Document downloaded from:

http://hdl.handle.net/10251/49231

This paper must be cited as:

Heras Barbera, SM.; Botti V.; Julian Inglada, VJ. (2014). An Ontological-based Knowledge-
Representation Formalism for Case-Based Argumentation. Information Systems Frontiers.
1-20. d0i:10.1007/s10796-014-9524-3.

The final publication is available at

http://link.springer.com/article/10.1007%2Fs10796-014-9524-3

Copyright
Pyng Springer Verlag (Germany)



Information Systems Frontiers manuscript No.
(will be inserted by the editor)

An Ontological-based Knowledge-Representation Formalism
for Case-Based Argumentation

Stella Heras - Vicente Botti - Vicente Julian

Received: date / Accepted: date

Abstract In open multi-agent systems, agents can enter or leave the system, interact, form
societies, and have dependency relations with each other. In these systems, when agents
have to collaborate or coordinate their activities to achieve their objectives, their different
interests and preferences can come into conflict. Argumentation is a powerful technique to
harmonise these conflicts. However, in many situations the social context of agents deter-
mines the way in which agents can argue to reach agreements. In this paper, we advance
research in the computational representation of argumentation frameworks by proposing a
new ontological-based, knowledge-representation formalism for the design of open MAS in
which the participating software agents are able to manage and exchange arguments with
each other taking into account the agents’ social context. This formalism is the core of a
case-based argumentation framework for agent societies. In addition, we present an exam-
ple of the performance of the formalism in a real domain that manages the requests received
by the technicians of a call centre.

Keywords Agreement Technologies - Argumentation - Multi-Agent Systems

1 Introduction

Open Multi-Agent Systems (MAS), where agents can enter or leave the system, interact,
and dynamically form agent organisations to solve problems, seem to be a suitable tech-
nology for implementing large systems in terms of the services they offer and the entities
that interact to provide or consume these services [22]]. However, the high dynamism of the
domains where open MAS commonly operate requires agents to have a way of reaching
agreements that harmonise the conflicts that arise when they have to collaborate or coordi-
nate their activities. In addition, agents in open MAS can form societies that link each other
via dependency relations. These relations can emerge from agents’ interactions or they can

Extended version of the paper presented by auhors at Agreement Technologies Conference 2013

S. Heras

Departamento de Sistemas Informaticos y Computacion
Universitat Politecnica de Valéncia

Camino de Vera s/n 46022 Valencia (Spain)

E-mail: sheras@dsic.upv.es



2 Stella Heras et al.

be predefined by the system. Nevertheless, the dependencies between agents are part of
their social context, which has an important influence on the way agents can reach agree-
ments with other agents. To illustrate this idea, let us introduce an example scenario where
a group of technicians is arguing to solve complex problems that have been reported to a
call centre that is implemented as a MAS. In call centres, technicians provide technical as-
sistance to individuals and/or organizations that have contracted the support service with the
call centre company (e.g., users of hardware products, users of a specific brand of devices,
or public administrations that have subcontracted the technical support or their computer
systems). The call centre technicians usually have different responsibilities and authority.
When a problem is reported to the centre, basic technicians (e.g., operators) try to solve the
problem individually. However, if this first level of support fails, these complex problems
are redirected to be solved by an expert or by a group of technicians that must collaborate
in order to reach an agreement about the best solution to provide. Also, to make this deci-
sion different considerations can be taken into account, such as quality of response, speed
(to fulfill the company Service Level Agreements (SLAs)), economic issues, etc. Therefore,
in our scenario, we have a group of software agents that represent technicians that engage
in agreement processes to solve problems. These agents have different social contexts, that
include dependency relations with each other and different preferences over the value that
is promoted by the final solution decided. We understand values to be the underlying reason
that an agent has to prefer one solution over another (e.g., quality, speed, savings). For in-
stance, operators may not be as willing to accept opinions from other operators as they are to
accept opinions from an expert. Also, technicians do not necessarily behave in the same way
as project managers; the technicians may belong to a group of experts in charge of providing
high-quality solutions, while if they act as project managers, they are more worried about
providing quick responses to fulfill SLAs and to avoid possible financial penalties.

Among the wide range of agreement technologies proposed in the last few years [30],
argumentation provides a natural means of dealing with conflicts and knowledge inconsis-
tencies that greatly resembles the way in which humans reach agreements [26]. However,
little work has been done to study the effect of the social context of agents in the way that
they argue. Commonly, the term agent society is used in the Argumentation and Artificial
Intelligence (AI) literature as a synonym for an agent organisation [11] or a group of agents
that play specific roles, follow certain interaction patterns, and collaborate to reach global
objectives [23]. Our notion of agents’ social context in an argumentation process includes
information related to the proponent and the opponent of an argument, the group that these
agents belong to, the dependency relation that they have, and the values that they want to
promote [14]. Therefore, we endorse the view of value-based argumentation frameworks
[6]1[5], which stress the importance of the audience in determining whether or not an argu-
ment is persuasive. Value-based argumentation frameworks extend abstract argumentation
frameworks by addressing issues about the rational justification of choices. Thus, our ap-
proach to an agent society differs from the notion of agent coalitions used in [1] and [7],
which are temporary associations between agents in order to carry out joint tasks, without
any consideration for the social links and values that characterise those agents.

Starting from the idea that the social context of agents determines the way in which
agents can argue and reach agreements, this context might have a decisive influence on the
computational representation of arguments. In this paper, we advance research in the compu-
tational representation of argumentation frameworks by proposing a new ontological-based,
knowledge-representation formalism for the design of open MAS in which the participating
software agents are able to manage and exchange arguments with each other taking into
account the agents’ social context. This formalism is the core of a case-based argumenta-



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 3

tion framework for agent societies. To allow heterogeneous agents to interact in the frame-
work, we need a common language to represent arguments and argumentation processes.
Therefore, in the current work we present a new argumentation ontology called ArgCBRonto
to represent case-based arguments and argumentation concepts. The structure of the paper
is the following: Section [2]introduces the underlying argumentation framework; Section 3]
shows the ontology-based knowledge representation formalism proposed; Section [4| shows
an example scenario in the call centre domain; Section E] reviews related work; Section E]
discusses some assumptions made in this paper; and Section [/| provides conclusions about
the contributions of this research.

2 Case-Based Argumentation Framework

This section presents the formal specification of the case-based argumentation framework
that motivated the design of the knowledge representation formalism presented in this pa-
pelﬂ Our framework has been implemented as an argumentation API in the Magentixﬂ
agent platform, which provides new services and tools that allow for the secure and opti-
mised management of open MAS.

We focus on argumentation processes that are performed among a set of agents that
belong to an agent society and that must reach an agreement to solve a problem taking into
account their social dependencies. Each agent builds its individual position in view of the
problem (a solution for it). At this level of abstraction, we assume that this could be a generic
problem of any type (e.g., a resource allocation problem, an agreed upon classification,
a joint prediction, etc.) that could be characterised with a set of features. The following
sections summarise the elements that characterise our argumentation framework.

2.1 The Logical Language

The logical language represents argumentation concepts and possible relations among them.
In our framework, these concepts are represented in the form of cases and argumentation
schemes. Therefore, the logical language of the argumentation framework is defined in terms
of the vocabulary to represent these resources. The vocabulary of cases and schemes is
defined by using the ArgCBROnto ontology presented in section [3] We have selected the
Ontology Web Language OWL—DI_H as the logical language to represent the vocabulary
of cases. This variant is based on Description Logics (DL) and guarantees computational
completeness and decidability. Note that OWL-DL does not assume closed world reasoning
with negation as failure. By contrast, OWL-DL uses open world reasoning with negation
as unsatisfiability. Therefore, something is false only if it can be proved to contradict other
information in the ontology. This implies that two classes (i.e. concepts in description logics
terminology) are contradictory if and only if they are specifically declared as such with
the owl property complementOf and similarly, two instances (i.e. individuals in description
logics terminology) are contradictory if and only if they are specifically declared as such
with the owl property differentFrom.

! This is an extended and revised version of the formal specification of the framework presented in [14]
2 Publicly available at http://www.gti-ia.upv.es/sma/tools/magentix2/
3 http:/fwww.w3.0rg/TR/owl-guide/



4 Stella Heras et al.

Definition 1 (Logical Language) Let & be an OWL-DL language, C and D two owl classes,
¢ € Cand d € D two owl instances of the classes C and D respectively, and complementOf
and differentFrom two contrariness functions from £ to 2% Then, if C complementOf D
(correspondingly c differentFrom d) and D complementOf C (d differentFrom c), C and D (c
and d) are called contradictory. However, if C complementOf D (correspondingly c differ-
entFrom d) and D —complementOf C (d —differentFrom c), C (c) is a contrary of D (d).

To illustrate the difference between negation as failure and negation as unsatisfiability
let us propose the following example in the call centre domain. Suppose that a manager
is arguing with an operator to decide if, based on a case-base of previous experiences, the
solution proposed by the operator should be selected as the best solution to provide to a
customer that has reported the problem Py, to the call centre. If the manager cannot find
a previous a case that in a similar situation applied the solution proposed by this operator, a
closed world reasoner would infer that the solution is not appropriate (since the suitability
of the solution cannot be proved). By contrast, an OWL-DL reasoner that follows the open
world assumption would infer that, in principle, there is no reason to approve or deny the so-
Iution proposed by the operator. Thus, if there are no other reasons that prevent the manager
to approve the solution, it could finally select it. This reflects the usual way of reasoning of
the case-based reasoning methodology, which does not infer the negation of a conclusion by
the mere fact that there is not a case in the case-base that supports this conclusion. OWL-
DL allows automatic description logic reasoning over argument-cases and domain-cases. In
addition, it facilitates the interoperability with other systems.

2.2 The Case-Based Notion of Argument

Following our case-based computational approach for the representation of arguments, we
define a formal Argumentation Framework for an Agent Society (AFAS) as an instantia-
tion of Dung’s argumentation framework [[10]]. Thus any semantics of Dung’s-like abstract
argumentaion frameworks can be also applied in our framework [15]:

Definition 2 (Argumentation Framework for an Agent Society) An argumentation frame-
work for an agent society is a tuple AFAS = <A, R, S; > where: A is a set of arguments; R
is an irreflexive binary attack relation on A; and S; is a society of agents as defined in [15]].

