
COSMO: A conceptual framework for service modelling
and refinement

Dick A. C. Quartel & Maarten W. A. Steen &

Stanislav Pokraev & Marten J. van Sinderen

Published online: 3 May 2007
Springer Science + Business Media, LLC 2007

Abstract This paper presents a conceptual framework for
service modelling and refinement, called the COSMO
(COnceptual Service MOdelling) framework. This frame-
work provides concepts to model and reason about services,
and to support operations, such as composition and
discovery, which are performed on them at design and
run-time. In particular, the framework should facilitate the
use of different service description languages tailored to
different service aspects, such as the behaviour of a service
and the information it manipulates, or design tasks, such as
modelling, analysis and implementation. The idea is that
models produced by these languages can be mapped onto
the concepts of the framework, thereby facilitating one to
relate these models, e.g., to verify consistency. Therefore, a
requirement on the framework is to provide concepts that
capture all elementary and generic service properties that
are relevant during the service development process. We
capture these properties by analysing existing service

definitions and from earlier experience. Furthermore, we
want the same concepts to be applicable throughout the
service development process when modelling and refining
services at successive abstraction levels. The framework
distinguishes three generic abstraction levels, and describes
an approach to assess the conformance between the service
models produced at these abstraction levels.

Keywords Service-orientation . Service concept . Service
modelling . Service refinement . Interaction modelling

1 Introduction

Service-orientation is currently considered as a promising
paradigm to deal with the complexity of IT systems.
Informally the service-oriented paradigm is characterized
by the explicit identification and description of the
externally observable properties of a system, e.g., an appli-
cation or business process. Systems can then be linked,
based on the description of their external properties.
According to this paradigm, developers do in principle not
need to have any knowledge about the internal functioning
of the systems being linked.

We believe the service concept has been used implicitly
and explicitly in preceding paradigms like object- and
component-orientation, but not to its full potential. Further-
more, observing the many different interpretations of the
term service that can be found, we conclude that a general
definition and understanding of the service concept is still
missing in the area of distributed computing. This in
contrast to, e.g., the area of data communication systems,
where the importance of this concept has been recognized
since (Vissers and Logrippo 1986), and its definition by

Inf Syst Front (2007) 9:225–244
DOI 10.1007/s10796-007-9034-7

D. A. C. Quartel (*) :M. J. van Sinderen
University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: d.a.c.quartel@ewi.utwente.nl

M. J. van Sinderen
e-mail: m.j.vansinderen@ewi.utwente.nl

M. W. A. Steen : S. Pokraev
Telematica Instituut,
P.O. Box 589, 7500 AN Enschede, The Netherlands

M. W. A. Steen
e-mail: Maarten.Steen@telin.nl

S. Pokraev
e-mail: Stanislav.Pokraev@telin.nl

OSI can be taken as a reference (ISO 1994). However, also
in this area it has taken quite a while before the merit of and
need for the service concept as a way to abstract from internal
protocol details was recognized and fully understood.

The service concept should precisely define which
system properties are modelled, and which are not. The
selection of properties should be based on the intended use
of this abstraction in structuring and developing IT systems,
which is also denoted as service-oriented architecture. For
example, one may want to develop new services by
composing models of existing services, and using discovery
and trading techniques at run-time to find actual imple-
mentations of these services. In order to support such a
scenario, service models should represent, e.g., interaction
properties to define orchestrations and choreographies of
services, and more abstract properties such as goal or
purpose to facilitate discovery and trading.

The aim of this paper is to present a conceptual
framework for service modelling and refinement, called
the COSMO (COnceptual Service MOdelling) framework.
The purpose of this framework is to bring clarity to the field
of service-orientation by fixing terms and providing
concepts to model and reason about services, and to
support operations, such as composition and discovery,
which are performed on them at design and run-time.

The COSMO framework focuses on basic concepts to
represent essential, elementary and generic service proper-
ties. In this way, the framework can be used as a basis for
the development of more complex concepts that represent
combinations of service properties by composing them
from the basic concepts. Typically, such concepts are
introduced to facilitate the modelling task by representing
frequently occurring compositions of service properties.

In addition, we want the proposed concepts to be
applicable throughout the service development process, in
which services are modelled, and may be refined into more
detailed models. This increases usability and facilitates one
to analyse the refinement relation between service models
produced at successive abstraction levels. The framework
distinguishes three generic abstraction levels, and describes
an approach to assess the refinement (also called confor-
mance) relation between the service models produced at
these abstraction levels.

The structure of this paper is as follows. Section 2
analyses existing service definitions and derives general
service properties. Section 3 structures the COSMO
framework into service aspects and abstraction levels.
Sections 4 and 5 present our service modelling concepts.
Section 6 describes an approach to assess the refinement
relation between service models. Section 7 discusses the
application of the framework. Section 8 relates our work to
other research activities. And Section 9 presents our
conclusions and future work.

2 Service modelling requirements

This section presents a number of regularly encountered
interpretations of the service concept. From these interpre-
tations generic service properties are derived.

2.1 Existing service definitions

The service concept is widely used in both computer and
business science. However, the usage of the concept differs
considerably in these areas and even in different “schools of
thought” within these areas.

Service as interaction In economics and business science, a
service is seen as the non-material equivalent of a good.
Service provision has been defined as the economic activity
that does not result in ownership, and this is what
differentiates it from providing physical goods. It is claimed
to be a process that creates benefits by facilitating a change
in customers, a change in their physical possessions, or a
change in their intangible assets (Wikipedia 2005). The
IBM Services Research group defines a service as: “a
provider/client interaction that creates and captures val-
ue”(IBM 2006). Quartel et al. (1997) also use this inter-
pretation and define a service as the common behaviour of
some system and its environment, which is defined in terms
of common interactions, the results established in these
interactions, and the causal dependencies between them.

Service as capability Often the service concept is
connected to the system or entity providing it. Thus a
service is the capability of a service provider to produce
some intangible benefits to its environment (Baida et al.
2004). CBDI Forum also apply this interpretation to IT
services: “a service is a type of capability described using
WSDL” (Sprott 2004).

Service as operation In object-oriented and component-
based design, each operation or method defined on an
object or component is usually seen as a service of that
object or component. A service is a part of the object’s
behaviour, which a client can invoke. In some OO
languages, e.g., Java, Corba IDL, these operations can be
bundled together in an interface specification. Thus an
interface is a collection of service definitions. Confusingly,
such a collection of operations is called a service in WSDL.
However, the current state of practice in interface definition
(or service definition if you like) is that only the signature
of each operation is specified. The signature specifies the
types of the inputs and outputs of an operation, but not its
effect or the relationships between the different operations.
The signatures of the addition and multiplication operations
on two numbers, for example, will be equal, whereas the

226 Inf Syst Front (2007) 9:225–244

effects of these operations are quite different. Some
examples of works that go beyond this simplistic interface
definition are from the Semantic Web community, e.g.,
OWL-S (Martin et al. 2004), and outside it, e.g., WS-
Agreement (Andrieux et al. 2005).

Service as application Web services, but also services in
general, are most commonly seen as applications (pieces of
software) that can be accessed over the Web. The W3C, for
example, uses the following definition (W3C 2004): “A
Web service is a software system designed to support
interoperable machine-to-machine interaction over a net-
work.” However, they also make a distinction between the
abstract concept of service and its concrete provider: “A
Web service is an abstract notion that must be implemented
by a concrete agent. The agent is the concrete piece of
software or hardware that sends and receives messages,
while the service is the resource characterized by the
abstract set of functionality that is provided.” In practice,
this distinction is not made explicit very often.

Service as feature In the telecommunications domain the
term service is usually used to refer to a feature that can
be provided on top of the basic telephony service, such
as call forwarding, call back when busy and calling line
identification.

Service as observable behaviour In data communication, a
service is traditionally defined as the observable, or
external, behaviour of a system. Vissers and Logrippo
(1986), for example, define a service as “the behaviour of
the [service] provider as it can be observed by the users.” In
other words, the service of a system is the set of all possible
interactions between the system and its environment and
their ordering in time. Sometimes the external behaviour of
a system is divided over more than one interface, where
each interface is a part of the system boundary. In this case,
a service is the behaviour of the system as it can be
observed at a particular interface. If you take this to the
extreme and make each interface as small as one operation,
you get more or less the same interpretation of ‘service as
operation.’

2.2 General service properties

Based on the definitions in Section 2.1, the following
general properties of services can be identified.

