
Specifying and controlling multi-channel web interfaces
for enterprise applications

Matthias Book & Volker Gruhn

Springer Science + Business Media, LLC 2007

Abstract When building enterprise applications that need
to be accessed through a variety of client devices,
developers usually strive to implement most of the business
logic device-independently while using a web browser to
display the user interface. However, when those web-based
front-ends shall be rendered on different devices, their
differing I/O capabilities may require device-specific
interaction patterns that still need to be specified and
implemented efficiently. We present an approach for
specifying the dialog flows in multi-channel web interfaces
with very low redundancy and introduce a framework that
controls web interfaces’ device-specific dialog flows
according to those specifications, while keeping the
enterprise application logic completely device-independent.

Keywords Web engineering . Architecture .

Device independence . Dialog control

1 Introduction

With business processes becoming increasingly distributed
in character and even beginning to exhibit mobile aspects,
especially in areas such as field sales forces, logistics
infrastructure etc. (Köhler and Gruhn 2004), users demand

flexible access to many enterprise applications—ideally,
any application should be available on any device,
anywhere, anytime (Weiser 1993). These demands can
virtually only be fulfilled by pursuing a thin-client approach
(Sinha 1992), since economic considerations forbid imple-
menting applications individually for every kind of device,
and mobile devices typically have strict energy, memory,
input and output limitations (Jing et al. 1999). Web-based
front-ends seem to be ideal implementations of this
concept, since the complete enterprise application logic
resides on a central server, while the user interface (UI)
consists entirely of web pages or similar renderings on
client devices such as desktop PCs, PDAs, mobile phones
etc. (Gaedke et al. 1998).

However, the I/O capabilities of these devices range
widely, and characteristics like screen size do not only
impact the page layout, but also affect how users work with
an application (Butler et al. 2002). For example, a dialog
that may be completed in a single step on a desktop
browser may have to be broken up into multiple interaction
steps on a mobile device whose small screen cannot
accommodate large forms, as illustrated in Fig. 1: When
creating a new user account for e.g. a travel agency’s web
portal, the user’s address, travel preferences and desired
password can be entered into a large one-page form in a
desktop browser, but may have to be spread over multiple
smaller pages on a mobile device, requiring the application
to handle more interaction steps.

At first glance, this may seem like a simple issue that
should be solvable relatively easily in an application that
properly separates the implementation of UI and application
logic, as suggested by the MVC pattern (Krasner 1988).
While this separation is easily implemented in traditional
window-based applications, web-based applications pose
more of a challenge: The page-based pull communication

Inf Syst Front
DOI 10.1007/s10796-007-9028-5

The Chair of Applied Telematics/e-Business is endowed by Deutsche
Telekom AG.

M. Book (*) :V. Gruhn
Chair of Applied Telematics/e-Business,
Department of Computer Science, University of Leipzig,
Klostergasse 3, 04109 Leipzig, Germany
e-mail: book@ebus.informatik.uni-leipzig.de

V. Gruhn
e-mail: gruhn@ebus.informatik.uni-leipzig.de

that is employed on the web requires additional logic to
govern the sequence of pages displayed on the client and
processing steps performed by the server. Often (e.g. when
employing the commonly used Apache Struts framework,
Apache Software Foundation, n.d.), this dialog control
logic is not implemented explicitly and separately from the
presentation or application logic, but intermingled with the
latter’s implementation. Consequently, any issues regarding
the dialog sequence (such as different interaction patterns
on different devices) need to be addressed in the application
logic that was actually supposed to be device-independent.

A necessary, but not yet sufficient step towards resolving
this problem is to employ a distinct dialog controller that
receives requests from the UI web pages, dispatches them
to the appropriate application logic and determines which
UI page to send as a response, depending on the results
returned by the application logic (Singh et al. 2002).
Thereby, the dialog controller decouples the application
and presentation logic, providing architectural support for
device independence.

Device independence, however, can seldomly be imple-
mented throughout the system: Except for very simple
applications, the presentation logic is almost always device-
specific since it contains or is responsible for generating the
UI pages that will be delivered to the various devices. The
second building block of a device-independent application
must therefore be a means for linking the device-specific UI
pages with the application logic while preserving the
latter’s device independence. These links can be established
by a specification of the dialog flow defining the possible
sequences of UI pages and processing steps that users
encounter when interacting with the application using
various devices. Given a suitable dialog controller, the
dialog flow can then be controlled at run-time according to
the specification instead of having to be hard-wired into the
presentation, dialog control or application logic.

Thus, developers need a means for specifying the
similarities and peculiarities of different devices’ dialog
flows. The specification should be compact and efficient in
order to reduce development and maintenance effort,

especially in software development projects following an
agile process model where the specification is continually
revised and expanded.

In this paper, we first present a concept for the non-
redundant specification of dialog flows on multiple devices
and show how it can be expressed in a graphical and XML-
based notation. Next, we show how such dialog flows can
be interpreted at run-time by a dialog control framework.
Finally, we introduce a software process model for the
dialog-driven development of multi-channel web applica-
tions, and discuss experiences gained from applying this
method to the development of a web-based application
front-end tailored to three device types. We conclude with
an overview of ongoing and related work and discuss
opportunities for further research.

2 Device-specific dialog specification

When building a web-based front-end for an enterprise
application, the developers’ goal should be to provide the
same functionality across all devices, as demanded by the
W3C’s device independence principles (Gimson 2003).
Specifically, the application’s features should be structured
similarly on all devices to help users with building a
consistent conceptual model of the application, regardless
of the device. This consistency with user expectations, also
demanded by the ISO dialog principles (International
Organization for Standardization 1996), can be supported
by employing similar navigation schemes and interaction
patterns on all devices. A consistent dialog flow throughout
the application should also reduce development and
maintenance effort as opposed to highly device-specific flows.

