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Abstract The mining of frequent patterns in databases has
been studied for several years, but few reports have
discussed for fault-tolerant (FT) pattern mining. FT data
mining is more suitable for extracting interesting informa-
tion from real-world data that may be polluted by noise. In
particular, the increasing amount of today’s biological
databases requires such a data mining technique to mine
important data, e.g., motifs. In this paper, we propose the
concept of proportional FT mining of frequent patterns. The
number of tolerable faults in a proportional FT pattern is
proportional to the length of the pattern. Two algorithms are
designed for solving this problem. The first algorithm,
named FT-BottomUp, applies an FT-Apriori heuristic and
finds all FT patterns with any number of faults. The second
algorithm, FT-LevelWise, divides all FT patterns into
several groups according to the number of tolerable faults,
and mines the content patterns of each group in turn. By
applying our algorithm on real data, two reported epitopes
of spike proteins of SARS-CoV can be found in our
resulting itemset and the proportional FT data mining is
better than the fixed FT data mining for this application.
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1 Introduction

Valuable information is one of the most powerful weapons
in the current knowledge age, and hence knowledge
discovery has become a popular field of research. For
example, in bioinformatics, biological data grow exponen-
tially in size and complexity. It is not an easy work to
extract useful information from it. Thus an important goal
of data mining in bioinformatics is to extract valuable
information from a large amount incomprehensible, biolog-
ical data. Traditional algorithmical techniques use pattern
matching algorithms to find valuable information for
biological sequences. For example, linear scan (Knuth
et al. 1977) and suffix tree (Ukkonen 1995) are two well-
known approaches. For more references and applications on
patter matching, we refer to (Gusfield 1997).

In contrast, data mining in bioinformatics deals with
different techniques and algorithms to gain knowledge from
data of biological sequences, structures, and microarrays
(Chen 2005). Association-rule mining, which was first
investigated in (Agrawal et al. 1993), explores the relation-
ships among data items. It is a very popular technique in
data mining. For example, in the analysis of association
rules of a metabolic pathway, the rule “Gene; — Gene,,
support=10%, confidence=90%" means that the support of
10% indicates that Gene, and Gene, are expressed together
in 10% of all datasets, and the confidence of 90% indicates
that 90% of the metabolic pathway which activated Gene,
also correlated with Gene,. Recently, Kotlyar and Jurisica
used this technique to predict protein—protein interactions
(Kotlyar and Jurisica 2006).

The approaches used to find association rules can be
roughly classified into two categories. The first category is
the Apriori-based algorithm (Agrawal and Srikant 1994).
This influential algorithm generates candidate patterns
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according to the non-monotonicity heuristic. The two main
problems of Apriori are that (1) it needs to scan the
database several times and (2) it generates too many
candidate patterns. Various techniques have been used to
overcome these problems. In Park et al. (1995), a hash table
is used to store candidate patterns to increase the scanning
efficiency; Agrawal and Srikant (1994), Han and Fu (1995),
and Park et al. (1995) attempt to reduce the number of
transactions scanned in future iterations; Savasere et al.
(1995) and Zaki (2000) adopt the techniques of partitioning
and sampling; and Brin et al. (1997) proposes a dynamic
pattern-counting method in which candidate patterns are
added at different points during a scan. And the negative
association rules are considered in Antonie and Zaiane
(2004); Thiruvady and Webb (2004); Zhang and Zhang
(2004). Moreover, the problem of mining temporal indirect
association patterns is considered in Chen et al. (2006).

The second category is the tree-based algorithm, which was
proposed as the FP-tree (frequent-pattern tree) in Han et al.
(2000). This algorithm scans the database to find all frequent
items, and compresses the database by representing the
frequent items in an FP-tree. Finally, all frequent patterns can
be obtained by searching the tree. When the database is
large, it is sometimes unrealistic to construct an FP-tree that
resides in main memory. This leads to the proposed
extension of the pattern-growth concept, namely, H-mine.
H-mine designs a dynamic structure to adjust links dynam-
ically, instead of requiring an FP-tree to be maintained or a
physical database to be created. The motivation of this
method is to preserve space, and initially involves loading
transactions into memory. However, H-mine has to maintain
a head table at each level of the tree, and modify the links to
build a queue of the collection of transactions containing the
same prefix before the pattern support is counted.

