

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-016-9670-
x

https://link.springer.com/article/10.1007/s10796-016-9670-x

http://hdl.handle.net/10251/82490

Springer Verlag (Germany)

Palanca Cámara, J.; Del Val Noguera, E.; García-Fornes, A.; Billhard, H.; Corchado, JM.;
Julian Inglada, VJ. (2016). Designing a goal-oriented smart-home environment. Information
Systems Frontiers. 1-18. doi:10.1007/s10796-016-9670-x.

Designing a goal-oriented smart-home environment

Javier Palancaa, Elena del Vala, Ana Garcia-Fornesa, Holger Billhardtc, Juan Manuel
Corchadob, Vicente Juliána

aDepartamento de Sistemas Informáticos y Computación
Universitat Politècnica de València, Spain

bDepartment of Computer Science, University of Salamanca, Spain
cCETINIA, Universidad Rey Juan Carlos, Spain

Abstract

Nowadays, systems are growing in power and in access to more resources and services.
This situation makes it necessary to provide user-centered systems that act as intelli-
gent assistants. These systems should be able to interact in a natural way with human
users and the environment and also be able to take into account user goals and environ-
ment information and changes. In this paper, we present an architecture for the design
and development of a goal-oriented, self-adaptive, smart-home environment. With this
architecture, users are able to interact with the system by expressing their goals which
are translated into a set of agent actions in a way that is transparent to the user. This is
especially appropriate for environments where ambient intelligence and automatic con-
trol are integrated for the user’s welfare. In order to validate this proposal, we designed
a prototype based on the proposed architecture for smart-home scenarios. We also per-
formed a set of experiments that shows how the proposed architecture for human-agent
interaction increases the number and quality of user goals achieved.

Keywords: Multi-Agent Systems, Smart-home environments, Adaptive systems,
Goal-oriented systems, Service-oriented systems

1. Introduction

Collaboration is an important factor in achieving success in any type of work or
project. In general, any task with hints of complexity requires the collaboration of
more than one individual. Technology should be capable of supporting these collab-
oration processes through the formation and management of groups or coalitions of
entities that which can be humans or software agents. These groups or coalitions can
arise in a spontaneous or planned manner in order to maximize the expected utility or
profit of the individuals. Agent technology enables the development of applications
that support the formation and management of such organizations dynamically. Ap-
plications of this kind are possible through the use of a goal-oriented architecture for
human-agent societies, where the traditional notion of application disappears. Rather
than developing software applications that accomplish computational tasks for specific

Preprint submitted to Elsevier June 17, 2016

purposes, the goal-oriented approach in these human-agent societies is based on the im-
mersion of users in self-adaptive environments that facilitate the achievement of their
goals in an automated way.

This new way of envisioning applications requires new methods and techniques
that support the integration of humans and software agents, considering agents as ser-
vice/resource providers. Taking this into consideration, one of the main problems is
how to show all the available services and resources to users in an appropriate way. As
the size of available services increases, it is more difficult for users to determine which
service or set of services is the most suitable for achieving their goals. Moreover, users
usually know what they want to do, but they do not know how to do it. Since users
know their goals, it will be easier to help them with a goal-oriented architecture. Con-
sidering that agents are intelligent entities that have social capabilities, they fit properly
in a goal-oriented architecture where services are provided and consumed in order to
achieve their goals. In this paper, we present a goal-oriented architecture that is based
on the SOC (Service-Oriented Computing) concepts [1] and their use in the design and
implementation of a goal-oriented smart-home environment. The purpose of the archi-
tecture is to find solutions to reach user goals through the composition and execution of
services offered by agents. In this architecture, agents provide services in a ubiquitous
environment where users (human or non-human) express their goals and the system
determines the set of actions that fulfils the goal in way that is a completely transparent
to the user (i.e., the user does not see the translation process from goals to actions).

The goal-oriented architecture is designed to work in environments with Service-
Oriented Architectures, Grid architectures, or business process architectures. In these
environments, there are many interconnected nodes where providers offer a multitude
of services. This work focuses on a goal-oriented smart-home environment, where a
user declares a goal with certain constraints and the smart-home system tries to carry
out a set of actions in order to deal with the user request expressed as a goal. The smart
environment considers services offered by different nodes in a pervasive or ubiquitous
way [2, 3] as well as services provided by external entities.

On the basis of the contents of the preceding paragraphs, in this work we propose
a goal-oriented architecture for smart-home environments. The main contributions of
this proposal are: (i) a formal model for an architecture that not only has a fixed set
of plans to deal with the self-adaptation of the system, but one that is also able to
create new plans and refine or repair running plans; (ii) the architecture includes case-
based reasoning techniques to learn from previous plans used in specific situations and
reuse them according to new requirements; (iii) semantic information in the definition
of services and user goals in order to facilitate the automatic service discovery and
composition of complex services; (iv) a negotiation process is included to check the
availability of service providers and to establish temporal commitments to ensure the
execution of the services within a time frame.

The rest of the paper is structured as follows: section 2 describes the related work;
section 3 introduces the approach of Distributed Goal-Oriented Computing architecture
to develop human-agent systems; section 4 presents the design of a goal-oriented smart-
home environment based on the previous architecture. Finally, section 5 presents the
conclusions of the paper.

2

2. Related Work

One of the areas where the use of human-agent technologies play a key role is
smart-home environments. The area of smart-homes can be considered as a branch of
ubiquitous computing that integrates ambient intelligence and automatic control into
living spaces for comfort, healthcare, safety, security, and energy conservation [4].
Smart-home environments have been researched for nearly two decades [5]. The re-
search in the area of smart-home environments has since tackled different technical
issues such as heterogeneity in devices and technologies, context awareness, and secu-
rity in order to facilitate the implementation of intelligent environments.