The above considerations call for dialog flows that are as
generic as possible. Nevertheless, there will likely be parts
of the dialog flow that cannot be specified device-
independently but ask for specific solutions for one or
more devices: Complex dialogs may require differing
pagination on various devices, while selected features may
be reduced or missing on some devices due to insufficient I/
O capabilities, or because they are deemed unnecessary out
of business process considerations. Meanwhile, other
features may be exclusively available on certain devices
for technical or process reasons (e.g. availability of
location-based services on certain mobile phones).

When modeling the dialog flows of an enterprise
application, the generic parts should only have to be
modeled once, but still be applicable to all devices. In
contrast, the specific parts should be modeled with explicit
reference to the respective device. In this paper, we use the
example of the Dialog Flow Notation (DFN) and Dialog
Flow Specification Language (DFSL) to demonstrate how
this approach can be supported by a notation.

Application
server

Mobile
client

A
dd

re
ss

 d
at

aA
ddress form

Desktop
client

P
re

fs
 d

at
aP

refs form

P
as

sw
or

d
da

ta

P
assw

ord form

A
dd

re
ss

,
pr

ef
er

en
ce

s,
pa

ss
w

d
fo

rm

A
ddress,

preferences,

passw
d data

Fig. 1 Dialog flows on different devices

Inf Syst Front

2.1 Graphical notation

Inspired by Statecharts (Harel 1987), the Dialog Flow
Notation (DFN) (Book and Gruhn 2004) models a web
front-end’s dialog flow as a transition network, i.e. a
directed graph of states connected by transitions called a
dialog graph. The notation refers to the transitions as
dialog events and to the states as dialog elements,
discerning atomic and compound elements.

Hypertext pages (symbolized by labeled dog-eared
sheets and referred to by the more generic term masks
here) and calls of application logic operations (symbolized
by labeled circles and called actions from now on)
constitute the atomic dialog elements. Every dialog element
can generate and receive multiple events (symbolized by
labeled arrows). Which element will receive an event
depends both on the event and the generating element (e.g.,
an event e may be received by action A1 if it was generated
by mask M1, but be received by action A2 if generated by
mask M2). Events can carry parameters such as submitted
form data or processing results, and thus facilitate commu-
nication between dialog elements.

In the DFN, dialog graphs are never free-standing, but
always encapsulated in dialog modules that facilitate the
connection and nesting of dialog graphs, as illustrated in the
upper half of Fig. 2 using the example of a travel portal’s
create account module. Any module’s dialog graph can
contain sub-modules, and any module can itself be
embedded in the dialog graphs of super-modules. When a
module receives an event from the super-module that it is
embedded in, traversal of its own dialog graph starts with
the initial anchor (indicated by a thick dot). When its
dialog graph terminates, its terminal anchor (indicated by a
thin, circled black dot) generates a terminal event that is
propagated to the super-module and continues the traversal
of the dialog graph there. Note that the notation discerns
between a module’s definition (symbolized by a large box
with rounded corners, the module name on top and its
dialog graph inside, as in Fig. 2) and a module’s use in a
super-module’s dialog graph (symbolized by a small oval

with the module name inside, as shown by the use of the
create account module in Fig. 3).

A module typically encapsulates one or more dialog
masks, actions and possibly sub-modules implementing a
certain functionality, process or behavior in the enterprise
application (e.g. creating an account, logging in, searching
for hotels, booking a room etc.). The modules’ definitions
are decoupled from each other, but through the interfaces of
their initial and terminal events, they can call and return
results to each other. Depending on the functionality
realized by a module, it may only be used in one place
(in a travel portal, e.g., a book room module will only be
nested into the accommodation module), or it may be called
from (i.e., nested into) different modules in the same
application (e.g., a login module may be called from any
module that requires user authentication). This facilitates
easy reuse of dialog fragments and enables developers to
model the complete dialog flow of an application with a set
of dialog modules that are nested into and connected with
each other.

By default, modules are device-independent: The dialog
graphs they contain are executed identically on all devices.

create account [mobile]

address

form

address

plausib

check

submit

invalid

prefer-

ences

form

valid prefs

plausib

check

submit

invalid
passwd

form

valid passwd

plausib

check

submit

invalid

valid create

account

create account

address,

prefs,

passwd

form

address

plausib

check

submit

invalid

valid prefs

plausib

check

valid passwd

plausib

check

valid create

account

ok

invalid

invalid

done

ok

done

Fig. 2 Dialog module defini-
tion on generic and mobile
presentation channel

name,
passwd
prompt

check
name,

passwd

submit

incorrect

has
admin
rights?

correct

check
login
status

not yet
logged

in

 no
already logged in

mark
user as
logged

in

done

login

create account

register

 yes

is admin

is user

done

Fig. 3 Dialog module definition (login module) and use (create
account module)

Inf Syst Front

However, the DFN provides presentation channels as a
construct that allows developers to specify different dialog
flow variants for the same module. Usually, presentation
channels represent certain device classes or markup
languages. By specifying a channel identifier (noted in
square brackets after the module name) for a module, the
developer can restrict that dialog flow specification to a
certain channel. It is then possible to specify multiple
dialog module variants with the same name, but different
dialog graphs, and associate them with different channels
using different identifiers, as shown using the example of a
mobile device channel for the create account module in the
lower half of Fig. 2.

To keep the specification redundancy of this approach
low, dialog modules have two additional semantics: Firstly,
the generic definition of a module (i.e. the one without a
channel identifier) is valid for all channels unless there are
channel-specific module definitions (i.e. those with channel
identifiers), in which case the specific definitions override
the generic ones for the respective channels. For example, if
an application supports three different channels for desktop
browsers, PDAs and WAP-enabled mobile phones, and the
dialog flow for the create account module shall be the same
on all devices except those using the XHTML mobile
profile, only two module definitions are necessary, as
shown in Fig. 2: On the generic channel, we display one
mask that prompts the user for all necessary data and then
process that data in three consecutive actions on the server.
In contrast, on the mobile channel, we display separate
masks for each part of the form and process the data after
each request.

