinter
ASj

.

Formally, a single component in the team encoder, Γ : RCxd1 → R
Mxd1 ,

acquires the message msgi for the ith team from the anchor subgraphs’
representation A using the following message passing scheme:

msgi = Γ(Ti) =
C
∑

j=1

γ
(

CPTi
,CPASj

)

· aj (4)

where msgi is the aggregated message from the set of anchor subgraphs AS,
γ is a weight function which models the relation between the connection prop-
erties of the team (i.e., CPTi

) and the anchor subgraph (CPASj
), and aj is

the messages (features) in regard to the jth anchor subgraph. The function γ
controls the amount of which can be propagated from the anchor subgraph
(ASj) to the team (Ti) based on their connection properties. We adopt the
dynamic time warping function for γ as suggested in [8].

In order to maintain the specific characteristics of different information
source, we rather build two separate projections for two types of connec-
tion within a team. In other words, for each team Ti, we train two distinct
projections: (i) Intra Message Passing denoted by Γintra for computing
the similarity of intra connection property (i.e., CPintra) between the ordi-
nary team (i.e., Ti) and the sampled anchor subgraphs (i.e., ASj ∈ AS) in
Equation 5 and (ii) Inter Message Passing denoted by Γinter for computing
the similarity between CPinter

Ti
and CPinter

ASj
in Equations 6, to map the anchor

subgraphs’ representation to a specified team interaction level (i.e., local or
global) distribution. Each unique projection measures the importance of a spe-
cific type of information regarding the team. As the result, there are two types
of encoded message, intra message msgintra

i capturing local information and
inter message msginter

i calculating global information.
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msgintra
i = Γintra(Ti) =

C
∑

j=1

γ
intra

(

CPintra
Ti

,CPintra
ASj

)

· aj (5)

msginter
i = Γinter(Ti) =

C
∑

j=1

γ
inter

(

CPinter
Ti

,CPinter
ASj

)

· aj (6)

4.2.3 Information Fusion

The final team representation is composed by the aggregation of two types of
team information, local information and global information.

ti = AGGREGATE(msgintra
i ,msginter

i ) (7)

where ti, msg
intra
i and msginter

i are the final, local and global representation
for the team ith respectively; and AGGREGATE(.) denotes aggregation oper-
ation. The type of aggregation will be discussed in the experiments section
(see Section 5.4).

The fused team embeddings are finally fed into a two-layer Multilayer
Perceptron (MLP) as in Equation 8.

zi = σ(Wti + b) (8)

where σ is a non-linear activation function, W is the learnable weight matrix,
and b is bias. The model is trained using a cross-entropy loss function and the
Adam optimizer [71].
Supervised Training. We assume that the team representation can be
inferred via learning or differentiating the characteristic of the different teams
(e.g., research topic of the team or the main theme of the movie). We formulate
our proposed team representation learning approach as a supervised learning
problem, under this assumption, we use the labels of the nodes in each team
as the labels for their corresponding team (e.g., the publication venue node
for a paper and the movie genre). It is worth to note that we train our neu-
ral network model to predict the team labels (e.g., venue/genre prediction) as
a multi-label/multi-class classification task depending on the number of pre-
dicted classes of a single instance. For example, a movie can has more than
one genre, then predicting a movie is a multi-label classification. We use the
following cross entropy (LCE) and binary cross entropy (LBCE) loss function
for multi-class and multi-label problem respectively during training step:

LCE = −
∑

Ti

R
∑

j=1

yij log(ŷij) (9)

where R is the number of labels, ŷij is the predicted probability of class jth of
the ith team and ŷi = softmax(zi) is the predicted probability distribution.
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LBCE = −
∑

Ti

R
∑

j=1

yij log(ŷij) + (1− yij)log(1− ŷij) (10)

where R is the number of class labels, ŷij = sigmoid(zij) is the predicted
probability of the jth class of the ith team and zij is the logit at j of zi.

4.3 Team Retrieval

The objective of this step is to retrieve a group of experts to work on a project
given a set of desirable skills. Specifically, for a project Q, team discovery
involves a mapping function f : SQ → UQ. The team retrieval consists of three
main steps: (1) generate the representation of the target team, (2) generate
the representation of all the past teams and (3) retrieve the potential team.

