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Abstract Compliance management is important in several industry sectors where there is a
high incidence of regulatory control. It must be ensured that business practices, as reflected
in business processes, comply with the rules. Such compliance checks are challenging due
to (1) the different life cycles of rules and processes, and (2) their disparate representations.
(1) requires retrospective checking of process models. To address (2), we herein devise a
framework where processes are annotated to capture the semantics of task execution, and
compliance is checked against a set of constraints posing restrictions on the desirable process
states. Each constraint is a clause, i.e., a disjunction of literals. If a process can reach a state
that falsifies all literals of one of the constraints, then that constraint is violated in that state,
and indicates non-compliance.

Naively, such compliance can be checked by enumerating all reachable states. Since long
waiting times are undesirable, it is important to develop efficient (low-order polynomial
time) algorithms that (a) perform exact compliance checking for restricted cases, or (b)
perform approximate compliance checking for more general cases. Herein, we observe that
methods of both kinds can be defined as a natural extension of our earlier work on semantic
business process validation. We devise one method of type (a), and we devise two methods
of type (b); both are based on similar restrictions to the processes, where the restrictions
made by methods (b) are a subset of those made by method (a). The approximate methods
each guarantee either of soundness (finding only non-compliances) or completeness (finding
all non-compliances). We describe how one can trace the state evolution back to the process
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activities which caused the (potential) non-compliance, and hence provide the user with an
error diagnosis.

Keywords Compliant process design · Compliance checking · Business process design ·
Formal process verification

1 Introduction

Compliance management is an area of increasing importance in several industry sectors
where there is a high incidence of regulatory control e.g., financial services, gaming, and
health care. Ensuring that business practices reflected in business process models are com-
pliant to required regulations (existing and new) is a highly challenging task due to the fol-
lowing reasons. First, the life cycles of the two (regulatory obligations vs. business strategy)
are not aligned in terms of time, governance, or stakeholders [30] and hence compliance re-
quirements cannot simply be incorporated into the initial design of process models. Second,
conceptually faithful specifications for compliance rules and process models respectively
are fundamentally different from a representational point of view [35], thus making it diffi-
cult to provide comparison methods. Herein, we propose to provide retrospective checking
of process models in acknowledgment of the disparate life cycles as mentioned above. That
is (i) to check the compliance of a new or altered process against the compliance rules, and
(ii) check the whole process repository against changed compliance rules, e.g., when new
regulations come into being.

Compliance rules in our approach are represented as a constraints base. That constraints
base is in conjunctive normal form: it is a conjunction (logical “and”) of clauses, where
each clause is a disjunction (logical “or”) of literals. Literals are atomic logical statements,
i.e., predicate symbols that may be positive or negated. The literals may contain variables.
These are quantified universally, and range over the entities of interest at process execution
time (e.g., in a process dealing with cheques, the constraints will be stated to hold for all
cheques). Each clause is a constraint on the states that are desirable as per the compliance
rules: if a state does not satisfy the clause, then that state is non-compliant. Due to the
outer conjunction, all clauses must be satisfied. For example, say a cheque must be signed
by any two of the people authorized to sign it. Say three people are authorized to sign
cheques, Henning, Leo, and Dietmar. This corresponds to the rule ∀x : cheque(x) →
sign(x,Henning, Leo)∨ sign(x,Henning,Dietmar)∨ sign(x, Leo,Dietmar), which is
the same as ∀x : ¬cheque(x)∨ sign(x,Henning, Leo)∨ sign(x,Henning,Dietmar)∨
sign(x, Leo,Dietmar).

Clearly, the complexity of compliance rules in general necessitates a more expressive
language (see e.g., [19]) than this form of constraints bases. Our aim in this paper is not
to provide a fully-fledged framework for compliance, but rather to develop computationally
efficient compliance checking methods for this particular restricted form of compliance.

Fig. ?? gives an overview of our framework. Processes are modeled in terms of a typical
workflow language, featuring task nodes (the activities carried out inside the process) as
well as parallel splits/joins and xor splits/joins to model the control flow. Such a model
specifies only which sequences of activities – which execution paths – may occur; it cannot
model more subtle or indirect dependencies between the activities. To cater for the latter, we
allow semantic annotations. Tasks are annotated with preconditions and effects, which are
conjunctions of logical literals, formulated in the terms of an ontology that axiomatizes the
underlying business domain.
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Fig. 1 An overview of our framework.

Given the semantic annotations, execution paths of the process traverse states that do not
only define which edges of the process are active (carry a token), but also define a “logical
state”, i.e., how the logical propositions are interpreted. In the “Logical state summaries”
part of Fig. ??, I∗(ei) and U∗(ei) denote sets of literals which characterize particular prop-
erties of execution paths, relative to edges ei. Namely, the literals in I∗(ei) are guaranteed to
be true whenever ei is active (so those sets correspond to the intersection of the logical states
at ei), and the literals in U∗(ei) might be true when ei is active (so those sets correspond
to the union of the logical states at ei). I∗ and U∗ are computed as part of our compliance
checking algorithms (more details below).

Note that the possibility to semantically annotate the process already provides opportu-
nities for certain forms of compliance checking, even without introducing a constraints base:
e.g., if, by a compliance rule expressing an obligation, activity A must always be performed
prior to an activity B, then we can give B a (new) precondition p and include p into A’s
effect. The process is then compliant iff B’s precondition is always guaranteed to be true.

We leave the detailed exploration of encoding methods as above for future work. Herein,
we focus on clausal constraints – disjunctive compliance rules – which are more powerful.
They enable the modeler to specify that one out of a number of conditions must always be
satisfied – by contrast, preconditions formulate only conjunctive rules, specifying that all of
a number of conditions must always be satisfied. An example of a disjunctive compliance
rule has been given above already, where we have three people authorized to sign cheques,
and any cheque must be signed by two of them, yielding the clause ∀x : ¬cheque(x) ∨
sign(x,Henning, Leo) ∨ sign(x,Henning,Dietmar) ∨ sign(x, Leo,Dietmar).

The compliance rules are checked against the logical states that can be traversed by the
process. A naive way of checking compliance is hence to enumerate all those states. Clearly,
given that the number of states is (in general) exponential in the size of the process, such
an approach is not desirable. A human modeler will not tolerate long waiting times during
process modeling, and checking the compliance of a whole process repository against an al-
tered constraints base may become completely infeasible if every single process involves a
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state enumeration. The question hence is: do restricted cases exist where we can check com-
pliance efficiently? And can we devise approximation techniques for more general cases?

We herein give positive answers to both questions. We leverage on an algorithm, I-
propagation, that we developed in previous work [33]. I-propagation was originally intended
for validating a certain property of semantically annotated processes, namely whether or not
all task nodes are “executable”. A task node is executable if, whenever the task is acti-
vated by the control-flow, its precondition literals are guaranteed to be satisfied. Checking
executability is essentially like checking compliance with trivial clauses of length 1 (unit
clauses). Herein, we provide ways of extending the algorithm to deal with longer, non-
trivial, clauses.

I-propagation runs in polynomial time and, for a particular restricted class of processes
which we call basic processes, computes exactly the sets of literals that are necessarily true
at particular points during process execution: namely, the I∗ sets in Fig. ?? (the U∗ sets can
be derived easily from I∗). Basic processes have no loops, no effect conflicts (no parallel
task nodes with contradicting effect annotations), the ontology axioms are all binary clauses
(disjunctions of at most 2 literals), and all task nodes are executable.

Regarding binary axioms and executability, we proved that those restrictions are nec-
essary for computational efficiency: determining the necessarily true literals is NP-hard or
worse if we relax these restrictions [33].1 For effect conflicts, it is an open question whether
or not they could be handled efficiently. Note that parallel task nodes with conflicting effects
(such as write operations onto the same database) are often not sensible, namely in appli-
cations where parallel nodes might execute at the same time point, or where the outcome
of the process should not depend on the order of execution of parallel tasks. Nevertheless,
there may be applications in which effect conflicts are intended, and compliance needs be
checked in their presence. Figuring out how to do so is a topic for future work.

Regarding loops, as stated, the original definition of basic processes [33] disallows them.
In the meantime, however, in other work we have managed to overcome this restriction,
devising an extension of I-propagation that correctly handles basic processes with loops,
in polynomial time. This extension is entirely orthogonal to the techniques we introduce
herein for handling non-trivial clauses. In effect, our results generalize effortlessly. We do
not include a formal treatment of loops, since that would amount to nothing but notational
clutter. The extended I-propagation algorithm handles “structured loops” only, formalized
in terms of (repeatable) sub-processes, so that the overall process takes the form of a tree of
sub-processes. Since the issues of loops and non-trivial clauses are orthogonal, none of this
additional formalism is of any relevance to the results contained herein. Our results hold as
stated also for processes with structured loops. We will outline why this is so.

Our compliance checking methods are based on two observations:

– If a clause C is non-contradicted – there exists no task node effect invalidating any of
C’s literals – then we can compile compliance with C into compliance with a unit clause
C′, and hence re-use I-propagation for exact compliance checks. It is important to note
here that such a situation is not uncommon; in the cheque example above, e.g., one
would not expect to have a task node with effect ¬cheque(x) (saying that x is no longer
a cheque), and neither would one expect to have tasks that “un-sign” a cheque.

– For the more general case of contradicted clauses, we can still exploit the information
provided by I-propagation, namely in terms of two approximative tests. The first of those

1 It may seem odd that executability is a prerequisite, since I-propagation was designed to check this same
property. The latter can, in fact, be done, by a certain contra-position argument (outlined in Section 3 where
we explain I-propagation).
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essentially checks whether all literals of a clause are necessarily false. This method is
sound but not complete (it guarantees to find only non-compliances, but not to find all
non-compliances). The other method checks whether none of the literals of a clause is
necessarily true. This method is complete but not sound.

All the methods inherit the restrictions of I-propagation, i.e., they handle basic processes.
However, the approximate methods do not require executability – as we show herein, I-
propagation still gives a certain guarantee of conservativeness without this prerequisite; that
guarantee suffices to obtain soundness respectively completeness as desired.

In this paper we define the compliance checking methods and prove their relevant the-
oretical properties. We further describe how one can trace the state evolution back to the
process activities which caused the non-compliance, and hence provide the user with a diag-
nosis facility. Detailed empirical evaluation of the proposed methods is beyond the scope of
this paper. We remark that we have a prototypical implementation of I-propagation, which
as expected exhibits fine runtime behavior. For example, the prototype handles a non-trivial
process with 40 nodes and 46 edges within fractions of a second.