Although several technical challenges have been achieved, there are still open is-
sues. The increase in the number of devices and the proliferation of services that are
locally or remotely available (i.e., services in local smart-home environments and ser-
vices in the cloud) and the dynamism of smart-home environments (i.e., appearance
of new entities, temporal unavailability of components, changes in the environment
conditions or user preferences) make it necessary to include mechanisms that facilitate
reconfiguration in smart-home environments. Self-adaptation enables a system to rea-
son and to adapt itself in order to achieve user goals when uncertainties and changes
in the environment appear. There are previous works in the context of smart-home en-
vironments that try to deal with user requirements using pre-defined plans established
at design time [6, 7]. The use of pre-defined plans makes the reconfiguration of the
system difficult when unforeseen events occur. A better approach to this problem is to
dynamically generate new plans or reuse and adapt plans that were previously used in
similar contexts to deal with unforeseen events, as we propose in this work.

Other works based on Multi-Agent Systems (MAS) have been proposed to deal
with self-configuration in smart-home environments to deal with user goals. MAS are
considered to be a suitable tool for the study of complex adaptive systems, especially
for those that are distributed and dynamic [8, 9]. A smart-home environment can be
viewed as a MAS where software agents and users interact.

For instance, Iftikhar et al. [10] propose a formal approach for self-adaptation.
This approach is based on a feedback loop that consists of four adaptation compo-
nents: monitor, analyze, plan, and execute. The main contribution of this approach is
that it ensures that the goals (which were verified offline) are guaranteed at runtime. It
also supports adaptation to changing goals. A goal-driven approach based on agents
and semantics for automatic service discovery and control is presented in [11]. The au-
thors describe a layered architecture (device, connectivity, service, and semantic agents
layer). The semantic agents layer contains an agent for each of the goals of the smart-
home environment (i.e., energy, comfort, safety, and security) and a coordinator agent
that solves conflicts when agents have competing goals. Although it is an interesting
proposal, details about how the coordination and the self-adaptation of the system is
carried out by the agents are not provided. Ayala et al. [12] propose an agent-based
Ambient Assisted Living system that incorporates self-configuring tasks. In this ap-
proach, the self-configuring process is inside agents. There is a control loop that starts
analyzing the context to check if something has changed in the system. Then, the
agent determines if the current situation requires reconfiguring the system according to
a plan. These plans are stored in a plan library and can be accessed by the goal. After

3

this, the scheduler executes the set of actions of the plan. The main drawback in this
approach is that the plan library seems to be a set of predefined plans at design time;
therefore, if new services or unforeseen situations appear in the system they would not
be considered in the plan library.

Kucher and Weyns propose a self-adaptive software system to support elderly care
[13]. The architecture proposed consists of four modules: autoconfigurator, context-
adaptor, sensor infrastructure, and communication infrastructure. The modules that
are directly related to the self-configuration are the autoconfigurator, which supports
the discovery of new services and configures the system based on user requirements,
and the context-adaptor which detects changes in the environment and adapts services
based on user preferences. However this proposal lacks specific details about how to
build this solution, namely, how the system adapts itself to changes in the environment.

Loseto et al. present a multi-agent approach that is based on service discovery and
orchestration in smart-homes [14].They introduce semantic information in services and
user profiles to facilitate the negotiation of the services that are most suitable according
to user preferences. The agent-based framework presented is populated by a home
agent, a user agent, an interface agent, and a device agent. The home agent plays a key
role in the self-adaptation process of the system. The home agent facilitates the service
discovery and orchestration and also mediates between user agents and device agents to
maximize the overall utility. Although this proposal is interesting, it does not consider
temporal constraints when services are scheduled for their execution. The lack of this
feature would make the accomplishment of goals uncertain when their execution must
finish before a deadline.

According to this analysis, the theoretical basis of our proposal tackles the self-
adaptation of the smart-home environments in order to deal with user goals using a
goal-oriented architecture. This initial formulation of the problem we want to solve
is based on the gaps and proposals founded in the analysed literature (see Table 1).
Therefore, this proposal improves previous approaches in the following ways:

• the proposed architecture includes an on-line planner that not only can create a
new plan, but that can also refine existing plans or repair running plans. This
behaviour solves the problem of having a static set of predefined plans as other
proposals do.

• the on-line planner uses case-based reasoning techniques to learn from previ-
ous plans used in specific situations and reuse them according to new user re-
quirements. This learning capability allows the adaptation of the proposal and
represents an improvement on existing proposals.

• services and user goals are semantically annotated in order to facilitate auto-
matic service discovery and composition of complex services while maintaining
temporal constraints to avoid unpredictability.

• negotiation techniques are included to check the availability of service providers
in real-time and to establish temporal commitments to ensure the execution of the
services within a time frame. This behaviour assures the execution of complex
services before the deadline established by the client.

4

Approach
Dynamic
adaptation

User’s
goal-oriented

Availability
of services

Service discovery
and composition

Temporal
constraints

[6, 7] 7 X 7 7 7

[10, 11] X X 7 7 7

[12] X 7 7 7 7

[13] X X 7 X 7

[14] X X 7 X 7

DGOC X X X X X

Table 1: Summary of differences between our approach and other existing systems.

3. Formal model for Distributed Goal-Oriented Computing architecture

In this section, we present the model that defines the Distributed Goal-Oriented
Computing architecture (DGOC). In this work, we define the concept of Distributed
Goal-Oriented Computing as the paradigm where heterogeneous agents can express
their desires through goals [15]. Agents have their own goals and take actions to fulfill
these goals. In order to achieve their goals, agents can use automatic service com-
position mechanisms considering internal and/or external services. Internal services
are those services provided by the agents in the system. External services are those
provided by external entities in the cloud.

The proposed architecture incorporates abstractions of agent, knowledge base, ser-
vices, goals, and plans (compositions of services) [16]. Some of these abstractions are
taken from the BDI agent model [17]. The model of this architecture aims to define a
new runtime support on an operating system kernel where the basic execution entities
are services instead of processes.

First, we formally define an agent ai by the following tuple:

ai = 〈KBi, Si, P li, Gi〉, (1)

where:

• KBi represents the Knowledge Base of the agent ai. The KBi stores informa-
tion about the states of the agent. A state consists of a set of facts that the agent
believes to be true. For example, its own representation of the environment.

• Si represents the set of services offered by the agent. The agent uses its services
to achieve its own objectives and it also may offer them to other agents to help
them in the achievement of their goals. The services are described using the
OWL-S ontology. Therefore, an important part of a service description will be
its preconditions (i.e., service preconditions and inputs) and postconditions (i.e.,
service postconditions and outputs).