In order to generate a team representation for a projectQ given a set of SQ,
we first construct a subgraph TQ based on the skill nodes in the SQ set. Then,
we adopt the encoder Φ learned in the team representation learning phase to
obtain the embedding tQ. Formally, tQ = Φ(TQ) is computed in Equation 7.
Hence, tQ is considered as the embedding vector for the potential team TQ

based on the given skill-set SQ. Ideally, the generated embedding vector tQ
also represents the potential team members UQ who are most suitable to be
part of the project Q based on the past collaborations.

In the second step of team retrieval, the representation of each past team
collaboration is obtained similarly. The subgraph Ti is constructed by all the
nodes in the team and then its representation ti is inferred by the encoder Φ.
An illustration of how to form the past teams is shown as grey dashed circles
in Figure 1a. It is worth to note that the representation of these past teams are
optimized during the training phase of team representation learning. Hence,
given the collaboration network G and all the known collaborations ¶Ti♢, we
can infer their corresponding representations ¶ti♢.

Finally, to retrieve the relevant experts UQ for the project, all the past
collaborations are get sorted out based on the similarity between the repre-
sentation of the target team (i.e., tQ) and the representation of each team
in the set of the historical teams (i.e., ¶ti♢). The similarity function can be
defined by any similarity distance measures such as Cosine similarity, Jaccard
distance or Hadamard product. In this work, we have used Euclidean distance
to measure the distance between embedding vectors. After sorting the teams,
the top-k teams are chosen as the potential candidates and the experts col-
laborating in these teams will be listed as the potential team members for the
prospective team. In section 5, the top-k relevant experts for each skill-set are
used for evaluation purposes.

5 Experiments

In this section, we describe our experiments in terms of the dataset and
experimental setup and performance compared to the state-of-the-art.
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5.1 Dataset and Experimental Setup

Dataset. We conduct our experiments on two datasets from different domains,
namely the DBLP and IMDB datasets. The standard dataset that is com-
monly used for the team discovery task and has been extensively used in prior
literature [3, 6, 72] is based on the DBLP bibliographic database [73]. The
assumption in the papers that use this dataset is that the authors associated
with paper can be considered to have formed a team with the objective of
writing a scientific article. Based on a similar intuition, we use the DBLP
dataset released by [6]. This dataset consists of four types of nodes including
1, 878 authors, 10, 674 papers that have at least 2 authors, 2, 000 skills and
21 venues. The teams in the training set are built using the author, paper
and skill nodes while the venue nodes are used as the label for the training
phase. The edges in each team represent the relationship between papers and
authors, as well as papers and skills. In the test set, each team is represented
by a paper node, and its corresponding skill nodes. For the sake of evaluation,
the edges between papers and authors are predicted.

Similarly, in the IMDB dataset, which covers information about films, each
movie is viewed as being the output of a collaborative effort by a set of people,
such as actors. Without loss of generality, we assume the set of actors who
play in a movie to form a team. This dataset includes 4, 882 movies, which are
grouped into 21 genres; and require the involvement of 6, 202 actors as well as
2, 532 skills. Similar to the DBLP dataset, in the training set, we construct a
team by connecting each movie node with its neighbor actor nodes and skill
nodes. The genre is used as the label for the supervised training. The edges
between the movies and the actors in the test set are removed.

For both datasets, we use 10-fold cross-validation for training and evaluat-
ing our models against the baselines. We randomly sampled 5% of the training
data for validation. We evaluated using top-10 predicted experts for each fold.

Dataset statistics and other information used in the experiments are
summarized in Table 2.

Table 2 Statistics of datasets used in our experiments.