The main advantages that our framework has over other existing argumentation frame-
works are: 1) the ability to represent social information in arguments; 2) the possibility of
automatically managing arguments in agent societies; 3) the improvement of the agents’ ar-
gumentation skills; and 4) the easy interoperability with other frameworks that follow the
argument and data interchange web standards. We have adopted the Argument Interchange
Format (AIF) view of arguments [§] as a set of interlinked premiss-illative-conclusion se-
quences. The notion of argument is determined by our KI case-based framework for rep-
resenting arguments. In our framework, agents can generate arguments by instantiating the
premises that represent the context of the domain where the argument is put forward in an
argumentation scheme or by retrieving similar previous cases and reusing their solutions.
Therefore, agents construct arguments by using their individual knowledge bases, which
contain these types of knowledge resources.

Definition 3 (Knowledge Base) A Knowledge-Base in a case-based argumentation frame-
work for agent societies consists of a finite set of # C £ elements, where £ is a logical
language to represent these elements and A = 2, U Hg. U Hye U Hys, where each of these



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 5

subsets are disjoint. %), is a finite set of premises; Jy. is a finite set of domain-cases; Jg.
is a finite set of argument-cases; and K is a finite set of argumentation schemes.

Agents use a domain-cases case-base to generate positions and arguments by reusing
previous similar experiences. The structure of domain-cases is domain-dependent and we
assume that we have an ontology to represent them in the specific application domain where
the case-based argumentation framework is implemented. For instance, in our running ex-
ample this ontology would include concepts (attributes) to characterise the software or hard-
ware errors reported by the call centre customers. Let us assume that by means of an argu-
mentation dialogue, the operator Stella effectively solved the problem Py, by proposing
the solution S1 = ”Open the lid 1, remove the jammed paper and reset” that Stella’s group
agreed to as being the best solution proposed (here we assume that Stella did not have any
domain-case in its domain-cases case-base representing this problem-solving situation, but
Stella received the solution from another operator). Therefore, a new case:

DCstella, = {{Brand = brl, Model = myPrint, Year = 2012, Network Printer =
No, Paper Jam = Yes, Error Message = No}, S1}

will be added, improving Stella’s problem solving skills.

By using their case-base of argument-cases, agents can select the best positions and
arguments to put forward in a specific step of the argumentation dialogue in view of how
persuasive similar positions and arguments were in the past. Thus, this knowledge resource
improves the agents’ argumentation skills by learning from argumentation processes. The
structure of argument-cases is generic for all application domains and will be presented in
Section 3| by using the ArgCBROnto ontology.

An argumentation scheme consists of a set of premises and a conclusion that is pre-
sumed to follow from them. Also, each argumentation scheme has an associated set of crit-
ical questions that represent potential attacks to the conclusion supported by the scheme.
This knowledge resource can be used to generate positions and arguments. The concrete
argumentation schemes that agents of our argumentation framework use depend on the ap-
plication domain. For instance, in the call centre example we could have an argumentation
scheme AS1 that changes the value preference order of a group of operators if the SLA con-
tracted by the customer in the support service that they are providing is about to be breached
(inspired by Waltons’s argument from an exceptional case [32]):

Major Premise: if the case of x is an exception, then the value preference order of
the group can be waived and changed by quality < speed in the case of x.

Minor Premise: the case of approaching the deadline contracted in a SLA is an
exception.

Conclusion: therefore, the value preference order of the group can be waived and
changed by quality < speed in the case of approaching the deadline contracted in
a SLA.

With this scheme, operators of this group must provide quick solutions for the problems
that they receive, even if their individual value preferences give priority to high quality
solutions.

Note that by proposing these knowledge resources for our case-based argumentation
framework, we do not assume that all agents participating in the agreement process must
have this specific architecture. In fact, in addition to knowing the rules of the protocol that
manages the argumentation dialogue to reach the agreement, all agents can understand and
interchange arguments if they share the ArgCBROnto ontology.

Therefore, arguments that agents interchange are defined as tuples of the form:



6 Stella Heras et al.

Definition 4 (Argument) Arg = (9,v,{S}), where ¢ is the conclusion of the argument, v is
the value that the agent wants to promote with this argument, and S is a set of elements that
support the argument (support set).

This support set can consist of different elements, depending on the purpose of the ar-
gument. On one hand, if the argument provides a justification for a proposed position, it
is called a support argument. Its support set is the set of features (premises) that represent
the context of the domain where the argument has been put forward (those premises that
match the problem to solve and other extra premises that do not appear in the description
of this problem but that have also been considered in order to draw the conclusion of the
argument). Optionally, any knowledge resource used by its proponent to generate the ar-
gument (domain-cases, argument-cases, or argumentation schemes). On the other hand, if
the argument attacks the argument of an opponent, it is called an attack argument and its
support set can also include any of the attacks that are allowed in our framework. These are:
critical questions, distinguishing premises, or counter-examples.

When critical questions are instantiated by an opponent agent, the conclusion of the
argument that is drawn by using their associated argumentation scheme is temporally re-
butted (until new information demonstrates its validity, if possible). For instance, in the call
centre example, the AS1, which is an adaption of Walton’s original scheme, could include
the critical question "Is the case of SLA a recognized type of exception?”. Thus, if any op-
erator of the group affected by the application of this scheme could provide evidence that
demonstrates that this is not the case, the value preference order of the group would not be
changed.

Distinguishing premises are premises that can invalidate the application of a case to
generate a valid conclusion for an argument (i.e., is a premise that does not appear in the
problem description and has different values for two cases or a premise that appears in the
problem description that does not appear in one of the cases). For instance, let us assume
that another operator of the call centre that is engaged in the argumentation dialogue to solve
the problem P e (€.8., Vicente) has a domain-case:

DCvicente; = {{Brand = brl, Model = myPrint, Year = 2012, Network Printer =
No, Paper Jam = Yes, Type of paper = recycled}, S2}

in its domain-cases case-base. This domain-case proposes the alternative solution S2 = Do
not use recycled paper with this printer model” that states that this model of printer does
not work well with recycled paper. In that case, Stella could cite the distinguishing premise
Error Message to attack the solution proposed by Vicente. Also, note that the premise Type
of paper cannot be cited as a distinguishing premise since it does not appear in the Py inser
problem description.

A counter-examples is a case that is similar to another case (their descriptions match),
but they have different conclusions. In other words, a counter-example is a previous domain-
case or an argument-case that was deemed acceptable, where the problem description of the
counter-example matches the current problem to solve and also subsumes the problem de-
scription of the case but proposes a different solution. In the above examples, if the operator
agent Vicente had another domain-case:

DCvicentey = {{Brand = brl, Model = myPrint, Year = 2012, Network Printer =
No, Paper Jam = Yes, Error Message = no, Type of paper = recycled}, S2}

that proposed the same solution S2, it could use DCvicente; as counter-example for Stella’s
domain-case DCstellay, since the DCvicente, description subsumes DCstella; and proposes
a different solution.



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 7

Thus, the support set of an argument can consist of the following tuple of support ele-
ments, depending on the supporting or attacking purpose of the argument:

Definition 5 (Support Set) S = { {premises}, {domainCases}, {argumentCases},
{argumentationSchemes}, {criticalQuestions}, {distinguishingPremises},
{counterExamples} }

Therefore, arguments can be constructed by aggregating different support and attack ele-
ments, which are structures that support intermediate conclusions that lead to the conclusion
of the argument itself.

2.3 The Concept of Conflict between arguments

The concept of conflict between arguments defines in which way arguments can attack each
other. There are two typical attacks studied in argumentation: rebut and undercut. In an ab-
stract definition, rebuttals occur when two arguments have contradictory conclusions. Sim-
ilarly, an argument undercuts another argument if its conclusion is inconsistent with one
of the elements of the support set of the latter argument or its associated conclusion. This
section shows how our framework instantiates these two attacks. Intuitively, arguments can-
not be attacked on the support set premises that match the description of the problem to
solve; they can only be attacked on those extra premises that represent the context of the
domain where the argument was put forward and that do not appear in the description of
the problem. Alternatively, arguments can be attacked on those premises that appear in the
description of the problem to solve but that have not been considered to draw the conclusion
of the argument (they do not appear in the support set of the argument). Taking into account
the possible elements of the support set, rebut and undercut attacks can be formally defined
as follows.

Let Arg; = (¢, valuey, {S1}) and Argy = (¢, valuey, {S>}) be two different arguments,
where S| = {{Premises}, ..., { CounterExamples}, }, So = {{Premises}», ..., { CounterExamples}, },
~ stands for the logical negation, = stands for the logical implication and conc(x) is a func-
tion that returns the conclusion of a formula x. Then:

Definition 6 (Rebut) Arg; rebuts Argy iff 1 =~@, and {Premises}| 2 {Premises},

That is, if Arg; supports a different conclusion for a problem description that includes the
problem description of Arg,. To illustrate this concept, let us assume that the operator agent
Stella has generated the support argument:

SAstella; = ( S1, speed, {{Brand = brl, Model = myPrint, Year = 2012, Network
Printer = No, Paper Jam = Yes, Error Message = No}, DCstellay, 0, 0,0, 0, 0 )

to justify its proposed solution S1 (promoting, for instance the value of speed) and that the
operator agent Vicente has generated an attack argument:

AAvicente; = ( S2, quality, {{Brand = brl, Model = myPrint, Year = 2012, Network
Printer = No, Paper Jam = Yes, Error Message = No, Type of paper = recycled}, 0,
0, 0,0, 0, DCvicente; )

with a counter-example that proposes the alternative solution S2 for the problem. In this
situation, AAvicente, rebuts SAstella;.