Expect for the two categories of approaches, some works
study on other ways to extract association rules. Matrix Apriori
(Pavon et al. 20006) utilizes simple structures such as matrices
and vectors in the process of generating frequent patterns, and
it also minimizes the number of candidate sets. In (Lee et al.
2006), the idea of compressions rules is proposed and a data
mining structure is used to extract association rules from a
database. Redundant data will then be replaced by means of
compression rules. (Chu et al. 2005) uses a simple method to
transform the transactions read from the database into their
corresponding patterns and then accumulates the occurring
times of these patterns. (Chen et al. 2002) refines sampling
functions to a two-phase sampling based algorithm that
attempts to reduce the errors caused by sampling functions.
(Chen and Ho 2005) proposed a sampling-based method that
contains three phases. The first phase draws a small sample of
data to estimate the set of frequent patterns, denoted as FS.
The second phase computes the actual supports of the patterns
in FS as well as identifies a subset of patterns in FS that need
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to be further examined in the next phase. Finally, the third
phase explores this set and finds all missing frequent patterns.

Traditional association-rule mining extracts patterns that
match exactly. However, real-world databases contain noise
that can make important information ambiguous, resulting
in it not appearing in the mining result. Moreover,
sometimes a decision maker will not be helped by the
limited knowledge mined from a small database. Therefore,
we need a method that copes with such variations in an
association pattern (within predefined limits), which is
called a fault-tolerant (FT) pattern.

In contrast to traditional frequent-pattern mining, the mining
of FT patterns must tolerate a certain degree of inexactitude.
For example, coughing, fever, a runny nose, a headache, and a
sore throat are all signs of catching a cold. However, these
symptoms are seldom present at the same time, and hence a
doctor will not diagnose the disease exactly following the rule
R1: {coughing, fever, runny nose, headache, sore throat}
a{catch a cold}. Instead, a better rule corresponding to the
real-world situation would be R2: Patients who have at least
two of the following symptoms {coughing, fever, runny nose,
headache, sore throat} are catching a cold. R2 requires
matching just part of the data, which illustrates the sense of
allowing for fault tolerance in data mining.

Yang et al. (2001) was the first to propose discovering
FT frequent patterns in many dimensions. Their primary
motivation was to find frequent groups of transactions (user
groups, web sessions, and so on.) instead of focusing on
just the items themselves, allowing for the discovery of
groups of similar transactions that share most items.
Unfortunately, the approach proposed in Yang et al.
(2001) may generate sparse patterns, which may contain
subpatterns that do not appear frequently.

Another milestone of FT pattern mining is the work
described in Pei et al. (2001), in which extending Apriori
and developing FT-Apriori for FT frequent-pattern mining
allows a complete set of FT patterns to be mined out.
However, the disadvantages of Apriori-based algorithms,
including a huge number of candidate patterns and high
database scanning frequency, also occurred in Pei et al.
(2001). In response, Wang and Lee (2002) suggested the
algorithm FTP-mine that finds FT patterns using the concept
of pattern growth.

The main defect of Pei et al. (2001) and Wang and Lee
(2002) is their definition of the number of tolerable faults in
a pattern as a fixed number. Defining the number of tolerable
faults in the patterns as a fixed number of items is not
objective. The matters of “tolerant 1 item” in a pattern with
length 4 and that in a pattern with length 10 give people
entirely different sense. For example, the function of a
protein is determined by its structure but not sequence. It is
possible that two proteins of similar function have different
sequence lengths, e.g., the family of heat shock proteins. In
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this case, it is hard to mine them together using FT pattern
mining with fixed number of tolerable faults. In this paper, we
introduce the problem of mining proportional FT patterns; in
these patterns, the number of tolerable faults in the pattern is
proportional to the pattern length. Two approaches are
proposed to solve this problem. The remainder of this paper
is organized as follows: background knowledge and problem
definitions are presented in Section 2, the principles
underlying our approaches are presented in Section 3,
Section 4 describes the experimental results, and the
conclusions and future work are discussed in Section 5.

2 Problem definition

Let pattern X={iy,...,i,} be a set of items, where the length
of X is the cardinality of X, denoted as |X]. Moreover, X is
called an |X|-pattern since it contains [X] items. A
transaction 7 = (tid, X) is a 2-tuple record, where #id is
the transaction-id and X is a pattern. Transaction 7=(tid, X)
is said to contain pattern Y iff YCX.