Dataset # Nodes # Edges Label node Meta-paths

IMDB

# actor (A): 6,202
# movie (M): 4,882
# skill (S): 2,532
# genre (G): 21

# M-A: 14,646
# M-S: 42,661
# M-G: 14,040

G

A-M-A
M-A-M
M-S-M
S-M-S
A-M-S-M-A

DBLP

# author (A): 1,840
# paper (P): 10,674
# skill (S): 2,000
# venue (V): 21

# P-A: 26,405
# P-S: 70,809
# P-V: 10,674

V

A-P-A
P-A-P
P-S-P
S-P-S
A-P-S-P-A
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Code and Data. We note that the source code and data for our work is
publicly available for reproducibilityi.
Meta-paths. As suggested in [63, 74], in the DBLP dataset, we use
‘A(uthor)-P(aper)-A’ meta-path which introduces co-authorship, ‘A-P-S(kill)-
P-A’ which denotes relationship between authors with common skills, ‘S-P-S’
which denotes the required skills of the paper, ‘P-S-P’ which represents papers
focusing on the same skills and ‘P-A-P’ representing papers published by the
same author as the set of meta-paths. In the IMDB dataset, to capture similar
relations, we use five different meta-paths, namely ‘A(ctor)-M(ovie)-A’, ‘A-
M-S(kill)-M-A’, ‘S-M-S’, ‘M-S-M’ and ‘M-A-M’. These correspond to the five
meta-paths for the DBLP dataset. All the meta-paths are reported in Table 2.
Expanding to Other Datasets We took extra notice while developing the
code to ensure it is easy to expand the experiments to a new dataset. Thus,
while researchers can reproduce the results for datasets studied in this paper,
they can study the performance of the proposed method over new datasets.
We suggest that researchers take the following pathway to perform their own
dataset experiment. The procedure can be done in three steps, (1) starting
with the dataset format, using the preprocessing module in the source code,
they can prepare the dataset in (sample ID, skill occurrence vector, expert
occurrence vector) triplet format. This format is used by other baselines [75] as
well. Thus, the preprocessed dataset can base later used to evaluate baselines.
(2) In the next step, researchers can run the model and generate representa-
tion vectors, and (3) finally, they can evaluate the model using the provided
evaluation module in the source code. For a complete walkthrough, we rec-
ommend researchers follow the detailed instructions on the project’s Github
page.
Experimental Setup. For the subgraph embedding methods (i.e.,
Metagraph2vec and DHNE), we adopt the implementation in OpenHINE
libraryii. For the remaining baselines, we use the implementation provided by
the authors. For all methods, we retain the default hyper-parameter settings
proposed by the authors.

The two most important hyper-parameters in our proposed method, the
number of anchor subgraphs and the learning rate, are tuned by grid search.
The learning rate is searched within the range [10−3, 10−2] and the range of
the number of anchor subgraphs is [35, 80]. The performance of our proposed
approach with varying values of these two hyper-parameters is reported in
Section 5.4.

We note that, for a fair comparison between the models, the dimension of
the final representations is set to 128 for all methods.

5.2 Baselines

We compare the performance of our methods to several state-of-the-art
methods from four different categories:

ihttps://github.com/hoangntc/heterogeneous subgraph representation for team discovery
iihttps://github.com/BUPT-GAMMA/OpenHINE

https://github.com/hoangntc/heterogeneous_subgraph_representation_for_team_discovery
https://github.com/hoangntc/heterogeneous_subgraph_representation_for_team_discovery
https://github.com/hoangntc/heterogeneous_subgraph_representation_for_team_discovery
https://github.com/BUPT-GAMMA/OpenHINE
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Graph-based methods. Traditionally, team discovery over a collaboration
network has been seen as mining sub-graphs or sub-trees from the graph.
Identifying sub-graphs has been shown to be an NP-hard problem. Hence,
most studies in this area are based on approximation algorithms. We include
the following studies:

• [72], as the strongest work in this group, have modeled the team discov-
ery as keyword search in the graph and tried to find subgraphs from the
collaboration network as potential teams.

• [3] is the representative baselines from this category. In this work, authors
used minimum subtree diameter as objective function to find the most
suitable team based on maximizing the collaboration among members.

Recommender methods. Moreover, the team discovery problem can be
defined as a recommender system problem, where for a given set of skills,
the recommender system is supposed to find a team from the collaboration
network. Collaborative filtering as one of the most common and well-known
techniques in this domain can be a promising solution for the team discovery
problem. We have included the following methods for this group of studies:

• [76] have proposed a RRN method that utilizes an LSTM-based autoregres-
sive model to capture future behavioral trajectories and also factorization
over the skill-expert relations.

• SVD++ [77] is based on matrix factorization. In this approach, skill-expert
interactions are implicitly captured and used in matrix calculation in order
to find potential teams.

• GERF [33] is based on Bayesian Group Ranking (BGR). In this method, a
Bayesian interface is used to optimize the weights of the model which is
responsible for generating feature vectors. The generated feature vectors
will be later used for learning to rank problem to find relevant experts for
a given skill-set.

Neural methods. More recent studies on team discovery have exploited
neural architectures to learn a mapping between skill and expert spaces. We
adopt two state-of-the-art neural methods as baselines:

• [6] have proposed a method based on variational Bayesian neural network
that maps the skill to the expert domain. They have used meta-path-based
random walker to craft initial embedding vectors as the input for the model.