• Pli represents a set of pre-compiled plans provided by the agent for the achieve-
ment of its goals. A plan is an ordered sequence of services where the post-
condition of a service sj (Q(sj)) is equal to the precondition of a service sj+1

(P (sj+1)), where sj , sj+1 ∈ S, with S =
⋃
ai
Si being the domain of the set of

5

services offered by all the agents in the system. Thus, we can define the set of
pre-compiled plans as Pli ⊆ Pl, where Pl represents the domain of the total set
of possible plans, that is, the set of all possible service sequences:

Pl = {(s1..sn�∀i ∈ 1..n, si ∈ S∧
∀j ∈ 1..n− 1, , sj ∈ S ∧ i 6= j, P (sj+1) = Q(sj))}

The pre-compiled plans are created in order to optimize the process of composing
new plans at runtime.

• Gi represents the set of goals that the agent wants to achieve. When a goal is
reached, the agent marks it as an entry in its KBi, which means that the agent
believes that the facts associated to the goal are true.

Once the formal definition of an agent is presented, the model of the Distributed
Goal-Oriented Computing architecture is defined as follows:

DGOC = 〈A, γg, κp, δp〉 (2)

where:

• A represents the set of agents that are in the system: A = {ai, aj , ..., an}.

• γg : 2A → G is the goal selection function, where G =
⋃
ai
gi represents the

domain of the set of goals of all the agents in the system and gi = {gij , ..., gin}
represents a set of goals of the agent ai. Therefore, gij refers to the j-th goal of
the agent ai.

• κp : G × A → 2Pl is the function for the composition of new plans. This
function is used when there is no plan in the set of pre-compiled plans of the
agent (Pli). The κp function creates a set of service compositions taking into
account the knowledge base KBi of the agent ai and the goal gij

κp(gij , ai) ={(s1..sn�∀i ∈ 1..n, si ∈ S∧
∀j ∈ 1..n− 1sj ∈ S ∧ i 6= j, P (sj+1) = Q(sj))

∧ P (s1) ∈ KBi ∧ (Q(sn) = gij)}

• δp : G × 2Pl → Pl is the plan selection function. This function selects a plan
to be executed in order to reach a selected goal. To do this, the δp function con-
siders the set of pre-compiled plans Pli and the set of plans generated by the
function κp(gij , ai). It selects a valid plan, which is a plan whose preconditions
are satisfied in the KBi of the agent ai that activates the goal and whose post-
conditions match the goal to be reached. The invocation of this function will be:
δp(gij , {p1..pn} ∪ κp(gij , ai))

6

The algorithm follow by the DGOC architecture is shown in Algorithm 1. Initially,
a new goal is selected from the set of potential goals using the γg function. Then, the
algorithm checks the reachability and consistency of the goal with regard to the other
activated goals. After selecting a goal, the selection function δp is used to find a plan
that will try to reach the goal. After this, the plan is executed. In case of failure, a
new plan will be selected or a different existing plan could be used or adapted to deal
with the goal. Finally, the correct execution of the plan is checked by analyzing the
postconditions. If all the postconditions are fulfilled, the goal is marked as reached.
For any uncontrolled case, the goal will be marked as non-reachable.

repeat
gi ← γg({a1..an}) ;
if IsPossible(gi) ∧ IsConsistent(gi) then

pi ← δp(gi, {p1..pn}, κp(gi, aj));
while ¬ IsFinished(pi) do

Execute(pi);
if HasFailed(pi) then

pi ← δp(gi, {p1..pn} ∪ κp(gi, aj));
end

end
if CheckPostCondition(pi) == True then

GoalPursued(gi);
else

GoalNotPursued(gi);
end

else
GoalNotPursued(gi);

end
until True;

Algorithm 1: DGOC main algorithm

This algorithm presents a generalized view of the DGOC execution. Different com-
ponents of BDI agents were used for this definition, such as the plan selection function,
or common planning techniques in Artificial Intelligence and Case-Based Planning for
the composition of new plans. The basic execution component in the architecture is
the service. To describe a service in this formal model, we employ the OWL-S service
ontology [18]. OWL-S is a well-defined standard that provides enough power to se-
mantically describe all the functionality provided by agents in the DGOC architecture.

Based on the formal model for the DGOC architecture, there is a goal-oriented
execution framework that provides an implementation of the model. Figure 1 shows
the main components of the framework: the Deliberation Engine, the Runtime Engine,
and a set of agents in which there should be at least one Operating System Agent. We
briefly describe each component, but for more details about the components we refer
the reader to [15].

The Deliberation Engine is responsible for deciding the order and how plans are

7

executed. This engine is permanently running in the background, evaluating the goals
that agents want to achieve and selecting them for their completion. This component
contains the On-line Planner (i.e., the entity that composes new plans or repairs exist-
ing plans when there are no pre-compiled plans), and the Commitment Manager (i.e.,
the entity that negotiates with service providers and is able to estimate the services that
offer the best temporal conditions taking into account time constraints).

The Runtime Engine takes plans provided by the On-line planner or libraries of
pre-compiled plans. Then, it manages the plan execution by transferring the execution
of the services included in the plan to its scheduler. This component is able to locate
services that are in other nodes through a discovery protocol and include them in the
plan that is in execution.

The Operating System Agent is composed of the following elements: a goal set
to carry out the tasks associated with the operating system, a knowledge base that
represents the beliefs of the operating system, and a set of services to provide the basic
low-level functionality to the agents and a plan library.

Runtime
Engine

On-line
Planner

Service
Service

Service
Service

Plan
......
......
......
......
......

Plan
......
......
......
......
......

Goal

Off-line
Planner

OS Kernel

Commitment
Manager

Knowledge
BaseGoals Plan

Library
Services

Set

Agent Query/Add/Remove Facts

temporal commitment

execution

select

sto
re

query

Cloud of
Services

publish

D
el

ib
er

at
io

n
En

gi
ne

1

2

3

4

5

Figure 1: Execution framework based on DGOC formal model.