Involves interaction A service involves one or more
interactions between a service user and some system that
provides the service, also called service provider. These
interactions can be described from three different perspec-

tives: a user, provider and integrated perspective. From a
user and a provider perspective, the participation of
respectively the user and the provider of the service is
defined, while abstracting from the participation of the
other. This means that the provider perspective defines the
external observable behaviour of the service provider, while
the user perspective defines the external behaviour that is
expected from the user. The integrated perspective defines
the joint (integrated) behaviour of the user and provider,
abstracting from the particular choice on how the user and
provider participate and cooperate in performing the
interactions. More on these perspectives will be said in
Section 4.

The property that a service involves interaction can be
found in all of the definitions in Section 2.1. The definitions
of service as ‘interaction,’ ‘capability’ and ‘observable
behaviour’ consider this interaction from both a user and a
provider perspective. Furthermore, the integrated perspec-
tive can also be found in the definition of a service as
‘interaction.’ The other definitions mainly focus on the
provider perspective.

Provides some value The execution of a service provides
some value to the user and the provider. In case of IT ser-
vices, this value may only involve ‘intangible benefits,’ such
as the change in possession of goods and money. For services
in general, the value may also involve ‘tangible things,’ such
as the actual exchange of parcels using a parcel delivery
service. In the latter example, the value of the service may
comprise the intangible change of the ownership of the parcel,
as well as the tangible exchange of the parcel itself.

The value of a service is established through the com-
bination of the possible results established in the inter-
actions between the service user and provider. Whether
tangible or intangible, these interaction results are typically
modelled using information types and values.

The property that a service provides some value (or
benefit) is made explicit in the definitions of a service as
‘interaction’ and ‘capability.’ The other definitions also
contain this property, but leave it implicit by refering, e.g.,
to the inputs and outputs of operations, the functionality of
some application, a provided feature, or the behaviour
(functionality) that can be observed.

Unit of (de)composition The service concept defines a unit
of composition or decomposition. Business processes and
supporting applications are composed from or decomposed
into services, which define smaller business process or
application pieces that may be reused when chosen
properly. From a user/provider perspective, such a (de)
composition has the form of a set of interacting services,
where each service may act as a user, a provider or both.
From an integrated perspective, a (de)composition is

Inf Syst Front (2007) 9:225–244 227

described in terms of dependencies between services, e.g.
temporal or causal relationships.

The property that a service forms a unit of (de)
composition is inherent to the service-oriented paradigm,
which fosters the development of services by composing
other services. Each of the definitions in Section 2.1
supports this property.

Broad spectrum concept The service concept is meant to be
applied at successive abstraction levels along a broad
spectrum of the design process, i.e., from specification to
implementation. Assuming the design goal is the develop-
ment of the service provider, the service concept can be
applied recursively using the external and internal perspec-
tive on a system (Quartel et al. 2004). This property is a
consequence of the property that a service can be used as a
unit of (de)composition.

3 Structure of the COSMO framework

The concepts presented in this paper are structured along
two axes as depicted in Fig. 1. The horizontal axis
distinguishes five service aspects, representing a classifica-
tion of service properties that need to be modelled. This
classification corresponds to aspects found in frameworks
for enterprise architectures like GRAAL (van Eck et al.
2004) and ArchiMate (Jonkers et al. 2004). The vertical
axis distinguishes three abstraction levels at which a service
may need to be modelled. These abstraction levels result
from the application of an external and internal system view
for service-oriented design (Quartel et al. 2004). This paper
focuses on concepts for modelling the behaviour, informa-
tion and goal aspect of services at each of the identified
abstraction levels.

3.1 Service aspects

We structure the properties of services that need to be
modelled into the following service aspects:

Structure The structural aspect is concerned with modelling
the interacting systems that provide or use services, and
their interconnection structure. The interconnection struc-

ture comprises amongst others the ports or interfaces at
which services are offered.

Behaviour The behavioural aspect is concerned with the
activities that are performed by systems, as well as the
relations among them. The behaviour of a service consists
of the interactions between the service’s provider and its
users, as well as their causal dependencies or ordering in
time. It defines the external behaviour of the service
provider partly or completely, depending on whether one
or multiple types of services are provided.

Information The information aspect is concerned with
modelling the subject domain of systems, representing
entities and phenomena in the real world that are known to
the system. The value of a service is established through the
exchange of information (messages) that has to be inter-
preted in terms of the subject domain model of the inter-
acting systems.

Goal The goal aspect is concerned with modelling the goal
or value of a service. A service provider offers a service
that provides some value. Likewise, service users use the
service with a particular goal in mind. It is important to
make these motivations clear, such that it can be assessed if
a service matches the user’s goals.

Quality The quality aspect is concerned with modelling the
non-functional characteristics of services, i.e., their qualities
of service. These qualities often play an important role in
the selection of services.

The abovementioned aspects represent partially over-
lapping, i.e., non-orthogonal views on a service. They
overlap, because it is generally impossible to specify one
aspect without referring to the other aspects. For example,
to specify certain quality characteristics one must refer to
the behaviour, and in order to describe the behaviour, it is
usually necessary to refer to the information that is
processed during the execution of that behaviour.

3.2 Abstraction levels

We distinguish the following generic abstraction levels at
which a service can be modelled:

Single interaction At this level, a service is modelled as a
single interaction between a service user and provider. The
resulting service model defines the value (or goal) that is
requested by the service user and the value (or capability)
that is offered by the service provider. This model can be
used, e.g., to specify or analyse that the goal of some user
and the capability of some provider should match.Fig. 1 Structure of the COSMO framework

228 Inf Syst Front (2007) 9:225–244

Choreography At this level, a service is modelled as
multiple related interactions between a service user and
provider. The resulting service model defines the external
behaviour that is requested by the service user and that is
offered by the service provider. This model can be used, e.g.,
to specify or analyse interoperability between the service
user and provider.

Orchestration At this level, the service that is offered by
some service provider is modelled as a composition of other
services. Typically, the resulting service model defines the
service provider as a coordinator (also called orchestrator),
which interacts with other service providers and combines
the values obtained in these interactions to offer some added
value to its user. This model can be used, e.g., to specify or
analyse a possible implementation of the offered service.

During the development process, a service can bemodelled
successively at the abstraction levels presented above, such
that the choreography refines the model of the service as a
single interaction, and the orchestration refines the choreog-
raphy. Furthermore, these abstraction levels may be applied
recursively, since the composed services in an orchestration
may at first be modelled as a single interaction, and sub-
sequently be refined into choreographies and orchestrations.

4 Formalising the service concept

We define a service as the establishment of some effect
through the interaction between two or more systems.
Usually one of the involved systems plays the role of
service provider and the others play the role of service user.
However, this distinction is not essential.

Our service definition closely resembles the ones found
in IBM (2006), Wieringa (2003) and Quartel et al. (1997).
We assume the effect has or creates some value for one or
more of the involved systems and satisfies some goal or
accomplishes some desired effect.

This section introduces basic service concepts to model
the effect of the service, the interactions, and the involved
user and provider roles. These concepts are introduced by
considering a service at the three successive abstraction
levels introduced in Section 3.2. In this paper, we focus on
concepts and not on a notation to express them. Obviously,
we need some notation to talk about the concepts, and
therefore introduce one at our convenience, borrowing from
existing languages. An analysis of the suitability of existing
languages to express our concepts is beyond the scope of
this paper.

To illustrate the presented concepts, we use an e-
procurement example throughout this section. In this exam-
ple, a customer can purchase an article from some retailer,

which is delivered to the user after he has paid for it. In
addition, both the customer and retailer may define various
conditions on the procurement process, such as pricing,
method of payment, location of delivery and the ordering of
payment and delivery.

4.1 Service as interaction

At a high abstraction level a service can be modelled as a
single interaction between two or more systems. This
interaction represents an activity in which the involved
systems produce some common result in cooperation. At
this abstraction level, we are only interested in what result
(s) can be produced, and not in how this is done.
Consequently, an interaction is considered an atomic
activity that either occurs and establishes the same result
for all involved systems, or does not occur for any of the
systems and therefore does not establish any result.

The interaction result represents the effect of the service.
Each system may have different expectations on this effect,
and therefore impose different constraints on the interaction
result. This is modelled by defining an interaction as the
composition of two (or more) interaction contributions, one
for each involved system. An interaction contribution
represents the participation of a system in the interaction,
by defining the constraints this system has on the possible
interaction result, and thereby its responsibilities in
performing the interaction.