• [7] have used an auto-encoder that in essence learns the collaboration
between experts implicitly. They used adjacency matrix as the input to
represent the link between experts.

• ExEm [35] is a neural architecture that generates expert embedding vectors
based on their collaborations. Later, they used the embedding vectors to
calculate the similarity between experts-skills and rank the experts based
on their scores.
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Subgraph embedding methods. Given the focus of our method, we also com-
pare our work with the state-of-the-art methods on heterogeneous subgraph
representation learning. All the methods are implemented by OpenHINEiii

library. We compare our method against the state-of-the-art methods includ-
ing:

• Metagraph2vec [10] uses meta-paths in form of patterns to guide the ran-
dom walker traverse though the subgraphs. Due to the consideration of
meta-paths that provide semantics to the relationships between the col-
laboration network node types and edges, this method is able to capture
meaningful relations from the graph.

• DHNE [9] takes past collaboration information into account when traversing
the heterogeneous graph. This approach yields richer representation vectors
since the collaboration network is being updated dynamically.

5.3 Evaluation Metrics

We compute several metrics to measure the effectiveness of the proposed model
from two perspectives, ranking-based and quality-based. In the former perspec-
tive, we employ four widely adopted information retrieval metrics that have
been used in the past for this task [7, 34], including mean average precision
(map), mean reciprocal rank (mrr), normalized discounted cumulative gain
(ndcg) and recall.

Furthermore, we also compute two team quality metrics, namely skill
coverage (sk) and team comparability (tc) [6, 34].

• The skill coverage (sk) metric measures to what extent the recommended
team covers the set of skills that are specified. The purpose of this metric
is to reward those teams that while they do not consist of the exact set of
expected experts but still consist of experts that have the required expertise.

• The team comparability (tc) metric measures the difference between the
average performance of the members of the proposed team and that of
the members of the expected team. In the DBLP dataset, h-index for each
author is used as the performance index and in the IMDB dataset, the ratio
of each movie’s gross sales to budget of the movies for each actor is used as
the performance indicator.

It is worth noting that a higher sk and a lower tc values are desirable.

5.4 Ablation Study

Given the architecture of our proposed method, it is possible to specify three
variation points in our work. The first two variations refer to the aggrega-
tion functions that are mentioned in Equations 3 and 7. These aggregation
functions are used in two corresponding stages, (1) the anchor subgraph,
and (2) the subgraph information fusion embedding generation steps. As

iiihttps://github.com/BUPT-GAMMA/OpenHINE

https://github.com/BUPT-GAMMA/OpenHINE
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(a) DBLP. (b) IMDB.

Fig. 3 Anchor subgraph embedding generation variations. The performance results are
based on ranking measures.

(a) DBLP. (b) IMDB.

Fig. 4 Qualitative results for anchor subgraph embedding generation variations.

noted earlier, these aggregation functions can be implemented using different
operators. For READOUT (.) function in Equation 3 which is used for anchor
subgraph (node sequence) embedding, we have implemented and evaluated
four different aggregation functions, namely, (1) summation, (2) maximum,
(3) average and (4) last. Meanwhile, we have conducted the experiment to
test graph information fusion embedding with AGGREGATION(.) func-
tion in Equation 7 with (1) summation, (2) maximum, (3) average and (4)
concatenation.

Starting with the anchor subgraph embedding vectors aggregation method,
the results related to ranking-based metrics are shown in Figure 3. As shown
in this figure, the summation variation is showing a slightly better perfor-
mance compared to the other variations on all four ranking metrics. Moreover,
the consistency of this trend over both datasets can indicate that in general
we can consider the summation function to be the preferred method for the
aggregation of anchor subgraph embedding vectors. To make the experiments
inclusive, we also evaluated the variations over the qualitative metrics. As
shown in Figure 4, while the variations are performing close to each other, we
observe that, consistent with the performance seen over ranking metrics, the
summation operator is slightly better performing.

The second variation of our work is due to the possible implementations
of the fusion of inter-subgraph and intra-subgraph embedding vectors which
is referred to as information fusion. This aggregation function is introduced in
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(a) DBLP. (b) IMDB.

Fig. 5 Fusion embedding generation variations. The performance results are based on rank-
ing measures.

(a) DBLP. (b) IMDB.