This way, the notation not only saves the redundant
specification of identical dialog flows, but also supports the
convenient reuse of device-independent application logic:
The four actions processing the user input can be reused on
all channels in different dialog flows, yet need to be
implemented only once.

Note that channel identifiers can only be given in
modules’ definitions, but not for their use—when nesting
a dialog module into another, the channel identifier is never
specified since it is either unknown or redundant: If the
super-module has a generic dialog flow, we do not know at
design-time through which channels users will traverse it at
run-time, so we cannot specify a channel for its sub-
modules. On the other hand, if the super-module has a
channel-specific dialog flow, specifying a channel for its
sub-modules is redundant because the sub-modules must
obviously provide a dialog flow for the same channel.
Either way, the actual dialog flow variant to use for the sub-
module must be determined at run-time when the device
employed by the user is known.

Figure 3 illustrates this mechanism using the example of
a login module that prompts a user to log into the system

(unless he is already logged in) and terminates with an
event that indicates to the calling super-module if this user
has regular or administrator privileges. Since the login
module’s simple dialog graph shall be the same on all
devices, it was specified for the generic channel only. The
create account module is nested into it and called when a
user triggers the register event by following a corresponding
link in the mask. It will then be decided at run-time if the
create account module’s generic or mobile-specific dialog
graph variant needs to be traversed for this user’s device.

A similar mechanism applies to the dialog masks’
implementation: The DFN does not require developers to
specify whether e.g. the desktop or mobile variant of a
certain dialog mask shall be used on a certain channel, but
relies on the dialog control logic to choose a suitable
implementation at run-time, depending on the channel that
a user’s requests are coming in on. In contrast to dialog
modules, however, there are obviously no “generic” mask
implementations; rather, the developer needs to provide an
implementation for each channel for the Dialog Control
Framework’s controller (described below) to choose from.

2.2 Specification language

The dialog flow semantics described in the preceding
section already imply that some logic is required at run-
time in order to choose suitable dialog flow variants for
certain devices. We will present an example of such a
dialog control logic in the following section, but first need a
way to specify the dialog flows in machine-readable form.
In case the dialog flows are specified in the DFN, we can
use its associated XML-based Dialog Flow Specification
Language (DFSL) for this purpose.1

In the conversion from DFN to DFSL, we can reduce the
verbosity of the specification even further by eliminating
partial redundancies within a module. In Fig. 2, for
example, the last part of the create account module’s dialog
graph is the same on both channels (while the overlap is
relatively small here, the dialog flow variants may share
bigger parts in other examples). Instead of specifying the
final create account action and done terminal event twice, it
would be more efficient if we only had to specify it once.
This is possible since the DFSL allows a more fine-grained
specification of dialog flow variants than can be expressed
in the graphical notation, as the following excerpt from a
dialog flow specification document shows:

1 Since the DFSL elements closely mirror the DFN elements, we will
not introduce the language’s syntax in detail here, but focus on the
language constructs for presentation channel definition.

Inf Syst Front

<dfs-flows>

 <in-module name="create account">

 <channel>

 <on-init>

 <call-mask>address, prefs, passwd form</call-mask>

 </on-init>

 ...

 <ex-action name="passwd plausib check">

 <on-event name="valid">

 <call-action>create account</call-action>

 </on-event>

 <on-event name="invalid">

 <call-mask>address, prefs, passwd form</call-mask>

 </on-event>

 </ex-action>

 <ex-mask name="create account">

 <on-event name="ok">

 <term-event>done</term-event>

 </on-event>

 </ex-mask>

 </channel>

 <channel name="mobile">

 <on-init>

 <call-mask>address form</call-mask>

 </on-init>

 ...

 <ex-action name="passwd plausib check">

 <on-event name="invalid">

 <call-mask>passwd form</call-mask>

 </on-event>

 </ex-action>

 </channel>

 </in-module>

 ...

</dfs-flows>

Inf Syst Front

In this specification of the create account module, we
first define the generic channel’s dialog flow within the
unnamed channel element, including all events generated
by the passwd plausib check action and the final create
account action. Next, we define the mobile channel’s
specific dialog flow within the channel element with the
name=“mobile” attribute—for example, the initial event
leads to a different mask than on the generic channel, in
accordance with the graphical specification in Fig. 2.

Note that the valid event of the passwd plausib check
action, as well as the final create account action do not
need to be specified on the mobile channel, since they were
already defined on the generic channel. When interpreting
the dialog flow specification, the dialog control logic
implements the overriding semantics of the presentation
channels by first looking events up in the channel-specific
definition for the device that the user is employing. Only if
an event is not defined in the channel-specific dialog flow,
the dialog control logic looks it up in the generic definition
instead.

3 Device-independent dialog control logic

After discussing requirements for a specification language
that efficiently supports device independence by eliminat-
ing the redundancy that can be inherent in such dialog flow
specifications, and introducing the Dialog Flow Notation
and Dialog Flow Specification Language as examples, we
still need to examine the dialog control logic that is
required on the server in order to implement the semantics
of these dialog flow specifications.

The dialog flow specification documents are parsed
during the initialization of the web application, and the
resulting dialog flow model comprising event tables for
each module is continually used by the dialog control logic
to look up the receivers of incoming events. Figure 4 shows
the architecture of the Dialog Control Framework (DCF)

(Book and Gruhn 2003) as an example of a dialog control
logic implementing the device-independent specification
constructs discussed in the previous section. In order to
keep the actual dialog control logic completely device-
independent, the requests coming in from the clients are
received by channel servlets (step 1). Each of these servlets
is tailored to the protocol and language specifics of a certain
channel and knows how to retrieve the session identifier
and parse the query string on that particular channel. This
enables each servlet to extract the event data from its
channel-specific encoding and build a dialog event object
from it, which is then passed to the dialog controller (2).
While the dialog event still contains information on the
channel that it came in on, its structure is channel-
independent.