A transaction database TDB is a set of transactions. The
number of transactions in TDB containing pattern X is called the
support of X, denoted as sup(X). Given a transaction database
TDB and a user-defined support threshold min_sup>0,
pattern X is a frequent pattern iff sup(X)>min_sup. A
frequent pattern with length £ is denoted as a frequent-k
pattern. In the process of frequent-pattern mining, possible
patterns are generated as candidate patterns, and these are
later tested to determine whether they are frequent. The
problem of frequent-pattern mining is to find the complete
set of frequent patterns in a given transaction database with
respect to a given support threshold.

Extending the problem of mining frequent patterns, the
FT frequent-pattern- mining problem relaxes the definition
of containing to FT-containing. In addition to mining exact
patterns that occur with high frequencies, we find those
frequent patterns that contain some errors. In Pei et al.
(2001) and Wang and Lee (2002), FT-containing is defined
as mismatches in a fixed number of items in a pattern.
However, as mentioned above, it is disadvantageous for the
same number of faults to be tolerated in patterns with
different lengths. Therefore, the problem of proportional FT
frequent-pattern mining is proposed.

Definition 2.1 (Proportional FT frequent pattern)

Let P be a pattern. A transaction T= (tid, X) is said to FT-
contain pattern P with respect to a given FT parameter §
(0<6<1) iff there exists P'CP such that P'C X and ‘\Lp/\l > 0.
The number of transactions in a database FT-containing
pattern P is called the FT-support of P, denoted as sup' ' (P).
Let B(P) be the set of transactions FT-containing pattern P,
Given a frequent item-support threshold min_sup™™ and an

FT-support threshold min_sup" ", a pattern P is called an FT
frequent pattern iff

1. sup"'(P)>min_sup"’; and

2. for each item peP, supi‘emB(p)(p)Zminisup , Where
supitemg(p) (p) is the number of transactions in B(P)
containing item p.

item

Definition 2.1 mostly extends (Pei et al. 2001), except the
FT parameter and the definition of FT-containing. The item-
support threshold avoids the problem of sparse patterns
appearing which can occur in (Yang et al. 2001), by
constraining the frequency of occurrence of each item in a
pattern. Moreover, our definition of FT-containing releases the
constraint that the number of fault items tolerable in a pattern
is fixed—instead, the number of tolerable-fault items increases
depending on the length of the pattern. Figure 1 shows the
relation between the length of pattern X and #fault(|X]), where
#fault(lX]) denotes the number of fault items tolerable in
pattern X. According to Definition 2.1, we have the following
equation: # fault(|.X]) = [(1 — &) x |X|].

In the horizontal parts of the stair shown in Fig. 1, our
problem can be simplified to previous works, i.e., FT-
Apriori (Pei et al. 2001) can be extended as the following
lemma to solve part of our problem.

Lemma 2.1 (Extended FT-Apriori) If X is not an FT pattern,
then none of its superset that tolerates the same
number of faults will be an FT pattern

However, we have a challenge where the gaps occur in
Fig. 1, since these areas do not comply with the non-
monotonicity property. That is, if a pattern is not a frequent
FT pattern, its superset can still be a frequent FT pattern.
Therefore, solutions from previous studies cannot solve our
problem.

For example, please refer to Table 1. Let FT parameter =
0.6, min_sup" =5, and min_sup"™=2. Consider pattern X=
{abcd}, where #fault(|X]) = #fault(|X]) = |(1 —0.6)x
4] =1: X is an infrequent FT pattern since sup' (X)=|
{tid:040, tid:050}| = 2<5, yet X’s superset Y={abcde}, where

-
1
- gap i
Z L. '
g | i |
a ., : O /
1
o N
X

Fig. 1 Relation between |X] and #fault(].X])
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#fault(|¥))=2, is a frequent FT pattern. Because sup’ ()=
{tid:010, £id:020, tid:030, tid:040, tid:050}|=5, sup"™ 5 (@)=
sup" (D) =sup" " gery(€)=sup" My (d) =sup" " g (€)=
3>2, which proves that Yis a frequent FT pattern.
However, observation of the properties of patterns

separated by the gap produces the following lemma:

Lemma 2.2 Let set(Xqppatern) denote the set of X’s
subpatterns whose length is one less than
the length of X. Moreover, let #fault(|JX])-1=
#fault(|X]-1) (i.e., X and the considered
subset are separated by the gap). If X is not
a frequent FT pattern, then we have the
following two conditions:

case 1. if sup" (X)<min_sup"", then for all Pe set(Xsubpatter)>
P cannot be an FT pattern.

case 2. if supitemB(X)(xj)<min_supitem for an item x;€X,
then none of the patterns in set(Xguppatern) that
contains item x; can be an FT pattern.