Fig. 6 Information fusion variations performance based on qualitative measures.

Equation 7. Similar to the anchor subgraph aggregation method, four possible
implementations can be used to realize Equation 7. The results for the four
implementations of the fusion aggregation function are reported in Figure 5.
Based on the results of ranking-based metrics, we can conclude that there is
no consistent trend across any of the variations. All the variations are per-
forming quite similar to each other and there is no major difference between
them. Considering the qualitative metrics in Figure 6, a similar trend can be
observed. Hence, we conclude that the proposed approach is robust against
different aggregation methods for its fusion stage. For the sake of consistency,
we adopt the summation operator to operationalize the fusion aggregation
function.

The final variation point of our work relates to the number of anchor sub-
graphs (or anchor nodes) that is used for routing through the graph. We have
evaluated our proposed method with different number of anchor subgraphs in
the range of 35 to 80, at cut-off 10.The results for the ranking-based metrics
are shown in Figure 7. As shown in this figure, for both of the DBLP and
IMDB datasets, the performance does not change noticeably with the change
in the number of anchor nodes. This can be considered to be an indication that
our proposed approach is robust against changes to the number of anchor sub-
graphs. We further report the performance of the variations of our proposed
approach and its variations based on the qualitative metrics. The results for
the qualitative metrics are reported in Figure 8. The results depict a similar
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(a) DBLP. (b) IMDB.

Fig. 7 Impact of number of anchor subgraphs (or anchor nodes) on performance based on
ranking measures.

(a) DBLP. (b) IMDB.

Fig. 8 Qualitative metric results on the DBLP and IMDB datasets. This figure shows
impact of number of anchor subgraphs (or anchor nodes) on performance.

consistency in the performance of the various of our work and points to its
robustness to the number of anchor nodes.

5.5 Comparison With Baselines

Findings based on Ranking Metrics. The results of experiments based on
ranking metrics are reported in Figure 9. Based on this figure, our observations
are as follows:

1. We find that our method is able to outperform all of the baselines by
a noticeable margin across all metrics. More specifically, we are superior
to the best baseline, Rad et al. by approximately 18%, 15%, 20%, and
24% for the mrr, map, recall and ndcg metrics, respectively on the DBLP
dataset and by approximately 22%, 65%, 20%, and 46% for the mrr, map,
recall and ndcg metrics, respectively on the IMDB dataset. For both com-
parisons, the top-k cut-off is 10. In other words, 10 experts are retrieved for
building a team. For the recall metric, the best baseline model shows com-
parable results when the size of the team is small, however, our approach
achieves noticeable improvements as the size of the team increases.

2. We also observe that neural-based team discovery methods including
Sapienza et al. and Rad et al. show a reasonable performance across
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(a) DBLP. (b) IMDB.

Fig. 9 The performance of our proposed model against the baselines on ranking metrics.

(a) DBLP. (b) IMDB.

Fig. 10 Qualitative measures of performance on the DBLP and IMDB datasets.

all metrics (albeit being weaker than our proposed approach on all met-
rics). This can be due to the fact that neural architectures such as the
variational Bayesian neural architecture have shown to be robust even for
sparse graphical structures such as collaboration networks and therefore
can effectively learn mappings from the skill space to the expert space.

3. Amongst the methods that learn subgraph embeddings, the Metagraph2vec

method performs better than the DHNE method. We believe that similar to
our approach that adopts meta-paths, the strength of Metagraph2vec is
also due to the consideration of meta-paths that provide explicit semantics
for the relationships between the collaboration network node types and
edges.

4. Finally, our experiments show that even with state-of-the-art graph-based
team such as Kargar et al., the performance of these methods do not
show competitive performance to other methods such as our approach and
methods based on neural architectures. This can be due to these methods
being based on sub-optimal local graph search heuristics.

Findings based on Quality Metrics. In order to perform qualitative assess-
ment of the formed teams, we measure quality in terms of the two metrics
that were introduced earlier in this section, namely skill coverage (sk) and
team comparability (tc). We compare our proposed approach based on these
two metrics against the four most competitive baseline methods that were
identified based on ranking metrics.
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Based on Figure 10 that shows the performance of our work and the
baselines, we make the following observations:

1. From the perspective of skill coverage, we observe that our method has
been able to discover teams that have a higher coverage of the required
skills compared to the other baselines. This means that even for cases when
our method has not been able to find the expected experts, it has been able
to find alternative experts that have appropriate skills and this coverage of
skills is superior to the coverage provided by the baselines.