To find the receiver of an incoming event, the dialog
control logic must first establish the context in which this
event was created. For this purpose, each user session is
associated with a module stack that contains references to
the nested modules that the user is currently navigating
through. On top of the stack is the reference to the currently
traversed module in the dialog flow model. Using the
event’s type, name and information on the generating
element, the dialog controller can now look up the receiver
for this event in the module’s event tables. To implement
the channel overriding semantics, the controller will first
look for the event in the event tables of the channel-specific
graph, and if it is not found, refer to the generic graph (3).

If the receiver found in the event tables is an action, the
dialog controller will dispatch the event to that action (4),
which may call back-end logic to update the applications’
data model (5) and then returns a new event indicating the
result of the operation (6). The dialog controller looks this
event up in the dialog flow model again (7), where it may
find that it leads to another action (in which case the cycle
repeats) or to a module or mask. If the event receiver is a
module, the dialog controller will push a reference to it onto
the user’s module stack in order to reflect the user’s

3. Lookup

7. Lookup

Client

Dialog
Controller

Model
Dialog
Mask

2. Event

4. Dispatch

5. U
pdate

6. Event

8. F
orw

ard

9. Extract

Action

Dialog Flow Model

Channel
Servlet

1. Request

Dialog
Flows

Document

Dialog
Elements
Document

Dialog Flow NotationDialog Flow Specification Language

10. Response

translationimport

Module
Stack

Fig. 4 Architecture of the
Dialog Control Framework

Inf Syst Front

updated position in the dialog flow, and then look up the
receiver of that module’s initial event. If the event receiver
is a mask, the dialog controller will dispatch the request to
the implementation for the corresponding presentation
channel (e.g. a JavaServer Page, step 8), which can read
information from the data model (9) to build a response that
is finally sent back to the client (10).

Following the MVC paradigm, this architecture enforces
a strict separation of presentation, application and dialog
control logic since neither the masks nor the actions
determine the next step in the dialog flow directly—rather,
this decision is made by the dialog controller according to
the specification provided by the developer. The channel-
independent dialog control logic also simplifies the incor-
poration of additional devices: The developer only needs to
implement a suitable channel servlet, specify any particular
dialog flow variants for the new channel, and design an
additional set of masks using a suitable markup language
for the device, while the application logic and dialog
control logic can remain unchanged.

4 Dialog-driven process model

In the following subsections, we introduce a dialog-driven
process model (DDPM) that suggests how the DFN and
DCF may be employed in the phases of a typical
development process for a multi-channel web application.
For clarity, we do not cover all tasks that have to be
performed in each phase (such as conducting interviews to
gather requirements, creating the screen design, specifying
the database schema, etc.), but focus on the development of
the dialog flow and associated deliverables (i.e. masks and
actions) here. We illustrate the concepts presented for each
phase with examples from the development of the ARGuS
Travel Guide, a complex device-independent web applica-
tion built using the DFN and DCF in order to examine the
feasibility of this approach.

4.1 Requirements analysis phase

Early in the requirements analysis phase, a very coarse,
high-level view of the application’s dialog flow, showing
just the relationships between the most important dialog
modules, should be drafted in order to visualize the overall
structure and scope of the project. This early draft can be
derived from use cases and thus initiate the transition from
informal requirements to a more formal and detailed
specification of the application’s look and feel.

The ARGuS Travel Guide, for example, bundles
information on Leipzig’s sights, restaurants, hotels, and
public transportation schedules and makes it available
through the web-based user interface of a portal system.

Users can search for points of interest and save them in a
personal travel planner to create their individual itinerary
for a visit to the city. Most features of the system can be
accessed either through a desktop browser, PDA or WAP-
enabled mobile phone. Consequently, the first step in the
dialog flow design was to identify the dialog modules that
would later contain these use cases, without specifying their
actual dialog graphs yet (Fig. 5).

4.2 Specification phase

The details of the dialog flow should then be worked out in
the specification stage, preferably in incremental fashion: In
order to ensure that the whole development process is
driven by the users’ needs, the coarse dialog graphs should
be populated with an emphasis on dialog masks first, since
these are the entities that will ultimately determine the user
experience. The actions can be specified relatively coarsely
at this early stage, and be refined in subsequent iterations.
Note that it would be counterproductive to strictly separate
the specification of masks and actions, since they work very
closely together—however, in the early iterations, the
masks should be considered as leading the specification,
while the actions follow the requirements of the user
interface.

For an application that serves multiple presentation
channels, their dialog flows should be specified in parallel
to ensure that the dialog structure is as similar as possible
on all channels, allowing users to switch channels without
having to rebuild their conceptual model of the application.
In this case, giving preference to the masks during the
specification and design phase is especially important to

ARGuS

Home

Home

Restaurants

edit account

ed
it

ac
co

un
t

Sights

Travel Plan

tr
av

el
 p

la
n

Events Tram Schedule

logout

Hotels

City Map

create account

login

clear travel plan

cl
ea

r
pl

an
edit

travel plan entry

lo
gi

n

sights

hotels

events

tram

restau-
rants

lo
go

ut

city m
ap

hom
e

si
gh

ts

ed
it

en
tr

y

Fig. 5 High-level dialog structure of the ARGuS portal

Inf Syst Front

prevent the design of the actions from becoming presenta-
tion channel-dependent. For example, to create a new
account in the ARGuS portal, the user needs to provide
quite a bit of data (address, travel preferences and desired
password)—while this can be all acquired in one form on
the desktop channel, we use a sequence of three pages on
the mobile phone channel to cater to mobile devices’
smaller screens (Fig. 6).

4.3 Design phase

By the end of the specification stage, the user experience
should have been worked out in terms of which masks exist
on various channels of the application and how the user can
navigate between them. In the design stage, when the
structure of the underlying application logic and data model
is also designed, it is then time to refine the dialog graphs
by inserting all necessary actions between the masks to
process the users’ input and prepare the system’s output.