4. Designing a Goal-Oriented System for a Smart-Home Environment

Smart-home environments are a suitable scenario to apply the proposed formal
model for the DGOC architecture. We aim to achieve a complete immersion of the user
in the environment (i.e., we want human users to be a component of the system that
interact with the smart-home in a natural way expressing their goals). Therefore, the
use of our goal-oriented architecture model for smart-home environments represents

8

this level of required immersion while remaining minimally invasive. A user only has
to express his/her goals, and the framework based on the formal model of the DGOC
architecture is responsible for finding the best way to accomplish them. The system
makes most of the decisions and is able to adapt its plans to deal with unexpected
situations (i.e., services that are not available or environment conditions that change).

In this section, we describe the application of the framework based on the formal
model of the DGOC architecture presented in Section 3 for a smart-home by means
of an example. In this smart-home, a user can express his/her desire to watch a movie
when he/she gets home and communicates it to the execution framework in one of the
following ways: sending an mobile message, using an iPad application, or through a
voice interface. In any case, the application receives the user’s intention and transforms
it into a goal. This goal is introduced in the framework based on the DGOC architecture
model that controls the smart-home. Although there are different options for watching
a movie (i.e., renting it in an on-line shop, downloading via P2P protocols, or using
video streaming services), the user only expresses the wish to watch a film. When
the user expresses the goal, he/she can also provide information about restrictions and
input parameters. As an example, an input parameter would be the title of the movie
that the user wants to watch. Another possible input parameter would be that the user
may not want to pay more than a certain amount of money to watch the movie and does
not want to use a specific payment provider. There are other parameters that would also
be important to take into consideration in order to reach the goal, such as the required
quality of the film, or the device on which the user wants to watch the movie (i.e.,
a smart TV , an iPad, a PC, etc.). The entity responsible for making the best choice
of services to deal with user’s goals is the framework, specifically, the Deliberation
Engine. The aim of the following example is to describe in detail how the user’s goal
is defined in the framework, how the plan to deal with the goal is built, and how the
services that accomplish the user’s goal are selected by the framework.

4.1. Scenario Description
The proposed scenario has been implemented over the DGOC framework described

above (see Figure 1). The Figure 2 illustrates the initial situation of the example where
the user employs a mobile interface to introduce the goal to be accomplished. This
goal is sent to the DGOC framework which starts the process to reach the goal. In the
implemented framework, the different rooms and devices are controlled by different in-
telligent agents in charge of different tasks. Thus, the personal assistant agent allows
the user to introduce the goal into the system. Moreover, different agents that incor-
porate the internal services needed to solve the problem have been implemented. The
TV agent has the capability to play a movie on a specific device (in this case, a smart
TV). The Scene Agent has the capability to control the lights and the curtain motor
of a specific room. The Operating System Agent allows the tasks associated with the
operating system to be carried out, such as downloading the needed files and moving
those files to a specific player device. The framework also includes the possibility to
use different external services such as streaming or paying services, which are added
(if needed) into the plans created to accomplish the goal.

For the services needed in the proposed example, we considered the services de-
scribed in Tables 1-9. These tables show the available services, their preconditions (P)

9

DGOC Architecture

OS Agent Deliberation
Engine

TV Agent

Netflix

iTunes

PayPal

MasterCard

VISA

P2P

VideoPlayer

I want to watch

 a movie!
External
Services

Users

Home Devices

Goal Find Plan
Plan

Execution

CBR

Retrieve Plan

move_file

download URL

…

Scene Agent

scene light Runtime Engine

Personal
Assistant

curtain control

prepare film

play stream

Figure 2: General view of the proposed use case.

and postconditions (Q), their probability of success (PS), and their worst-case execu-
tion time (T). There are payment service providers such as Visa (Table 5), MasterCard
(Table 6), or PayPal (Table 7). There are also movie providers that rent and sell such
as Netflix (Table 2) and iTunes (Table 3) and services related to the ambient conditions
of the room (Table 10). There are other service providers such as P2P file sharing, film
playback (Table 4), and conversion services like VideoPlayer (Table 9). In addition,
the operating system provides its own services which are associated to the Operating
System Agent (Table 8).

4.2. Execution trace

We have considered that a user wants to see a movie when he/she arrives home, with
a minimum quality of 720p and paying no more than 5 euros. The user also prefers to
avoid Paypal as a payment method. The user employs an external application (which
acts as an interface agent) to introduce the user’s desires as an active goal into the
DGOC framework. An electronic interface that employs the OpenMind Commonsense
knowledge base [19] and ConceptNet [20] is used to transform the user’s desires and
preferences into goals of the framework [21]. There are also other interfaces available
that employ natural language processing (like Siri on Apple devices) or gesture recog-
nition (like Kinect on XBOX from Microsoft) that could be used by users to introduce
their goals.

With regard to our design, once user requirements are captured and transformed
into a framework goal, we obtain an XML-based representation as shown in Listing

10

ID Name Conditions PS T

A film:search_film

P: ?film:title

0, 9 8P: ?film:quality

Q: ?film:ID

Q: ?bank:price

B film:buy_film

P: ?film:ID

0, 9 3P: ?bank:price

Q: ?bank:objectToPurchase

C film:prepare_download

P: ?film:ID

0, 93 5P: ?bank:objectPurchased

Q: ?os:url

Table 2: Services offered by Netflix agent.

ID Name Conditions PS T

D film:search_film

P: ?film:title

0, 7 7P: ?film:quality

Q: ?film:ID

Q: ?bank:price

E film:buy_film

P: ?film:ID

0, 8 3P: ?bank:price

Q: ?bank:objectToPurchase

F film:prepare_download

P: ?film:ID

0, 81 4P: ?bank:objectPurchased

Q: ?os:url

Table 3: Services offered by iTunes agent.

ID Name Conditions PS T

G film:search_film

P: ?film:title

0, 4 7P: ?film:quality

Q: ?film:ID

H film:prepare_donwload
P: ?film:ID 0, 8 23
Q: ?os:url

Table 4: Services offered by P2P agent.

11

ID Name Conditions PS T

I bank:pay

P: ?bank:price

0, 95 4
P: ?bank:objectToPurchase

Q: ?bank:objectPurchased

Q: ?bank:confirmationMethod

Q: ?bank:paymentMethod(VISA)

Table 5: Services offered by VISA agent.