2. Unlike the skill coverage metric, for which larger values are more desir-
able, lower values indicate a more suitable team when measuring the team
comparability metric. Based on the findings for the tc metric, we observe
that our proposed approach has either been able to find teams that consist
of the expected experts (those experts that actually were observed in the
team present in the test set) or has included experts in the formed teams
that have similar stature (h-index in DBLP and discounted gross movie
sales to its budget) compared to the expected team. Our method is able to
consistently outperform all other baselines.

3. We highlight the fact that while on the skill coverage metric the method
by Rad et al. showed the second best performance, on the team compa-
rability metric, it does not show competitive performance. Similarly, the
Metagraph2vec method that shows strong performance on team compa-
rability does not show good performance on skill coverage. However, our
method shows good performance on both metrics indicating that teams
that are formed by our method are able to provide greater coverage of
the required skills and also consist of experts that are either the expected
experts or are comparable to the expected experts. This indicates that our
proposed method has a more robust performance compared to other strong
baselines across the different qualitative metrics.

Robustness of Findings. To show that our proposed approach is able to con-
sistently show a robust performance improvement over the baselines, we also
compare the performance of our approach with the best three baselines, i.e.,
Rad et al., Metagraph2vec and Sapienza et al. on an individual team
basis. The objective of this study is to show that the performance improve-
ments shown by our method over the baselines in earlier experiments were not
due to only a limited set of teams in the test set and that such performance
improvements can be seen consistently over a large number of teams.

In order to achieve this, without loss of generality and by noting that
other metrics show a similar trend, we report help-hurt diagrams over both
map and ndcg metrics. A help-hurt diagram shows (1) the number of, and (2)
the percentage degree of improvement or decline of the performance over each
given team. A positive value reported in a help-hurt diagram indicates that
the performance of the proposed approach is superior to that of the baseline
while a negative value indicates poorer performance by the proposed method
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(a) DBLP. (b) IMDB.

Fig. 11 Performance comparison on a per-team basis over the DBLP and IMDB datasets.

compared to the baseline. The results of the robustness test through help-
hurt diagrams have been reported in Figure 11. As seen, the number of teams
that have been helped (improved) by our proposed approach has been greater
than the number of teams that have been negatively impacted by it. Further-
more, the degree of improvement on those teams that were helped is greater
than the extent to which other teams were hurt. This is an indication that
our proposed approach has been able to show a robust performance improve-
ment over a range of teams, and hence the performance improvements shown
in all experiments have been a result of systematic impact by our proposed
approach.
Execution Time Analysis. In order to compare the execution time efficiency
of our proposed method compared to the baselines, we studied the performance
of our proposed method versus four of the most competitive baseline methods
that were identified based on ranking metrics from the training time point
of view. We trained our proposed method and other baselines for the same
amount of time and compared their efficacy using our ranking metrics (i.e.,
mrr, map, ndcg and recall). The results for both DBLP and IMDB datasets
are shown in Figure 12. In this figure, the X-axis shows the time in seconds
and the Y-axis shows the performance scores, which are the average of results
@5 and @10.

Based on the results, we can observe that in a designated fixed time,
all models converge and their performance remains quite stable once they
reach the convergence point. However, we find that our proposed method
obtains higher performance compared to the other baseline while trained for
the same amount of time. The two methods, Rad et al. and Sapienza et

al., employ an Autoencoder-based architecture which is composed of stacked
MLPs. Since the dimension of the input data and the models are relatively
small, these methods are highly efficient during training. The graph-based
method, Metagraph2vec, only involves the computation of the gradient based
on the occurrence frequency of the context node pairs in a sampled set of
meta-paths random walks. Therefore, the training time is significantly reduced
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(a) DBLP. (b) IMDB.

Fig. 12 Impact of training time on method efficiency for DBLP and IMDB datasets.

compared to graph-based methods which require the computation over the
whole network. When comparing the time of our method with the baselines,
the results demonstrate that on both datasets, our proposed method is reach-
ing a higher performance in less execution time. It can be concluded that
our proposed method is computationally efficient on both datasets. Regarding
the model complexity, our proposed method does not perform neural comput-
ing for all the nodes in the network. Instead, it undertakes message passing
from the sampled anchor subgraphs to the team. Therefore, the scalability
of our proposed model depends on the number of teams and the number of
anchor subgraphs. The number of teams is smaller than the number of total
nodes. Further, our method only requires a small number of anchor subgraphs
to achieve a good performance as shown in Figure 7 and 8. Therefore, our
approach is able to scale better compared to other methods.