Section 2 introduces our formalism for semantically annotated processes, as well as our
formalization of constraints bases. Section 3 explains the I-propagation algorithm we build
on. Section 4 presents our methods for compliance checking, and Section 5 contains our
diagnosis methods. Section 6 discusses related work, Section 7 concludes.

2 Annotated Business Processes and Constraint Bases

In this section we give our definitions regarding annotated process graphs and the constraints
on their behavior, starting with the former.

2.1 Annotated Business Processes

We introduce a formalism for business processes whose tasks are annotated with logical
preconditions and effects. This formalism is the basis of our work, since it allows us to
model the behavior of process activities, and hence of the overall process, at a level that is
fine-grained enough to sensibly check for the kind of compliance we target in this work. We
first introduce our notions regarding control-flow, then we discuss the semantic annotations.

2.1.1 Control-Flow

Our business processes consist of different kinds of nodes (task nodes, split nodes, . . . )
connected with edges. We will henceforth refer to this kind of graphs as process graphs.
For the sake of readability, we first introduce non-annotated process graphs. This part of
the definition is, without any modification, adopted from the workflow literature, following
closely the terminology and notation used in [32].

Definition 1 A process graph is a directed graph G = (N , E), whereN is the disjoint union
of {n0, n+} (start node, end node), NT (task nodes), NPS (parallel splits), NPJ (parallel
joins), NXS (xor splits), and NXJ (xor joins). For n ∈ N , IN(n)/OUT (n) denotes the
set of incoming/outgoing edges of n. We require that: for each split node n, |IN(n)| = 1

and |OUT (n)| > 1; for each join node n, |IN(n)| > 1 and |OUT (n)| = 1; for each
n ∈ NT , |IN(n)| = 1 and |OUT (n)| = 1; for n0, |IN(n)| = 0 and |OUT (n)| = 1
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and vice versa for n+; each node n ∈ N is on a path from the start to the stop node. If
|IN(n)| = 1 we identify IN(n) with its single element, and similarly for OUT (n); we
denote OUT (n0) = e0 and IN(n+) = e+.

Example 1. Consider Fig. 2. The upper half of the figure depicts an example process graph
in standard BPMN notation. In fact, this example is based on a BPMN diagram example
from the BPMN 1.1 specification [28]. We will use this process graph as a running example
throughout the paper.

Fulfill Order Ship Order

Send Invoice
Receive 
Payment

Accept 
Payment

Close OrderReject Order

Fig. 2 Our illustrative running example, in BPMN notation.

The process contains edges, a start node (thin circle), an end node (thick circle), various
tasks (e.g., “Receive Order”, “Ship Order”, etc.), and a number of routing nodes such as
the xor split after “Receive Order”. Only one of the branches after this xor split will be
executed: either the one on which the order is rejected, or the other one which features
several more task nodes. Note that “Ship Order” can be executed in parallel to the other
task nodes, due to the parallel split and join nodes.

The intuitive meaning of the structures introduced by Definition 1 should be clear: an
execution of the process starts at n0 and ends at n+; a task node is an atomic action executed
by the process; parallel splits open parallel parts of the process; xor splits open alternative
parts of the process; joins re-unite parallel/alternative branches. The stated requirements are
just basic sanity checks for processes in our formalism. Note that the formalism describes
a common subset of process modeling notations like BPMN [28] and process execution
languages like WSBPEL [27]. For example, the xor split in our formalism can be used to
represent both the data-driven decision gateway and the event-driven decision gateway (also
called deferred choice). Similarly, our distinction between a split and a join gateway is not a
restriction, since a combined join-split gateway can be translated into two separate gateways.
It is not the intention of our formalism to replace commonly used languages. Rather, the
formalism only serves as an abstract notation to present our results.

Formally, the semantics of process graphs is, similarly to Petri Nets, defined as a token
game. A state of the process is represented by tokens on the graph edges. Like for Defini-
tion 1, we closely follow [32].

Definition 2 Let G = (N , E) be a process graph. A state t of G is a function t : E 7→ N0

from the set of edges into the natural numbers including 0; we call t a token mapping. The



7

start state t0 is t0(e) = 1 if e = e0, t0(e) = 0 otherwise. Let t and t′ be states. We say that
there is a transition from t to t′ via n, written t→n t′, iff one of the following holds:
Tasks, parallel splits and joins (tokens from INs to OUTs). n ∈ NT ∪NPS ∪NPJ and

t′(e) =

8<:
t(e)− 1 e ∈ IN(n)

t(e) + 1 e ∈ OUT (n)

t(e) otherwise

Xor splits (token from IN to one OUT). n ∈ NXS and there exists e′ ∈ OUT (n) such that

t′(e) =

8<:
t(e)− 1 e = IN(n)

t(e) + 1 e = e′

t(e) otherwise

Xor joins (token from one IN to OUT). n ∈ NXJ and there exists e0 ∈ IN(n) such that

t′(e) =

8<:
t(e)− 1 e = e0
t(e) + 1 e = OUT (n)

t(e) otherwise

An execution path is a transition sequence starting in t0. A state t is reachable if there exists
an execution path ending in t.

Note in Definition 2 that, in all transitions, t(e) is implicitly constrained to be greater
than 0 for the IN edges e from which tokens are taken: otherwise, t′(e) = t(e)−1 would have
to be less than 0, which is not allowed because t′ is a function into the natural numbers. In all
other aspects, the definition is straightforward: t(e), at any point in time, gives the number
of tokens currently at e. Task nodes and parallel splits/joins just take the tokens from their
IN edges, and move them to their OUT edges; xor splits select one of their OUT edges; xor
joins select one of their IN edges.

For the remainder of this paper, we will assume that the process graph is sound: from
every reachable state t, a state t′ can be reached so that t′(e+) > 0; there is no reachable
state which has a token both on e+ and on some other edge; and there are no dead transitions,
i.e., for every transition there is an execution path that can fire it. These properties can be
ensured using standard workflow validation techniques, e.g., [5,32].

Note that Definitions 1 and 2 do allow cycles in the graph, i.e., they do cater for loops.
As stated, for the purpose of applying I-propagation we will later restrict our focus to ba-
sic processes, which disallow cycles. As also stated, we will outline extensions that cater
for structured loops. That formalism does not allow arbitrary cycles in the process graph.
Instead, the graph as such is acyclic, but it may contain loops in the form of repeatable sub-
graphs (of the same kind). The overall structure then is a tree of acyclic sub-graphs, where
all but the root of the tree are repeatable. Definition 2 for such structured loops is straight-
forward, simply allowing control to pass into and out of sub-processes, and to pass from the
end of a repeatable sub-process to its start.

For the notions considered in the rest of this section – semantic annotations and con-
straints bases – structured loops make no difference at all, i.e., these notions carry over
exactly as stated.
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2.1.2 Semantic Annotations

For the annotations, we use standard notions from logics, involving logical predicates and
constants (the latter correspond to the entities of interest at process execution time).2 We
denote predicates with upper-case letters, usually G,H, I, and constants with lower-case
letters, usually c, d, e. Facts are predicates grounded with constants, Literals are possibly
negated facts. If l is a literal, then ¬l denotes l’s opposite (¬p if l = p and p if l = ¬p); if
L is a set of literals then ¬L denotes {¬l | l ∈ L}. We identify sets L of literals with their
conjunction

V
l∈L l. Given a set P of predicates and a set C of constants, P[C] denotes the

set of all literals based on P and C; if arbitrary constants are allowed, we write P[].
A clause is a universally quantified disjunction of logical atoms, i.e., of non-grounded

literals. For example, ∀x : ¬G(x) ∨ ¬H(x) is a clause. The axiomatization that comes with
an ontology is a theory θ: a conjunction of clauses.3 Our polynomial-time algorithms will be
designed for binary theories: a clause is binary if it contains at most two literals; a theory is
binary if it is a conjunction of binary clauses. Note that binary clauses can be used to specify
many common ontology properties such as subsumption ∀x : G(x)⇒ H(x) (where as usual
φ ⇒ ψ abbreviates ¬φ ∨ ψ), attribute image type restrictions ∀x, y : G(x, y) ⇒ H(y), and
role symmetry ∀x, y : G(x, y)⇒ G(y, x).

An ontology Ω is a pair (P, θ) where P is a set of predicates (Ω’s formal terminology)
and θ is a theory overP (constraining the behavior of the application domain encoded byΩ).
For complexity considerations, throughout the paper we will assume fixed arity, i.e., a fixed
upper bound on the arity of predicates P . This is a realistic assumption because predicate
arities are typically very small in practice (e.g., in Description Logics the maximum arity is
2). Annotated process graphs are defined as follows.

Definition 3 An annotated process graph is a tuple G = (N , E , Ω, α). (N , E) is a process
graph, Ω = (P, θ) is an ontology, and α, the annotation, is a function mapping n ∈ NT ∪
{n0, n+} to (pre(n), eff(n)) where pre(n), eff(n) ⊆ P[]. We require that there does not exist
an n so that θ ∧ eff(n) is unsatisfiable, or θ ∧ pre(n) is unsatisfiable.

We refer to pre(n) as n’s precondition, and to eff(n) as n’s effect (sometimes called
postcondition in the literature). The annotation of tasks – atomic actions that on the IT level
can e.g., correspond to Web service executions – in terms of logical preconditions and effects
closely follows Semantic Web service approaches such as OWL-S (e.g., [1,11]) and WSMO
(e.g., [12]). All the involved sets of literals (pre(n), eff(n)) are interpreted as conjunctions.
Similarly to Definition 1, the requirements stated in Definition 3 are just basic sanity checks.

Example 2. Consider again our running example from Fig. 2. The semantic annotations are
given in Table 1. For simplicity, the theory θ is empty, i.e., no axioms are given; we will dis-
cuss a modified example with non-empty θ below. Likewise, no preconditions are specified,
and an accordingly modified example will be given further below. Note the negative effect of
Accept Payment.

The formal execution semantics is defined as follows.

Definition 4 Let G = (N , E , Ω, α) be an annotated process graph. Let C be the set of all
constants appearing in any pre(n), eff(n). A state s of G is a pair (ts, is) where t is a token

2 Hence our constants correspond to BPEL “data variables” [27]; note that the term “variables” in our
context is reserved for variables as used in logics, quantifying over constants.