Figure 2 models the example procurement service as a
single interaction between a customer and a retailer.
Interaction contributions buy and sell represent the partic-
ipation of the customer and retailer in this interaction,
respectively. The associated text boxes define the con-
straints they each have on the interaction result, using a
notation based on description logic (Baader et al. 2003). In
this case, both the customer and retailer want to establish a
purchase as the interaction result. The customer wants to
order a notebook, whereas the retailer is willing to sell any
article from its catalogue. Furthermore, the customer wants
the notebook to have a maximum price, to be paid using

Fig. 2 Procurement interaction

Inf Syst Front (2007) 9:225–244 229

credit card, and to be delivered in “Enschede.” The retailer
only sells articles from its catalogue, has specified for each
article a minimum price, and will only deliver at addresses
in the “Netherlands.”

The purchase interaction can only occur if the constraints
of both the customer and the retailer can be satisfied. In
case multiple results are possible that satisfy the constraints,
e.g., multiple notebooks may have the required properties,
only a single result is established. Since the interaction
concept abstracts from how to select the result, the result is
assumed to be selected non-deterministically.

4.1.1 User and provider roles

We use the term system in its general meaning, representing,
e.g., people, organizations, software applications or hardware
systems. A system may be involved in multiple services, and
may even act as a user of one service and a provider for
another. Therefore, we cannot say that a system is either a
service provider or a service user. Furthermore, the specific
system that provides some service may not be known at
design time or even at discovery time. For these reasons, we
currently do not model the involved systems explicitly.
Instead, we model the role of the system in a service, where
we distinguish two roles: the user role and the provider role.
Since we use behavioural concepts to model roles, the
structural service aspect as described in Section 3.1 will not
be considered in this paper. The structural aspect becomes
important again when we want to create a deployment model.

In the example of Fig. 2, the interaction contributions
represent the constraints of the customer and retailer roles,
respectively. The model leaves open which of these is the
provider and the user.

The user and provider roles define two complementary
perspectives on a service, which we denote as the user and the
provider perspective, respectively. The user perspective
defines the participation of the user in the service, represent-
ing the expectations the user has on the effect, and thus on
the service provider. This partial definition of the service is
also called the requested service. The provider perspective
defines the participation of the provider role, representing the
expectations it has on the user. This partial definition of the
service is also called the offered service.

A third perspective we use is the so-called integrated
perspective, which defines the joint behaviour of the offered
and requested service. The action concept is used to
represent a joint activity (integrated interaction), by abstract-
ing from the distinction between the user and provider roles.
We do not consider this perspective further in this paper, but
refer for an explanation to Quartel et al. (2006).

Besides the user and provider roles, one may think of
additional (supporting) roles of systems that are involved in
a service to facilitate the interaction between a user and the

provider. For example, supporting systems may be involved
to monitor QoS metrics (e.g., availability and response time)
or to perform security related message transformations (e.g.,
encrypt/decrypt messages). The question is whether these
roles should already be considered in an abstract service
model, or can be abstracted from and considered later when
refining the provider (and user) roles. In the latter case, the
supporting functionality could for example be considered as
separate services and modelled using the user and provider
roles, or be considered part of the service platform that im-
plements the service interactions. This question is subject of
our future work.

4.1.2 Modelling activity results

The effect of a service refers to elements in the subject domain
of the systems involved in the service. The subject domain of a
system comprises the entities and phenomena in the real world
that are identifiable by the system. We use an information
model to model a system’s subject domain. This information
model consists of individuals that represent the entities and
phenomena from the subject domain, classes that represent
the types of the entities and phenomena, and properties that
represent the possible relations between them.

Figure 3 depicts part of a simple information model for
the procurement example. This model does not include
individuals and the valuations of their properties, which
together we call the state of a system.

Activity results can be represented using aforementioned
information modelling concepts. For this purpose, a so-
called information attribute is associated with an activity.
This attribute has a type and will be assigned a value when
the activity occurs. The value is an individual that rep-
resents the activity result. The type is a class that represents
the possible set of activity results. For example, interaction
contribution buy in Fig. 2 has a single information attribute
p of type Purchase.

In addition, a so-called result constraint can be defined
on an information attribute to constrain its possible values.
This result constraint is a predicate that states the properties
that have to be satisfied by the individual that represents the
activity result. For example, the result constraint of inter-
action contribution buy in Fig. 2 specifies that the result can
only be a purchase that has an order for a notebook that
costs less than 1,000, can be paid using credit card, and can
be delivered in “Enschede.” Such a result constraint can
also be seen as the goal of the customer.

4.2 Service as choreography

In general, a service cannot be implemented as a single inter-
action and we have to refine the abstract interaction into a
structure of multiple smaller more concrete interactions.

230 Inf Syst Front (2007) 9:225–244

Figure 4 depicts a possible refinement of the procurement
service from Fig. 2 into a number of interactions: select
represents the selection of an article, checkout represents the
establishment of the delivery address, pay represents the
payment of the order, and deliver represents the order deliv-
ery. Interaction pay is actually defined as two alternative
interactions: one involving interaction contributions pay and
pay1 and the other involving interaction contributions pay
and pay2.

The retailer offers the possibility to pay by bank transfer
through interaction contribution pay1, or by credit card
through interaction contribution pay2. In addition, the
retailer allows credit card payment only if some precondi-
tion is satisfied, i.e., the price of the selected article must be
larger than 500. Observe that also contributions pay1 and
pay2 refer to results established in the causally preceding
contribution select, i.e., the price of the article. Interaction
contribution deliver refers to the address established in con-
tribution checkout.

To represent multiple related activities, the behaviour con-
cept is introduced, here graphically expressed as a rounded
rectangle. A behaviour is associated with some system and
defines the activities that are performed by this system,
including the relationships between these activities. The
activities that can be defined are actions and/or interaction
contributions. For example, the behaviours in Fig. 4 consist
of interaction contributions, whereas a behaviour representing
the integrated perspective would consist of actions.

The definition of a service as a set of related interactions
is called a choreography. A choreography defines the
external behaviour of the user and provider role, and
abstracts from any internal activities.

Similar to a service that is defined by a single interaction,
a choreography can be considered from a user, provider and
integrated perspective. From a provider perspective, the
offered service defines the relationships between and
constraints on the interactions in terms of the contributions

Fig. 4 Procurement choreography

Fig. 3 Procurement information
model

Inf Syst Front (2007) 9:225–244 231

of the service provider. Analogously, the requested service
defines these relationships and constraints from a user
perspective. For example, behaviours Customer and Retailer
in Fig. 4 represent the requested and offered service
(choreography), respectively, for the procurement service.
The example from Fig. 2 already showed that the user and
provider roles may define different result constraints.
Figure 4 shows that the user and provider role may also
define different relationships between the interactions. For
example, the retailer wants the order to be paid before it is
delivered, whereas the customer allows the payment and
delivery to occur independently.

4.2.1 Modelling relations between activities

Relations between activities can be modelled in different
ways, e.g., in terms of state transitions or temporal
relations. We define relations in terms of causality relations.
A causality relation relates each activity to a causality
condition, which defines how this activity depends on other
activities. An activity is enabled, i.e., allowed to occur, if its
causality condition is satisfied. Three basic conditions of
some activity a are distinguished (see Fig. 5): (1) enabling
condition b represents that activity b must have occurred
before a can occur; (2) disabling condition :b represents
that activity b must not have occurred before nor simul-
taneously with a to enable the occurrence of a; (3) the start
condition represents that activity a is enabled from the
beginning of the behaviour and is independent of any other
activity. These basic conditions can be combined using the
conjunction and disjunction operators to represent more
complex conditions. For example, workflow operators such
as and-join, and-split and or-split can be represented using a
combination of enabling and disabling conditions.

4.2.2 Interfaces

A choreography can be structured into multiple smaller,
related choreographies representing groupings of interac-
tions. Typically, such a structuring is based on grouping

interactions that have strong functional relationships, and
separating interactions that have weaker relationships. The
aim of this structuring is to increase clarity and compre-
hensibility of the service definition, to facilitate its mapping
onto an implementation, and to separate required from op-
tional functionality. For example, the identified groupings
may represent suitable units of functionality for searching
and selecting existing services or for defining new services
that implement part of the required service functionality.

Figure 6 depicts an example of a structure of choreog-
raphies. In this example, each interaction from the procure-
ment choreography is split into two sub-interactions, a
Request followed by a Response, such that the result of the
response conforms to the result of the original interaction.
For example, payReq represents a request to perform a
payment, and payRsp represents the response that informs
about the outcome of the payment activity. This type of
refinement is needed if one wants to implement the pay-
ment interaction using one or more other services; see also
Fig. 7 in Section 4.3. In addition, interaction select is further
refined by introducing a preparatory interaction catalog in
which the user can request for a catalogue of articles, followed
by an interaction pick in which an article is selected.