8 Stella Heras et al.

Definition 7 (Undercut) Arg; undercuts Arg; if

1)@y =~conc(asy) | 3eq € {Critical Questions}y A Jasy € {ArgumentationSchemes}a N

cq =n~conc(asy), or

2)¢, =dp | (Idp € {DistinguishingPremises} A\ Iprey € {Premises}y ANdp =~pre;)V

(dp & {Premises},), or

3)¢1 = ce| (ce € {CounterExamples} A3dcy € {DomainCases}, Nconc(ce) =~conc(dcy))V
(3ce € {CounterExamples} A Jacy € {ArgumentCases}s N conc(ce) =~conc(acy))

That is, if the conclusion drawn from Arg; makes one of the elements of the support set of
Argy or its conclusion non-applicable in the current context of the argumentation dialogue.
In case 1 Arg; undercuts Arg, by posing a critical question that attacks the conclusion of
Arg,, inferred by using an argumentation scheme. In case 2, Arg; undercuts Arg, by show-
ing a new premise which value conflicts with one of the premises of Arg, or else, does not
appear in the problem description of Args. Finally, in case 3 Arg; undercuts Arg, by putting
forward a counter-example for a domain-case or an argument-case that was used to generate
the conclusion of Arg>. Coming back to our running example on the call centre application
domain, if the operator agent Vicente generates a support argument for its proposed solu-
tion S2 promoting for instance the value quality, but in this case based on its domain-case
DCvicente, as:

SAvicente) = { S2, quality, {{Brand = brl, Model = myPrint, Year = 2012, Network
Printer = No, Paper Jam = Yes, Type of paper = Recycled}, DCvicentey, 0, 0, 0, 0,
0)

the operator agent Stella could undercut this argument with the attack argument:

AAstella) = ( S1, speed, {{Brand = brl, Model = myPrint, Year = 2012, Network
Printer = No, Paper Jam = Yes, Error Message = No}, 0, 0, 0, 0, { Error Message =
No}, 0} )

by invalidating the applicability of DCvicente;, since it does not consider the distinguishing
premise "Error Message” that the problem description includes.

2.4 The Notion of Defeat between arguments

Once possible attacks between arguments have been established, whether or not these attacks
result in defeats depends on the defeat relation defined between a pair of arguments.

Let Arg; = (¢1,value;,{S1}) posed by agent ag and Args = (¢, valuey,{S>}) posed
by agent ag, be two conflicting arguments; let Valpref,,, C VxV, be an irreflexive, antisym-
metric and transitive relation <2’gl_ over the agent’s ag; values in the society S;; and let us
define the possible dependency relations Dependencys, between roles in our framework as:

— Pows, (Power): when an agent has to accept a request from another agent because a pre-
defined domination relationship between them (e.g. in a society S; that operates in the
call centre example, Operator <ISJ’UW Manager, since basic operators must comply with
the commands made by the manager of the centre.

— Authg, (Authorisation): when an agent has committed itself to another agent for a certain
service and a request from the second agent leads to an obligation when the conditions
are met (e.g. in the society S; that is providing a support service to a specific customer of
the call centre, Operator <i’m » Expert since experts in this support service are believed
to have specialised knowledge to solve problems of this type.



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 9

— Chars, (Charity): when an agent is willing to answer a request from another agent with-
out being obliged to do so (e.g. in the society S;, by default Operator <g’h o Operator).

Then:

Definition 8 (Defeat) Arg| defeats Arg, if

((rebuts(Argy,Argy) N\ ~ undercut(Argy,Arg1)) \V undercuts(Arg1,Args)) N\ valuey <§2,| valuey
¢ Valprefa,, A Role(ag;) <f,’0w Role(ags) ¢ Dependencys, N Role(ag) <i’mh Role(ag,) ¢
Dependencys,

Therefore, we express that the argument Arg| defeats,g, from the ag; point of view the
argument Argy as defeatsqg, (Arg1,Args) if Arg rebuts Argy and Arg, does not undercut
Argy, or else Arg undercuts Arg;, and ag; does not prefer the value promoted by Arg, to the
value promoted by Arg; and ag, does not have a power or authority relation over ag;. The
first type of defeat poses a stronger attack on an argument, directly attacking its conclusion.
In addition, an argument can strictly defeat another argument if the first defeats the second
and the second does not defeat the first.

Definition 9 (Strict Defeat) Arg, strictly defeats Arg, if Arg, defeats Argy and Arg, does
not defeat Argy

For instance, in the call centre example, the argument of an expert will always strictly
defeat the argument of a basic operator, assuming that the expert has an authorisation de-
pendency relation over operators. Also, whether the argument of an operator defeats or not
the argument of another operator strictly depends on the value preference order of the latter.
For instance, if we consider that Vicente prefers to promote the value quality over speed,
the undercut attack that Stella has posed with the argument AAstella; in the example of the
previous section would not succeed from the Vicente’s point of view.

3 ArgCBROnto Ontology

As introduced above, we have designed the ArgCBRonto ontology to define the represen-
tation language of the case-based knowledge resources of our argumentation framework.
Ontologies provide a common vocabulary to understand the structure of information among
different software agents. In addition, ontologies allow assumptions about the domain to
be made explicit, which facilitates changing these assumptions as new knowledge about
the domain is acquired. The high dynamism of the domains where open MAS commonly
operate gives rise to many changes in the domain knowledge that agents have available
and they must be able to handle the consequences of these changes. Thus, the vocabu-
lary of domain-cases, argument-cases and argumentation schemes is defined by using the
ArgCBROnto ontology. The ArgCBROnto ontology follows the approach of the case-based
KI systems proposed in [9]. KI-CBR enables automatic reasoning with semantic knowledge
in addition to the syntactic properties of cases. This allows one to make semantic inferences
with the elements of cases and to use more complex measures to compute the similarity
between them. Therefore, this ontology provides a common language to represent resources
and is computationally tractable. It is rich enough to represent different types of domain-
specific and general knowledge, generic enough to represent different types of arguments,
and compliant with the technological standards of data and argument interchange on the
Web. Following, we provide a general view of the ArgCBRonto ontology for the argumenta-
tion framework proposed in this paper. Focussing on the concepts that define the knowledge



10 Stella Heras et al.

resources presented in Section [2] The complete specification of the ontology is publicly
available at users.dsic.upv.es/~vinglada/docs.

In the top level of abstraction, the terminological part of the ontology distinguishes
among several disjoint concepts. These include the following concepts: Case, which is the
basic structure used to store the argumentation knowledge of agents; Case Component, which
represents the usual parts that cases have in CBR systems; and ArgumentationScheme, which
represents the argumentation schemes that the framework has.

Case C Thing Case C —CaseComponent
CaseComponent C Thing  CaseComponent C” —ArgumentationScheme
ArgumentationScheme T Thing ~ ArgumentationScheme C —Case

As pointed out above, there are two disjoint types of cases, domain-cases and argument-
cases.

ArgumentCase C Case  DomainCase C Case ArgumentCase _ ~DomainCase

Cases have the same three possible types of components that usual cases of CBR systems
have: the description of the state of the world when the case was stored (Problem); the
conclusion of the case (Solution); and the explanation of the process that gave rise to this
conclusion (Justification). These concepts are disjoint.

Problem T CaseComponent Solution © CaseComponent Justification C
CaseComponent
Problem T —Solution  Solution C —Justification —Problem T —Justification

Domain-cases have the usual problem, solution, and justification parts.

However, argument-cases have a more specialised description for these components (Ar-
gumentProblem, ArgumentSolution, and ArgumentJustification), which includes an extended
set of properties.

Argument Problem T Problem ArgumentSolution C Solution ArgumentJustification C
Justification

ArgumentCase T YhasArgument Problem.Argument Problem

ArgumentCase T YhasArgumentSolution.ArgumentSolution

ArgumentCase T VYhasArgumentJustification. ArgumentJustification

Cases also have a unique identifier ID and a creation date as properties, with their cor-
responding range and domain.

T C VhasID.Integer T TV hasID~.(Case LI SocialEntity U Value LI Argument L
ArgumentationScheme L PremiseﬂT C V hasCreationDate.Date T C VhasCreationDate™ .(Case
LI ArgumentationScheme)?

As indicated previously, argumentation schemes represent stereotyped patterns of com-
mon reasoning in the application domain where the framework is implemented. Each argu-
mentation scheme consists of a set of premises, a conclusion drawn from these premises,
and a set of critical questions that represent potential attacks to the conclusion supported
by the scheme. These critical questions can be classified as presumptions that the proponent
of the argumentation scheme has made or exceptions to the general inference rule that the
scheme represents [28]). In the case of pressumptions, the proponent has the burden of proof
if the critical question is asked, whereas in the case of exceptions the burden of proof falls
on the opponent that has questioned the conclusion of the scheme.

4 Note that this property has several concepts of the ArgCBRonto ontology as domain, some of which will
be introduced later in this article.



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 11

ArgumentationScheme T T hing
ArgumentationScheme T VhasPremise.Premise ArgumentationScheme T YhasConclusion.Conclusion
ArgumentationScheme T VhasPresumption.Premise ArgumentationScheme C VhasException.Premise

In addition, for each argumentation scheme, the ArgCBROnto ontology stores informa-
tion about its unique ID, its title, its creation date, and its author.

T C VargTitle.String T T VargTitle™ .ArgumentationScheme
T C VcreationDate.Date T C VcreationDate™ .ArgumentationScheme
ArgumentationScheme T VhasAuthor.Author

As explained in Section [2} arguments in our framework can be generated by using
domain-cases, argument-cases, and argumentation schemes. In the ArgCBRonto ontology,
arguments have a conclusion, a promoted value, and a support set. They also have a unique
identifier ID:

Argument T Thing SupportSet C T hing
Argument C VhasConclusion.Conclusion Argument T ¥ promotesValue Value
Argument T VhasSupportSet.SupportSet

In the ArgCBROnto ontology, the elements of the support set are represented with the
following properties:

SupportSet T VhasPremise.Premise

SupportSet T VhasDomainCase.DomainCase SupportSet CVhasArgumentCase. ArgumentCase
SupportSet T VhasArgumentationScheme.ArgumentationScheme

SupportSet C YhasPresumption.Premise SupportSet C YhasException.Premise

SupportSet T VhasDistinguishingPremise.Premise SupportSet CYhasCounterExample.Case

The argument-cases are the main structure that we use to implement our framework and
to computationally represent arguments in agent societies. Also, their structure is generic
and domain-independent. However, as pointed out above, the structure of domain-cases is
completely domain-dependent, and we assume that we have a specific ontology to represent
them in each application domain. Therefore, we focus the remainder of this section on the
ontological description of argument-cases.