Proof Let the set of subpatterns of X with length |X|-k be S,
where k = #fault(|X]), and the set of subpatterns of X ppattern
()(subpattemeSet()(subpattem)) with length |X|_1_(k_l) be S
Because Xgubpattern € S€U(Xsubpattern), W€ know that §'cS.
Suppose X is not a frequent FT pattern:

case 1. sup' (X)<min_sup"": if there exists a frequent FT
pattem Xsubpattcm (Xsubpattcmeset(Xsubpancm)): then
we have supFT(Xsubpattcm)>min_supFT. Because
supFT(Xsubpanem) is included in sup""(X), sup" (X)
>min_sup" ', which disagrees with the supposition.
Therefore, no patterns in set(Xgyppatern) €an be
frequent patterns if sup" ' (X)<min_sup" .
case 2. sup" "z (x;))<min_sup"“™: if there exists a pattern
Xsubpatterm where XsubpatternEset(Xsubpattern) and
Xubpatiern CONtains x;, then we have sup"“”
B(Xsubpattern)(;)>min_sup"“™. Since the item sup-
port of Xgppatern cOunts from S’ that of X is from
S, and §'cS, we obtain sup"™"x,(x;)>min_sup"™",
which disagrees with the supposition. There-
fore, none of patterns in set(Xgyppaiiern) that
contains item x; can be an FT pattern if

SupltemB(X)(.X;]') <min_Sup1tem.

Table 1 An example TDB

Tid Items
010 cde
020 bde
030 ade
040 abc
050 abc

@ Springer

Lemma 2.2 holds because the supports of patterns parted
by the gap are from the same set of subpatterns.

Two approaches are developed using Lemmas 2.1 and
2.2. First, based on Lemma 2.1, we propose the FT-
BottomUp algorithm as a basic solution, which is explained
in detail in Section 3.1. Although this algorithm is closed to
violent solution, it finds the complete set of proportional FT
patterns.

To improve the efficiency, the second algorithm
(named FT-LevelWise) is proposed. Several pruning
properties are adopted in this algorithm to improve the
performance. The algorithm FT-LevelWise is discussed in
Section 3.2.

3 Mining proportional FT frequent patterns
3.1 FT-BottomUp algorithm

The principle underlying the basic algorithm, FT-
BottomUp, is to find all FT patterns for which the number
of faults is from (1-9)x|X] to MaxFault at level-|X|, where
MaxFault is the maximum possible number of faults. Let
DB' be the preprocessed database that is equivalent to the
original database with the infrequent items removed. We
estimate MaxFault by the maximum possible length of FT
patterns, denoted as MaxPattern, using the following
equations:

number of frequent — 1 patterns,

MaxPattern = min length of longest transaction in DB’

1)

MaxFault = #fault(|MaxPattern|)

This conservative assumption obtains the lower bound for
the number of frequent-1 patterns and the length of the
longest transaction divided by the FT parameter §, because
the largest pattern either contains all frequent-1 items or FT-
contains the longest transaction.

The length of the longest possible pattern can be used to
calculate the maximum possible number of faults during the
mining process. This upper bound tells us not only when
the mining terminates but also what candidates should be
generated.

Algorithm 1 (FT-BottomUp algorithm)

Input
Transaction database DB
Frequent item-support threshold  min_sup
Frequent FT support threshold ~ min_sup® "
FT parameter ¢

item
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Output
FT patterns

/* Fy; is the set of FT patterns with length i

and containing j faults */

Method:

1. Scan DB to find the set of frequent 1-patterns, denoted
as F' 1 ’0;

Let DB = DB F) ;
. . ’
2. MaXPattem:min{lengthoﬂongestt;ansactlomnDB , | F, 70} };

MaxFault = #fault(MaxPattern);

3. for (int i=2; i<MaxPattern; i++){

j=#fault(i)

generate Cj; by Fi_ j;

/* Cy; are the candidate patterns for Fj; */
Fij = FT_frequent(C;}, min_sup' ", min_sup
/* FT_frequent(C;j, min_sup"', min_sup"*"
the set of patterns

in C;; that comply with the two support thresholds*/}
output F; ;;

itcm);

) returns

Algorithm 1 shows that at the first [;%5] levels we can
adopt the basic Apriori method since patterns at those levels
tolerate 0 items as faults, and FT patterns with O faults are
only required to pass the item-support threshold to be
frequent. When the number of tolerable faults is greater
than 0, FT-Apriori is used repeatedly to generate candidate
FT patterns with the tolerable faults in that level.