Sub-choreographies are defined as separate behaviours.
To represent the causal dependencies between these behav-
iours, so-called entry and exit points (represented as
triangles) are used. For brevity, only the offered choreogra-
phy is shown and the result constraints have been omitted.

We use the term (requested and offered) interface as a
synonym to (requested and offered) choreography. So, in
contrast to current practice, interfaces should also define the
relationships between interaction contributions (e.g., oper-
ations). Furthermore, a service definition comprising multi-
ple interfaces should also define the relationships between
(the interaction contributions from) these interfaces.

4.3 Service as orchestration

Besides the refinement of interactions, one may want to
refine a service into a composition of smaller services in

Fig. 5 Causality conditions

232 Inf Syst Front (2007) 9:225–244

order to obtain an implementation of the service. Figure 7
depicts an example of the refinement of the offered
procurement choreography from Fig. 6 into a number of
services: a Shopping service that allows one to select and
order articles, a Payment service that handles payments, a
Shipping service that delivers articles, and a Coordination
service that coordinates the use of aforementioned services
to provide the procurement service.

The Shopping, Payment and Shipping services are all
offered services. The Coordination service refines the
offered procurement choreography by inserting requested
services between the procurement interaction contributions.
These requested services are used to implement parts of the
procurement choreography. In principle, the Coordination
service might implement part of the procurement function-
ality as well, e.g., order handling. However, in many cases it
is considered good practice to provide such functionality by
separate services, making the coordination service primarily
responsible for coordinating and combining the results of the
requested services. This coordination pattern helps to
maintain loose coupling between the offered services.

The definition of a service as a composition of smaller ser-
vices, including a coordination service, is called an orches-
tration. In the example above, the orchestration is defined as
a composition of requested and offered services, i.e., each
service is defined from a user and/or provider perspective.
Observe that the procurement interactions have been refined
into request and response interactions to model their
implementation using other services. In contrast, the inter-

actions of the sub-services don’t need this refinement (yet),
since the orchestration abstracts from their implementation.

4.3.1 Behaviour composition

A service orchestration is defined as a behaviour that is
composed of sub-service behaviours. Containment of one
behaviour by another (the composite), is represented by
behaviour instantiation. A behaviour instantiation repre-
sents that some behaviour instance is created in the context
of the behaviour that contains the instantiation. For brevity,
in the examples of this paper, a behaviour and its
instantiation have been represented as one. However,
normally they should be represented separately.

Behaviours in a composite behaviour can be related
using constraint-oriented composition and/or causality-
oriented composition.

Constraint-oriented composition is used to define two or
more interacting behaviours. This composition technique is
based on the interaction concept, which decomposes an
action into an interaction that consists of two or more
interaction contributions. These contributions define the
participation of different behaviours in the interaction,
which may impose different constraints on the possible
interaction results. This allows for an abstract style of
service specification and design, i.e., in terms of con-
straints, thereby abstracting from how these constraints are
satisfied by some implementation. Figures 4 and 7 present
examples of constraint-oriented composition.

Fig. 7 Procurement orchestration

Fig. 6 Structured choreography

Inf Syst Front (2007) 9:225–244 233

Causality-oriented composition is used to define causal
dependencies between behaviours. This composition tech-
nique is based on the decomposition of a causality relation,
such that an activity and its causality condition can be
defined in separate behaviours. For this purpose, entry and
exit points are used, which represent causality conditions
entering and exiting a behaviour, respectively. Like a
causality relation associates a causality condition to an
activity, an entry point dependency associates a causality
condition to an entry point. Entry and exit points are
represented by triangles that point into or out of a
behaviour, respectively. Like activities, points can have
‘attributes’, which are called parameters. Figure 6 presents
an example of causality-oriented composition.

5 Conceptual models

This section gives an overview of the concepts that have
been introduced in the preceding sections. For this purpose
a number of meta-models are presented. The first meta-
model concerns concepts related to the abstraction levels at
which services can be defined and the possible roles
involved. The subsequent meta-models concern the service
aspects identified in Section 3.1, except for the structural
aspect and the quality aspect. The meta-models are
represented using UML class diagrams.

5.1 Abstraction levels and roles

The meta-model in Fig. 8, defines concepts that are used to
denote distinct types of service models, varying in
abstraction levels and roles being considered.

A service is defined as a choreography consisting of one
or more interactions, which includes the possibility to define
a service as a single interaction. Since each interaction can be
further decomposed into a choreography, a choreography
can be composed from sub-choreographies. Orthogonal to

this composition, a choreography can be defined as a
composition of multiple interfaces, which are defined as
compositions of interaction contributions or sub-interfaces.

An interface represents the role of a system involved in
the choreography. Two types of roles are distinguished: a
user and a provider role. Interaction contributions from the
same interface should all be associated with the same role.
The terms requested and offered service are used to de-
note an interface representing the user and provider role,
respectively.

An orchestration refines an offered service. An orches-
tration consists, on the one hand, of the interfaces of the
offered service and, on the other hand, of a number of
choreographies representing the offered service’s usage of
sub-services.

5.2 Behavioural aspect

The meta-model in Fig. 9 defines the concepts used to
model the behavioural aspect.

The behavioural aspect of interactions, choreographies
and orchestrations are modelled as behaviours that may be
composed of other behaviours using constraint-oriented
and/or causality-oriented composition. The concept of role
is also mapped onto the behaviour concept.

5.3 Information aspect

The meta-model in Fig. 10 defines the concepts used to
model the information aspect.

The information modelling concepts we use are bor-
rowed from description logic (Baader et al. 2003).
Individuals represent entities from the real world. Classes
represent abstract types of entities from the real world. And
properties represent relationships between entities.

Individuals are classified into classes. One individual can
have multiple types, e.g. a Ferrari car can both be classified
as a Vehicle and as a RedThing. Properties are also classes

Fig. 8 Service concepts

234 Inf Syst Front (2007) 9:225–244

defining relations between one or more domain classes and
one ore more range classes.

The information model is linked to the behavioural
model in the following ways. Each activity has a
precondition and a result constraint. The precondition is a
predicate, which defines the class of “states of affair” in
which the activity is enabled. When an activity occurs it
produces a result, which satisfies a predicate representing
the result constraint. In other words, the result is an
individual belonging to the class of admitted results defined
by the result constraint.

5.4 Goal aspect

Service users and providers request and offer services,
respectively, with a particular goal in mind. Analogously to
Lamsweerde (2001) and other requirements engineering
literature (Yu 1997), we define a goal to be a specification
of the properties that need to be ensured, i.e., a specification
of the desired future state of affairs. As such a goal

corresponds one-to-one to our concept of result constraint
and since a service can always be abstracted to a single
interaction between a user and a provider, we can represent
their goals as result constraints on their respective interac-
tion contributions. In addition, we use the term desired
effect as a synonym for goal and result constraint, and the
term effect is a synonym for result.

The definition of the user and provider goal should
provide a high-level description of the service that
facilitates the discovery of services. For this purpose, the
abstraction level at which a service is modelled as a single
interaction seems to be suitable. For example, interaction
contribution pay of behaviour Customer in Fig. 4 defines
the user goal to perform some payment using credit card.
Based on the correspondence of result types, two provider
goals are candidates to match the user goal, i.e., the result
constraints defined by interaction contributions pay1 and
pay2 from the Retailer. Whether a provider goal matches
the user goal can be determined by checking if the
conjunction of the predicates that represent these goals

Fig. 9 Behavioural concepts

Fig. 10 Information concepts

Inf Syst Front (2007) 9:225–244 235

admits any results. In this case only the provider goal
defined by interaction contribution pay1 matches the user
goal, since it allows a credit card payment.

6 Refinement

During the service lifecycle, multiple models of a service
may be used at distinct abstraction levels. Section 3.2
introduced three generic abstraction levels. The associated
service models are related through a so-called refinement
relation. For example, the orchestration in Fig. 7 is a
refinement of the offered choreography in Fig. 4, which is
again a refinement of the single interaction contribution sell
in Fig. 2.

In order to assess the consistency, or conformance,
between service models at different abstraction levels one
should be able to assess the correctness of the refinement
relation between these models. This allows one, for
example, to assess if an orchestration correctly implements
some choreography, or to assess if a choreography correctly
supports some goal that is represented as a single
interaction (contribution). This section describes the ele-
ments of a method to assess the conformance between
service models, illustrated by examples.

6.1 Conformance criteria

A service model is considered a refinement of another
service model, if the former model defines additional
properties of the service, while preserving the properties
defined in the latter model. The opposite of refinement is
abstraction, which constitutes the process of removing
properties. Accordingly, we call the latter model a (more)
abstract model and the former model a (more) concrete
model. For example, the service model in Fig. 2 is more
abstract than the model in Fig. 4, since the former model
only defines what the goal (effect) of the service is, while
the latter model adds details about how this goal is
obtained.