3 As indicated, our compliance rules are also clauses; however, their formal interpretation is different. This
will be explained in Section 2.2, when we formally introduce constraints bases.
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Task Effects
Start Node order(o), received(o)
Reject Order rejected(o)
Fulfill Order fulfilled(o)
Ship Order shipped(o)
Send Invoice invoiceSent(o, i), paymentExpected(o)
Receive Payment paymentReceived(i)
Accept Payment paymentAccepted(i), not paymentExpected(o), paid(o)
Close Order closed(o)

Table 1 Semantic annotations for the process in Fig. 2

mapping and i is an interpretation i : P[C] 7→ {0, 1}. A start state s0 is (t0, i0) where t0
is as in Definition 2, and i0 |= θ[C] ∧ eff(n0). Let s and s′ be states. We say that there is a
transition from s to s′ via n, written s→n s′, iff one of the following holds:

1. n ∈ NPS ∪NPJ ∪NXS ∪NXJ , is = is′ , and ts →n ts′ according to Definition 2.
2. n ∈ NT , ts →n ts′ according to Definition 2, is |= pre(n) and is′ is a member of

min(is, θ[C]∧ eff(n)). The latter is the set of all i that satisfy θ[C]∧ eff(n) and that are
minimal with respect to the partial order defined by

i1 ≤ i2 :iff {p ∈ P[C] | i1(p) 6= is(p)} ⊆ {p ∈ P[C] | i2(p) 6= is(p)}.

An execution path is a transition sequence starting in a start state s0. A state s is reachable
if there exists an execution path ending in s.

Given an annotated process graph (N , E , Ω, α), we will use the term execution path of
(N , E) to refer to an execution over tokens that acts as if no annotations were present.

The part of Definition 4 dealing with n ∈ NPS ∪NPJ ∪NXS ∪NXJ parallels Defini-
tion 2: the tokens pass as usual, and the interpretation remains unchanged.

Consider now the start states, of which there may be many, namely all those that comply
with θ, as well as eff(n0) (if annotated). This models the fact that, at design time, we do
not know the precise situation in which the process will be executed. All we know is that,
certainly, this situation will comply with the domain behavior given in the ontology and with
the properties guaranteed as per the annotation of the start node.

The semantics of task node executions is the most intricate bit. First, for the obvious rea-
sons, pre(n) is required to hold. The tricky bit lies in the definition of the possible outcome
states i′. The semantics defines this to be the set of all i′ that comply with θ and eff(n), and
that differ minimally from i. This draws on the AI literature for a solution to the frame and
ramification problems. The latter problem refers to the need to make additional inferences
from eff(n), as implied by θ. This is reflected in the requirement that i′ complies with both
eff(n) and θ. The frame problem refers to the need to not change the previous state arbitrar-
ily – e.g., if an activity changes an account A, then any account B different from A should
not be affected. This is reflected in the requirement that i′ differs minimally from i. More
precisely, i′ is allowed to change i only where necessary, such that there is no i′′ that makes
do with fewer changes. This semantics follows the possible models approach (PMA) [34];
while this approach is not universally accepted, it is widely used and in particular underlies
most recent work on formal semantics for execution of Semantic Web services (e.g., [24,8,
17]).
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As stated, our compliance checking methods will be defined for binary theories only.
Binary clauses specify certain consequences that must be implied by particular effects. In
that way, binary clauses are a convenient modeling construct, and their semantics is “uncrit-
ical” in that there is no ambiguity about their implications; this is not so for clauses with
more literals. The following example illustrates this.

Example 3. Consider a variant of the process in Fig. 2 with a task node n that can-
cels the order o. Suppose that cancellation is annotated by eff(n) = {orderCancelled(i)}.
As in Example 2, the ontology contains the predicate paymentExpected. Further, say θ

contains a clause specifying that payment cannot be expected for any order that is al-
ready canceled: ∀x : ¬orderCancelled(x) ∨ ¬paymentExpected(x). Say we execute n in
a state s where we have paymentExpected(o). Which are the possible resulting states s′,
with s→n s′? By the definition of min(is, θ[C]∧eff(n)) in Definition 4, any such state must
satisfy (¬orderCancelled(o)∨¬paymentExpected(o))∧ orderCancelled(o) which means of
course that s′ must satisfy ¬paymentExpected(o). So the value of paymentExpected(o) is
changed as a side-effect of applying n.

Now, among others, the ontology also contains the predicates shipped(.) and invoice-
Sent(.,.). Suppose that θ specifies that, for any order which has both shipped and for which
an invoice has been sent, we expect the payment: ∀x, y : ¬shipped(x)∨¬invoiceSent(x, y)∨
paymentExpected(x). Say that the state s from above has shipped(o) and invoiceSent(o, i).
Now, upon executing n, as pointed out above we no longer expect payment for o and so the
clause is no longer satisfied and we must “repair” it. Since the clause is not binary, this
spawns a non-trivial behavior of the minimal change semantics. There are three options:
falsify shipped(o), falsify invoiceSent(o, i), or falsify both. The first two options each yield a
resulting state s′. The latter option, in contrast, does not yield a resulting state s′ because
it is not a minimal change. One needs not assume that o is neither shipped nor invoiced. It
suffices to assume one of those. The intuitive meaning of this semantics is that, since o was
canceled (by n), something bad must have happened, i.e., the shipment failed, or there was
a problem with the invoicing. While, of course, both may be the case, this seems an unlikely
assumption and is hence not considered.

2.2 Constraints Bases

It remains to define what constraints and non-compliances are:

Definition 5 Let G = (N , E , Ω, α) be an annotated process graph with constants C, where
Ω = (P, θ). A constraints base β is a set of clauses over the predicatesP . Let φ = ∀X.ψ(X)

be a clause in β. Then any grounding ψ(C0) of ψ with a tuple C0 of constants from C is
a grounded constraint. A reachable state s is a non-compliance, or non-compliant state, iff
there exists a grounded constraint ψ(C0) such that s 6|= ψ(C0).

This definition is straightforward and should be self-explanatory. We will identify ψ(C0)

with the set of literals it contains. Note that α and β share the vocabulary P , and hence the
semantic annotations may make statements of interest to compliance checking (this would
not be the case for disjoint vocabularies). Of course, doing the annotation in this way – so
that the annotations are adequate for compliance checking – may induce additional modeling
effort in practice.

A subtle point is the distinction between β and θ. Both are formalized similarly. The
difference lies in how they are interpreted. θmodels the conditions that any state must satisfy,
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due to the “physical” behavior of the underlying business domain – such as, “any purchase
order of a particular product is, in particular, a purchase order”. In contrast, β models the
conditions that any state should satisfy, in order to comply with the rules of the business
– such as, for example, that the auditor for any activity is different from the actor who
performed or authorized the activity (separation of duties); there is no physical law enforcing
these rules.4 At the formal level, this difference is accounted for by using θ as part of the
definition how states evolve, while using β to check whether the states are desirable or not.

Example 4. Reconsider our running example from Fig. 2 and Table 1. Say our constraints
base is β = {∀x : order(x) ∧ received(x) =⇒ rejected(x) ∨ paid(x)}. In words, we
impose that any order which has been received must be either rejected, or paid.

Consider the grounding of x with o, i.e., the concrete order dealt with by the process.
The antecedent of the implication, order(o)∧received(o), is always true as soon as Receive
Order has been executed. At that time, i.e., directly after executing Receive Order, the order
will neither be rejected nor paid, so the constraint is violated at that point in the process.
The constraint becomes satisfied after Reject Order, and it becomes satisfied after Accept
Payment; it remains true after the xor join because, no matter which side of the join has
been executed beforehand, one of the two options will be fulfilled.

3 I-Propagation

We now describe the I-propagation algorithm, which we developed in previous work [33].
As stated in the introduction, I-propagation forms the starting point of our work herein.

The original purpose of I-propagation was to determine whether or not a process is
executable. An individual task node n is executable if, whenever the task is activated, its
preconditions are true: for all reachable states s with ts(IN(n)) > 0, s |= pre(n). The
overall process is executable if every one of its task nodes is. I-propagation determines
whether or not that is the case, by ways of computing, for each edge e, the set of literals that
is always true when e carries a token.

I-propagation runs in low-order polynomial time, and works correctly for a restricted
class of processes. To state this formally, we first need a little terminology. We refer to
cycles in (N , E) as loops. Two edges e1 and e2 are parallel if there exists a reachable state s
where ts(e1) > 0 and ts(e2) > 0; two task nodes are parallel if their incoming edges are. If
n1 and n2 are parallel task nodes and θ ∧ eff(n1)∧ eff(n2) is unsatisfiable, then we say that
n1 and n2 have an effect conflict. I-propagation handles what we call “basic” processes:

Definition 6 Let G = (N , E , Ω, α), Ω = (P, θ), be an annotated process graph. G is basic
if it contains neither loops nor effect conflicts, and θ is binary.

Our compliance checking algorithms inherit these restrictions from I-propagation, i.e.,
non-basic processes are outside the more tractable cases that we identify. The various restric-
tions were discussed in the introduction already. For non-binary theories, we have proved
in our previous work that this restriction cannot be relaxed without losing computational
efficiency [33]. Whether or not this is the case for effect conflicts is an open question. Re-
garding loops, we have in the meantime devised an extension of I-propagation to structured
loops. We stick to the original – much more concise – formalization because the extension

4 A striking if imprecise illustration is that of gravity vs. traffic rules: any car must drive on the ground, by
physical law; whether they use the left or right hand side of the road is a matter of rules.
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to loops is orthogonal to the compliance issues considered herein. We will outline how the
extended I-propagation works, and how our results on compliance checking carry over.

Given a process graph whose annotations mention the constants C, and a set L of literals
(such as a task node effect), in the following we denote L := {l ∈ P[C] | θ ∧L |= l}, i.e., L
is the closure of L under implications in the theory θ. Since θ is binary, L can be computed in
polynomial time given fixed arity [6]. Note that, with binary θ, an effect conflict can be easily
detected as the (negative) overlap of the closure over the effect sets, i.e., θ∧eff(n1)∧eff(n2)

is not satisfiable iff eff(n1) ∩ ¬eff(n2) 6= ∅.
I-propagation consists of two steps: (1) determine all pairs of parallel edges; (2) using

that information, determine for each edge e the set of literals that is always true when e is
active. In what follows, we explain only step (2), which is more directly connected to the
results presented herein. Also, we focus on the details which are directly relevant to the
remainder of this paper. The interested reader may look up all technical details in [33].