To complete the dialog graphs of the create account
module, for example, we need to add logic for validating
the data entered by the user. In order to keep this logic
channel-independent, we implement it in three actions that
are executed subsequently on the desktop channel, but
interspersed with the masks on the mobile phone channel
(as shown previously in Fig. 2). The necessity to distribute
the input processing over several actions only becomes
obvious if the channels are designed in parallel, and
preference is given to the masks—had we designed for
the desktop channel only, all the processing might have
been implemented in one action that would have been
unsuitable for reuse on the mobile phone channel. There-
fore, if we want to avoid redundant implementation of
application logic on multiple channels, the structure of the
logic must be flexible enough to serve all channels—and
the required degree of flexibility can only be gauged if the
channels’ user interfaces are specified first.

One might argue that finding the right granularity of
masks and actions that is suitable for all presentation
channels is a weak point of the notation, and indeed this
may be a challenge if channels shall be added to an existing
application at a later time. We will present an automated
approach to solving this problem below.

As the application’s data model matures in the design
phase, this is also the time for specifying the data flow
between the application logic and the user interface. This
includes the detailed definition of the masks’ contents, i.e.
the data that the user should input and the system should
output. This stage will likely be characterized by mutual
feedback between the dialog flow specification and the
application design: The dialog flow defines what the
application logic should do in response to user interactions,
guiding the design of the logic and data model, which in
turn define the data structures that the masks and actions
will process.

4.4 Implementation phase

In the implementation phase, the refined dialog flow model
serves as essential input for the DCF, which will manage
the users’ interaction with the application accordingly.
Since a machine-readable specification can be generated
from the dialog flow model automatically, there is no need
for developers to implement the specified dialog flows
manually. Because of the modular nature of the dialog flow,
modules may be added to the dialog flow model incremen-
tally as the implementation of their constituent masks and
actions progresses.

Obviously, since the dialog flow specification is contin-
uously evolving from the first coarse sketches to the final
detailed graphs, and the automatic conversion from DFN
diagrams to executable DFSL documents encourages rapid
prototyping, no clear lines can be drawn between the above
phases. In practice, there will always be some degree of

create account [mobile]

address
form

invalid

prefer-
ences
form

valid

passwd
form

valid valid

create account

address,
prefs,

passwd
form invalid

valid

done

invalid invalid

create
account

ok

done

create
account

ok

Fig. 6 Early create account
dialog module sketches

Inf Syst Front

overlap and iteration, depending on the type of application
and the actual process employed.

4.5 Testing phase

In the testing phase, the DFN can be used on two levels: At
first, developers can test the interaction of their masks and
actions with the application logic on a relatively low level
by embedding them into simple dialog graphs that merely
serve as test drivers. Later, on a higher level, the complete
dialog graph diagrams should serve as a reference to testers
examining larger components or the whole system: By
following all events in the diagrams, testers can verify that
the dialog structure of the application was implemented as
specified, does not contain any errors, and meets usability
criteria.

Since the DFN encourages modularity in the dialog flow
and the DCF enforces the separation of dialog flow
specification, user interface design and application logic,
any errors found in one of these tiers should be fixable
without affecting other tiers or even other elements of the
same tier. In contrast, the intermingling of application logic
and dialog control logic in actions that is allowed by
approaches such as Apache Struts (Apache Software
Foundation, n.d.) bears the risk of introducing side effects
when changing one aspect of the combined logic.

5 Project experience

To examine the feasibility of our approach to specifying
and implementing web-based front-ends for device-inde-
pendent enterprise applications, a team of three students
developed the ARGuS travel guide that can be accessed
using various devices. In Fig. 7, for example, users are
searching for churches in Leipzig on the desktop, PDA and
mobile phone channel (the latter splitting the search form
and results list up into two masks).

During the specification phase, the system’s dialog flows
were defined in the DFN only for the desktop and mobile
phone presentation channels at first (a PDA channel was
not planned at this time). The dialog flow specifications
underwent a number of iterations in order to arrive at a
specification that reused as many actions on both channels
as possible. The dialog flow diagrams were then translated
into DFSL documents manually (a cumbersome process at
the time, which has meanwhile been automated by a DFN
modeling plug-in for the Eclipse IDE that creates DFSL
documents automatically). In the implementation phase, the
masks for the desktop presentation channel and all actions
were implemented incrementally.

After a successful system test using the desktop channel,
the masks for the mobile phone channel were implemented.

Since the dialog flow for the mobile phone channel was
completely planned earlier in coordination with the desktop
channel, no additional application logic had to be imple-
mented anymore. Close to the end of the project, the
developers decided to add a channel for PDAs, a feature
that was not part of the original requirements and had not
been considered throughout the project. In contrast to the
desktop channel that relied on rich HTML with layout and
graphics, the PDA channel should serve light, virtually text-
only HTML to the devices. Since the differences between
the desktop and PDA channel were only in dialog mask
markup, but not in pagination, the dialog flows for the
desktop channel could be reused completely as a generic
presentation channel. The specific dialog flows for the
mobile phone channel were specified as extensions of the
generic channel using the notation and framework’s
channel override mechanism. While some features, such
as write access to the itinerary, were disabled in the mobile
version out of usability considerations, other dialogs were
split up into multiple masks to accommodate the smaller
screen.

Using this approach, our development team required the
following amounts of time to complete the implementation
of each channel:

& Desktop channel: 2 months (implementation of appli-
cation logic, 29 actions and 24 rich HTML masks)

& Mobile phone channel: 2 days (implementation of 22
WML masks)

& PDA channel: 1 day (extension of dialog flow specifi-
cation, implementation of 24 light HTML masks)

The implementation phase was preceded by a 2-month
specification and design phase that also included the
definition of the dialog flows for the desktop and mobile
phone channel.