We say that a concrete service model conforms to an
abstract service model, if the concrete model is a correct
refinement of the abstract model. For example, the concrete
model in Fig. 4 conforms to the abstract model in Fig. 2 if it
preserves the properties of the abstract model, such that
both define the same goal.

Depending on the strictness of the requirement to
preserve the abstract service properties during refinement,
distinct refinement (conformance) relations can be identi-
fied. For example, one may require that all possible
instances of the goal as specified in Fig. 2, i.e., all possible
purchases, should be made possible by the choreography in
Fig. 4. Alternatively one could relax this requirement by

stating that the choreography may support a subset of these
purchases. For convenience, we assume a strict interpreta-
tion of refinement in the rest of this section. However, the
presented ideas also apply to less strict interpretations.

6.2 Assessment approach

Figure 11 illustrates our approach to assess the correctness
of the refinement relation, i.e., the conformance, between
an abstract and a concrete model of some service.

The approach consists of two steps. The first step
determines the abstraction of the concrete service by
abstracting from the service properties that were added in
the refinement step. The second step compares this
abstraction to the original abstract service by checking the
equivalence between both abstract models. The refinement
is considered correct if both models are equivalent.
Otherwise the refinement is considered incorrect.

The idea underlying this approach is that the abstraction
of some model is unique, assuming the properties one
wants to abstract from are known. This implies that the
obtained abstraction should be equivalent to the original
abstract model after all properties have been removed that
were added in subsequent refinements of this model.

Alternatively, one could follow an approach that con-
strains the refinement step, e.g., in terms of design guide-
lines. However, a model can in principle be refined in many
different ways. This makes it difficult, if not impossible, to
define constraints that can deal with all possible refine-
ments. Instead, one may pre-define and use particular types
of refinements based on specific design choices. This may
limit however the creativity and design freedom of the
service developer.

In order to perform the abstraction step in Fig. 11 we
need so-called abstraction rules that define how to abstract
from service properties. Below we consider the abstraction
of behaviour and information properties.

6.3 Behaviour abstraction

A behaviour consists of one or more related activities, as
defined in Section 4.2. An activity of an abstract behaviour
is called an abstract activity and an activity of a concrete
behaviour is called a concrete activity. We assume that the

Fig. 11 Conformance assessment approach

236 Inf Syst Front (2007) 9:225–244

occurrence of each abstract activity corresponds to the
occurrence of one or more concrete activities. This assump-
tion allows us to relate an abstract behaviour to a concrete
behaviour in order to assess conformance. A concrete ac-
tivity that corresponds to an abstract activity is called a
reference activity, since it is considered a reference point in
the concrete behaviour for assessing conformance. A concrete
activity that is not a reference activity is called an inserted
activity, since it is inserted during behaviour refinement.

Two elementary types of behaviour refinement are
distinguished: activity refinement and causality refinement.

Activity refinement allows one to model in more detail a
real-world activity that is represented by a single abstract
activity. This activity is decomposed into a concrete activity
structure, which consists of multiple related, more concrete
(sub-)activities. The concrete activity structure makes its
result available through the occurrence and associated
attributes of one or more of its final activities, which are
the reference activities that correspond to the original
abstract activity. A concrete activity structure can make its
result available through the occurrence of (1) a single final
activity, (2) a conjunction of multiple, independent final activ-
ities, (3) a disjunction of multiple, alternative final activities,
or (4) a combination of these options.

An example of a concrete activity structure having a
disjunction of final activities is formed by interaction
contributions pay1 and pay2 of behaviour Retailer in
Fig. 4. We assume this activity structure refines a single
abstract interaction contribution pay’, as depicted in
Fig. 12. The result of pay’ is defined as the union of the
possible results of pay1 and pay2, i.e., pay’ represents all
possible payments, which constitute bank payments or
credit card payments having an amount larger than 500.

An example of a concrete activity structure having a
conjunction of final activities is formed by interaction
contributions pay and deliver of behaviour Customer in
Fig. 4. We assume this activity structure refines a single
abstract contribution purchase’, as depicted in Fig. 13. The
result of purchase’ is defined as the intersection of the
possible results of pay and deliver, i.e., the conjunction of

their result constraints. This means that purchase’ represents
all possible purchases that have been paid and delivered.

An example of a concrete activity structure having a
single final activity is formed by interaction contributions
select, checkout and pay’ of behaviour Retailer’ in Fig. 12.
We assume this activity structure refines a single abstract
interaction contribution order’, as depicted in Fig. 14.
Activity order’ represents the result of the ordering process
as a whole. Instead, inserted activities select and checkout
represent intermediate results in the ordering process.
Reference activity pay’ represents the result of the whole
ordering process at a more concrete level, which constitutes
the result of pay’ itself, i.e., the payment, and the (relevant)
intermediate results it can refer to because it depends on the
occurrence of the inserted activities. Consequently, the
result of abstract activity order’ constitutes the intersection
of the possible results allowed by select, checkout and pay’.
Observe that the attribute reference checkout.d by interac-
tion contribution deliver in Fig. 12 has to be replaced by
reference order’.d.

Inserted activities, such as select and checkout, may be
abstracted from one by one in arbitrary order. For example,
one may consider activity order’ again as an inserted
activity and activity deliver as a reference activity, forming
a concrete activity structure having a single final activity.
Similarly to the previous example, this activity structure
can be abstracted into a single abstract activity purchase’, as
depicted in Fig. 15. In this case, purchase’ represents the
result of the whole purchasing process.

Causality refinement allows one to model the relations
between abstract activities in more detail through adding
inserted activities. Abstract activities are not further detailed,
and therefore correspond to a single reference activity.

Fig. 12 Abstraction of pay1 and pay2 in behaviour Retailer in Fig. 4

Fig. 13 Abstraction of pay and deliver in behaviour Customer in
Fig. 4

Fig. 14 Abstraction of select, checkout and pay’ in behaviour
Retailer’ in Fig. 12

Inf Syst Front (2007) 9:225–244 237

Causality refinement should obey the following conformance
criteria: (1) an indirect relation between reference activities
defined via an inserted activity in the concrete behaviour
must be equivalent to the relation defined directly between
the corresponding reference activities in the abstract behav-
iour; (2) similarly, an indirect relation between attributes
must be equivalent to the direct relation.

For example, interaction contribution checkout in be-
haviour Customer’ in Fig. 13 may be considered an inserted
activity that is used to refine the relation between
interaction contributions select and purchase’. In this case
the refinement constitutes the establishment of the delivery
address as an intermediate result. Figure 16 depicts the
behaviour that results after abstracting from inserted
activity checkout. In this case, the indirect relation between
reference activities select and purchase’ has to be replaced
by a direct relation.

Abstraction rules The above examples illustrate some of the
rules we use to obtain the abstraction of a concrete model to
assess the conformance between the concrete model and an
abstract model. A complete and precise set of abstraction
rules for activity and causality refinement has been defined
and presented in earlier work (Quartel et al. 2002).

6.4 Information abstraction

Information is used to model the result (effect) of some
activity, as explained in Section 4.1.2. This strong associ-
ation between the information and behaviour aspect
suggests that behaviour refinement and information refine-
ment are closely related. However, the types of behaviour
refinement considered in Section 6.3 can be applied while
the abstraction level at which activity results are repre-
sented remains unchanged. For example, consider abstract
activity pay’ in Fig. 12 of which the result is modelled as a
collection of partial results. Using activity refinement this
activity can be decomposed into a disjunction of alternative
final activities pay1 and pay2, each establishing one of the
partial results, such that the union of these partial results
equals the original collection (see Fig. 4). As another

example, consider the refinement of abstract activity order’
in Fig. 14. This activity can be decomposed into inserted
activities select and checkout, which establish as interme-
diate results the ordered article and the delivery address,
and reference activity pay’, which establishes the payment.
In this case, the result of abstract activity order’ is
decomposed into partial results, which are distributed over
the results of inserted activities select and checkout and
reference activity pay’, such that the result of order’ equals
the conjunction of the partial results. Furthermore, the result
of order’ reveals the same level of information detail as the
partial results in the refinement.

Therefore, we conclude that independently of behaviour
refinement, one may want to apply information refinement
to model activity results in more detail. Two elementary
types of information refinement are distinguished: special-
ization and aggregation.

Specialization allows one to refine an abstract activity result
of abstract type TA into a concrete activity result of
concrete type TC, such that TC is a sub-type of TA. In
terms of the associated information model this means that
class TC is defined as a sub-class of class TA.