ID Name Conditions PS T

J bank:pay

P: ?bank:price

0, 63 6
P: ?bank:objectToPurchase

Q: ?bank:objectPurchased

Q: ?bank:confirmationMethod

Q: ?bank:paymentMethod(MC)

Table 6: Services offered by MasterCard agent.

ID Name Conditions PS T

K bank:pay

P: ?bank:price

0, 61 7
P: ?bank:objectToPurchase

Q: ?bank:objectPurchased

Q: ?bank:confirmationMethod

Q: ?bank:paymentMethod(PayPal)

Table 7: Services offered by PayPal agent.

ID Name Conditions PS T

L os:download_url
P: ?os:url 0, 76 345
Q: ?os:file

M os:move_file

P: ?os:file

0, 99 112P: ?os:where

Q: ?os:file_available

Table 8: Services offered by the OS agent.

12

ID Name Conditions PS T

N
video:prepare_film

P: ?os:file_available

0, 89 3

P: ?os:file

Q: (or

(?video:ready)

(?video:need_encode)

)

O video:encode

P: ?os:file_available

0, 78 156P: ?os:file

P: ?video:need_encode

Q: ?video:ready

P video:play
P: ?video:ready 0, 97 412
Q: ?video:viewed(?film:title)

Q video:play_stream
P: ?os:url 0, 71 412
Q: ?video:viewed(?film:title)

Table 9: Services offered by VideoPlayer agent.

ID Name Conditions PS T

R ambient:shutdown_lights
P: ?ambient:lights_on 0, 99 2
Q: ambient:lights_off

S ambient:close_curtains
P: ?ambient:curtains_opened 0, 90 30
Q: ?ambient:curtains_closed

Table 10: Services offered by Scene agent.

13

Listing 1: Use Case Goal.

< g o a l t y p e = ’ a c h i e v e ’ r e t r y = ’ t r u e ’ r e t r y d e l a y = ’0 ’
r e c u r = ’ f a l s e ’ e x c l u d e = ’ w h e n _ f a i l e d ’
name= ’ ViewFilm ’ >

< p a r a m e t e r name= ’ f i l m : t i t l e ’ > Casab lanca < / p a r a m e t e r >
< p a r a m e t e r name= ’ f i l m : q u a l i t y ’ >720p </ p a r a m e t e r >
< t a r g e t c o n d i t i o n >

(v i d e o : viewed ? f i l m : t i t l e)
</ t a r g e t c o n d i t i o n >
< s o f t c o n d i t i o n >

(>= (f i l m : c u r r e n t−q u a l i t y ? f i l m : t i t l e) ? f i l m : q u a l i t y)
</ s o f t c o n d i t i o n >
< c o n t e x t c o n d i t i o n >

(> (b e g i n (v i d e o : r e a d y ? f i l m : t i t l e)) " 2 1 : 1 5 : 0 0 ")
</ c o n t e x t c o n d i t i o n >
< d r o p c o n d i t i o n >

(and
(> bank : p r i c e 5)
(= bank : paymentMethod ’ PayPal ’)

(<= (end (v i d e o : viewed ? f i l m : t i t l e))
" 2 3 : 5 9 : 5 9 ")

)
</ d r o p c o n d i t i o n >
< d e l i b e r a t i o n >

< i n h i b i t s r e l = ’ Sc reenSave r ’ / >
</ d e l i b e r a t i o n >

</ goa l >

1. The goal representation language is an extension of the language used in JadeX1

with the addition of the temporal requirements needed in our system. To do this, we
have added the temporal operators begin and end, which allow us to express whether a
condition must be true before or after a specific time point.

Once the user’s goal is selected by the Deliberation Engine, the On-line Planner
tries to locate those plans that reach the goal. Taking into account the available services
(see Tables 1-9), the On-line Planner will return a set of plans as a plan graph that con-
tains all possible paths (i.e., set of services) that can be executed to accomplish the goal
(see Figure 3). In the plan graph, there are several alternatives depending on the film
provider, the payment method, or the movie playback. The planner found three possi-
ble movie search services from different providers: Netflix and iTunes, which are paid

1http://www.activecomponents.org

14

services, and a P2P downloading service, which is free. Also, since the video playback
service requires some ambient preconditions (i.e., to turn off the lights and close the
curtains), the ambient services related to the lights and curtains should be executed se-
quentially before the playback of the movie. In the pre- and post-condition predicates
of the services, there are five different ontologies: film for movie search management
and rental, bank for the bank payment management, ambient for the domotic services
that manage the scenes of the smart-home, os for services related to the operating sys-
tem (these services are depicted with a dotted line), and video for video playback and
encoding services.

The On-line Planner performs the plan composition following a backward strategy.
Starting from the goal, it searches for services whose postconditions match the condi-
tions of the goal. During this process, the On-line Planner connects services until a
known state is reached (i.e., a fact or set of facts that are known by the agents). To do
this, the On-line Planner queries the knowledge base of the agent that represents the
user, taking into account the input parameters of the goal. The On-line Planner does
not return a single fixed plan; it returns a graph with different options and information
to be instantiated at runtime. This is because some variables cannot be solved until run-
time and it is better to keep alternatives just in case a condition fails during execution
(instead of restarting the composition process of a new plan). During the composi-
tion process, if there are alternative paths, the On-line Planner uses a CHOICE node.
Similarly, if the On-line Planner finds logical operators (such as OR), it may intro-
duce conditional nodes such as IF-THEN-ELSE to follow one path or another. At this
point, the Deliberation Engine decides which path is the best to take during the plan
execution.

For example, Figure 4 shows the shortest path of the plan graph and, initially, the
more advantageous. The plan has the lowest number of services, and it does not need
to pass through the payment provider, which ensures the condition of not paying more
than a certain price for the film. Also, the plan avoids the download of the film using the
streaming playback, which presumably saves time. During the execution, at the second
CHOICE node of the plan (i.e., where the system must choose between downloading or
streaming the movie), the Deliberation Engine detects that the video:play_stream ser-
vice has the effect: decrease 1000mAh ?battery (i.e., a constraint that appears
in execution time). Therefore, the Deliberation Engine will not select this service be-
cause it has the effect of decreasing the battery, which will result in not having enough
battery power to complete the execution.