Obviously, these implementation times cannot be gener-
alized—more empiric evidence and a comparison to
development projects that do not use the approach
suggested here is necessary to draw valid conclusions on
the efficiency of this method vs. others. While these
numbers do not tell how much of the time saved for the
implementation of the mobile and PDA channel was due to
the non-redundant dialog flow specification for those
channels, the initial results look promising and show that
it is feasible to build complex web-based applications for
multiple devices using our approach.

The numbers also reflect what would be intuitive
expectations for the development effort of these channels:
Since the rich and light HTML channels are very similar,
one would expect the effort for adding the PDA channel to
be quite low. The observed implementation effort of just
1 day confirms this and suggests that the notation and
framework did not introduce any additional overhead. For

Inf Syst Front

the implementation of the mobile channel, the observed
implementation time of 2 days is a bit higher than for the PDA
channel, but still lower than expected. We consider this a
payoff of the preceding 2 months of specification and design,
where the dialog flows were iteratively revised up to a
maturity that later actually enabled the developers to simply
implement the WML masks without having to deal with any
application logic in order to obtain a working mobile channel.

6 Automated content adaptation

As mentioned earlier, a weak point in the approach
presented above may be the fine granularity of actions that
is required to reuse them flexibly in dialog flows on
different presentation channels (this especially concerns

actions responsible for processing user input submitted
through forms): The finer the actions are grained, the easier
it is to adapt to different interaction patterns—however,
very fine granularity also results in quite high specification,
implementation and performance overhead. When specify-
ing a dialog flow, the developer therefore needs to find a
balance between the desired flexibility and the required
granularity.

To solve this dilemma, we are currently exploring an
approach that involves abstracting from concrete masks and
actions, and just letting the developer specify which data
the user shall be prompted for. Using XForms (World Wide
Web Consortium 2003) in combination with the DFN, we
can enable developers to specify both the dialog flow and
the dialog contents in a mostly device-independent way. An
extension to the framework can then generate the device-

Fig. 7 Searching for sights on the desktop, PDA and mobile phone channel of ARGuS

Inf Syst Front

specific dialog masks and a suitable micro-dialog flow for
obtaining and checking the user input automatically at run-
time. These extensions to the DFN and DCF allow
developers to focus their efforts on implementing the
application logic and specifying the user interface, without
having to deal with their adaptation to a broad spectrum of
devices (Book et al. 2006).

In brief, we let the developer define the contents of each
dialog in a so-called “abstract dialog specification,” where
we define a “dialog” as a collection of widgets that should
all be displayed on the same hypertext page if a sufficiently
large display is available (typically, one abstract dialog will
correspond to one HTML page displayed on a desktop
terminal, which may have to be broken up for smaller
devices). The integration of these abstract dialog specifica-
tions with the DFN is quite straightforward: In the DFN’s
dialog graph diagrams, abstract dialogs are symbolized as
sheets with a black dog ear (as opposed to concrete dialog
masks, which are distinguished by a white dog ear) to
convey their similarity to concrete masks: Abstract dialogs
can be used in dialog graphs exactly the same way as
concrete masks, as illustrated in Fig. 8. In this variation of
the create account module, register is an abstract dialog
that may be broken up into several dialog masks on some
devices. Independently of the number of masks that it may
be broken into, the register dialog will ultimately generate

either a done or cancel event that determines if the account
will actually be created.

When the extended DCF encounters an abstract dialog at
run-time, it will parse the respective abstract dialog
specification and generate the necessary concrete masks
and micro dialog graphs connecting them automatically, as
seen in the example of a two-step wizard in Fig. 9. We call
the dialog graphs that are auto-generated to connect
concrete dialog masks “micro dialog graphs” in order to
distinguish them from the manually specified “macro dialog
graphs” that the developer embedded the abstract dialog in.
The dynamic generation of dialog masks and dialog graphs
remains transparent for users, who will only be exposed to
the familiar wizard interface in situations where an abstract
dialog does not fit on a single concrete page.

The initial evaluation of a small-scale example indicated
that this approach can decrease the volume of user
interface-related code and specifications considerably,
while incurring an acceptable increase in the execution
time of the dialog control logic. Of course, the usability of
the auto-generated dialog masks depends heavily on the
availability of suitable profiles for recognizing the display
characteristics of devices employed by users, the accuracy
of the heuristics used to estimate the size of different
widgets, and the layout algorithms employed to render
masks in different markup languages. These areas still bear
a lot of potential for optimization and evaluation, which is a
prime topic of our ongoing research.

7 Related work

A number of notations for modeling user interface
navigation have been proposed over time. However, many
notations introduced specifically for the field of web-based
UIs initially focused on data-intensive information systems

create account

create
account

ok
done

register

cancel
done

cancel

Fig. 8 Macro dialog graph of create account module with abstract
register dialog, as specified by the developer

Input1

Help1

help

Input2

preHelp1

validate1

next

prePrev1 previousok

help

preHelp2

validate2

done
ok ok

ca
nc

el

cancel

done

ok

ba
ck

Help2
ok

ba
ck

register

ca
nc

el

cancel

errorerror

Fig. 9 Auto-generated micro
dialog graph of register dialog
with two concrete dialog masks

Inf Syst Front

and only recently began to provide support for interaction-
intensive web applications. The language WebML (Ceri et
al. 2000), for example, is capable of modeling the layout
and appearance of web pages independently of the output
device using an abstract XML language for its presentation
model, but does not seem to provide an overriding
mechanism for the extension of generic dialog modules
with channel-specific fragments, as implemented in the
approach presented here. Similarly, the Web Composition
Language (Gaedke et al. 1998) focuses on the specification
of the dialog mask’s contents, but does not distinguish
between generic and channel-specific dialog flows.