As the name suggests, I-propagation is based on propagation steps. The propagation
starts at the outgoing edge of the start node, and proceeds by iteratively firing subsequent
nodes in the graph. The propagation steps update sets of literals; one such set is assigned to
each edge in the graph. When the propagation ends, these literal sets are exactly the desired
ones, i.e., the literals that are always true whenever the respective edge is activated. One
tricky bit is that we need to capture the “side effects” that any task node may have, on edges
other than its own OUT edge. For this, we introduce the following notation: parallel-eff(e)
is the collection of all parallel effect literals of an edge e ∈ E . Precisely:

parallel-eff(e) :=
[

e′∈E parallel to e,e′=OUT (n′) for n′∈NT

eff(n′)

The formal definition of I-propagation follows. The definition is hard to read at first, but
relies on straightforward key ideas; the reader may choose to skip directly to the intuitive
explanation of the algorithm below.

Definition 7 Let G = (N , E , Ω, α) be a basic annotated process graph, with constants C.
We define the function I0 : E 7→ 2P[C]∪{⊥} as I0(e) = eff(n0) if e = OUT (n0), I0(e) = ⊥
otherwise. Let I, I ′ : E 7→ 2P[C] ∪ {⊥}, n ∈ N . We say that I ′ is the propagation of I at n
iff I(e) 6= ⊥ for all e ∈ IN(n), and I(e) = ⊥ for all e ∈ OUT (n), and one of the following
holds:

1. n ∈ NPS ∪NXS and

I ′(e) =


I(IN(n)) \ ¬parallel-eff(e) e ∈ OUT (n)

I(e) otherwise

2. n ∈ NPJ and

I ′(e) =

(
(
S

e′∈IN(n) I(e
′)) \ ¬parallel-eff(e) e = OUT (n)

I(e) otherwise

3. n ∈ NXJ and

I ′(e) =

(
(
T

e′∈IN(n) I(e
′)) \ ¬parallel-eff(e) e = OUT (n)

I(e) otherwise
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4. n ∈ NT and

I ′(e) =


eff(n) ∪ (I(IN(n)) \ ¬eff(n)) e = OUT (n)

I(e) otherwise

If the annotation α(n) is not defined then eff(n) := ∅ in the above.

If I∗ results from starting in I0, and stepping on to propagations until no more propagations
exist, then we call I∗ an I-propagation result.

The definition of I0 should be obvious: it just collects the literals that are guaranteed
to hold at the start edge. The propagation algorithm, although formulated as a fixpoint op-
eration, then performs a single pass over the process – due to the requirement, on every
propagation step, that the IN edges are not set to ⊥ and the OUT edges are set to ⊥. For
split nodes, the OUT edges simply copy their sets from the IN edge. We have to subtract
the negated side effects of any parallel task nodes since those literals may be invalidated
while the OUT edges are still activated. For parallel joins, the OUT edge assumes the union
of I(e) for all IN edges e; this is justified because all those literals must be true when n is
executed. Again, we need to care about side effects. Dually, for xor joins we need to take the
intersection instead since any one of the incoming edges may be active before n is executed.
Finally, if n is a task node, then we need to take account of n’s own effects. This is done
in the obvious manner, removing the literals contradicted by eff(n), and adding the literals
contained in eff(n). Note that side effects need not be taken into account here since effect
conflicts are excluded by prerequisite.

Example 5. We illustrate I-Propagation using our running example from Fig. 2 (workflow)
and Table 1 (annotations). The outcome of I-Propagation is depicted in Fig. 3.

Fulfill Order Ship Order

Send Invoice
Receive 
Payment

Accept 
Payment

Close Order

I* = {order(o), 
received(o)}

I* = {order(o), 
received(o), 
fulfilled (o)}

I* = {order(o), received (o), 
fulfilled (o), shipped(o)}

I* = {order(o), 
received (o), fulfilled (o), 
invoiceSent(o,i), 
paymentExpected (o)}

I* = {order(o), 
received (o), fulfilled (o), 
invoiceSent(o,i), 
paymentExpected (o), 
paymentReceived (i)}

I* = {order(o), 
received(o), fulfilled (o), 
invoiceSent(o,i),  
paymentReceived (i), 
paymentAccepted (i),
not paymentExpected (o), 
paid(o)}

I* = {order(o), 
received(o), fulfilled (o), 
invoiceSent(o,i),  
paymentReceived (i), 
paymentAccepted (i),  ,
not paymentExpected (o), 
paid(o), shipped(o)}

I* = {order(o), 
received(o)}

I* = {order(o), 
received(o), closed(o)}

Reject Order

I* = {order(o), 
received(o), rejected (o)}

Fig. 3 Example process model from Fig. 2 also showing the I-Propagation results, I∗.
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Observe how I-Propagation applies the effects of a task node by adding them to the
task’s outgoing edge. The simplest occurrence of this is the first task node, “Receive Or-
der”, where the ingoing edge has an empty I∗. A more intricate propagation is the one over
“Accept Payment”, since the task’s negative effect not paymentExpected(o) falsifies the pre-
viously true paymentExpected(o). It is also evident how the I∗ from the incoming edge of a
split node is copied to its outgoing edges. In contrast, the parallel join takes the union of the
I∗ of its incoming edges (consider e.g. the literal shipped(o)). The xor join in turn takes the
intersection of its incoming edges’ I∗s – which is then the same as before the xor split.

It should be noted that the details are actually not as straightforward as the above may
suggest. The correctness proof takes 6 pages, determining for example particular properties
of sets of parallel edges, and of binary theories. Let us briefly consider the latter. In the
handling of task nodes, Definition 7 uses the notation eff(n). As stated above, this denotes
the set of all literals which follow from θ and eff(n). Why is it correct to simply subtract
¬eff(n) and add eff(n)? Recall that the semantics of task node executions is quite complex,
c.f. Section 2.

The observation underlying the simple handling in Definition 7 is: (*) With binary θ, if
executing n makes literal l false in one possible transition, then ¬l follows from θ ∧ eff(n).
Due to this observation, it suffices to subtract ¬eff(n): l does not become false in any suc-
cessor state, unless its opposite is implied. This does not hold for more general θ. To see
this, re-consider Example 3. We have an axiom ∀x, y : ¬shipped(x)∨ ¬invoiceSent(x, y)∨
paymentExpected(x). We have a state s that satisfies all of shipped(o), invoiceSent(o, i), and
paymentExpected(o). We execute a task that falsifies paymentExpected(o). As explained
in Example 3, we get two possible transitions: one to a state which additionally falsi-
fies shipped(o), and one to a state which additionally falsifies invoiceSent(o, i). Hence the
only thing that holds true in all possible outcome states is ¬paymentExpected(o). Each
of shipped(o) and invoiceSent(o, i) was made false in one transition, but neither follows
from the effect of the task. This is in contrast to (*). Intuitively, restricting θ to binary
clauses ensures that the side effects are always “deterministic”. The main result regarding
I-propagation is:

Lemma 1 [Weber et al. [33]] Let G = (N , E , Ω, α) be an executable basic annotated pro-
cess graph. There exists exactly one I-propagation result I∗. For all e ∈ E , we have that
l ∈ I∗(e) iff, for all reachable states s where ts(e) > 0, s |= l. With fixed arity, the time
required to compute I∗ is polynomial in the size of G.

As indicated above, the proof of this lemma is non-trivial; apart from the sketched issue
of binary clauses it contains other intricate parts which are not easily explained within a
few sentences. Since these arguments are not of importance for the work at hand, we omit
them and refer the reader to [33] for details. It is, however, important for the work at hand
to note that the time complexity of I-propagation is low-order polynomial. The number of
different literals |P[C]| is exponential only in predicate arity, i.e., the maximum number of
arguments any predicate has, which is assumed to be fixed. Usually predicates have only 1
or 2, maximally 3 arguments. With binary θ, L for any set L of literals can be computed in
O(|P[C]|2), so eff(n) can be pre-computed for every relevant n in time O(|NT | ∗ |P[C]|2).
Hence an upper bound on the time required for computing I∗ is O(|NT | ∗ |P[C]|2 + |N | ∗
|P[C]| ∗ |E|).

A remark is in order regarding the prerequisite that the process is executable, i.e., pre-
conditions are always satisfied. We have proved in [33] that, without this prerequisite, testing
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whether or not a literal is necessarily true at an edge is NP-hard. So, like the restriction on
binary clauses, this prerequisite cannot be relaxed without losing computational efficiency.5

Due to the low-order polynomial time complexity, I-propagation can be expected to be
fast – e.g., work in real time within a modeling environment – unless the processes are huge.
In our experiments, a process with 17 control-flow nodes (start, end, split, join), 23 task
nodes, and 46 edges has been processed in 0.15 seconds on a standard laptop computer with
a single-core Pentium (M) CPU running at 1.6 GHz.

Let us say a few words on how I-propagation is extended to processes with structured
loops. As one may expect, in the presence of loops a single pass over the process does not do
– we need to take into account how changes made later on may feed back into earlier parts
of the process, when a part of the process is being repeated. So our extended algorithm does
not make use of the ⊥ symbol to force the fixpoint operation into a single pass. Rather, all
edges – except the start edge which is handled as before – are initialized to contain the entire
set of literals (including in particular contradictory literals). Each step of the fixpoint process
then intersects the old content of the outgoing edges with their new (propagated) content.
The propagation steps as such remain the same, with straightforward extensions for start and
end nodes of sub-processes (propagating into/out of/ back to the start of the loop). Since the
contents of edges decrease monotonically, the number of propagation steps is bounded from
above by the number of edges multiplied with the number of different literals. The guarantee
given upon termination is exactly as stated in Lemma 1.

We remark that, while the extended algorithm sounds simple and intuitive, its formal
write-up is rather complicated. The same goes for the proof of (the equivalent of) Lemma 1,
which examines intricate connections between paths in the state space of the process, and
paths of propagation steps.

4 Compliance Checking

We leverage on the outcome of I-propagation in order to design compliance checking tech-
niques, determining whether a clausal constraint may be violated while some edge is active.
As hinted, we devise an exact check for a particular restricted case where that is possible;
we devise approximate checks for a more general case. We proceed in that order.