3.2 FT-LevelWise algorithm

The FT-LevelWise algorithm adopts the principle of
partitioning the FT patterns into MaxFault groups at each
step of the stair shown in Fig. 1.

Consider each group G; (i=0 to MaxFaulf), where i is
the label of the group and also presents the number of faults
tolerated by the patterns in the group. The shortest FT
patterns of group G; are called the head patterns of G,
denoted as head;, while the longest ones are called tail
patterns and are denoted as fail;. The depth of group G;,
denoted as depth;, is the difference between the lengths of
tail; and head;, and can be evaluated by FT parameter § as
depth; = [ﬁ} or Lﬁj After finding frequent-1 patterns,
for each group G; (0<i<MaxFault), we first generate
candidate patterns for head; by frequent-1 items, and scan
the database to check whether the candidates are frequent
patterns. If head, contains no frequent patterns, group G
can be deleted. Then, we can generate the candidates of tail;

using head; since they tolerate the same number of fault
items. Furthermore, according to Lemma 2.2, some
candidates of fail; can be pruned by the information
collected in head; . That is, a candidate pattern of tail;
will never be an FT pattern if its superpattern does not exist
in head;; because of the small FT-support, or because any
item support is not large enough and the candidate pattern
contains the item as well.

Moreover, in middle layers mid; (j is the difference
between the lengths of mid,; and head;), we adopt Lemma
2.1 from both sides. That is, candidate patterns of mid,; are
generated by the existing longest subpatterns of mid,,
and if there any FT patterns are superpatterns of this
candidate, the candidate is already set to be frequent and
does not need to be checked by scanning the database. The
main principle underlying this approach is that, for each
group, the head FT patterns are generated by frequent-1
patterns, while the tail FT patterns are generated by the
head and pruned by the head of the next group. Then, FT
patterns are generated by the longest subpattern and
pruned by the shortest superpattern from both sides of
the group.

Algorithm 2 (FT-LevelWise algorithm)

Input
Transaction database DB
Frequent item-support threshold min_sup
Frequent FT support threshold min_sup®"
FT parameter §

item

Output
FT patterns

Method:

1. Scan DB to find the set of frequent 1-patterns, denoted
as Fy;

Let DB’ = DB N frequent 1 — patterns;

. . ’
2. MaxPattern=min { lengthoﬂongestt;ansactloanB , ‘Fl | }

E

MaxFault = #fault(MaxPattern);

3. Construct MaxFault+1 groups, G;, i=0 to MaxFault,

For each group G; {

head;: generate candidate by F;

Check whether candidates are frequent FT patterns;
tail;: generate candidate by head;;

Prune by the head of the next group (head;,);
Check whether candidates are frequent FT patterns;
Midy;: For j =1 to depth;/2{

Generate candidate C;; and Cjgeptni-jy by mid;j1y;
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Table 2 Parameters considered
in the experiments

Parameter Symbol Range of values Default value
FT parameter 0 0.7~0.99 0.8
Minimum FT-support threshold min_sup" " 0.06~0.1 0.1
Minimum item-support threshold min_sup™™ 0.04~0.09 0.075

Prune{

If (candidate is the subset of mid;epni j+1y)
Set the candidate as frequent;}

Check other candidate frequent FT patterns;}
Output mid;,, k=0 to depth;

H

4 Experimental results
4.1 Algorithm efficiency

This subsection evaluates the performance of our approach. As
mentioned in Section 2, the solutions used in previous studies
on mining FT patterns cannot be used to solve the
proportional FT-patterns mining problem. Therefore, our
basic FT-BottomUP algorithm is used to show the improve-
ment of the FT-LevelWise algorithm. The two algorithms
were implemented in Java, and all experiments were
performed on a 1.8-GHz Pentium 4 CPU with 384 MB of
RAM running Windows XP. The experimental datasets were
generated using an IBM synthetic-data generator. Each dataset
contained 1000 different items and 10,000 transactions (i.e.,
an average of ten items in a transaction), and several potential
frequent patterns with an average length of 8.