Argument-cases have two main objectives: 1) they can be used by agents as knowledge
resources to generate new arguments and to select the best position to put forward in view
of past argumentation experiences; and 2) they can be used to store new argumentation
knowledge that agents gain in each dialogue, improving the agents’ argumentation skills.

Section [4] shows the structure of an argument-case in our example application domain.
The argument-cases have three main parts: the description of the problem that the case rep-
resents, the solution applied to this problem, and the justification of why this particular
solution was applied. An argument-case stores the information about a previous argument
that an agent posed in a certain step of a dialogue with other agents.

Argument-case Problem:

The problem description has a domain context that consists of the premises of the argument
and that represents the context of the domain where the argument was put forward. Each
premise has a unique identifier ID, a name, and a content, which can be of several types
depending on the application domain.



12 Stella Heras et al.

Context T Thing DomainContext © Context Problem T YhasDomainContext.DomainContext
Premise C Thing

T C YhasName.String T C VhasName™ .Premise

T E VhasContent . Type T C VhasContent™ .Premise

In addition, if we want to store an argument and use it to generate a persuasive argument
in the future, the features that characterise the audience of the previous argument (the social
context) must also be kept. Therefore, we have two disjoint types of contexts in our ontology,
which are the usual domain context and the social context.

SocialContext = Context
DomainContext = —SocialContext Argument Problem T VhasSocialContext.SocialContext

For the definition of the social context of arguments, we store the social information
about each social entity related to the argument in the argument-case. This social entity can
be an agent (either the proponent of the argument or the opponent to which the argument is
addressed) or the group to which the agent belongs.

SocialEntity C Thing
Agent T SocialEntity Group T SocialEntity Agent T —~Group

For the sake of simplicity, in this paper, we assume that in each step of the dialogue,
one proponent agent generates an argument and sends it to one opponent agent that belongs
to its same group. However, either the proponent or the opponent’s features could represent
information about agents that act as representatives of a group and any agent can belong to
different groups at the same time. Therefore, the social context of argument-cases includes
information about the proponent and the opponent of the argument (which can be an agent or
a group) and information about their group. Also, groups are formed by at least two agents.

SocialContext T VhasProponent.(AgentIGroup) SocialContext CVhasOpponent.(Agent LI
Group)

SocialContext C YhasGroup.Group

Group T VYhasMember.Agent Group "> 2hasMember

Specifically, each social entity of the argument-case has a unique /D that identifies it in
the system and the role that the agent or the group was playing when it sent or received the
argument (e.g., trade unionist, business manager, etc.). These rose should not be confused
with the role of proponent and opponent from the argumentation perspective.

T E YhasRole.String T T VhasRole™ .Social Entity

Moreover, if known, we also store the preferences of each agent or group over the pre-
defined set of general values in the system (e.g., security, solidarity, savings, etc.). These
preferences (ValPref) affect the persuasive power of the proponent’s argument over the op-
ponent’s behaviour. In the case of the group, we use this feature to store the values that the
group can impose on its members if the conditions of the domain require it.

Value C Thing ValPref T Thing
ValPref C YhasPreferred.Value SocialEntity C YhasValPref.ValPref

Finally, the dependency relation between the proponent’s role and the opponent’s role
is also stored in the social context of the argument-cases. Therefore, in our ArgCBRonto
ontology, we have three types of dependency relations:

T C VhasDependencyRelation.(Power ) Authorisation Charity)
T C YhasDependencyRelation™ .SocialContext



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 13

Solution:

The conclusion of the case (for both domain-cases and argument-cases), and the value pro-
moted in this specific situation are stored in the solution part.

Conclusion T Thing
Solution T YhasConclusion.Conclusion Solution T Y promotesValue.Value

For argument-cases we have a more specialised description for the solution part (Ar-
gumentSolution). This includes the argument type that defines the method by which the
conclusion of the argument was drawn is stored. By default, we do not assume that agents
have a pre-defined set of rules to infer deductive arguments from premises, which is difficult
to maintain in open MAS. In our framework, agents have the following ways of generating
new arguments: Presumptive arguments can be generated by using the premises that de-
scribe the problem to solve and an argumentation scheme whose premises match them; and
Inductive arguments can be generated by using similar argument-cases and/or domain-cases
that are stored in their case-bases.

ArgumentSolution T Solution
T C VhasArgumentType.(Inductive | Presumptive) T C VhasArgumentType™ .ArgumentSolution

Moreover, the solution part of the argument-cases stores the information about the ac-
ceptability status of the argument at the end of the dialogue. This feature shows if the ar-
gument was deemed acceptable, unacceptable or undecided in view of the other arguments
that were put forward during the dialogue.

T C VhasAcceptabilityStatus.(Acceptable LI Unacceptable| ) Undecided)
T C YhasAcceptabilityStatus™ .ArgumentSolution

Regardless of the final acceptability status of the argument, the information about the
possible attacks that the argument received is also stored in the solution part of the argument-
case. These attacks could represent the justification for an argument to be deemed unaccept-
able or else reinforce the persuasive power of an argument that, despite being attacked, was
finally accepted. Argument-cases can store different types of attacks, depending on the type
of argument that they represent: for presumptive arguments, critical questions (presumptions
or exceptions) associated with the scheme [32] are stored; and for inductive arguments, as
proposed in [6]], either distinguishing premises) or counter-examples are stored. Therefore,
the ArgCBROnto ontology represents the different types of attacks that arguments can re-
ceive as follows:

ArgumentSolution T YhasPresumption.Premise ArgumentSolution CVhasException.Premise
ArgumentSolution T VhasDistinguishing Premise.Premise
ArgumentSolution C YhasCounterExample.Case

Justification:

In the ArgCBROnto ontology, the justification part of a case stores a description that can ex-
plain why this particular solution was applied to solve the case and the final results achieved.

T C VhasDescription.String T T YhasDescription™ Justification



14 Stella Heras et al.

In the special case of argument-cases, the justification specialises in an ArgumentJustifi-
cation, which stores the information about the knowledge resources that were used to gener-
ate the argument represented by the argument-case (e.g., the set of argumentation schemes
in presumptive arguments, the set of cases in inductive arguments, and both sets in mixed
arguments).

ArgumentJustification T Justification
ArgumentJustification T Y hasArgumentationScheme.ArgumentationScheme
ArgumentJustification TV hasCase.Case

In addition, the justification of each argument-case has an associated dialogue-graph
that represents the dialogue where the argument was put forward. The same dialogue graph
can be associated with several argument-cases, and an argument-case can be associated to
several graphs. Each dialogue graph has a root and a set of nodes, which we call argument
nodes. An argument node has an argument-case, a parent argument node, and a child ar-
gument node. Thus, the ArgCBROnto ontology represents the sequence of arguments that
were put forward in a dialogue, storing the complete conversation as a directed graph that
links argument-cases. This graph can be used later to improve the efficiency of argumen-
tation dialogues, for instance, by selecting those arguments that in the past led to quicker
agreement processes in similar situations. Alternatively, opponent moves in a dialogue (the
arguments that the opponent is going to present) could be inferred by looking at a similar
previous dialogue with the same opponent.

DialogueGraph T Thing ArgumentNode T Thing ArgumentNode T VhasArgumentC.ArgumentCase
ArgumentNode T YhasParent ArgumentNode ArgumentNode T NVhasChild.ArgumentNode
DialogueGraph T VhasRoot . ArgumentNode DialogueGraph C”VhasNode.ArgumentNode
ArgumentJustification C VYhasDialogueGraph.DialogueGraph

Following a CBR methodology, the proposed knowledge resources allow agents to auto-
matically generate, select, and evaluate arguments. However, the specification of this case-
based reasoning process is out of the scope of this paper and was presented in [16]. Here
we have focused on defining the knowledge representation formalism that agents can use
to represent arguments and the information related to argumentation in order to automati-
cally manage this information efficiently. The argument-case structure presented is flexible
enough to represent different types of arguments and their associated information. Also, the
KI approach that is followed allows semantic reasoning with the concepts that represent the
cases. Nevertheless, the value of some features in argument-cases and domain-cases might
remain unspecified in some domains. For instance, in some open MAS, the preferences over
values of other agents might not be known previously, although agents could try to infer the
unknown features by using CBR adaptation techniques [21]]. This and other open questions
will be discussed in Section [6]

4 Example Scenario

To exemplify the use of our framework, let us develop the running example for the call centre
domain that is used throughout this paper. Our scenario consists of a group of technicians
that are represented by software agents in a MAS that must provide technical support to
solve the problems reported by the customers of a call centre. We have different levels of
technicians, each of which has different problem-solving knowledge and responsibilities:



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 15

basic operator agents that provide first-level support to any problem reported to the system;
expert agents that have higher level of expertise to provide specialised support to solve
complex problems in specific domains; and manager agents that carry out managerial duties
among the support services that the centre provides to different customers.

Therefore, we consider an agent society S to be composed of call-centre technicians that
have the following dependency relations with each other:

— Operator <zh . Operator; Operator </§mh Expert; Operator <§30W Manager
- Expert <}, v Expert; Expert <3, , Manager
— Manager <g,, . Manager

Each technician can have its own values (e.g., quality, speed, savings), its own preferences
over them, and also belong to different groups intended to solve specific types of problems
or be assigned to specific projects. These groups can also have their own social values.