4.1 Exact Checks for Non-Contradicted Clauses

Clausal constraints can be checked exactly – and in polynomial time – if they are not “con-
tradicted” by the process. Formally, say G = (N , E , Ω, α) is a basic annotated process graph,
and β is a constraints base. Say ψ(C0) is a grounded constraint. We say that ψ(C0) is con-
tradicted if there exists a literal l ∈ ψ(C0), as well as a task node n ∈ NT , so that the
negation of l follows from the effect of n, i.e., ¬l ∈ eff(n). Our observation is that, if this is
not the case, then checking compliance with ψ(C0) can be forumlated in terms of checking
compliance with a unit clause:

5 It may also be puzzling in this context that, as stated above, we designed I-propagation in order to check
whether a process is executable. However, I∗ can actually be used for that purpose: G is executable iff, for all
n ∈ NT , pre(n) ⊆ I∗(IN(n)). First, if G is executable then by Lemma 1 we have that I∗ captures exactly
the literals which are necessarily true, and hence obviously pre(n) ⊆ I∗(IN(n)) for all n. Second, if n is
not executable but all its predecessors are, then the arguments behind the proof of Lemma 1 can be applied
up to n, and we get that I∗ handles IN(n) correctly, and hence pre(n) 6⊆ I∗(IN(n)) must hold.
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Theorem 1 Let G = (N , E , Ω, α) be an executable basic annotated process graph, with
constraints base β; let ψ(C0) be a grounded constraint which is not contradicted. Let H
be a new predicate symbol, and define G′ = (N , E , Ω, α′) by setting, for every n ∈ NT ∪
{n0, n+} where eff(n) ∩ ψ(C0) 6= ∅, eff′(n) := eff(n) ∪ {H}, where eff′ denotes the effects
assigned by α′. Let I∗ be the I-propagation result for G′, and let e ∈ E be arbitrary. Then
H ∈ I∗(e) iff, for every state s reachable in G where ts(e) > 0, s |= ψ(C0).

Proof In what follows, we denote reachable states of G with s, and reachable states of G′
with s′. Clearly, G′ is still executable and basic. Hence we can apply Lemma 1 and we know
that H ∈ I∗(e) iff, for every state s′ where ts′(e) > 0, s′ |= H . It hence suffices to show
that, for every edge e ∈ E :

(*) all s where ts(e) > 0 have s |= ψ(C0) iff all s′ where ts′(e) > 0 have s |= H .

That is, at every edge, ψ(C0) is “always true” iffH is “always true”. This claim is proved by
induction over the process structure. The induction base case is the outgoing edge of the start
node, e = n0. Here the claim follows by construction. For the inductive case, let n ∈ N be
arbitrary. As induction hypothesis, we assume that (*) holds for each of n’s incoming edges.
As induction step, we prove that (*) holds for each of n’s outgoing edges. If n is anything
but a task node, then this is obvious, since n does not affect the truth of either ψ(C0) or H .
More precisely, for split nodes ψ(C0) resp. H are always true on the outgoing edges iff they
are always true on the ingoing edge; for parallel join nodes, ψ(C0) resp. H are always true
on the outgoing edge iff they are always true on at least one ingoing edge; for xor join nodes,
ψ(C0) resp. H are always true on the outgoing edge iff they are always true on all ingoing
edges.

Say n is a task node. First, assume that all s where ts(IN(n)) > 0 have s |= ψ(C0). By
induction hypothesis, the same holds for all s′ and H . Since ψ(C0) is not contradicted, and
by construction, we get the same properties for OUT (n), showing (*) as required.

Second, assume that eff(n) ∩ ψ(C0) 6= ∅. Then, since literals from ψ(C0) are never
invalidated, all s where ts(OUT (n)) > 0 have s |= ψ(C0). By construction, n makes
H true, which is also never invalidated, and hence all s′ where ts′(e) > 0 have s |= H ,
showing (*) as required.

We are left with the case where eff(n)∩ψ(C0) = ∅ and there exists swhere ts(IN(n)) >

0 and s 6|= ψ(C0). By induction hypothesis, there exists s′ where ts′(IN(n)) > 0 and
s′ 6|= H . In s, we can execute n (note here the prerequisite of executability) and reach a
state s1 that has ts1(OUT (n)) > 0 and s1 6|= ψ(C0). Similarly, in s′ we can execute n (note
here the prerequisite of executability) and reach a state s′1 that has ts′

1
(OUT (n)) > 0 and

s′1 6|= H . Hence the outgoing edge has neither ψ(C0) nor H necessarily true, and (*) holds
again. This concludes the argument.

Theorem 1 can be exploited for compliance checking, in the obvious manner. That is,
we define our first compliance checking method as follows:

(A) Given a grounded constraint ψ(C0), construct the process G′ as per the claim of Theo-
rem 1, and run I-propagation on G′. From the resulting I∗, for every edge e one can read
directly whether or not ψ(C0) may be violated while in a state where e carries a token.

Theorem 1 and method (A) carry over directly to processes with structured loops, with
exactly the same way of constructing G′. The proof of Theorem 1 in this setting uses the
same core arguments, except that now we need to add an induction over process structure,
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first proving (*) for process graphs with no sub-graphs (i.e., with no loops), then considering
processes where all sub-graphs satisfy (*) by induction hypothesis.

The following example illustrates method (A).

Example 6. Reconsider our running example, and the grounded constraint ¬order(o) ∨
¬received(o) ∨ rejected(o) ∨ paid(o). We wish to check at which points in the process – at
which edges – this constraint is satisfied. First, note that the constraint is not contradicted:
consider Table 1 or Fig. 3 to verify that none of its literals is negated by the effect of any node,
other than the start node. Hence, we can apply method (A). We introduce a new predicate H
which we insert into the effect of every node that achieves one of the literals in the constraint.
These task nodes are Reject Order (which achieves rejected(o)) and Accept Payment (which
achieves paid(o)). By I-propagation, we getH at the outgoing edges of these two task nodes.
Consequently, we get H on both ingoing edges of the xor join node. Taking the intersection
there, we get H on the outgoing edge of the xor split – reflecting the fact that the constraint
has been satisfied in either case – and we finally get it on the stop edge of the process.
For all other edges e, H is not contained in I∗(e). This correctly reflects the points in the
process where the constraint may be violated (where there exists an execution violating the
constraint while the respective edge carries a token) and where this is never the case.

It is important to note that method (A) really “works” only if the grounded constraint is
not contradicted. The following is an example where that prerequisite is not given.

Example 7. Consider a modified example where, between Accept Payment and the parallel
join, we insert another task node, Refund Payment, with effects ¬paymentAccepted(i) and
¬paid(o). This is depicted in Fig. 4.

Fulfill Order Ship Order

Send Invoice
Receive 
Payment

Accept 
Payment

Close OrderReject Order

Refund 
Payment

Fig. 4 Modified running example including a new “Refund Payment” task.

Say that we have the constraint ∀x, y : ¬invoiceSent(x, y) ∨ paymentExpected(x) ∨
paymentAccepted(y). That is, whenever an invoice has been sent the corresponding pay-
ment needs to be either expected or accepted. We next consider the grounded constraint
¬invoiceSent(o, i)∨ paymentExpected(o)∨ paymentAccepted(i). This constraint is con-
tradicted, because Accept Payment negates paymentExpected(o). Say we nevertheless try
to apply method (A). Up to Receive Payment, we get the correct result simply because none
of the literals has been contradicted so far. After Accept Payment, method (A) still gets
the correct result, namely that the constraint is true on the outgoing edge, H ∈ I∗(e)
where e is the outgoing edge of Accept Payment. However, this correct result is just a
coincidence – method (A) “gets lucky”. To see this, consider that method (A) completely
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ignores how Accept Payment contradicts the constraint, namely by the effect that falsifies
paymentExpected(o). Since, before Accept Payment, the constraint was true only due to
that fact, the constraint would now actually be violated – unrecognized by method (A) – were
it not for the additional effect of Accept Payment that establishes paymentAccepted(i).6 In
the next task node, Refund Payment, there is no such lucky coincidence. The task node con-
tradicts paymentAccepted(i), and hence the constraint is violated at its outgoing edge.
Ignoring the contradiction, method (A) does not notice this. I-propagation assigns H to the
outgoing edge of Refund Payment, and we wrongly conclude that the constraint will always
be complied with at that point.

4.2 Approximate Checks for Contradicted Clauses

It is as yet an open question whether contradicted clauses can be checked exactly in polyno-
mial time. Herein, we instead provide two approximation methods. The methods are dual;
one guarantees to find only non-compliances (but not necessarily all), the other guaranteeing
to find all non-compliances (but may report spurious ones). Both methods are based on the
information provided by I-propagation. However, we generalize the method: in difference to
before, we do not require the process to be executable. As it turns out, even in this situation
I-propagation gives the guarantee that we need for our approximation techniques. Namely,
we can prove the following variant of Lemma 1:

Lemma 2 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be the I-
propagation result. Let e ∈ E be arbitrary, and let l ∈ I∗(e). Then, for all reachable states
s where ts(e) > 0, we have s |= l.

Proof Let G′ = (N , E , Ω, α′) be like G except that pre′(n) has been set to ∅ for all n ∈ NT .
Since G′ does not alter the structure of G, there is a 1-to-1 correspondence between the states
reachable in G and the states reachable in G′. We denote corresponding states with s and s′,
in the obvious manner. Further, for e ∈ E , denote by

T
e the set of literals true in all states s

where ts(e) > 0, and denote by
T′ e the set of literals true in all states s′ where ts′(e) > 0.

Obviously, G′ is executable. Hence we can apply Lemma 1, and get that I∗ is correct for
G′: for all e ∈ E , we have that

T′ e = I∗(e). Hence it suffices to show that:

(*) for every e ∈ E ,
T
e ⊇

T′ e.
We prove (*) by means of proving the following:

(**) for every e ∈ E , {s | ts(e) > 0} ⊆ {s′ | ts′ > 0}

That is, the states reachable in G (at e) are a subset of those reachable in G′. Obviously, this
implies (*). It is easy to prove (**) by induction over the process structure. The base case,
outgoing edge of the start node, is obvious (the sets of states are identical). The inductive
case is likewise obvious in all cases except task nodes. As for the latter, if (**) holds on the
incoming edge then it also holds on the outgoing edge due to the role that preconditions play
in the semantics as per Definition 4: if the precondition is not satisfied, then a transition is
disallowed; otherwise, the precondition has no influence. This concludes the argument.