The parameters used in our simulation are listed in Table 2.
The performances of FT-BottomUp and FT-LevelWise are
compared on the basis of their execution times.

In the first simulation, the relation between the FT
parameter and the number of FT patterns was considered. It

14000

12000

10000 \
8000 [ \
6000 .

4000

number of FT-patterns

000

0.7 035 0.8 0.85 0% 0.55 0.5

fault tolerant parameter (4]

Fig. 2 Number of FT patterns vs. the FT parameters
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is trivial that a larger § results in the extraction of fewer FT
patterns. This situation is especially obvious in the range of §
from 0.7 to 0.9, as shown in Fig. 2. When § is over 0.9, the
patterns mined out are close to traditional frequent patterns,
i.e., exactly matched patterns without the FT property.

Figure 3 presents the total execution time of FT-
BottomUp and FT-LevelWise, which clearly shows that
the latter algorithm outperforms the former one.

In second set of simulations, § was set to the default value
and the reciprocal effect of the two support thresholds was
investigated. Figure 4 shows the variation in the number of
FT patterns when min_sup" ' and min_sup"“™ change.

The scalabilities of FT-BottomUp and FT-LevelWise
with respect to the two support thresholds are presented in
Fig. 5. The performance of FT-LevelWise is still universally
better than that of FT-BottomUp. Moreover, with a constant
min_sup™™, a smaller min sup’" results in a longer
execution time.

4.2 Epitope prediction

An epitope, which is known as an antigenic determinant, is
a small part of the molecular structure of an antigenic
molecule that is recognized by the immune system, e.g.,
antibodies, B cells, and T cells (Murphy et al. 2008). A
linear epitope is an epitope that is recognized by antibodies
by its linear sequence of amino acids, or primary structure.
In contrast, a conformational epitope is a sequence of
discontinuous amino acids that come together in three
dimensional conformation, or tertiary structure. Macromo-
lecular antigens such as proteins usually have many

4000

3500 1
3000 r

—o—FT-Level Wise
—4—FT-BattoraUp

2500
2000
1500
1000

grecution tme [(sec.)

500 1
0.0

0.7 0.75 0.8 0.85 049 0.95 099
fawt wlerant parameter (5)

Fig. 3 Execution times of the two algorithms vs. the FT parameters
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Fig. 4 Number of FT patterns

different epitopes. Moreover, the same segment of protein
can be a part of more than one epitopes. In general, the
length of an epitope can be from eight to 24 amino acids.
Intensive research is currently taking place to design
reliable tools to predict epitopes on proteins. For example,
ELISA (Enzyme Linked Immunosorbent Assay) is one of
well-known Immunochemical methods. The epitope pre-
diction problem is to predict epitopes on proteins.

Many viruses have a spike protein that has similar
function and location within the viral membrane. However,
the spike protein of the Severe Acute Respiratory Syndrome-
Associated coronavirus (SARS-CoV) has noted low amino
acid homology with other viral spike proteins. The low
similarity of amino acid sequence suggests that the spike
protein of SARS-CoV may have additional functions other
than the usual functions of coronavirus spike proteins (Rota
et al. 2003). For SARS-CoV, the spike protein is about
1,255 amino acids long in general. The spike protein plays
an important role in interactions with receptor and inducing
neutralizing antibodies. Currently, only two epitopes are
reported for SARS-CoV spike proteins, namely,
“KLRPFERDISNV” and “PDPLKPTKRSF” (Saha et al.
2005). In this subsection, we consider the linear epitope
prediction problem on spike proteins of SARS-CoV.