More recent notations, often based on Statecharts (Harel
1987), also provide extensive support for interaction-
intensive applications: For example, Leung et al. (Leung
et al. 2000) use Statecharts to model dynamic web
applications, but do not provide a means for specifying
device-specific interaction patterns. The same is true for
StateWebCharts (Winckler et al. 2004). While the HMBS
model (de Oliveira et al. 2001) allows the channel-
dependent specification of navigation patterns, it focuses
on challenges such as synchronization that are introduced
by multimedia elements embedded into hypertext. Schewe
et al. (Schewe and Thalheim 2001) use a formal approach
for modeling interaction and media objects that allows the
specification of device-specific variants of media objects
depending on the presentation channels’ capabilities, but do
not provide a means for the non-redundant specification of
device-independent dialog flows. Last but not least, the
formal model for web interactions proposed by Graunke et
al. (Graunke et al. 2003) helps to identify and deal with
unexpected situations in the dialog flow (e.g. backtracking),
but does not address device independence issues. XForms
(World Wide Web Consortium 2003) separates form
contents from control flow, but does not offer constructs
for modeling and controlling complex, modular dialog
flows as the DFN does.

Most tools offering dialog control implementation
support for web applications follow the Front Controller
design pattern to facilitate easier dialog control. The
Apache Project’s Struts framework (Apache Software
Foundation, n.d.) is the most popular solution today,
however, it forces developers to combine application logic
and dialog control logic in its actions: The Struts controller
only decides which action should receive incoming
requests, but the actions then decide which view to display
next. Since the application logic is thus not completely
decoupled from the dialog flow, reusing it on different
channels is not always possible, making device-indepen-
dent design cumbersome.

The challenges posed by different devices’ interaction
patterns are addressed in the Sisl (Several Interfaces, Single
Logic) approach (Ball et al. 2000). Its “service monitor”

can process unordered or incomplete input from a wide
range of client devices. However, since it uses acyclic
graphs to model dialogs, it is more suitable for simple linear
and branched dialog structures than for highly interactive
applications with nested and cyclic dialogs. The need to
spread complex forms over multiple interaction steps on
small-screen devices instead of presenting them as a whole
is addressed by the Renderer-Independent Markup Lan-
guage (RIML) (Ziegert et al. 2004), an extension of
XHTML 2.0 which contains semantic information for an
automatic pagination engine. Collecting the data fragments
coming in from the split-up forms is the task of a proxy
between the client and server in that approach. In contrast,
our extension to the Dialog Control Framework described
in the previous section enables it to manage the necessary
micro-dialog flows directly. Finally, a number of
approaches (e.g. by Ceri et al. 2004) place the responsibility
for content adaptation on the client; however, we do not
follow this approach since we aim to keep the client as
“thin” as possible.

8 Discussion

In this paper, we discussed possible redundancies in the
specifications of dialog flows for web-based front-ends for
enterprise applications and suggested an approach for
eliminating these redundancies in the specification. To
illustrate this approach, we presented a graphical notation
and XML-based specification language that allows the
modular specification of generic, device-independent dialog
flows that are extended by device-specific dialog flows where
necessary. We also showed how these specifications can be
used by a framework that controls an application’s dialog flow
by implementing the semantics of overriding generic flow
specifications with more specific ones. Using this approach,
developers can reuse the device-independent application logic
across multiple devices that behave mostly similar to create a
consistent user experience, yet may differ in certain dialog
structures where dictated by their I/O capabilities.

The feasibility of this approach was demonstrated in the
development of a complex web-based application serving
three channels. The observed implementation times for
these channels indicate that the detailed specification of the
dialog flows and the complete separation of application,
presentation and dialog control logic paid off by reducing
the development effort for two of the three channels to the
mere implementation of dialog masks. However, since the
desktop and mobile dialog flows were designed in parallel,
it is not possible to quantify how much effort went into
which channel. It would be an interesting experiment to add
a channel for a device with restricted I/O capabilities late in
the project and observe the development effort this incurs.

Inf Syst Front

Based on our experiences gained from the development
of the ARGuS web application, we predict that a dialog-
driven process using the Dialog Flow Notation and Dialog
Control Framework can reduce the development effort and
cost for web applications in a number of ways: Firstly, the
development effort for application-specific dialog control
logic is eliminated since the DCF that contains all this logic
can be reused as a black box. Secondly, the redundant effort
of first specifying an application’s dialog flow in some
notation and then manually implementing it is eliminated
since the DFN/DFSL specifications serve as direct input to
the DCF without the need for further programming.
Thirdly, redundant development effort for multiple presen-
tation channels is eliminated since the DFN and DCF
encourage reuse of the device-independent application logic
and provide means to reuse similar parts of the dialog flow
across channels. Fourthly, the risk of late discovery of flaws
in the user interface and business processes is reduced since
the intuitively understandable DFN allows the involvement of
non-technical stakeholders throughout the project, and the
seamless transition from specification to implementation of
dialog flows using the DCF allows rapid prototyping. We
hypothesize that in combination, these effects will lead to a
reduced overall cost of web application development and a
shorter time to market, while at the same time providing
developers with means to structure web applications’ user
interfaces on various devices in a more user-friendly way.

References

Apache Software Foundation (n.d.). Apache Struts Project. Retrieved
from http://struts.apache.org.

Ball, T., Colby, C., & Danielsen, P. (2000). Sisl: Several interfaces,
single logic. International Journal of Speech Technology, 3(2),
91–106.

Book, M., & Gruhn, V. (2003). A dialog control framework for
hypertext-based applications. In H. Lin & H. Ehrich (Eds.),
Proceedings of the 3rd international conference on quality
software (QSIC 2003) (pp. 170–177). Los Alamitos, CA: IEEE
Computer Society Press.

Book, M., & Gruhn, V. (2004). Modeling web-based dialog flows for
automatic dialog control. In 19th IEEE international conference
on automated software engineering (ASE 2004) (pp. 100–109).
Los Alamitos, CA: IEEE Computer Society Press.