6 Note that this “lucky coincidence” suggests a simple generalization of non-contradicted constraints: a
task node may negate one of the constraint’s literals as long as it makes another one true.
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In words, Lemma 2 says that, if we ignore preconditions – if we act as if the process
is executable – then we can only make it harder for a literal to be always true. Hence the
outcome of I∗ is conservative, in that sense. Exactly the same claim, with exactly the same
proof arguments, applies to processes with structured loops.

One of our approximation methods is based directly on I∗. The other method is based on
the dual notion of U∗. This is defined as follows. Say G = (N , E , Ω, α) is a basic annotated
process graph with constants C. If I∗ is the I-propagation result, then for e ∈ E we denote
U∗(e) := {l | l ∈ P[C],¬l 6∈ I∗(e)}. In words, U∗(e) is the set of literals that are not
contradicted by I∗(e). By Lemma 2, we immediately get:

Lemma 3 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be the
I-propagation result. Let e ∈ E be arbitrary, and let l be a literal so that there exists a
reachable state s where ts(e) > 0 and s |= l. Then we have l ∈ U∗(e).

Proof Assume to the contrary of the claim that l 6∈ U∗(e). Then, by construction, we have
¬l ∈ I∗(e). By Lemma 2, this means that, for all reachable states swhere ts(e) > 0, s |= ¬l.
This is a contradiction to the prerequisite, and concludes the argument.

In that sense, U∗ is conservative – includes all literals that may possibly be true – since
I∗ is conservative in the dual way (obviously, the same holds true for processes with struc-
tured loops). This directly leads to the main result underlying our approximation techniques:

Theorem 2 Let G = (N , E , Ω, α) be a basic annotated process graph; let I∗ be the I-
propagation result. Then, for all e ∈ E:

1. If there exists a grounded constraint ψ(C0) such that for all l ∈ ψ(C0) : ¬l ∈ I∗(e),
then every reachable state s with ts(e) > 0 is a non-compliance.

2. If there exists a non-compliant state s with ts(e) > 0, then there exists a grounded
constraint ψ(C0) such that for all l ∈ ψ(C0) : ¬l ∈ U∗(e).

Proof Obviously, any state s is a non-compliance iff it violates one of the grounded con-
straints. Hence, the claim is a simple consequence of Lemmas 2 and 3. First, if for all
l ∈ ψ(C0) : ¬l ∈ I∗(e), then by Lemma 2 every reachable state s with ts(e) > 0 vio-
lates all of ψ(C0)’s literals. Second, if s violates ψ(C0), then, for every l ∈ ψ(C0), we have
s |= ¬l and hence, by Lemma 3, ¬l ∈ U∗(e). This concludes the argument.

Theorem 2 immediately suggests our two approximate methods: for every edge e, check
whether there exists a grounded constraint ψ(C0) such that

(B) for all l ∈ ψ(C0) : ¬l ∈ I∗(e), or
(C) for all l ∈ ψ(C0) : ¬l ∈ U∗(e).

If (B) applies, then we know for sure that a non-compliant state exists, presuming that a
state activating e is reachable. If (C) applies, then we know that a non-compliant state may
exist; by contra-position, if (C) does not apply for any e and ψ(C0) then we know that the
process complies with the constraints base. Clearly, if all predicates have a fixed arity and
if the number of ground constraints is polynomial (i.e., if the number of variables in any
constraint is fixed), then all the tests can be performed in polynomial time.

Since, as stated, Lemmas 2 and 3 carry over directly to processes with structured loops,
the same is true of Theorem 2 as well as methods (B) and (C).

The advantage of tests (B) and (C), over method (A) as defined above, is that they do
not require the constraint to be non-contradicted, and neither do they require the task nodes
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to be executable. We illustrate this, and the difference between tests (B) and (C), with some
examples. We start with the example of a contradicted clause.

Example 8. Reconsider the modified example from Fig. 4, with the grounded constraint
¬invoiceSent(o, i) ∨ paymentExpected(o) ∨ paymentAccepted(i). As explained above,
with method (A) we come to the wrong conclusion that this constraint is always satisfied at
the outgoing edge of Refund Payment. However, method (B) detects the violation. If e is the
outgoing edge of Refund Payment, then we get {invoiceSent(o, i), ¬paymentExpected(o),
¬paymentAccepted(i)} ⊆ I∗(e). Hence test (B) applies and we have proved that, when-
ever Refund Payment has been executed, the constraint is violated. (This could be repaired
by stating explicitly that refund Payment retracts the invoice, i.e., by giving it the effect
¬invoiceSent(o, i).) Of course, test (C) applies as well.

We next modify this example some further to illustrate how test (B) may fail to detect a
non-compliance, which may never happen for test (C).

Example 9. Say we make Refund Payment an optional node, i.e., in difference to before we
insert it as one of the branches of an xor construct. This is depicted in Fig. 5.

Fulfill Order Ship Order

Send Invoice
Receive 
Payment

Accept 
Payment

Close OrderReject Order

Refund 
Payment

Fig. 5 Modified running example including an optional “Refund Payment” task.

Again, consider the grounded constraint ¬invoiceSent(o, i)∨ paymentExpected(o)∨
paymentAccepted(i). Test (B) will, as before, correctly detect that this constraint is violated
at the outgoing edge of Refund Payment. However, that information is lost at the outgoing
edge e of the xor join: at this point in the process, Refund Payment has not necessarily been
executed. This is reflected in the fact that (among other things) ¬paymentAccepted(i) 6∈
I∗(e). Hence test (B) does not apply for e. This is incorrect since, of course, it may hap-
pen that e carries a token while the constraint is violated, namely in the cases where
Refund Payment was indeed executed. Test (C) correctly detects this possibility. None of
invoiceSent(o, i), ¬paymentExpected(o), or ¬paymentAccepted(i) are contradicted by
I∗(e), hence they are all contained in U∗(e), hence test (C) applies.

We conclude this section with a final example illustrating the role of preconditions, and
how test (C) may wrongly report correct behavior as non-compliant.

Example 10. Say we give Close Order the precondition paid(o). Obviously, the task is then
not executable anymore because its precondition is violated in case the order has been
rejected. I-propagation ignores this fact, and consequently we have I∗(e) = {order(o),
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received(o), closed(o)} as before (where e is the outgoing edge of Close Order). However,
really, every reachable state activating e also satisfies paid(o), simply because the precondi-
tion admits only such states. So we see that – as guaranteed by Lemma 2 – I∗(e) is a subset
of the true literals; a proper subset, in this case.

The literal missing from I∗(e) results in a misbehavior of method (C). Say we simply
want to check whether, at the end of the process, paid(o) (the grounded constraint containing
only this single literal) is satisfied. Test (B) does not apply because it cannot be deduced that
paid(o) is necessarily false. However, test (C) applies because I-propagation mistakenly
came to the conclusion that paid(o) may be false. (Remember here that, as stated before,
testing truth of even single literals is NP-hard in the presence of non-executable task nodes
[33].)

Summing up, we devised three methods for compliance checking: one exact method (A)
for clauses which are not contradicted, one sound but incomplete approximate method (B),
and one unsound but complete approximate method (C). Note that, due to their respective
properties, it makes sense to schedule these methods in a certain way. If the constraint is non-
contradicted, then one should run only (A). Else, one should first try (B) which guarantees to
only flag edges that are actually erroneous. Once (B) does not report any non-compliances
anymore, one should try method (C); if that completes without reporting errors, then it is
certain that the process is fully compliant. We reiterate that exactly the same methods apply,
with exactly the same guarantees, to processes with structured loops.

5 Diagnosis

In order to efficiently support the user in compliance checking, it is of high value to be able
to point out the sources of an error. Since we check the compliance rules against summaries
of the logical states that may occur, we do so by tracing how the logical states leading to
non-compliance may come into being. At base, there are three questions we are interested
in answering: (1) What are the reasons for a literal l to be necessarily true at an edge e? (2)
What are the reasons for a literal l to be possibly true at an edge e? (3) What are possible rea-
sons for a literal l to be possibly true at an edge e? Based on answers to these questions, we
can provide diagnosis techniques for the various compliance checking methods introduced
in the previous section.7 In what follows, we first include a sub-section detailing how ques-
tions (1), (2), (3) can be answered. Then another sub-section explains how this information
can be employed for diagnosing non-compliances.

5.1 Tracing Literals

Consider first question (1): what are the reasons for a literal l to be necessarily true at an
edge e? The answer is, all nodes that cause l and/or that belong to a path between such a
cause and e. The set of these nodes, R>(e, l), can be computed as follows.

Definition 8 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be the
I-propagation result. Let e ∈ E and let l be a literal. If l 6∈ I∗(e), then R>(e, l) := ∅. Else:

7 Note that we only talk about “reasons for a literal being true”, not about “reasons for a literal being
false”. We get the latter for free due to the duality between positive and negative literals. For example, if we
want to ask “what are the reasons for a literal l to be necessarily false at an edge e?” then this is the same as
question (1) for ¬l.
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1. n ∈ R>(e, l) where n is the node with e ∈ OUT (n);
2. if n ∈ (NXS∪NPS)∩R>(e, l), then n′ ∈ R>(e, l) where n′ is the node withOUT (n′)∩

IN(n) 6= ∅;
3. if n ∈ NT ∩ R>(e, l), and l 6∈ eff(n), then n′ ∈ R>(e, l) where n′ is the node with

OUT (n′) ∩ IN(n) 6= ∅;
4. if n ∈ (NXJ ∪ NPJ ) ∩R>(e, l), then n′ ∈ R>(e, l) where n′ is any node so that there

exists e′ ∈ OUT (n′) ∩ IN(n) where l ∈ I∗(e′).

Definition 8 is best understood in terms of defining R>(e, l) by a certain form of back-
ward chaining from e. Starting at e, the chaining includes into R>(e, l) all nodes on whose
outgoing edges l is contained in I∗; it stops when it reaches a task node that causes l to be
true. It is easy to see that this set of nodes indeed captures the reasons for l being necessarily
true at e, in the following sense:

Proposition 1 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be
the I-propagation result. Let e ∈ E and let l be a literal such that l ∈ I∗(e). Define G′ =

(N , E , Ω, α′) which is like G except that eff(n) := ∅ for all n 6∈ R>(e, l). Let I∗′ be the
I-propagation result for G′. Then l ∈ I∗′(e).