Another situation that may occur if the same execution path is selected is the follow-
ing. The P2P film service provider is the cheapest one since it is based on the content
sharing among users of the network. However, the quality is usually not optimal in
P2P networks. The quality, which is an input of the goal, can only be solved after the
execution of the service. Therefore, it will be at that time when the Deliberation En-
gine selects the next execution step. If the condition of quality is a dropcondition (i.e.,
a compulsory condition that implies the immediate cancelation of the goal, if it is not
satisfied), the Deliberation Engine must find an alternative path using Netflix or iTunes
service providers. However, since it is a softcondition (i.e., a desirable condition, that is
not compulsory to satisfy), the plan execution could continue. In the case of an empty
search, the plan execution fails and forces an execution restart that, in the worst case

15

NETFLIX
film:search_film

IN ?film:title ?film:quality

OUT ?bank:price

P2P
film:search_film

IN ?film:title ?film:quality

iTUNES
film:search_film

IN ?film:title ?film:quality

OUT ?bank:price

VISA
bank:pay

IN ?bank:CC_number

OUT: ?bank:confirmationNumber

IN ?bank:CC_number

OUT: ?bank:confirmationNumber

MASTERCARD
bank:pay

IN ?bank:user
IN ?bank:passwd

OUT: ?bank:confirmationNumber

PAYPAL
bank:pay

iTUNES
film:buy_film

NETFLIX
film:buy_film

NETFLIX
film:prepare_download

iTUNES
film:prepare_download

P2P
film:prepare_download

OPERATING
SYSTEM

os:download_url

OPERATING
SYSTEM

os:move_file

IN: ?os:where

CHOICE

CHOICE

VIDEOPLAYER
video:prepare_film
OUT: ?video:ready

IF (?video:need_encode) THEN

ELSE

VIDEOPLAYER
video:encode

VIDEOPLAYER
video:play

IN: ?video:ready
IN: ?ambient:lights_off
IN: ?ambient:curtains_closed

OUT: video_canvas

VIDEOPLAYER
video:play_stream

IN: ?video:ready
IN: ?ambient:lights_off
IN: ?ambient:curtains_closed

OUT: video_canvas

hasEffect
(decrease
?battery
500mAh)

hasEffect
(decrease
?battery

1000mAh)

A

B

C

D

E

F

G

H

I J K

L
M

N
O

P Q

AMBIENT
ambient:shutdown

_lighs

IN: ?ambient:lights_on

OUT: ?ambient:lights_off

AMBIENT
ambient:close_curtains

IN: ?ambient:curtains_opened

OUT: ?ambient:curtains_closed

SEQUENCESEQUENCE

R S

Figure 3: Plan graph of the proposed use case.

could require a replanning. Furthermore, since the goal includes not using PayPal ser-
vice as the payment method as a dropcondition, the payment service bank:pay of the
PayPal service provider will not be selected for execution.

Once the On-line Planner has calculated the set of possible paths that can be exe-
cuted, it delivers the set of plans to the Commitment Manager in order to establish the
preliminary agreements with the services that compose those plans. The Commitment
Manager will choose which plans are the most appropriate to deal with the user’s goal
based on the user’s constraints and service provider execution times.

The Commitment Manager calculates the probability of success of each path to
make the final decision (i.e., which path of the plan will be executed). Every path
that passes through the service K (bank:pay) of the PayPal service provider is pruned
because the statement bank:paymentmethod(PayPal) fulfils one of the dropconditions
of the goal. To estimate the execution time when an IF-THEN-ELSE sentence appears
in the path, the Deliberation Engine takes the worst case and limits the cycles to at

16

NETFLIX
film:search_film

IN ?film:title ?film:quality

OUT ?bank:price

P2P
film:search_film

IN ?film:title ?film:quality

iTUNES
film:search_film

IN ?film:title ?film:quality

OUT ?bank:price

VISA
bank:pay

IN ?bank:CC_number

OUT: ?bank:confirmationNumber

IN ?bank:CC_number

OUT: ?bank:confirmationNumber

MASTERCARD
bank:pay

IN ?bank:user
IN ?bank:passwd

OUT: ?bank:confirmationNumber

PAYPAL
bank:pay

iTUNES
film:buy_film

NETFLIX
film:buy_film

NETFLIX
film:prepare_download

iTUNES
film:prepare_download

P2P
film:prepare_download

OPERATING
SYSTEM

os:download_url

OPERATING
SYSTEM

os:move_file

IN: ?os:where

CHOICE

CHOICE

VIDEOPLAYER
video:prepare_film
OUT: ?video:ready

IF (?video:need_encode) THEN

ELSE

VIDEOPLAYER
video:encode

VIDEOPLAYER
video:play

IN: ?video:ready
IN: ?ambient:lights_off
IN: ?ambient:curtains_closed

OUT: video_canvas

VIDEOPLAYER
video:play_stream

IN: ?video:ready
IN: ?ambient:lights_off
IN: ?ambient:curtains_closed

OUT: video_canvas

hasEffect
(decrease
?battery
500mAh)

hasEffect
(decrease
?battery

1000mAh)

A

B

C

D

E

F

G

H

I J K

L
M

N
O

P Q

AMBIENT
ambient:shutdown

_lighs

IN: ?ambient:lights_on

OUT: ?ambient:lights_off

AMBIENT
ambient:close_curtains

IN: ?ambient:curtains_opened

OUT: ?ambient:curtains_closed

SEQUENCESEQUENCE

R S

Figure 4: Shortest path of the plan.

17

most two iterations to avoid loops.
In order to estimate the suitability of each plan taking into account the user require-

ments, the Commitment Manager establishes a ranking, taking where each path has an
associated value that represents the aggregation of the probability of success and the
estimated execution time. Therefore, for each path x, the Commitment Manager calcu-
lates the probability of success PSx (i.e., the probability of a successful execution of
all the services that are part of the path) and its estimated execution time Tx (i.e., the
time required for the complete execution of all the services that are part of the path).