5.6 Discussion

Based on the reported experiments in the previous section, we make a set of
observations with regards to our proposed approach and some of the state-of-
the-art baselines, which we summarize as follow:

1. Most traditional approaches towards team discovery have primarily focused
on designing heuristic methods based on deterministic graph traversal
mechanisms with some desirable characteristics. While effective on small-
scale graphs, they are not effective in terms of execution time and team
discovery quality on realistic collaboration networks, which are large and
sparse. The reason for this is the fact that most of these deterministic
approaches are designed based on subgraph optimization methods, which
have been shown to be a reduced version of the Steiner-tree problem,
which is an NP-hard by nature [78]. Methods based on this approach will
be heuristics-based by nature and therefore may lack scalability and/or
effectiveness.

2. The second observation is with regards to the comparative performance of
the baselines from neural mapping approaches compared to subgraph rep-
resentation learning methods. We find that overall subgraph representation
learning methods are quite effective for the team discovery task especially
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when considering the Metagraph2vec method. This method is consistently
among the top performing methods despite it not being designed specifically
for team discovery. It even perform better than two of the neural mapping
baselines that are specifically introduced for team discovery, namely ExEm

and Sapienza et al. This can be due to the fact that graph represen-
tation learning methods consider interaction between graph nodes, which
implicitly captures past expert collaborations and their skills. However,
in neural mapping approaches, past collaboration history and interaction
between expert’s expertise is not explicitly captured. This is more clearly
observed over the quality metrics where the Metagraph2vec method shows
a very competitive performance.

3. Finally, we have shown based on our experiments that our proposed
approach is (1) stable, i.e., its performance is not sensitive the architectural
variations shown through our ablation studies, (2) is accurate and effective
from both perspective of quantitative ranking metrics as well as quality
metrics, (3) is robust by showing that it improve the performance of the
team discovery task over a large number of test samples compared to sev-
eral strong state-of-the-art baselines. This is achieved over two real-world
large datasets, namely DBLP and IMDB, and (4) diverges to a higher per-
formance score in terms of ranking metrics compared to the baselines while
it is trained for the same amount of time.

We believe that a key to an effective team discovery method is to con-
sider the interaction between skills, experts and skills-experts. Our proposed
approach effectively captures these interactions by learning subgraph represen-
tation from the collaboration network that encode the interactions explicitly.
This is specifically why our proposed approach shows better performance com-
pared to other team discovery methods especially neural mapping methods.
While neural mapping approaches learn effective skill and expert representa-
tions and useful mapping across these representations, they fall short by not
capturing the interaction between the expert-skill spaces when learning the
representations.

6 Concluding Remarks

We propose a team representation learning approach for finding teams of
experts based on a desirable set of skills from collaboration networks. The
novelty of our work is in its formulation of the team discovery problem as one
of learning team representations from heterogeneous collaboration networks.
Our method adopts a meta-path guided random walker as well as a mes-
sage passing schema to capture local and global structural characteristics of
the teams. Through comparing with a range of the state-of-the-art team dis-
covery and heterogeneous subgraph representation learning baselines over the
DBLP and IMDB datasets, we show that our proposed approach is effective
and robust for finding expert teams from the collaboration network in terms
of both ranking and quality metrics.
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Our proposed model has two main limitations which we aim to address
in our future work: (1) Our method ignores the development or the change
of experts’ skills. Currently, most of the team discovery methods capture the
past history of expert skills and expert collaboration as a static collaboration
network. The fact is that the experts may change their interests or acquire
new skills, and furthermore, they establish new collaborations and abandon
some past collaborations. Therefore, as our future work, we are particularly
interested in looking into the dynamics of expert skills and expert collabora-
tions to discover more relevant teams. (2) Our method retrieves the relevant
current teams based on the representation of the past teams encoded via the
representation of the the anchor subgraphs. Hence, its performance depends
on the goodness of the sampled anchor subgraphs. In our work, we select these
subgraphs randomly without considering their importance. Therefore, in our
future work, we would like to investigate the method to capture the impor-
tance of the anchor subgraph in order to select the striking ones for learning
the team representation.
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