In words, R>(e, l) includes enough nodes to make l true at e, even when ignoring the
effects of all other nodes. This is simply because Definition 8 backchains from e until it
has collected all potentially relevant task nodes. One may wonder whether R>(e, l) is min-
imal in that property, i.e., whether removing any node from it will necessarily disvalidate
Proposition 1. This is not the case: for parallel joins n, l may be contained in I∗(OUT (n))

even if it is contained in I∗(e′) for only a subset of the edges e′ ∈ IN(n). Definition 8
collects all these e′. To be minimal, it would have to select just a single such e′. However,
that would not be appropriate for diagnosis reasons since we are interested in all reasons
why l is necessarily true at e.

Obviously, R>(e, l) can be computed in low-order polynomial time. We finally remark
that R>(e, l) never includes a task node n where ¬l ∈ eff(n). In such a case, clearly we
cannot have l ∈ I∗(OUT (n)), whereas it is easy to see that this holds for any n ∈ R>(e, l):
this is an invariant over the backchaining steps performed in Definition 8.

For processes with structured loops, we can simply extend Definition 8 by: handling the
start nodes of repeatable sub-processes like xor joins (control may come here either from
outside the loop, or from its end); and handling the end nodes of repeatable sub-processes
like xor splits (control may go either outside the loop, or back to its start). Proposition 1 and
the rest of our discussion above then carry over exactly as stated.

Example 11. Reconsider our running example from Fig. 2 and Table 1, the constraint
¬order(o) ∨ ¬received(o) ∨ rejected(o) ∨ paid(o), and the literal H introduced by test
(A). We haveH ∈ I∗(e+), i.e., the constraint is guaranteed to hold at the end of the process.
Constructing R>(e+, H), we include: Close Order; the xor join; Reject Order; the paral-
lel join; Accept Payment. This sub-graph correctly reflects the reason why the constraint is
necessarily true at e+.

Consider now question (2) from above: what are the reasons for a literal l to be possibly
true at an edge e? Here we consider the case where, in difference to question (1), l 6∈ I∗(e);
we only have l ∈ U∗(e). What we want to know is, which nodes contribute to making l true
at e? The answer is similar to before. We define:

Definition 9 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be the
I-propagation result. Let e ∈ E and let l be a literal. If l 6∈ U∗(e), then R.(e, l) := ∅. Else:



23

1. n ∈ R.(e, l) where n is the node with e ∈ OUT (n), or IN(n) is parallel to e and
l ∈ eff(n);

2. if n ∈ (NXS∪NPS)∩R.(e, l), then n′ ∈ R.(e, l) where n′ is the node withOUT (n′)∩
IN(n) 6= ∅;

3. if n ∈ NT ∩ R.(e, l), and l 6∈ eff(n), then n′ ∈ R.(e, l) where n′ is the node with
OUT (n′) ∩ IN(n) 6= ∅;

4. if n ∈ (NXJ ∪ NPJ ) ∩ R.(e, l), then n′ ∈ R.(e, l) where n′ is any node so that there
exists e′ ∈ OUT (n′) ∩ IN(n) where l ∈ U∗(e′).

This is like Definition 8, with two differences. First, the backchaining starts not only
from e but also from any parallel task nodes achieving l. (Note however that the latter nodes
will not generate any further chaining since the rule for task nodes stops when l is an effect.)
Second, for join nodes, we include predecessors where l ∈ U∗(e′) rather than l ∈ I∗(e′)
– this accounts for the fact that l isn’t necessarily in I∗ in the first place, i.e., at e itself.
Similarly as for R>(e, l), R.(e, l) suffices to make l possibly true at e, i.e., we have:

Proposition 2 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be the
I-propagation result. Let e ∈ E and let l be a literal such that l ∈ U∗(e). Define G′ =

(N , E , Ω, α′) which is like G except that eff(n) := ∅ for all n 6∈ R.(e, l). Let I∗′ be the
I-propagation result for G′. Then l ∈ U∗′(e).

This holds due to same arguments as given above for Proposition 1. Likewise, mini-
mality is not given, R.(e, l) can be computed in low-order polynomial time, and a node n
with ¬l ∈ eff(n) can never be part of R.(e, l). Note further that, for any e and l, R.(e, l) ⊇
R>(e, l). This is because I∗ is always a subset of U∗. Again, for processes with struc-
tured loops, the same properties are achieved by handling the start nodes of repeatable sub-
processes like xor joins, and the end nodes of repeatable sub-processes like xor splits.

Example 12. Reconsider our running example from Fig. 2 and Table 1, in a modification that
has the literal ¬paid(o) in the annotation of the start node. We have paid(o) ∈ U∗(e+), i.e.,
the literal may be true at the end of the process. Constructing R.(e+, paid(o)), we include:
Close Order; the xor join; the parallel join; Accept Payment. Clearly, these are exactly the
nodes responsible for the possibility to have paid(o) true in the end.8

Consider finally question (3) from above: what are the possible reasons for a literal l
to be possibly true at an edge e? What we target with this question – what we mean with
“possible reasons” – is the set of nodes that could in principle contribute to making l true at
e, but that do not do so, due to the process structure. We define this set of nodes as:

Definition 10 Let G = (N , E , Ω, α) be a basic annotated process graph, and let I∗ be the
I-propagation result. Let e ∈ E and let l be a literal. Then R/(e, l) := {n ∈ NT | l ∈
eff(n), n 6∈ R.(e, l)}.

A node n may be in R/(e, l) because either: a node n′ in between n and e falsifies l; or
n is ordered after e; or e and n belong to alternative (xor’ed) parts of the process.

Example 13. Reconsider our running example. Say e is the outgoing edge of Accept Pay-
ment. Then R/(e, closed(o)) contains only the task node Close Order.

8 If the start node does not have the effect¬paid(o), then this is formally interpreted to mean that paid(o)
might be true at the beginning already. Consequently, R.(e+, paid(o)) collects all nodes on paths from n0

to n+ that do not contain Accept Payment – i.e., all nodes except Send Invoice and Receive Payment.
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It is of course debatable whether these or other definitions are most suitable for diagnosis
purposes. That is true especially of our answer to question (3), which may seem rather arbi-
trary. Then again, it appears difficult to come up with a more informed technique, since we
cannot look into the head of the human modeler and guess what she really meant to do. For
a better understanding of these issues, one needs to run large-scale empirical experiments
with alternative options. This is left for future research.

5.2 Tracing Non-Compliance

Equipped with the literal tracing methods from above, we can now relatively easily assemble
some methods for tracing non-compliances. We distinguish the different possible outcomes
of our compliance checking methods. Say G = (N , E , Ω, α) is a basic annotated process
graph and e is an edge.

1. Test (A) applies, non-contradicted constraint ψ(C0) found to be violated. Say we
constructed G′ according to Theorem 1, ran I-propagation on G′, found that H 6∈ I∗′(e),
and hence proved that there exists a reachable state s where e is active and ψ(C0) is
violated.
In this situation, obviously it must be the case that ψ(C0) ∩ I∗(e) = ∅. We distinguish
between two kinds of literals in ψ(C0): those that are certainly false, ψ(C0) \ U∗(e);
and those that may be true, ψ(C0) ∩ U∗(e).
For each l ∈ ψ(C0)\U∗(e), most importantly we want to know why it is false at e. That
is, we highlight the set of nodes R>(e,¬l). If desired, the user can be given the option
to also highlight R/(e, l), i.e., the nodes that could have contributed to making l true,
but that don’t for some flaw in the process structure.
For the literals l ∈ ψ(C0) ∩ U∗(e), which may indeed be true, the first thing we are
interested in is which nodes contribute to making l true at e, i.e., R.(e, l). If desired, the
user can also highlight R.(e,¬l) – the nodes contributing to make l false at e – as well
as R/(e, l) – the nodes that could have contributed to making l true.

2. Test (B) applies, contradicted constraint ψ(C0) found to be violated. Say we ran I-
propagation on G, found that for all l ∈ ψ(C0) : ¬l ∈ I∗(e), and hence proved that every
reachable state s where e is active violates ψ(C0).
Most importantly, for every l ∈ ψ(C0) we want to highlight the reason for being false,
i.e., R>(e,¬l). If desired, the user can be given the option to also highlight R/(e, l).

3. Test (C) applies, contradicted constraint ψ(C0) found to be possibly violated. Say
we ran I-propagation on G and found that for all l ∈ ψ(C0) : ¬l ∈ U∗(e); so we could
not disprove the existence of a reachable state where e is active and ψ(C0) is violated.
Again, we distinguish between ψ(C0)\U∗(e) and ψ(C0)∩U∗(e). For the former literals
l, which are known to be false, we highlightR>(e,¬l) and, if desired,R/(e, l). The latter
literals are neither known to be true nor known to be false. The first thing of interest is,
hence, R.(e, l), the nodes that contribute to making l true. If desired, the user can also
highlight R.(e,¬l) and/or R/(e, l).

Equipped with the above techniques, one can not only detect (potentially) non-compliant
parts of the process automatically, but also conveniently have a look at the reasons for that.
Clearly, the methods apply also to processes with structured loops, when using the appro-
priately extended versions of Definitions 8 and 9. An empirical analysis of the techniques is
beyond the scope of this paper.
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6 Related Work

There are two main lines of related work. First, there exist some works on specification of
compliance for business process models, some of which also provide checking methods.
Second, a relation to work in Petri nets arises because, to some extent, our formalism can be
compiled into such nets. We discuss the two lines of related work in that order.

6.1 Compliance Specification and Checking

While the issue of compliance of business process models with normative specifications
started receiving attention in the past few years, the study of how to formally represent
normative specifications has a long history and a full detailed comparison with the vast lit-
erature is out of the scope of the paper. In the context of this paper it is worth remembering
that the use of logical clauses for normative specifications goes back to Kowalski and Ser-
got [31], who proposed to encode regulations and normative systems as logic programs.
More recently [14] proposed to use Event Calculus and logic programming as executable
specifications for contracts, though the main focus is on monitoring the performance of a
contract.

[16] considers an approach similar to ours, where the tasks of a business process model,
written in BPMN, are annotated with the effects, and a technique to propagate and accu-
mulate the effects from a task to a successive contiguous one is proposed. The technique is
designed to take into account possible conflicts between the effects of tasks and to determine
the degree of compliance of a BPMN specification. Effects are accumulated in Semantic Pro-
cess Networks (SPN), which are nested structures with set of literals. The nested structures
corresponds to OR splits in a business process. Contrary to what we do, this approach does
not determine at design time whether a business process is compliant. Further, the approach
cannot handle loops, and may exhibit exponential runtime behavior (the size of the SPN
may grow exponentially in the size of the process).