For example, the information model in Fig. 3 defines an
abstract type Payment and two more concrete types Bank
and CreditCard payments. Therefore, a more abstract
representation of the result of activity pay’ in Fig. 12,
would be to use type Payment to abstract from the kind of
payments that can be made, as illustrated in Fig. 17a. In
order to assess whether the concrete activity result of pay’
conforms to the abstract activity result of pay’’, one should
first check whether a subclass relationship exists between
the concrete and abstract result type. This is illustrated in
Fig. 17b, where the possible concrete activity results are
represented by a separate class aClass, and reasoning
capabilities of the ontology language should help to
establish a subsumption relationship between this class
and the Payment class. As a second check, one may want to
establish that all possible results of Payment are preserved
by aClass, i.e., Payment is a subclass of aClass, in case one
adopts a strict conformance requirement. In this example,
the strict requirement does not hold, since credit card
payments smaller than 500 are not allowed by pay’.

Fig. 15 Abstraction of order’ and deliver in behaviour Retailer’’ in
Fig. 14

Fig. 16 Abstraction of checkout in behaviour Customer’ in Fig. 13

238 Inf Syst Front (2007) 9:225–244

Property aggregation allows one to refine an abstract
activity result of abstract type TA into a collection of
concrete activity results of concrete types TCi, such that
each TCi represents a property of TA. In terms of the
associated information model this means that class TCi

represents the range of a property relation (different form
the sub-class relation) between TA and TCi.

For example, the information model in Fig. 3 defines
type Order as having the properties Article, Address and
Payment. Therefore, a more abstract representation of the
type of the result of activity order’ in Fig. 14 would be to
use type Order, to abstract from the constituents of an order,
as illustrated in Fig. 18a. In order to assess whether the
concrete activity result of order’ conforms to the abstract
activity result of order’’, we define class aClass that
represents all possible individuals having properties has
Article, payBy and shipTo. Adopting the open world
assumption, one cannot determine that this class is a
subclass of Order, because one can not exclude that
individuals exist, not being of type Order, that have
forementioned properties. Instead, one can reason that
Order is a subclass of aClass, meaning that all possible
orders can be represented in the refinement. Therefore, to
assess that Order is the correct abstraction of the concrete
activity result, one needs to use knowledge of the refine-
ment step (as explained in Section 6.2), i.e., that abstract
type Order has been refined.

Observe that one may also decide to abstract from some of
the properties. For example, Fig. 18c presents abstract activity
order’’ that abstracts from properties hasArticle and payBy,
but not from property shipTo. This requires one to add ∃d.
shipTo(o,d) to the result constraint. Alternatively, one could
decide not to abstract from any of the properties, but just
represent the abstract result type as being of type Order
(instead of the conjunction of Article, Address, Payment).

Analogously to the previous example, one may define an
abstraction of activity purchase’ in behaviour Retailer’’’ in
Fig. 15, such that its result is defined in terms of abstract
type Purchase. This allows one to compare the obtained
abstraction to the original definition in behaviour Retailer’’
in Fig. 2, in order to establish conformance between the cho-
reography of the retailer in Fig. 4 and the single interaction
contribution in Fig. 2.

Abstraction rules The above examples illustrate some of
the rules we use to obtain the abstraction of a concrete
model involving information refinement. However, in
contrast to the behaviour aspect, a complete and precise
set of abstraction rules has not been defined yet and is
subject of current research.

6.5 Example

As an example of the application of the approach depicted
in Fig. 11 consider that one wants to assess if the offered
choreography of the Retailer in Fig. 4 conforms to the
offered service represented by the single interaction
contribution sell in Fig. 2. In this case, conformance can
be shown by the sequence of abstraction steps as
represented by Figs. 12, 14, 15, 17 and 18, and finally
renaming purchase’ into sell. However, alternative steps
and sequences of steps are possible. For example, the
abstraction step represented by Fig. 17 could have been
performed directly after the step illustrated by Fig. 12.

7 Application of the COSMO framework

The purpose of the COSMO framework is to serve as a
common semantic meta-model to enable the use of different
service modelling languages. Figure 19 depicts the role of
this common semantic meta-model.

In general, different languages are needed to support the
creation of services. Distinct design and specification lan-

Fig. 17 Abstraction of special types of payment

Fig. 18 Abstraction of order properties

Inf Syst Front (2007) 9:225–244 239

guages may be suitable for modelling distinct service aspects
(see Section 3.1). Distinct analysis languages may be used
dependent on the type of analysis one wants to perform. And
the choice of implementation languages largely depends on
the specific service platform that is used.

The models produced by these languages have to be
related, for example, to verify consistency or conformance.
The approach we follow to facilitate the comparison of
models, is by mapping them onto the concepts of the
common semantic meta-model. In this way, techniques that
are defined to verify consistency or conformance on
instances of the common semantic meta-model, can be re-
used to verify the relationships between models produced
by different languages. An alternative would be to define
such techniques for each pair of languages being used,
which is likely to be less efficient and more complex
(Dijkman et al. 2004; Dijkman and Dumas 2004).

An important requirement on the common semantic
meta-model is to capture all elementary service properties
that are relevant during the service creation process. Based
on earlier work and experience, we propose the concepts in
Section 4 as a starting point for developing a service
creation environment in which multiple languages can be
applied to support various design tasks consistently during
the creation process. This environment is currently being
built in the A-MUSE project (A-MUSE 2006), including
the required mappings from the applied languages onto the
common semantic meta-model. Application of the environ-
ment on various cases must demonstrate the applicability
and completeness of the proposed basic service concepts. In
particular, the service creation environment should support
operations on services such as their specification, compo-
sition and discovery.

Service specification is typically performed using some
existing modelling language, e.g., UML activity diagrams,
ISDL (Quartel et al. 2004) or BPMN (BPMN 2006). The
hypothesis is that our basic design concepts are sufficiently
generic and elementary, such that the concepts from these
languages used for service modelling can be mapped onto
compositions or specializations of the basic concepts. For
ISDL this mapping is straightforward because of the strong
resemblance between the basic concepts and the concepts
underlying ISDL. Also for UML activity diagrams a
mapping can be defined, based on earlier work reported in
(Quartel et al. 2005a). However, to validate the hypothesis
we aim at defining more mappings for common specifica-
tion languages (such as BPMN 2006) and domain specific
languages (such as the ones used in the A-MUSE project).
In the latter case, i.e., when using languages that model
domain specific aspects, some information may get lost in
the mapping onto the common semantic meta-model. In
case such information is essential for the particular design
at hand, stereotyping can be used to extend the common
semantic meta-model (Quartel et al. 2005b).

Service composition is supported by identifying two
generic and elementary techniques to compose services,
i.e., constraint- and causality-oriented composition. Also
here the hypothesis is that structuring or composition
constructs from existing languages can be mapped onto
those techniques. An example of a validation of this
hypothesis is provided by a method that has been developed
to verify the interoperability (or composability) of two or
more services that is based on our basic concepts, in
particular the concept of constraint-oriented composition
(Pokraev et al. 2006). This method applies a mapping from
the basic concepts on Petri Nets, using work from (Van
Sinderen et al. 1995), to perform reachability and deadlock
analyses. Current work focuses on providing methods to
(semi-)automatically construct mediators that resolve iden-
tified interoperability problems (Pokraev et al. 2007). This
work uses two language mappings: a mapping between our
information concepts and OWL, and a mapping between
our behaviour concepts and BPEL/WSDL, which is
described in (Dirgahayu 2005).

Concerning service discovery, (Klein and Bernstein
2004) describes four existing approaches towards service
retrieval (in order of increasing recall and precision):
keyword-based, property table-based, concept-based and
deductive retrieval. A limitation of the keyword and property-
table based approaches are their low recall and precision. The
deductive approach seems to be too difficult to apply in
practical situations and has a high computational complexity.
A disadvantage of concept-based approaches is the effort
needed to build an ontology, and that a single ontology will
probably not suffice, requiring multiple ontologies to be
related. In order to deal with these limitations, Klein and

Fig. 19 Role of common semantic meta-model

240 Inf Syst Front (2007) 9:225–244

Bernstein (2004) propose a so-called process-based approach
that captures information about the service behaviour. This
approach is claimed to obtain better results than the concept-
based approach.

Using the concepts from our framework, we claim that
service models can be produced that support concept- and
process-based retrieval approaches. This claim is based on
the observation that the kind of information that is required
as input to these approaches can be modelled using our
concepts. The goal concept seems particularly suitable to be
used as input to concept-based approaches, since interaction
results are represented in terms of concepts from the subject
domain of the involved systems. Instead, choreographies
and orchestrations seem particularly suitable for the
process-based approach.