To guarantee high-quality service, the company subscribes to Service Level Agreements
(SLAs) with the customer, where the different characteristics of the services to be provided
are specified (e.g., the maximum time to provide a response for a request). In case of breach
of the agreements, the company is penalised economically. We also assume that each tech-
nician has a helpdesk application with an underlying MAS to manage the large number of
customer support requests that the call centre receives. This helpdesk registers the request
information, tracks the request over its resolution process, warns when the maximum time
to solve the request is about to expire, and helps the technician to solve the request. To this
end, each agent of the MAS includes a domain CBR module and an argumentation CBR
module that perform the generation, selection, and evaluation of positions and arguments as
proposed in [[17]. Hence, complex problems can be solved by a group of agents that argue
to reach an agreement over the best solution to apply by using their helpdesks, which are in-
terconnected in the company intranet. Therefore, each agent represents a technician and has
its own knowledge resources to generate a solution for the problem that it receives. Thus,
the agreement process consists of both an individual phase by which an agent individually
generates, selects, and proposes its position as the best solution to apply and a collaborative
phase by which the agent engages in an argumentation dialogue with other agents and tries
to persuade them to accept its position.

For purposes of clarity, in this example, all agents belong to the same group (which
provides the customer support service Hardware Support (HS)). In this setting, suppose that
two agents that play the role of operators, Stella and Vicente are arguing to decide the best
solution for a problem Py, that reports a print failure in a brl myPrint printer purchased
in 2012, which is not connected to the network, jams the paper, and does not show any error
message in the display. Also, the Hardware Support (HS) service is supervised by an expert
agent and this expert by a manager agent that plays the role of the company’s director.

The value preference order of the group promotes savings (SA) over quality (QU) and
speed (SP) (i.e., it promotes saving money in each service over providing high-quality solu-
tions or speed responses, SP<QU<SA) and commands a dependency relation of charity be-
tween two operators and a power relation between a manager and an operator. Stella prefers
quick solutions over high-quality solutions and savings (SA<QU<SP), Vicente prefers to
provide high-quality solutions over quick responses and savings (SA<SP<QU) and, by de-
fault, the expert and the manager have a value preference order for the group HS (SP<QU<SA).
Also, all agents have their own knowledge resources (domain-cases case-base, argument-
cases case-base, and argumentation schemes ontology).

The premises of the domain context would store data that characterises the type of prob-
lems that can be reported to the customer service that is contracted. These data are premises



16 Stella Heras et al.

that are specified in the SLA of the service. For instance, the premises may represent the
printer brand, the printer model, the year of purchase, whether it is a network printer,
whether it produces a paper jam, whether it shows an error message in the display, the
type of paper that the printer is using, the type of problem to be dealt with, etc.

In the first step of the argumentation process, both operators will search their case-
bases of domain-cases (DCstella and DCvicente, respectively) to generate their positions.
To query the case-bases, the problem is formatted as a target domain-case without a solution
(i.e., a ticket), represented in the OWL specification of a ArgCBRonto asﬂ

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#Ticket">
<rdf:type rdf:resource="ArgCBRonto.owl#DomainCase"/>
<Premise rdf:resource="ArgCBRonto.owl#Brand_brl"/>
<Premise rdf:resource="ArgCBRonto.owl#Model_myPrint"/>
<year rdf:datatype="XMLSchema#integer">2012</year>
<Premise rdf:resource="ArgCBRonto.owl#NetworkPrinter_no"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperJam_yes"/>
<Premise rdf:resource="ArgCBRonto.owl#ErrorMessage_no"/>
<ProblemType rdf:resource="ArgCBRonto.owl#PrinterErrors"/>
<Solution rdf:resource="ArgCBRonto.owl#"/>

</owl:NamedIndividual>

Then, let us suppose that Stella has queried her domain-cases case-base by using an
OWL semantic reasoner and has found a domain-case DCstella; that represents a problem
of the same type that was solved by opening the lid 1, removing the jammed paper, and
resetting the device:

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#DCstellal">
<rdf:type rdf:resource="ArgCBRonto.owl#DomainCase"/>
<Premise rdf:resource="ArgCBRonto.owl#Brand_brl"/>
<Premise rdf:resource="ArgCBRonto.owl#Model_myPrint"/>
<year rdf:datatype="XMLSchema#integer">2012</year>
<Premise rdf:resource="ArgCBRonto.owl#NetworkPrinter_no"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperJam_yes"/>
<Premise rdf:resource="ArgCBRonto.owl#ErrorMessage_no"/>
<ProblemType rdf:resource="ArgCBRonto.owl#PrinterErrors"/>
<Solution rdf:resource="ArgCBRonto.owl#S1"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#S1">
<rdf:type rdf:resource="ArgCBRonto.owl#Solution"/>
<solutionID rdf:datatype="XMLSchema#integer">1</solutionID>
<Conclusion rdf:datatype="XMLSchema#string">0Open the 1lid 1,
remove the jammed paper and reset</conclusion>
<Value rdf:datatype="XMLSchema#string">SP</Value>
</owl:NamedIndividual>

3 In this example, the general ArgCBRonto ontology has been instantiated in our concrete call-centre
domain application. For purposes of simplicity, not all posile attributes of OWL instances are shown.



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 17

Therefore, Stella can generate position posg with this conclusion, which, for instance,
promotes its most preferred value (speed

In addition, Vicente has also retrieved a similar domain-case (DCvicente), which shows
how the same problem was solved by telling the customer that recycled paper should not be
used with this printer model. In these cases, Vicente is assuming the truth of an extra premise
(Type of Paper) that specifies that the printer is loaded with recycled paper. Therefore, Vi-
cente can generate the position posyicenre, promoting its most preferred value (quality) by
re-using the solution of this domain-case:

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#DCvicentel">
<rdf:type rdf:resource="ArgCBRonto.owl#DomainCase"/>
<Premise rdf:resource="ArgCBRonto.owl#Brand_ brl"/>
<Premise rdf:resource="ArgCBRonto.owl#Model _myPrint"/>
<year rdf:datatype="XMLSchema#integer">2012</year>
<Premise rdf:resource="ArgCBRonto.owl#NetworkPrinter_no"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperJam_yes"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperType_recycled"/>
<ProblemType rdf:resource="ArgCBRonto.owl#PrinterErrors"/>
<Solution rdf:resource="ArgCBRonto.owl#S2"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#S2">
<rdf:type rdf:resource="ArgCBRonto.owl#Solution"/>
<solutionID rdf:datatype="XMLSchema#integer">2</solutionID>
<Conclusion rdf:datatype="XMLSchema#string">Do not use recycled paper with
this printer model</Conclusion>
<Value rdf:datatype="XMLSchema#string">QU</Value>
</owl:NamedIndividual>

Furthermore, if in this specific domain context we have a logic property that specifies
that the PrinterErrors problem type can be viewed as sub-class of the HardwareErrors prob-
lem type:

PrinterErrors C HardwareErrors

an OWL semantic reasoner would infer that instances belonging to a certain class will
also be inferred to belong to all its super-classes and thus, the following DCvicente; domain-
case would be also retrieved to generate the position posyicente-

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#DCvicente2">
<rdf:type rdf:resource="ArgCBRonto.owl#DomainCase"/>
<Premise rdf:resource="ArgCBRonto.owl#Brand_br1"/>
<Premise rdf:resource="ArgCBRonto.owl#Model_myPrint"/>
<year rdf:datatype="XMLSchema#integer">2012</year>
<Premise rdf:resource="ArgCBRonto.owl#NetworkPrinter_no"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperJam_yes"/>
<Premise rdf:resource="ArgCBRonto.owl#ErrorMessage_no"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperType_recycled"/>

6 1In this example, we assume that the positions and arguments of an agent promote its most preferred value
by default.



13 Stella Heras et al.

<ProblemType rdf:resource="ArgCBRonto.owl#HardwareErrors"/>
<Solution rdf:resource="ArgCBRonto.owl#52"/>
</owl:NamedIndividual>

Once the agents have proposed their positions, the operator Stella acknowledges that
Vicente has proposed a different solution and starts the argumentation dialogue to solve
Pyrine by asking Vicente for a justification of its position. Therefore, Stella asks Vicente to
provide an argument for supporting posyicente- Assuming that all operators in the call centre
are willing to collaborate, Vicente can put forward the following support arguments by using
different combinations of the knowledge resources that it has used to generate its position:

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SAvicentel">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSetl"/>
<Conclusion rdf:datatype="XMLSchema#string">S2</Conclusion>
<Value rdf:datatype="XMLSchema#string">QU</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet1">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<DomainCase rdf:resource="ArgCBRonto.owl#DCvicentel"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SAvicente2">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSet2"/>
<Conclusion rdf:datatype="XMLSchema#string">52</Conclusion>
<Value rdf:datatype="XMLSchema#string">QU</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet2">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<DomainCase rdf:resource="ArgCBRonto.owl#DCvicente2"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SAvicente3">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSet3"/>
<Conclusion rdf:datatype="XMLSchema#string">S2</Conclusion>
<Value rdf:datatype="XMLSchema#string">QU</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet3">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<DomainCase rdf:resource="ArgCBRonto.owl#DCvicentel"/>
<DomainCase rdf:resource="ArgCBRonto.owl#DCvicente2"/>
</owl:NamedIndividual>

where the support set includes the premises of the Py, problem description (not
shown in the listing for the purpose of simplicity) and the domain-case(s) used by Vicente to
generate its position. From these arguments, Vicente must select the one that is going to be



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 19

used to answer Stella’s challenge. To perform this selection, it can query its argument-cases
case-base to search for information about previous argumentation dialogues that could help
it to select the best support argument to put forward, in view of what happened in a similar
situation in the past. Then, let us assume that Vicente finds an argument-case ACvicentel
in its case-base that represents a similar previous argumentation experience with Stella,
where it presented DCvicente; to justify its position and Stella attacked the argument with a
distinguishing premise attack on the premise Error Message since it appears in the charac-
terisation of the original problem but not on the problem description of DCvicente;:

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#ACvicentel">
<rdf:type rdf:resource="ArgCBRonto.owl#ArgumentCase"/>
<Premise rdf:resource="ArgCBRonto.owl#Brand_brl"/>
<Premise rdf:resource="ArgCBRonto.owl#Model_myPrint"/>
<year rdf:datatype="XMLSchema#integer">2012</year>
<Premise rdf:resource="ArgCBRonto.owl#NetworkPrinter_no"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperJam_yes"/>
<Premise rdf:resource="ArgCBRonto.owl#PaperType_recycled"/>
<ProblemType rdf:resource="ArgCBRonto.owl#HardwareErrors"/>

<Proponent rdf:resource="ArgCBRonto.owl#Vicente"/>

<Opponent rdf:resource="ArgCBRonto.owl#Stella"/>

<Group rdf:resource="ArgCBRonto.owl#HS"/>

<DependencyRelation rdf:resource="ArgCBRonto.owl#Charity"/>
<ArgumentSolution rdf:resource="ArgCBRonto. owl#S2"/>

<AcceptabilityStatus rdf:resource="ArgCBRonto.owl#Uncacceptable"/>
<DistinguishingPremise rdf:resource="ArgCBRonto.owl#ErrorMessage_no"/>
</owl:NamedIndividual>

As a result of this attack, the support argument that Vicente presented was rebutted and
deemed unacceptable. With this information, Vicente can infer that Stella could make the
same type of attack if Vicente uses DCvicente; to justify its position and hence, Vicente
would select SAvicente, as the best support argument to propose in view of its previous expe-
rience. In this case, Stella cannot attack Vicente’s support argument (and hence, its underly-
ing position) by posing a counter-example for DCvicente, with DCstellay, since DCstella;
does not subsume DCvicente;. Thus, assuming that Stella does not have more information
in its knowledge resources to generate an attack argument, Stella just preliminarily accept
Vicente’s position. Note that although this position contradicts Stella’s position, the fact that
Stella accepts posyicente does not necessarily mean that Stella has to withdraw its position,
but posg.1, remains available until it is not rebutted by another agent. In this example, Stella
started the argumentation by challenging Vicente’s position. Hence, the target of discussion
iS POSyicente and not posgeyi4, Thus, the result of the dialogue started by Stella has nothing to
do with Stella’s position.

In the next step of the argumentation process, Vicente could challenge Stella’s position
by asking Stella for a justification. In its turn, Stella can generate the support argument
SAstella to justify Stella’s position with the domain-case DCstella:

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SAstellal">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSetd"/>



20 Stella Heras et al.

<Conclusion rdf:datatype="XMLSchema#string">S1</Conclusion>
<Value rdf:datatype="XMLSchema#string">SP</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet4">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<DomainCase rdf:resource="ArgCBRonto.owl#DCstellal"/>
</owl:NamedIndividual>

Now, Vicente would realise that its domain-case DCvicente, subsumes DCstella; and
proposes a different solution, so Vicente attacks SAstella; with this counter-example:

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#AAvicentel">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSet5"/>
<Conclusion rdf:datatype="XMLSchema#string">notS1</Conclusion>
<Value rdf:datatype="XMLSchema#string">QU</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet5">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<CounterExample rdf:resource="ArgCBRonto.owl#DCvicente2"/>
</owl:NamedIndividual>

This attack argument promotes the quality of solutions (QU) over the resolution speed
(SP), which contradicts the preference order over values of Stella. Therefore, provided that
the charity dependency relation between both operators does not oblige Stella to accept
arguments from Vicente by default, this attack does not succeed from the Stella’s point of
view. If no more positions or arguments are provided by these and other agents of the call
centre, both posg.ij, and posyicense could be considered to be selected as the best solution to
solve Ppinser-

In a normal situation, the expert agent in charge of the hardware support service would
make the final decision. Thus, the expert would select posyicense as the best solution to pro-
vide to the customer since it promotes the second most preferred value of the group that
attends the support service (recalling, SP<QU<SA). However, let us assume that the SLA
contracted by the customer in the hardware support service is about to be breached. In that
case, if the expert has an argumentation scheme AS1 that changes the value preference or-
der of a group of operators to QU<SA<SP in this exceptional situation, the operators of
this group must provide quick solutions for the problems that they receive, even if their
individual value preferences give priority to high-quality solutions.

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#AS1">

<rdf:type rdf:resource="ArgCBRonto.owl#ArgumentationScheme"/>

<Premise rdf:resource="ArgCBRonto.owl#
exception-value-preference_quality<speed"/>

<Premise rdf:resource="ArgCBRonto.owl#
approaching-deadline-SLA-exception_yes"/>

<Conclusion rdf:resource="ArgCBRonto.owl#
value-preference_quality<speed"/>

<Exception rdf:resource="ArgCBRonto.owl#



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 21

Xproject-approaching-deadline-SLA-exception_no"/>
</owl:NamedIndividual>

Given the argumentation scheme AS1, the expert agent can also generate a support ar-
gument SAexpert1 for Stella’s position, promoting the most preferred value of its group
(SP):

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SAexpertl">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSet6"/>
<Conclusion rdf:datatype="XMLSchema#string">S1</Conclusion>
<Value rdf:datatype="XMLSchema#string">SP</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet6">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<ArgumentationScheme rdf:resource="ArgCBRonto.owl#AS1"/>
</owl:NamedIndividual>

In this case, Vicente’s agent cannot attack this support argument, since the expert has an
authorisation dependency relation over it and hence, the expert would select posg.j;, as the
final solution to propose to the customer. However, note that the argumetation scheme AS1
has a critical question of the type exception that launches an issue against its conclusion.
This exception captures the fact that for certain projects, approaching the deadline of a SLA
is not considered as an exceptional case, so the conclusion of AS1 does not apply. Now, let
us assume that the manager of the company knows that the Hardware Support (HS) service
is within these special case of projects where reaching to deadlines should not change the
value preference order of the group that is working on it. Thus, the manager can attack the
support argument SAexpert1 with an atack argument AAmanagerl1 that raises the exception
to the argumentation scheme AS1 and promotes the original value of the group (SA):

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#AAmanagerl">
<rdf:type rdf:resource="ArgCBRonto.owl#Argument"/>
<SupportSet rdf:resource="ArgCBRonto.owl#SupportSet7"/>
<Conclusion rdf:datatype="XMLSchema#string">notS1</Conclusion>
<Value rdf:datatype="XMLSchema#string">SA</Value>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#SupportSet7">
<rdf:type rdf:resource="ArgCBRonto.owl#SupportSet"/>
<CriticalQuestion rdf:resource="ArgCBRonto.owl#Exceptionl"/>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="ArgCBRonto.owl#Exceptionl">
<rdf:type rdf:resource="ArgCBRonto.owl#Exception"/>
<Premise rdf:resource="ArgCBRonto.owl#
HSproject-approaching-deadline-SLA-exception_no"/>
</owl:NamedIndividual>

Then, as the power dependency relation of the manager over the expert and the operators
make this attack to succeed, the value preference order of the group HS would remain un-
changed. Therefore, if no new positions or arguments are presented, the expert agent would



22 Stella Heras et al.

select posyicente as the best solution to provide to the customer, since it promotes the second
most preferred value of the group that attends the support service (QU).

This example shows the way in which agents can automatically use the knowledge re-
sources of the framework to generate, select, and evaluate positions and arguments. Also,
it takes into account the social context of agents to perform these activities. By sharing the
ArgCBROnto ontology, heterogeneous agents engaged in an argumentation dialogue like
this could convey and understand the information of the positions and arguments generated.
Our argumentation framework has also been applied to manage the water resources of a
river basin [[15]].

5 Related Work

Modeling how agents can reach agreements is a hot topic in MAS, and several argumentation-
based approaches have been developed [20][2][26][12](37]. A main difference between
these works and our proposal is that we follow a case-based reasoning approach instead
of deductive or abductive reasoning based on rules. In open multi-agent argumentation sys-
tems, the arguments that an agent generates to support its position can conflict with argu-
ments of other agents and these conflicts are potentially solved by means of argumentation
dialogues between them (since a dialogue may still end in disagreement). Most argumenta-
tion frameworks and systems produce arguments by applying a set of inference rules. For
instance, rule-based systems require eliciting an explicit model of the domain. In open MAS,
the domain is highly dynamic and the set of rules that model it is difficult to specify in ad-
vance, even if these rules are domain-specific inference rules that are intended to represent
domain knowledge. However, tracking the arguments that agents put forward in argumen-
tation processes can be relatively simple. Therefore, these arguments can be stored as cases
that are codified in a specific case representation language that different agents are able to
understand. This approach makes possible to develop case-bases reducing the knowledge-
acquisition bottleneck. Reasoning with cases is especially suitable when there is a weak
or even unknown domain theory, and acquiring examples encountered in practice is easy.
With case-bases, agents are able to perform lazy learning processes on argumentation in-
formation. For complex and highly dynamic systems, this is easier than using a rule-based
system.

Among rule-based argumentation frameworks, our approach is close to the one followed
by the ASPIC framework [27] and the subsequent ASPIC+ framework, specifically its ex-
tension to legal case-based reasoning [29]]. In our framework, arguments can be constructed
by aggregating different support and attack elements, which are structures that support in-
termediate conclusions that lead to the conclusion of the argument itself. These elements
can be viewed as the case-based version of the sub-arguments of the ASPIC framework.
Inferences in our framework are based on previous cases, on argumentation schemes, and
on premises (the ones that are part of the cases and argumentation schemes that match the
problem to solve) instead of being based on strict or defeasible rules. These elements can
be gathered and added to the agents’ knowledge bases during the development and after
the deployment of the system. Then, to make inferences, a case-based reasoning algorithm
determines in execution time which of these knowledge resources can be reused in the cur-
rent situation to generate an argument to support or attack a specific position [[16]. However,
ASPIC needs to create an explicit model of the domain before making any inference, with
specific strict rules, defeasible rules and axioms in its knowledge-base to be able to gener-
ate each argument. For instance, in our running example, each premise of the domain-case



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 23

DCstella; could be viewed as a factor in ASPIC+ and we would have to determine in ad-
vance whether they support the solution provided by Stella or not. Then, we would need
to have a set of rules or axioms in the knowledge base that specifically link each premise
of DCstella; as support element for the conclusion S1. Furthermore, if we need to add a
new rule to ASPIC+, the system has to be checked for conflicting rules and redundant rules.
In our framework, an addition or deletion of a case from the case-base does not need any
further checking or debugging, although we acknowledge that while it does not affect the
system’s operation, it may have an impact on the outcome of the system.