[10] investigates compliance in the context of agents and multi-agent systems based on
a classification of paths of tasks. It defines patterns according to which the behaviour of an
agent conforms to a protocol.

The approach of [25,26] checks a notion of semantic correctness that builds on an-
notations to tasks as being mutually exclusive or dependent. In the first case they cannot
co-occur in a trace, in the second case they must appear in a certain order. For semantic
correctness, the process must comply with the annotations. This approach provides some-
what similar features as linear temporal logic [4]. Contrary to our approach, compliance is
limited to constraints on relationships between tasks in a process. In fact, mutual exclusiv-
ity and dependency constraints can be simulated using a subset of our framework (using
only preconditions/effects, with an empty ontology). Namely, for each task we introduce a
ground literal corresponding to the task, forming the task’s effect. To model exclusion be-
tween a and b, we add ¬a to the precondition of b, and we add ¬b to the precondition of a.
To model that b depends on a, we simply add a to the precondition of b. Hence the model
considered by [25,26] can be viewed as a special case of our framework. On the algorithms
side, [25,26] consider exploration of execution traces, and propose techniques to speed up
compliance checking for adapted processes, based on excluding paths that are not affected
by the changes made in the adaptation. Clearly, this is very different from our work, which
identifies polynomial-time propagation algorithms for restricted classes of processes.
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In a number of approaches, no semantic annotations are added to the business process
model, and hence compliance is limited to the structure and relationships of tasks in the pro-
cess. [7] uses BPMN-Q, a visual language based on BPM to query a business process model
by matching a process graph to a query graph, to express compliance rules as queries. After
this step, the procedure retrieves BPMN sub-graphs, that are then manipulated and reduced,
to be then transformed into formulas in temporal logic (PLPL linear past temporal logic).
The temporal logic formulas are processed using model checking to verify compliance. Sim-
ilarly, [23] proposes the use of LTL (linear temporal logic) and model checking to verify the
compliance of BPEL processes. [29] proposes Concurrent Transaction Logic to model the
states of a workflow and presents some algorithms to determine whether the workflow is
compliant with a contract. The algorithms take advantage of features of the logic to apply
graph transformations, identifying inconsistent patters among the process nodes. The pro-
cess is compliant with a contract if the constraints imposed by the contract do not generate
inconsistencies.

A limitation of most of the approaches to compliance, including the one presented
herein, is that they do not natively deal with the normative aspects of compliance, i.e.,
whether a logical statement refers to an obligation, a permission, or a prohibition. Also,
preferences between obligations are often difficult to express. An exception is in previous
work [20] from one of the authors of this paper, proposing to use FCL (Formal Contract
Language). FCL is a simple rule based logic enriched with deontic operators to specify the
obligations a process has to fulfill. [20] argues that compliance is the relationship between
the potential execution states of a process and the normative specifications. We have taken
first steps towards extending our work to incorporate FCL [18]. This essentially involves ex-
tended versions of the propagation mechanisms presented herein. The extended algorithms
keep track of the history of particular facts/constraints, in order to determine temporal as-
pects such as whether a constraint always holds after a particular condition became true.
Contrary to the paper at hand, the algorithms are in an early stage and have not yet been
analyzed formally.

6.2 Petri Nets

Petri net theory has come up with a wealth of complexity results for various classes of Petri
nets, including in particular tractability results for a number of restricted classes. One can
apply some of these results to annotated process graphs, via compiling such graphs into
Petri nets. However, the results obtainable in this way are substantially weaker than what we
provide herein.

How can annotated process graphs be compiled into Petri nets? First, consider the case
where there are no ontology axioms. For this case, a straightforward compilation exists.
Encode each task as a transition, and encode edges as places. Joins and splits can then be
encoded in a straightforward way, using the rules in [2]. Likewise, loops, i.e., transitions
into and out of sub-graphs, are encoded in the straightforward fashion. Next, enumerate all
facts that can be built from the predicates and constants. Create an additional place for each
fact, as well as one for its negation. Add an arc for each precondition/effect literal to the
respective place; similarly, encode xor/loop conditions.

If ontology axioms are present, such a compilation is not possible, at least not in a
straightforward/natural way. Petri nets do not cater for a “minimal change semantics” of
transitions between states. Note that this is quite fundamental. As indicated earlier, for non-
binary theories we have proved in our previous work [33] that reasoning about state transi-
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tions with such a semantics is computationally hard. To cater for this semantics, one would
hence have to somehow encode the “minimal change” into a specialized class of Petri nets
with worst-case exponential behavior, and then include an instance of that class into every
transition of the overall compiled net. If, on the other hand, the axioms are all binary, then
(as we also show in [33]) a compilation preserving the relevant properties of I-propagation
(c.f. Lemma 1) can be done by replacing task node effects with their deductive closure (eff
in our notation herein).

Apart from the process structure, we need to express our compliance checking task in
terms of Petri net queries. Assume a grounded consraint ψ(C0) and an edge e. Compli-
ance with ψ(C0) at e in the annotated process model is equivalent to the question whether,
whenever e carries a token, at least one of the places in ψ(C0) (i.e., places encoding the
respective literals) carry a token as well. Hence we need to be able to test whether a given
place p implies the disjunction of a set of other places p1, . . . , pk. This is a rather unusual
query for Petri nets. For the restricted case where k = 1, it is related to what has been
termed “implicit places” (see e.g. [9,3,15]). An implicit (or “redundant”) place is a place
p1 that always carries a token if any other place p does, where p and p1 occur together in
the input of any transition. Note that this notion refers to all transitions and places p, while
what we are interested in is the connection (if any) between p1, . . . , pk and one particu-
lar place p. It is an open question whether techniques for detecting implicit places can be
adapted to perform this kind of test, in particular for k > 1. We remark that the only known
polynomial-time technique to detect implicit places is the detection of “structural implicit
places” [9,3], which are a special case of implicit places, hence providing for a sound but
incomplete checking method.

What we can derive are two tractable classes for the simpler question where we only
want to check whether a constraint may be violated globally – regardless of any edge at
which that may happen. The tractability results are based on restricting the process in a way
so that the compiled Petri net becomes free-choice [13], respectively conflict-free [22].9 To
encode a violation of the entire constraint, we introduce a new place p0 with a transition t
that takes and replaces tokens from all of ¬l for l ∈ ψ(C0), and puts a token on p0. Clearly,
p0 is reachable iff there exists a reachable marking that has tokens on all of the literals ¬l.10

We have:

(1) Say that a literal l is consumed by node n if either l ∈ pre(n) or ¬l ∈ eff(n). If every lit-
eral l is consumed by at most one task node, and no literal ¬l for l ∈ ψ(C0) is consumed
by any task node, then the compiled Petri net is free-choice.

(2) If the process has no loops and no xor splits, and for every literal l and task node n we
have that ¬l 6∈ eff(n), then the compiled Petri net is conflict-free.

Both for free-choice and conflict-free Petri nets, it can be decided in polynomial time whether
there exists a reachable marking activating a given place. Hence, (1) and (2) identify tractable
classes for global constraint checking. Note that both of these classes restrict the constraint
to be non-contradicted, and are hence sub-classes – rather restricted sub-classes, at that – of
what is handled as per our Theorem 1.

9 In free-choice nets, for every two transitions either the input places are disjoint, or identical. In conflict-
free nets, every place either is on the input of only one transtion, or is on the output of all such transitions.

10 One can extend this method to encode compliance checking at an edge e, simply by assigning e as
another input place of t. However, this construction is necessarily neither free-choice nor conflict-free, due to
the competition between t and the node that consumes the control-flow tokens on e.
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7 Conclusion

We have presented a formalism for annotated process models, including a notion of clausal
compliance constraints. We have devised low-order polynomial time methods for checking
compliance in this framework. The checks are partly exact, partly approximate guaranteeing
only either of soundness or completeness.

Of course, this is only a first step in exploring this form of compliance checking. First,
there are several open questions within our current formalism. In particular: (1) Is it compu-
tationally hard to check contradicted clauses in executable basic processes? (2) Is it possible
to efficiently check compliance in the presence of effect conflicts? (3) How can we design
compliance checking methods for hard cases? As for (1), it is entirely unclear to us, at this
point, what the answer is. We would guess that the problem is hard, but our attempts to prove
this have been unsuccesful, so far. As for (2), we have drafted an I-propagation algorithm
that should work in the presence of effect conflicts, but we have not yet verified whether the
algorithm is actually correct. If it is, the compliance checks should generalize effortlessly,
similarly as for structured loops. Regarding (3), we have made a few first experiments en-
coding executability checking for the Model Checking tool SPIN [21]. The results are not
encouraging so far, but there certainly is room for improvement, using search enhancements
and/or alternative encoding methods.

Apart from this kind of issues, the formalism lacks expressiveness in several respects.
On the process modeling side, things that cannot be adequately modeled are, e.g., data con-
tent, or temporal aspects of the behavior of activities. For data content, all we can currently
do is to annotate predicates representing qualitative properties of the data, e.g., whether or
not a set of numbers is sorted, or whether a number is greater than 0. Regarding temporal be-
havior, our model is limited to what is encoded in the control-flow; for example, quantitative
messures of how long an activity takes can not be expressed.

There clearly is also a lack of expressiveness in the model of compliance rules. Clausal
constraints are a rather blunt way to state regulations, which (just for example) do not cater
for preferences (“if you can’t do A, then at least do B”). Richer notions of compliance
rules exist, e.g., the FCL [20] formalism mentioned already in Section 6. To cater for such
compliance notions, beside an extension to deal with preferences between obligations, our
formalism must be extended with, e.g., ways of expressing resource allocations and temporal
aspects.

At the time of writing, beyond our aforementioned initial work on FCL [18], it is not
clear to us how any of the mentioned extensions should best be done. For certain, such ex-
tensions are not trivial. Resource allocations may to some extent be expressible in terms of
semantic annotations. To deal with data content, a careful extension to allow (some) arith-
metic could be quite useful. Regarding temporality, a lot of added value might lie in the
simple extension that annotates each activity with a constant execution time; a fruitful direc-
tion for such a setting may be to extend I-propagation with time windows expressing when
the literals will be necessarily true. As best we can tell, more complex notions of temporality
will add a whole new level of complexity to both the formalism and the algorithms required
for dealing with it.
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