8 Related work

There are some ongoing related efforts in creating a
conceptual framework for service modelling. A prominent
example is the W3C’s Web Services Architecture (WSA),
which provides a conceptual model for understanding Web
services and related concepts (W3C 2004). Although we
cannot cover as broad a range of concepts as the WSA in
the scope of this paper, we claim that our service concept is
more general than the Web services considered by W3C.
Our service concept could be realized as Web services, but
also as economic exchanges or human–computer interac-
tion. Another extension of our work with respect to the
WSA is that we provide (behavioural) semantics to the
service concept. For semantics the WSA refers to OWL-S
(see below).

Colombo et al. (2005) propose a conceptual model that
describes actors, activities and entities involved in a
service-oriented scenario and the relationships between
them. This work is similar to and partially extends the
W3C’s Web Services Architecture. However, they also
omitted the specification of the semantics of the concepts
described. As it stands their conceptual model is a glossary
of terms without an indication of how the various concepts
could be expressed in a concrete modelling language.

OWL-S (since its first incarnation as DAML-S) repre-
sents one of the first attempts at formalizing the semantics
of Web services using ontology technology (Martin et al.
2004). In OWL-S a service is formally described by a
Service Model. The Service Model shows the possible steps
required to execute a service. It describes a service in terms
of its inputs, preconditions, outputs, effects, and, where
appropriate, its component sub-processes. It also describes
the control flow in terms of the service’s state, including
initial activation, execution and completion. Our work
differs in two ways from OWL-S. Firstly, we use a

declarative, causality-based behaviour specification formal-
ism, which allows for constraint-oriented composition of
service specifications. The process ontology of OWL-S
enables only an imperative, and therefore prescriptive,
specification style. Secondly, OWL-S takes only the
provider’s perspective into consideration, whereas we treat
both participants in a service interaction equally. Therefore,
we cannot identify inputs or outputs, but only specify
preconditions and results. Our approach is more abstract
than OWL-S. We abstract from messages being exchanged
and talk of values being established or passed. And we
generally do not make explicit in our models which is the
initiating party of a service interaction. Such (implementa-
tion) details can be added at subsequent refinement steps,
but that is beyond the scope of this paper.

The Web Service Modeling Ontology (WSMO 2006)
and related projects are now picking up a lot of
momentum (WSMO 2006; Bruijn et al. 2005). WSMO is
a formal ontology for describing several aspects of
Semantic Web Services. It consists of four main compo-
nents—Ontologies, Goals, Web Services and Mediators.
Ontologies provide terminology and formal semantics of
information that is used by the other components. A goal
is a specification of the objectives of a service user. A web
service is a specification of the functionality of the service
provider. Mediators are used as connectors between
ontologies, goals and web services.

Both goals and web services are described in terms of
non-functional properties, used ontologies, desired capa-
bilities and interfaces. A capability specifies what a service
does. It describes the preconditions (i.e., state of the lexical
domain before the service execution), assumptions (state of
the environment before the service execution), postcondi-
tions (state of the lexical domain after the service
execution) and effects (state of the environment after the
service execution). An interface specifies how the func-
tionality of the service can be achieved. It describes the
choreography and orchestration of a service. A choreog-
raphy describes the interactions between the service
requestor and the service provider. An orchestration
describes how the service makes use of other services to
achieve its capability.

There are a lot of similarities between our work and
WSMO. WSMO ontologies correspond to our information
models. WSMO capabilities correspond to our interaction
contributions. That is, the preconditions and assumptions
correspond to the causality constraints of the service
requestor and service provider respectively. Postconditions
and effects correspond to our result constraints. WSMO
choreographies and interfaces both correspond to our
interfaces. WSMO orchestrations correspond to our orches-
trations, i.e., the decomposition of the provider’s behaviour
into smaller services that realize the external behaviour.

Inf Syst Front (2007) 9:225–244 241

Mediators are largely implicit in our work. For example,
an interaction in our framework can represent a WSMO
goal to goal mediator. Goal to web-service and web service
to web service mediators correspond to refinement steps in
our approach, where one interaction is decomposed into a
choreography. We believe mediators are currently used in
WSMO merely as a syntactic construct, whereas our
framework allows one to reason about their semantics,
e.g., the matching of goals in terms of interaction
constraints, and the relationship between goals and web-
services in terms of conformance relations. How to support
semantic mappings between used ontologies will be dealt
with in a forthcoming paper.

All in all our conceptual framework is more parsimoni-
ous than WSMO, i.e., it has less concepts but with
comparable expressive power. Furthermore, we feel that
the behavioural semantics of WSMO choreographies and
orchestrations are rather weakly specified.

9 Conclusions

Although service-orientation is widely recognized as a
promising approach to deal with the complexity of IT
systems, its central concept—that of service—has so far not
been used to its full potential due to the lack of a
comprehensive conceptual framework.

Based on an analysis of commonly found interpretations
of the service concept, we identified and classified general
(meta-) properties that should be addressed by services,
which can be classified into: structural, behavioural,
information, goal and quality properties. Using the simple
example of a procurement service, we introduced and
illustrated basic concepts that support the properties
identified and underlie the service concept. Moreover, these
basic concepts helped us to explain, relate and in fact
formalize important notions, such as requested service,
offered service, choreography and orchestration.

All this work finally led to our proposed conceptual
framework for service modelling, named COSMO, which
has been summarized with three related class diagrams to
capture roles and service types, behavioural aspects, and
information aspects, respectively. Our main conclusions
with respect to the framework are:

& The framework is constructed from a small number of
basic concepts, which are based in practice, as argued
above, and at the same time provide a powerful
conceptual basis for modelling;

& The framework is language-independent, but at the
same time the basic concepts of the framework can be
related to many of the popular languages used in the
context of service design, analysis and implementation.

This opens the possibility to use the framework as a
common semantical basis for comparing models pro-
duced with different languages;

& The framework is domain-independent, i.e., no assump-
tions are made with respect to the type of systems for
which services should be modelled. We expect that our
framework has a wide spectrum of application, e.g., can
be used to model services at a business, application and
component level, thus beyond the usual domain of web
services;

& The framework is particularly strong in the area of
behavioural modelling, when compared to other
approaches. In addition, the information aspect of our
framework can profit from (absorb) ongoing develop-
ments in the area of ontologies;

& The framework supports the modelling of services at
different abstraction levels. Three generic abstraction
levels are identified, including the assessment of the
refinement (conformance) relation between models
defined at successive abstraction levels.

Our forthcoming work will focus on the validation of the
COSMO framework in practice. This implies that we want
to further investigate mappings onto existing languages and
exploit and/or extend the tools developed for these
languages. Furthermore, we want to implement a ‘ground-
ing’ of our conceptual framework by developing trans-
formations onto existing technology, in particular web
service standards. Practical cases to be considered will
comprise the support and implementation of operations on
services, especially those that are applied at run-time. An
example of such a case is the adaptive composition of
services through ontology-based mediation.

Acknowledgements This work is part of the Freeband A-MUSE
project (http://a-muse.freeband.nl), which is sponsored by the Dutch
government under contract BSIK 03025.

References

A-MUSE (2006). A-MUSE project, http://a-muse.freeband.nl.
Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H.,

Nakata, T., et al. (2005). Web Services Agreement Specification
(WS-Agreement) Version 2005/09. http://www.gridforum.org/
Public_Comment_Docs/Documents/Oct-2005/WS-Agreement
SpecificationDraft050920.pdf.

Baader, F., Calvanese, D., McGuinnes, D., Nardi, D., & Patel-
Schneider, P. (2003). The description logic handbook: Theory,
implementation and applications. Cambridge: Cambridge Uni-
versity Press. ISBN 0521781760.

Baida, Z., Gordijn, J., & Omelayenko, B. (2004). A shared service
terminology for online service provisioning. In Proceedings of
the 6th Int. Conference on Electronic Commerce, vol. 60 (pp.
1–10).

242 Inf Syst Front (2007) 9:225–244

http://a-muse.freeband.nl
http://a-muse.freeband.nl
http://www.gridforum.org/Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf
http://www.gridforum.org/Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf
http://www.gridforum.org/Public_Comment_Docs/Documents/Oct-2005/WS-AgreementSpecificationDraft050920.pdf

BPMN (2006). Business Process Modeling Notation (BPMN) infor-
mation, http://www.bpmn.org.

Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp,M., Keller, U., et al.
(2005). Web Service Modeling Ontology (WSMO), W3C member
submission 3 June 2005, http://www.w3.org/Submission/WSMO.