PSx is calculated as follows: PSx =
N∏
i=0

PSi∗ωi and its estimated execution time is

calculated by the equation Tx =
N∑
i=0

Ti. In order to simplify this trace, we consider that

the base case does not yet have previous experiences, and, therefore, we set the value
of ωi = 1. Finally, we normalize the value of Tx. To do this, we use the average value
of all the Tx, which is called T , and the standard deviation σ. The normalized value is
calculated by the equation: T̃x = 1− Tx−T

σ . With this information, the paths extracted
from the plan graph depicted in Figure 3 and their values PSx, Tx and T̃x are shown
in Tables 11 and 12.

Once the probability PSx and the estimated execution time T̃x values for each path
of the plan are calculated, in the next step, the Commitment Manager compares all
the paths and makes a decision. The Commitment Manager determines that the best
rated path is path #7 (PS7 + T̃7 = 2.45). After this, the Commitment Manager con-
firms the temporal commitments with service providers and sends this information to
the Runtime Engine for their execution. Similarly, the rest of the previously estab-
lished commitments for service providers that are not part of the selected path will be
canceled, releasing the reservation made with the providers of those services.

Plan recovery would be executed if any service of the selected plan fails (i.e., there
would be a replanning from the last successful execution point). The previously gath-
ered information can be reused to establish new temporal commitments. If it is not pos-
sible to use any of the previously calculated options (for instance, because a provider
is off-line), the On-line Planner will try to generate a new plan. Finally, in the worst
case, if no new plan can be found, the goal would be marked as unreachable.

4.3. Evaluation

We ran several experiments to evaluate the proposed architecture applied to the
goal-oriented smart-home environment scenario. We built an adhoc simulator that al-
lowed us to validate different scenarios. The software developed for these experiments
is an agent-based simulator which creates as many agents as each experiment has de-
fined. The simulator allows us to configure synthetic scenarios where we can define a
load, the behavior of each component and some events that will be triggered at defined
instants of time. The simulator is also responsible of collecting all the intermediate
information during the execution of the simulation in order to validate how changing
some parameters improves the resulting metrics (number of completed goals, number
of executed services, etc.). Then, it emulates a full network of connected agents within

18

1

A B I C L M N O

PR

S

PS1 = 0.32 T1 = 1080 T̃1 = 0.0066

2

A B J C L M N O

PR

S

PS2 = 0.21 T2 = 1082 T̃2 = 0.0001

3

D E I F L M N O

PR

S

PS3 = 0.19 T3 = 1078 T̃3 = 0.0131

4

D E J F L M N O

PR

S

PS4 = 0.13 T4 = 1080 T̃4 = 0.0066

5

G H L M N O

PR

S

PS5 = 0.14 T5 = 1090 T̃5 = −0.0259

Table 11: Set of possible execution paths (1 to 5).
19

6

G H

QR

S

PS6 = 0.20 T6 = 474 T̃6 = 1.9739

7

A B I C

QR

S

PS7 = 0.45 T7 = 464 T̃7 = 2.0064

8

A B J C

QR

S

PS8 = 0.30 T8 = 466 T̃8 = 1.9999

9

D E I F

QR

S

PS9 = 0.27 T9 = 462 T̃9 = 2.0129

10

D E J F

QR

S

PS10 = 0.18 T10 = 464 T̃10 = 2.0064

Table 12: Set of possible execution paths (6 to 10).
20

an environment where the execution of agent-provided services is emulated in a dis-
cretized implementation of the simulator. This emulated execution of services allows
us to introduce some forced errors in the simulation that help the observer to validate
the self-adaptation capabilities of the implementation. The execution of experiments
is designed to accept some parameters to validate different behaviors of the prototype
in different situations. It is possible to set the probability of success for the execu-
tion of each service to simulate the possibility of non-fulfilment of a commitment, the
worst-case execution time of a service or some events that change the scenario at a
defined instant of time (e.g. we can change the pre-defined probability of success of
a service at the middle of the simulation). We have released as open source (LGPL
license) the main components of our software in an agent platform called SPADE2.
This is a platform developed and maintained since 2006 which includes all the signifi-
cant components of this proposal. Specifically, the SPADE platform includes the main
component of the On-line Planner, which is the Case-Based Planner, the Knowledge
Base (KB) to allow agents to set goals and the protocol to offer and consume services
remotely, make plans and run services that help to achieve their goals. This protocol
is based on jabber-rpc3 and takes as inputs the knowledge stored in the agent’s KB
and pushes the results of the service invocation also in the agent’s KB. The SPADE
platform is developed in Python and based on the XMPP4 protocol (also known as Jab-
ber) to perform communications. SPADE agents can publish their services to a Service
Discovery agent. Other agents can search and find these services and invoke them,
interacting with the Service Discovery agent. The Case-Base Planner is also prepared
to search in this Service Discovery agent to look for the services that allow the agent
to achieve its goals.

In the following experiments, in order to consider a more real scenario, we have
increased the number of movie and payment providers that we have presented in the
Execution Trace section . As a result, the number of possible service combinations
to obtain the final plan to be executed increased. A more detailed description of the
simulator can be found in [15]. In this case, we designed a client agent that represented
the behavior of the user. Moreover, the different movie providers, payment methods,
and auxiliary services were controlled by a dynamic set of agents playing the role of
service providers. In each execution, a client agent activated its goal and then the
Deliberation Engine selected a plan to perform this goal. After the execution of the
plan, the client agent stored its results in the KBi and re-activated the goal once more
for the next experiment.

4.4. Evaluation of the degree of success

The first experiment evaluated the percentage of success in the fulfilment of the
goals in three different scenarios (see Figure 5). In the first case (Own), each agent
only employed its stored plans in order to fulfil the goal, and, consequently, its degree
of success was below the minimum considered to be acceptable. In the second case

2http://github.com/javipalanca/spade
3https://xmpp.org/extensions/xep-0009.html
4https://xmpp.org

21

Figure 5: Study degree of success finding a plan.

(Shared), the agents could share their plans and, obviously, the degree of success in-
creased considerably. In the third case, the agents included the on-line planner, which
allowed them to compose new plans considering services offered by other agents. In
this case, the degree of success obtained stood out from the rest. The results of this
experiment show that collaboration among service providers and the inclusion of an
On-line Planner produce an important increase in the success rate of goal fulfilment.