Also, an important difference between the definition of argument of our case-based ap-
proach and the ASPIC rule-based approach lies in the defeasible nature of all elements of
our support set, except from certain premises, as explained below. By contrast, ASPIC argu-
ments can also be constructed by chaining strict inference rules that give rise to indefeasible
arguments. Intuitively, our arguments cannot be attacked on the support set premises that
match the description of the problem to solve, but only on those extra premises that repre-
sent the context of the domain where the argument was put forward and that do not appear
in the description of the problem. Therefore, the premises that describe the problem to solve
can be considered as axiom premises as defined in the ASPIC framework [27, Definition
3.5]. Similarly, the extra premises can be considered as equivalent to the ordinary premises
of the ASPIC framework, and whether or not the attacks on them result in defeats, depends
on the defeat relation specified in the argumentation framework. For instance, in DCvicente,
Paper Type would be considered as an ordinary premise and the rest of premises as axioms.
Alternatively, our arguments can be attacked based on those premises that appear in the de-
scription of the problem to solve but have not been considered to draw the conclusion of
the argument (they do not appear in the support set of the argument). Again, compared with
the ASPIC framework, these premises can be considered as assumptions, and attacks on
them always succeed. For instance, the premise Error Message would be an assumption for
DCvicentej. In addition to the attacks on premises by means of distinguishing premises, our
framework allows attacks on cases and argumentation schemes, which can be performed by
means of counter-examples and critical questions, respectively.

Another important difference between our proposal and the ASPIC framework is that we
use the OWL-DL restricted view of the contrariness relation between concepts and instances,
since it follows the way of reasoning that case-based reasoning systems use. As pointed out
in Section[2] OWL-DL does not assume closed-world reasoning with negation as failure; it
uses open-world reasoning with negation as unsatisfiability. Therefore, something is false
only if it can be proved to contradict other information in the ontology. This implies that
two concepts are contradictory if and only if they are specifically declared as such with
the owl property complementOf. Similarly, two individuals are contradictory if and only if
they are specifically declared as such with the owl property differentFrom. Therefore, in our
running example S and S2 need to be specifically declared as such to be considered as
contradictory. This differs from the contrariness relation declared in the ASPIC framework,
which also captures negation as failure.

Also, as pointed out in Section [2} we consider two types of attacks over arguments,
rebuts and undercuts. Alternatively, the ASPIC framework considers a third kind of attack,
the undermining attack. In our framework, this attack is represented by the undercutting
attack of type 2, raised by putting forward a distinguishing premise (in the running example,
this was the type of attack represented in the argument-case ACvicentey).

Finally, the dependency relation over roles Dependencys, and the agent’s preference
relation over values Valpref,, defined in our framework establish an argument ordering
that is used to determine which attacks result in defeats. Thus, the argument ordering of our



24 Stella Heras et al.

cased-based framework for agent societies is based on pre-defined relations over roles and
on agents’ preferences over values instead of on strict and defeasible rules, as proposed in
27, Definition 3.10].

Another related work that first proposed the representation of argumentation informa-
tion using ontologies was [36]]. This work develops a format for argument interchange (AIF)
that can be used between argumentation tools and/or MAS. The ArgCBRonto ontology pre-
sented in this paper follows the AIF approach and extends the AIF ontology by defining
a specific language for case representation that facilitates case-based reasoning processes
over domain and argumentation information. Therefore, an argumentation system based on
our framework can interact with other systems that comply with the AIF standard. Since
elements of cases are specified by using an ontological case representation language, the
ArgCBROnto ontology, heterogeneous agents can understand the arguments interchanged
in the system by simply sharing our ontology.

In our case-based argumentation framework for agent societies, we endorse the view
of value-based argumentation frameworks [5], which stress the importance of the audience
and the values promoted by an argument in determining whether or not it is persuasive.
A related work on abstract argumentation scheme frameworks [3] combines argumentation
frameworks with argumentation schemes and makes use of the structure provided by the
schemes to guide dialogues and provide contextual elements of argument evaluation. How-
ever, these and most works on computational models of argument take a narrow view on
the argument structure. In fact, they are abstract frameworks that are aimed at studying the
properties of arguments, which enable evaluation with respect to the logical relations be-
tween arguments. In contrast to our framework, the actual structure of arguments and their
knowledge representation formalism are obviated. In addition, previous argumentation ex-
periences are not used to guide current argumentation processes such as that propose.

Other works use domain-dependent structures for the computational representation of
arguments. Most approaches for case-based argumentation in MAS (which use cases as
previous knowledge to manage arguments) have this domain dependency or centralise the
case-based argumentation abilities in a mediator agent (e.g., [31[],[24],[4]). One research
work that is close to the approaches on case-based argumentation is the work on experience-
based argumentation using association rules, presented as the PADUA protocol in [33]. This
work pools the opinions of several agents that have access to different datasets to predict
the classification of a new example. In subsequent research, the PADUA protocol has been
extended to allow multi-agent dialogues by proposing the PISA protocol [34][35]. In their
work, the authors tackle issues like the dynamic creation of a group, the selection of a group
leader and intra-group consultation to suggest moves. As in our approach, in this research
agents take advantage of previous experiences to solve a new problem, but the knowledge
gained from the argumentation process is not stored or used to improve the agents’ argu-
mentation skills. In addition, PISA and PADUA have been designed to solve classification
problems and have been not designed to solve any type of problem that can be characterised
by a set of features, which is the target of our research. Nevertheless, the extension of our
framework to allow agents to dynamically create groups and argue about the best move to
make as a group in each step of the dialogue still remains open for future work.

In addition, other works are devoted to the study of argumentation in social networks,
with a focus on the network topology (or the structure of the group) rather than on the
actual social dependencies between software agents or human users. An example of this
type is the work presented in [25], which investigates how argumentation processes among
a group of agents may affect the outcome of group judgments in prediction markets. Also,
an example on how argumentation can enhance dialogues in social networks can be found in



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 25

[[13]. However, the influence of the agent group and the social dependencies between agents
in the way agents can argue must be further investigated. For instance, an agent playing the
role of employee could accept arguments from an agent playing the role of project manager
that it would never accept in a different situation, such as playing the role of general manager.
Similarly, an agent representing a group of employees (playing the role of trade unionist) is
not expected to behave in the same way when arguing with an agent playing the role of the
employees’ representative than it does when arguing as an individual employee.

The research work presented in [18]][19] shows a novel, argumentation-based negotia-
tion framework that allows agents to detect, manage, and resolve conflicts that are related to
their social influences in a distributed manner within a structured agent society. This work
proposes a new argumentation scheme that captures how agents reason about influences
within a structured society. It provides a mechanism to use this scheme to identify a suit-
able set of social arguments, a language and a protocol to exchange these arguments, and
a decision-making functionality to generate these dialogues. However, it defines the social
context of agents with a set of roles that agents can play, a set of generic relationships over
them, and a set of weighted social commitments for each of the active relationships, with
no mention of values or preferences over them. A major difference between that proposal
and our argumentation framework is the main objective pursued. In their work, authors fo-
cus on solving conflicts regarding conflicting social commitments between agents, while our
framework enables argumentation to solve a generic problem by using previous experiences,
not only taking into account the social dependencies between agents but also taking into ac-
count their preferences over a set of values. In addition, the authors do not specify the types
of dependency relations that agents can have, leaving this concept as a generic relation. In
our framework, argumentation experience is stored and reused to support agents in making
decisions about the best argument to put forward in a specific situation. Agents belong to
a society that imposes dependency relations on them, so they are related via power, autho-
risation, or charity dependencies. Thus, the specific dependency relation between a pair of
agents plays an important role in deciding whether or not an argument posed in a past argu-
mentation dialogue can still be persuasive in a current situation (where, possibly, agents hold
a different dependency relation). For the time being, we do not deal with conflicts on depen-
dency relations between agents, but this is an interesting extension that opens a pathway for
future work.

6 Discussion

For purposes of simplicity, in the example proposed in this paper we have assumed that a
proponent agent addresses its arguments to an opponent of its same group, having complete
knowledge of the social context. However, either the proponent’s features or the opponent’s
features could represent information about agents that act as representatives of a group and
any agent can belong to different groups at the same time. In that case, another issue that
this research leaves open is the problem of solving conflicts between the values inherited
from the group (or from the different groups of the agent) and the agent’s individual values.
The decision about which values are preferred would depend on the application domain.
For instance, if the argumentation framework is implemented in a collaborative application
domain where agents pursue reaching the best agreement for the whole group, the group
values would be given priority over individual values.

Also for reasons of simplicity, the example does not show how agents can use the dia-
logue graphs that are associated to argument-cases in order to take strategic decisions about



26 Stella Heras et al.

which arguments are more suitable in a specific situation or about whether continuing with a
current argumentation dialogue is worthwhile. For instance, to improve efficiency in a nego-
tiation, an argumentation dialogue could be terminated if it is similar to a previous one that
did not reach an agreement. Alternatively, opponent moves in a dialogue could be inferred
by looking at a similar previous dialogue with the same opponent.

In addition, in real systems, some features of argument-cases may be unknown. For
instance, the proponent of an argument obviously knows its value preferences, and probably
knows the preferences of its group, but, in a real open MAS, it is unlikely to know the
opponent’s value preferences. However, the proponent might know the value preferences
of the opponent’s group or have some previous knowledge about the value preferences of
similar agents that play the same role as the opponent. If agents belong to different groups,
the group features might be unknown, but the proponent could use its experience with other
agents of the opponent’s group and infer them. In any case, by using a DL-reasoner, we
could make inferences over the the ontological representation of the data stored in the case-
base and cope with this lack of knowledge, although the reliability of the conclusions drawn
from previous experiences would be worse.