Colombo, M., Di Nitto, E., Di Penta, M., Distante, D., & Zuccalà, M.
(2005). Speaking a common language: A conceptual model for
describing service-oriented systems. In Proceedings of the 3rd
International Conference on Service-oriented Computing
(ICSOC) (pp. 48–60).

Dijkman, R., & Dumas, M. (2004). Service-oriented design: A multi-
viewpoint approach. International Journal of Cooperative Infor-
mation Systems (IJCIS), Special Issue on Service Oriented
Modeling, 13(4), 337–368.

Dijkman, R., Quartel, D., Ferreira Pires, L., & van Sinderen, M.
(2004). A rigorous approach to relate enterprise and computa-
tional viewpoints. In Proceedings of the 8th IEEE Enterprise
Distributed Object Computing (EDOC) Conference, Monterey,
USA (pp. 187–200).

Dirgahayu, T. (2005). Model-driven engineering of web service
compositions: A transformation from ISDL to BPEL. MSc thesis,
University of Twente, Enschede, The Netherlands.

IBM (2006). IBM service definition, http://www.research.ibm.com/
ssme/services.shtml.

ISO (1994). Information technology—Open Systems Interconnection
—Basic Reference model—Conventions for the definition of OSI
Services. ISO/IEC DIS 10731.

Jonkers, H., Lankhorst, M., van Buuren, R., Hoppenbrouwers, S.,
Bonsangue, M., & van der Torre, L. (2004). Concepts for
modelling enterprise architectures. International Journal of
Cooperative Information Systems, 13(3), 257–287.

Klein, M., & Bernstein, A. (2004). Toward high-precision service
retrieval. IEEE Internet Computing, 8(1), 30–36.

Lamsweerde, A. (2001). Goal-oriented requirements engineering: A
guided tour. In Proceedings of the 5th IEEE International
Symposium on Requirements Engineering (RE’01) (pp. 249–263).

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott D.,
McIlraith, S., et al. (2004). OWL-S: Semantic markup for web
services W3C Member Submission 22 November 2004, http://
www.w3.org/Submission/OWL-S.

Pokraev, S., Quartel, D., Steen, M., & Reichert, M. (2006).
Semantic service modeling: Enabling system interoperability.
In Proceedings of the International Conference on Interoper-
ability for Enterprise Software and Applications (I-ESA’06)
(pp. 221–231).

Pokraev, S., Quartel, D., Steen, M., Wombacher, A., & Reichert, M.
(2007). Business level service-oriented enterprise application
integration. In Proceedings of I-ESA’07.

Quartel, D., Dijkman, R., & van Sinderen, M. (2004). Methodological
support for service-oriented design with ISDL. In Proceedings of
the 2nd International Conference on Service Oriented Comput-
ing (pp. 1–10).

Quartel, D., Dijkman, R., & van Sinderen, M. (2005a). An approach
to relate business and application services using ISDL. In
Proceedings of the 9th IEEE Enterprise Distributed Object
Computing (EDOC) Conference (pp. 157–168).

Quartel, D., Dijkman, R., & van Sinderen, M. (2005b). Extending
profiles with stereotypes for composite concepts. In The 8th
ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS) (pp. 232–247).

Quartel, D., Ferreira Pires, L., & van Sinderen,M. (2002). On architectural
support for behaviour refinement in distributed systems design.
Journal of Integrated Design and Process Science, 6(1), 1–30.

Quartel, D., Ferreira Pires, L., van Sinderen,M., Franken, H., &Vissers, C.
(1997). On the role of basic design concepts in behaviour structuring.
Computer Networks and ISDN Systems, 29, 413–436.

Quartel, D., Steen, M., Pokraev, S., & van Sinderen, M. (2006). A
conceptual framework for service modelling. In Proceedings
Tenth IEEE International EDOC Enterprise Computing Confer-
ence (pp. 319–330).

Sprott, D., & Wilkes L. (2004). Understanding service-oriented
architecture. In CBDI Journal, CBDI Forum, January.

van Eck, P., Blanken, H., & Wieringa, R. (2004). Project GRAAL:
Towards operational architecture alignment. International Jour-
nal of Cooperative Information Systems, 13(3), 235–255.

Van Sinderen, M., Ferreira Pires, L., Vissers, C., & Katoen, J. (1995).
A design model for open distributed processing systems.
Computer Networks and ISDN Systems, 27, 1263–1285.

Vissers, C., & Logrippo, L. (1986). The importance of the service
concept in the design of data communication protocols. Protocol
Specification, Testing and Verification, V, 3–17.

W3C (2004). Web services architecture W3C Working Group Note 11
February 2004. http://www.w3.org/TR/ws-arch/.

Wieringa, R. (2003). Design methods for reactive systems: Yourdon,
statemate, and the UML. San Mateo, CA: Morgan Kaufmann.

Wikipedia (2005). http://en.wikipedia.org.
WSMO (2006). http://www.wsmo.org.
Yud, E. (1997). Towards modelling and reasoning support for early-

phase requirements engineering. In Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering (RE‘97)
(pp. 226–235).

Dick A. C. Quartel is an Assistant at the University of Twente, The
Netherlands. His research interests include design methods and service
architectures for networked systems, business process and service
modelling, and semantic service interoperability. He is currently a
workpackage leader in the Dutch Freeband A-MUSE project (BSIK
03025) on service design and semantic interoperability. He received
his Master’s and PhD degree in Computer Science from the University
of Twente, The Netherlands. You can reach him at d.ac.quartel@
utwente.nl.

Maarten W. A. Steen is a scientific researcher at Telematica Instituut
since 1999. He has worked both in knowledge-building research
projects as in applied projects with industry. His focus of research has
always been on methods and techniques for conceptual modelling in
the domain of enterprise systems development and service-oriented
architecture. An area which is starting to become known as Model-
Driven Engineering (MDE). He has lectured on these topics at
industry seminars and at universities. Before joining Telematica
Instituut, Maarten Steen worked at the University of Kent at Canter-
bury on the application of formal methods in the area of Open
Distributed Processing. More specifically, he worked on techniques
for partial specification, such as consistency checking and composi-
tion, and on enterprise modelling and policy specification. Maarten
Steen holds a PhD in Computer Science from the University of Kent
at Canterbury, UK, and an MSc.(Eng.) in Computer Science from the
University of Twente, The Netherlands. You can reach him at
Maarten.Steen@telin.nl.

Stanislav Pokraev is a member of Scientific Staff at Telematica
Instituut, The Netherlands since 2001 and PhD candidate in the
Computer Science department of the University of Twente, The
Netherlands since 2003. Previously he was employed as scientific
researcher by KPN Research, The Netherlands. Stanislav holds a MSc
(Eng) degree from the Technical University of Sofia, Bulgaria. His
main research interests are formal information modeling and service-

Inf Syst Front (2007) 9:225–244 243

http://www.bpmn.org
http://www.w3.org/Submission/WSMO
http://www.research.ibm.com/ssme/services.shtml
http://www.research.ibm.com/ssme/services.shtml
http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/OWL-S
http://www.w3.org/TR/ws-arch/
http://en.wikipedia.org
http://www.wsmo.org

oriented business integration. You can reach him at Stanislav.
Pokraev@telin.nl.

Marten J. van Sinderen is an associate professor at the University of
Twente, The Netherlands, and manager of A-Services Internet, one of
the strategic research orientations of the Centre for Telematics and
Information Technology, the ICT research institute of the University of

Twente. His research interests include design methods and architec-
tures for networked systems, and service platforms for supporting
context-aware mobile applications. He currently leads the Dutch
Freeband A-MUSE project (BSIK 03025) on service design and
semantic interoperability. He received his Master’s degree in electrical
engineering and his Ph.D. degree in computer science from the
University of Twente, The Netherlands. You can reach him at m.j.
vansinderen@utwente.nl.

244 Inf Syst Front (2007) 9:225–244

	COSMO: A conceptual framework for service modelling and refinement
	Abstract
	Introduction
	Service modelling requirements
	Existing service definitions
	General service properties

	Structure of the COSMO framework
	Service aspects
	Abstraction levels

	Formalising the service concept
	Service as interaction
	User and provider roles
	Modelling activity results

	Service as choreography
	Modelling relations between activities
	Interfaces

	Service as orchestration
	Behaviour composition

	Conceptual models
	Abstraction levels and roles
	Behavioural aspect
	Information aspect
	Goal aspect

	Refinement
	Conformance criteria
	Assessment approach
	Behaviour abstraction
	Information abstraction
	Example

	Application of the COSMO framework
	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