Book, M., Gruhn, V., & Lehmann, M. (2006). Automatic dialog mask
generation for device-independent web applications. In Proceed-
ings of the 6th International Conference on Web Engineering
(ICWE 2006) (pp. 209–216). New York: ACM Press.

Butler, M., Giannetti, F., Gimson, R., & Wiley, T. (2002). Device
independence and the web. IEEE Computing, 6(5), 81–86 (Sep–
Oct).

Ceri, S., Dolog, P., Matera, M., & Nejdl, W. (2004). Model-driven
design of web applications with client-side adaptation. In
Proceedings of the 4th International Conference on Web

Engineering (ICWE 2004), Lecture Notes on Computer Science,
3140, 201–214.

Ceri, S., Fraternali, P., & Bongio, A. (2000). Web modeling language
(WebML): A modelling language for designing web sites.
Computer Networks, 33, 137–157.

de Oliveira, M. C. F., Turine, M. A. S., & Masiero, P. C. (2001). A
statechart-based model for hypermedia applications. ACM Trans-
actions on Information Systems, 19(1), 28–52.

Gaedke, M., Beigl, M., Gellersen, H., & Segor, C. (1998). Web
content delivery to heterogeneous mobile platforms. In Advances
in Database Technologies, Lecture Notes in Computer Science,
vol. 1552.

Gimson, R. (2003). Device independence principles, W3C working
group note 01 September 2003. Retrieved from http://www.w3.
org/TR/2003/NOTE-di-princ-20030901/, Sep.

Graunke, P., Findler, R., Krishnamurthi, S., & Felleisen, M. (2003).
Modeling web interactions. In Proceedings of the 12th European
symposium on programming, lecture notes on computer science,
vol. 2618 (pp. 238–252). Berlin Heidelberg New York: Springer.

Harel, D. (1987). Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8(3), 231–274.

International Organization for Standardization (1996). Ergonomic
requirements for office work with visual display terminals
(VDTs)—Part 10: Dialogue Principles. ISO, 9241–10.

Jing, J., Helal, A., & Elmagarmid, A. (1999). Client-server computing
in mobile environments. ACM Computing Surveys, 31(6), 117–
157 (Jun).

Köhler, A., & Gruhn, V. (2004). Analysis of mobile business
processes for the design of mobile information systems. In K.
Bauknecht, M. Bichler, & B. Pröll (Eds.), E-commerce and web
technologies (p. S. 238–247). Berlin Heidelberg New York:
Springer.

Krasner, G. (1988). A cookbook for using the model-view-controller
user interface paradigm in smalltalk. Journal of Object-oriented
Programming, 1(3), 26–49.

Leung, K., Hui, L., Yiu, S. M., & Tang, R. (2000). Modeling web
navigation by statechart. In Proceedings of the 24th annual
international computer software and applications conference
(COMPSAC 2000). Los Alamitos, CA: IEEE Computer Society
Press.

Schewe, K.-D., & Thalheim, B. (2001). Modeling interaction and
media objects. Proceedings of the 5th International Conference
on Applications of Natural Language to Information Systems,
Lecture Notes in Computer Science, 1959, 313–324.

Singh, I., Stearns, B., & Johnson, M. (2002). Designing enterprise
applications with the J2EE platform (2nd ed.). Reading, MA:
Addison-Wesley.

Sinha, A. (1992). Client-server computing. Communications of the
ACM, 35(7), 77–98 (Jul).

Weiser, M. (1993). Some computer science issues in ubiquitous
computing. Communications of the ACM, 36(7), 75–84 (Jul).

Winckler, M., Barboni, E., Farenc, C., & Palanque, P. (2004).
SWCEditor: A model-based tool for interactive modeling of
web navigation. In Proceedings of the 5th international confer-
ence on computer-aided design of user interfaces (CADUI 2004)
(pp. 55–66). Dordrecht: Kluwer.

World Wide Web Consortium (2003). XForms 1.0, W3C recommen-
dation. Retrieved from http://www.w3.org/TR/2003/REC-xforms-
20031014/, Oct.

Ziegert, T., Lauff, M., & Heuser, L. (2004). Device independent web
applications—The author once—Display everywhere approach.
Proceedings of the 4th International Conference on Web Engineering
(ICWE 2004), Lecture Notes in Computer Science, 3140, 244–255.

Inf Syst Front

http://struts.apache.org
http://www.w3.org/TR/2003/NOTE-di-princ-20030901
http://www.w3.org/TR/2003/NOTE-di-princ-20030901
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/

Matthias Book is a doctoral candidate at the Deutsche Telekom Chair
of Applied Telematics/e-Business at the University of Leipzig. His
research interests are in the specification and control of dialog and data
flows in web-based applications, with a special focus on designing for
device independence. He is a co-author of over 25 refereed publications
in international software and web engineering conferences and journals.

Volker Gruhn is a full professor and holder of the Deutsche Telekom
Chair of Applied Telematics/e-Business at the University of Leipzig.
His research interests are in agile model-driven development,

especially in methods for the development of mobile, distributed
software systems. He is author and co-author of about 120 national
and international publications. In the 1990s, Volker Gruhn worked at
the Fraunhofer Institute for Software and Systems Engineering (ISST)
and was a member of the executive board of a software company of
Veba AG. He subsequently became professor for applied computer
science at the University of Dortmund, with a research focus on the
development of component-based software architectures and e-business
applications. He is founder and chairman of the board of software
company adesso AG.

Inf Syst Front

	Specifying and controlling multi-channel web interfaces for enterprise applications
	Abstract
	Introduction
	Device-specific dialog specification
	Graphical notation
	Specification language

	Device-independent dialog control logic
	Dialog-driven process model
	Requirements analysis phase
	Specification phase
	Design phase
	Implementation phase
	Testing phase

	Project experience
	Automated content adaptation
	Related work
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