The actual algorithms for implementing the agents’ reasoning process and the interac-
tion protocol for interchanging arguments between agents have been published in [17] and
[16]]. The algorithms depend on the application domain and the design of the real system
that implements our argumentation framework. The interaction protocol defines the dia-
logue, commitment and termination rules, and the locutions that agents use to interchange
arguments. These locutions depend on the agents’ communication language and determine
the intention of the argument (e.g., pose an attack or ask for justifications), the argument’s
sender and receiver, the format of the argument’s content (e.g., if complete knowledge re-
sources or parts are sent), etc. Also, the process for posing critical questions depends on
the actual ontology of argumentation schemes that agents implement and the interaction
protocol that agents follow.

Finally, we acknowledge that due to the dynamism of the argumentation domain applied
to open MAS, cases can quickly become obsolete. In this research, we have followed the
basic approach for updating cases when a new case that is similar enough to an existing case
in the case-base must be added. However, this can give rise to databases that are too large
with obsolete cases that can hinder the performance of the entire system. Therefore, there is
an important opportunity here to investigate new methods for the maintenance of case-bases
in order to improve the adaptability of the framework.

7 Conclusions

The main contribution of this work consists on the proposal of a knowledge representation
formalism for a case-based argumentation framework that allows agents to argue in agent
societies, taking into account their roles, preferences over values and dependency relations.
The main advantages that our framework contributes over other existent frameworks are: 1)
the ability to represent social information in arguments; 2) the possibility of automatically
managing arguments in agent societies; 3) the improvement of the agents’ argumentation
skills; and 4) the easy interoperability with other frameworks that follow the argument and
data interchange web standards.

After that, we present the case-based argumentation framework that agents can use to
manage positions and arguments in a way that they are computable. The framework pro-
posed is formalised by defining the notion of argument, the logical language used to repre-



An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation 27

sent arguments, the concept of conflict between arguments and the notion of defeat between
arguments. Moreover, the knowledge resources of the framework allow agents to use pre-
vious argumentation experiences to enhance their argumentation skills. These knowledge
resources and the arguments that agents can interchange are ontologically defined in OWL-
DL by using an ontology called ArgCBROnto, which allow heterogeneous agents in an open
MAS to understand these concepts by sharing the ontology. An example scenario that shows
how our framework allows agents to automatically engage in argumentation dialogues in a
society taking into account the requirements identified has been also proposed. Finally, re-
lated work has been identified and compared with our proposal.

Acknowledgements This work is supported by the Spanish government grants [CONSOLIDER-INGENIO
2010 CSD2007-00022, TIN2011-27652-C03-01, and TIN2012-36586-C03-01] and by the GVA project [PROM-
ETEO 11/2013/019].

References

1. Amgoud, L.: An argumentation-based model for reasoning about coalition structures. In: 2nd Interna-
tional Workshop on Argumentation in Multi-Agent Systems, Argmas-05, pp. 1-12. Springer (2005)

2. Amgoud, L., Dimopolous, Y., Moraitis, P.: A unified and general framework for argumentation-based
negotiation. In: 6th International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS-07. IFAAMAS (2007)

3. Atkinson, K., Bench-Capon, T.: Abstract argumentation scheme frameworks. In: Proceedings of the 13th
International Conference on Artificial Intelligence: Methodology, Systems and Applications, AIMSA-
08, Lecture Notes in Artificial Intelligence, vol. 5253, pp. 220-234. Springer (2008)

4. Aulinas, M., Tolchinsky, P., Turon, C., Poch, M., Cortés, U.: Argumentation-based framework for in-
dustrial wastewater discharges management. Engineering Applications of Artificial Intelligence 25(2),
317-325(2012)

5. Bench-Capon, T., Atkinson, K.: Argumentation in Artificial Intelligence, chap. Abstract argumentation
and values, pp. 45-64. Springer (2009)

6. Bench-Capon, T., Sartor, G.: A Model of Legal Reasoning with Cases Incorporating Theories and Values.
Artificial Intelligence 150(1-2), 97-143 (2003)

7. Bulling, N., Dix, J., Chesievar, C.I.: Modelling coalitions: ATL + argumentation. In: Proceedings of the
7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS-08, vol. 2,
pp. 681-688. ACM Press (2008)

8. Chesiievar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G.,
Willmott, S.: Towards an Argument Interchange Format. The Knowledge Engineering Review 21(4),
293-316 (2006)

9. Diaz-Agudo, B., Gonzalez-Calero, P.A.: Ontologies: A Handbook of Principles, Concepts and Applica-
tions in Information Systems, Integrated Series in Information Systems, vol. 14, chap. An Ontological
Approach to Develop Knowledge Intensive CBR Systems, pp. 173-214. Springer (2007)

10. Dung, PM.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming, and N -person games. Artificial Intelligence 77, 321-357 (1995)

11. Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: an Organizational View of Multi-
Agent Systems. In: Agent-Oriented Software Engineering VI, LNCS, vol. 2935, pp. 214-230. Springer-
Verlag (2004)

12. Hadidi, N., Dimopolous, Y., Moraitis, P.: Argumentative Alternating Offers. In: 9th International Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS-10, pp. 441-448. IFAAMAS (2010)

13. Heras, S., Atkinson, K., Botti, V., Grasso, F., Julidn, V., McBurney, P.: How argumentation can enhance
dialogues in social networks. In: Proceedings of the 3rd International Conference on Computational
Models of Argument, COMMA-10, Frontiers in Artificial Intelligence and Applications, vol. 216, pp.
267-274.10S Press (2010)

14. Heras, S., Botti, V., Julidn, V.: On a computational argumentation framework for agent societies. In:
Argumentation in Multi-Agent Systems, pp. 123—140. Springer (2011)

15. Heras, S., Botti, V., Julidn, V.: Argument-based Agreements in Agent Societies. Neurocomputing 75(1),
156-162 (2012)

16. Heras, S., Jordén, J., Botti, V., Julidn, V.: Argue to Agree: a Case-Based Argumentation Approach.
International Journal of Approximate Reasoning 54(1), 82-108 (2013)



28

Stella Heras et al.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

. Jordén, J., Heras, S., Julidn, V.: A Customer Support Application Using Argumentation in Multi-Agent

Systems. In: 14th International Conference on Information Fusion (FUSION-11), pp. 772-778 (2011)
Karunatillake, N.C.: Argumentation-Based Negotiation in a Social Context. Ph.D. thesis, School of
Electronics and Computer Science, University of Southampton, UK (2006)

Karunatillake, N.C., Jennings, N.R., Rahwan, 1., McBurney, P.: Dialogue Games that Agents Play within
a Society. Artificial Intelligence 173(9-10), 935-981 (2009)

Kraus, S., Sycara, K., Evenchik, A.: Reaching Agreements Through Argumentation: A Logical Model
and Implementation. Artificial Intelligence 104, 1-69 (1998)

Lépez de Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher,
M.L., Cox, M., Forbus, K., Keane, M., Watson, I.: Retrieval, Reuse, Revision, and Retention in CBR.
The Knowledge Engineering Review 20(3), 215-240 (2006)

Luck, M., McBurney, P.: Computing as interaction: agent and agreement technologies. In: IEEE Inter-
national Conference on Distributed Human-Machine Systems. IEEE Press (2008)

Oliva, E., McBurney, P., Omicini, A.: Co-Argumentation Artifact for Agent Societies. In: 5th Interna-
tional Workshop on Argumentation in Multi-Agent Systems, Argmas-08, pp. 31-46. Springer (2008)
Ontafidn, S., Plaza, E.: Learning and Joint Deliberation through Argumentation in Multi-Agent Systems.
In: 7th International Conference on Agents and Multi-Agent Systems, AAMAS-07. ACM Press (2007)
Ontaiién, S., Plaza, E.: Argumentation-Based Information Exchange in Prediction Markets. In: Argu-
mentation in Multi-Agent Systems, LNAI, vol. 5384, pp. 181-196. Springer (2009)

Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. Journal of Logic
and Computation 8(3), 261-292 (1998)

Prakken, H.: An abstract framework for argumentation with structured arguments. Argument and Com-
putation 1, 93-124 (2010)

Prakken, H., Reed, C., Walton, D.: Dialogues about the burden of proof. In: Proceedings of the 10th
International Conference on Artificial Intelligence and Law, ICAIL-05, pp. 115-124. ACM Press (2005)
Prakken, H., Wyner, A., Bench-Capon, T., Atkinson, K.: A formalization of argumentation schemes for
legal case-based reasoning in ASPIC+. Journal of Logic and Computation (In Press)

Sierra, C., Botti, V., Ossowski, S.: Agreement Computing. KI - Kiinstliche Intelligenz DOI:
10.1007/s13218-010-0070-y (2011)

Soh, L.K., Tsatsoulis, C.: A Real-Time Negotiation Model and a Multi-Agent Sensor Network Imple-
mentation. Autonomous Agents and Multi-Agent Systems 11(3), 215-271 (2005)

Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press (2008)
Wardeh, M., Bench-Capon, T., Coenen, F.P.: PISA - Pooling Information from Several Agents: Multi-
player Argumentation From Experience. In: Proceedings of the 28th SGAI International Conference on
Artificial Intelligence, AI-2008, pp. 133—146. Springer (2008)

Wardeh, M., Bench-Capon, T., Coenen, E.P.: PADUA: a protocol for argumentation dialogue using asso-
ciation rules. Al and Law 17(3), 183-215 (2009)

Wardeh, M., Coenen, F., Bench-Capon, T.: Arguing in Groups. In: 3rd International Conference on
Computational Models of Argument, COMMA-10, pp. 475-486. IOS Press (2010)

Willmott, S., Vreeswijk, G., Chesiievar, C., South, M., McGinnis, J., Modgil, S., Rahwan, 1., Reed, C.,
Simari, G.: Towards an argument interchange format for Multi-Agent Systems. In: 3rd International
Workshop on Argumentation in Multi-Agent Systems, ArgMAS-06, pp. 17-34. Springer (2006)
Wyner, A., Schneider, J.: Arguing from a Point of View. In: Proceedings of the First International
Conference on Agreement Technologies (2012)