7000

8000 —o— FT-LevelWise: min_FT_sup = 10%
—~ —#— FT-LevelWiss: min_FT_sup= 8%
ﬁ 5000 —a— FT-LevelWiss: min_FT_sup=6%
‘g 4000 F —+— FT-BattonUp: min_FT_sup = 10%
= . —*— FT-BationUp: min_FT_sup = &%
% 3000 F —*— FT-BatfonUp: min_FT_sup = 6%
£ 2000 |

1000

0.0

0.04 0.05 0.06 0.07 0.08 0.09
min_item_support

Fig. 5 Execution times of our algorithms

The inputs of most epitope prediction tools are a protein,
e.g., the B-cell epitope prediction (Saha et al. 2005). In
contrast, we consider a group of related proteins as our
input. Our assumption is based on that most related proteins
should have the same epitopes. It is like local view (a
protein) versus global view (a group of related proteins).
However, as mentioned above, the spike proteins of SARS-
CoV are low similarity with the spike proteins of other
coronaviruses. Thus, we only consider the spike proteins of
SARS-CoV. Nevertheless, spike proteins among SARS-
CoV are still not similar. That is, the idea of finding
common segments in these proteins does not work. It
happens that the concept of fault tolerance can be used in
this problem. We transform the epitope prediction problem
into the fault-tolerant data mining problem as follows.

We download 209 spike proteins of SARS-CoV from
NCBI database. Each protein corresponds to a transaction.
By using a sliding window, each segment obtained by
sliding window corresponds to an item. Note that the same
segment of protein can be a part of more than one epitopes.
Thus, this transformation is reasonable. In this experiment,
the window size is set to 15. Totally, we obtain an item set
of size equal to 3,306. We expect that the output pattern is a
set of epitope candidates since the pattern and each of its
items obtain enough supports determined by min_sup’” and
min_sup"™. The parameters used in our experiment are
listed in Table 3.

By using our algorithm, the result we obtained is one
maximal itemset with length 850 (respectively, 1,036) for
min_sup™™ equal to 0.65 (respectively, 0.6). By checking
the obtained itemsets, the two reported epitopes (mentioned
above) for SARS-CoV spike proteins are exactly contained
in this result. It shows that our proposed approach is
potential for predicting epitopes.

For fixed FT data mining, while the number of tolerance
faults is over 3, FT-Apriori algorithm (Pei et al. 2001) runs
out of memory. Therefore, we consider the case that the
number of tolerance faults equal to 3 and min_sup™™=
0.65. In the results, four maximal itemsets (with length 680,
768, 367, and 229, respectively) are obtained. The union of
these four sets has similar effect to the set of size 850. It
shows that the proportional FT data mining is better than
the fixed FT data mining for this application.

Note that in this experiment we do not consider the
property test of epitopes. For example, to be an epitope, we

Table 3 Parameters considered in the experiment

Parameter Symbol Value
FT parameter A 0.9
Minimum FT-support threshold min_sup’ " 0.7
Minimum item-support threshold min_sup"*™ 0.6/0.65
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should consider some properties such as hydrophilicity,
flexibility/mobility, accessibility, polarity, exposed surface,
and turns. However, it is beyond the purpose of this paper.

5 Conclusion and future work

In this paper, we propose the concept of proportional FT
mining of frequent patterns. In contrast to previous studies
on FT data mining, the number of tolerable faults in FT
patterns found by our approach is proportional to the length
of the patterns. The maximum number of tolerable faults
can be obtained by evaluating the maximum possible length
of an FT pattern. Two algorithms that find an effective
solution to the problem of mining proportional FT frequent
patterns are designed. The FT-BottomUp algorithm gen-
erates all candidate patterns with the number of fault items
at each level. The FT-LevelWise algorithm divides all FT
patterns into several groups, generates candidate patterns
from both sides of each group, and applies some criteria to
prune candidate patterns. Both algorithms extract the
complete set of FT patterns. The experiments demonstrate
the scalability of FT-LevelWise, which clearly performs
much better than FT-BottomUp since it does not need to
generate as many candidate patterns, with the database
scanning time being half that of FT-BottomUp. By applying
our algorithm on real data as shown in Section 4.2, two
reported epitopes of spike proteins of SARS-CoV can be
found in our resulting itemset and the proportional FT data
mining is better than the fixed FT data mining for this
application.

Based upon our results, there is an ongoing challenge to
find more efficient algorithms to improve the scalability of
mining proportional FT frequent patterns. Another direction
is to apply proportional FT data mining to real-world
databases such as medical data or biological data though
our proposed concept is general. As mentioned, biological
data grow very fast. It is unavoidable that its data may
contain noise or contaminated data. Therefore, the tech-
nique of proportional FT data mining will become an
important tool in bioinformatics or biomedicine.
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