On the other hand, Figure 6 shows similar results from another perspective, tak-
ing into account the number of available pre-compiled plans. The figure shows that
the success rate for goal fulfilment grows faster when the number of available agents
increases than when the number of precompiled plans available increases. Therefore,
the system achieves greater efficiency by increasing the number of agents that offer
services in the system than by increasing the number of precompiled plans.

4.5. Self-adaptation evaluation
The next experiment (see Fig. 7 and Fig. 8) shows how the proposed system is able

to adapt itself to changes in the environment. Self-adaptation is very important since it
allows the system to have a dynamic behavior (i.e., the system reconfigures itself to take
full advantage of current circumstances). This self-adaptation feature allows the system
to be able to re-plan any running plan that is being executed by the Runtime Agent when
any of the services included in the plan is no longer available (a network error, a service
outage...). But self-adaptation not only allows plans to be recovered when some errors
appear, it also allows agents to change their selections when composing new plans.
This is done because agents take into account the reliability of the service provider

22

Figure 6: Study of success degree finding a plan taking into account the number of available precompiled
plans.

agents based on a trust value, which takes into account the probability of success of a
service execution. To calculate trust they use the execution history of its provider agent
by means of the cases stored in the Case-Based Planner. This way, agents adapt their
behavior by selecting at any time the most reliable service providers based on their
own experience (stored as cases) and the shared experience of other agents by means
of shared plans.

In this experiment, we modified the accuracy of the probability of success parame-
ter PS of some nodes in order to analyze how the system adapts itself to changes in the
environment. We activated three events that modified the environment. Specifically,
the scheduled events were:

• (time 50000) Hulu node increases its accuracy up to 0.8

• (time 300000) P2P node increases its accuracy up to 0.9 and iTunes node de-
creases up to 0.1

• (time 600000) P2P node decreases its accuracy up to 0.5 and Hulu node de-
creases up to 0.01

Figure 7 shows how the trust that the client had in the provider nodes (y-axis)
changed over time (x-axis) and how the environment executed scheduled changes (wrapped
in the figure by vertical rectangles) in the reliability of some provider nodes. The self-
adaptation took some time (see Figure 7), since the Deliberation Engine [15] took a
while to realize that the reliability of some of the provider nodes had been reduced.
The Figure 7 also shows at instant 50000 how trust in the Hulu node increased due to
the first scheduled change. Note that this adaptation took time to consolidate. When

23

Figure 7: Evolution of the trust of provider nodes when changes in the environment occur.

Figure 8: Study of the service provider’s reorganization taking into account the # of services (aggregated).

24

the second event occurred at time 300000, trust in the P2P node began to increase (it
increased close to 60%). Meanwhile, confidence in the iTunes node decreased. The
rest of the nodes held their values. The third event changed the behavior of the system,
giving less reliability to the Hulu node, which decreased to 10%. At the same time, the
Netflix node maintained its confidence throughout the entire experiment. These results
show that the proposed system is able to adapt itself when unexpected events occur and
the environment changes. In this experiment, the client agent changed its trust values
that were associated to the service provider nodes. Therefore, the number of requests
that the client made to each node changed. Figure 8 shows an aggregated view of the
number of services provided for each node when the three events occurred. It can be
observed that the slopes of the lines that represent each node change over time accord-
ing to the scheduled events. An interesting aspect to consider is the behavior of the
Netflix node. The node was not directly affected by the events; however, indirectly, its
number of service requests increased over time due to the loss of accuracy of the other
providers.

Summarizing, the obtained results show that the proposed self-adaptive architec-
ture is suitable for dynamic environments where there is not a predefined set of ser-
vices and the users goals and restrictions (specifically temporal restrictions) change
over time. Nevertheless, other aspects should be considered in real-life situations. For
instance, one of the issues that can appear is related to services that are not semanti-
cally annotated. This would difficult their discovery and their inclusion in new plan
compositions. Also, there could be services that are semantically annotated but with
different ontologies. Therefore, it would be necessary to perform an ontology align-
ment in order to facilitate the composition of new plans. Another issue to consider in
real-life scenarios is the complexity in the representation of complex user’s goals. This
complexity can be reduced using friendly user-interfaces.

5. Conclusions

This paper presents a goal-oriented smart environment that is based on the Dis-
tributed Goal-Oriented Computing architecture. We consider this approach to be ap-
propriate for the development of smart environments where the immersion of users is a
key factor. In the proposed architecture, users express their goals, and the architecture
is in charge of achieving these goals by means of a service-oriented approach. The
architecture facilitates the interaction from the perspective of users. This interaction
could be performed through objects and actions that a person accustomed to using.
Thus, the architecture allows users to reach a high level of immersion in the multi-
agent system, minimizing the level of difficulty of the interaction. In other words, the
satisfaction level of the user will be improved.

We have described how to define the properties of a goal and the parameters related
to the goodness of a plan in a smart-home scenario. Moreover, a detailed execution
trace of the whole process has been presented and several experiments have been done
in order to evaluate the proposal. A prototype of the proposed architecture that covers
all of the described functionalities was developed for the experiment. This scenario has
allowed us to perform experiments under real environment conditions.

25

This proposal performs well with a low scalability threshold. Very high thresholds
can lead to significant increases in terms of run-time and case-base size, while at the
same time decreasing the agent’s performance. However, since the number of cases
also increases for more complex scenarios, a better handling of large scale case-bases
is a problem that will have to be addressed in the future. When using the current ap-
proach in larger scenarios higher similarity thresholds might also be required to distinc-
tively separate between cases. Optimizing the case-retrieval with a more sophisticated
method can improve the performance of the CBP component of the proposed frame-
work keeping run times at reasonable levels. The next steps should also include the
ability to manage groups of people at service level. At the moment, the agents’ behav-
ior does not take into account the different preferences of a group of people (i.e., multi-
occupancy), or conflict resolution among agents when they have competing goals. In
the future, we would like to change this to enable more team-oriented strategies, which
is a significant increase in complexity. We also plan to consider the inclusion of QoS
(quality of service) of the available services in the negotiation process. This could be
easily included to improve the current version.

Moreover, it would be necessary to move towards the integration and deployment
of the architecture as a real OS. As future work, we have begun a study to analyze
the feasibility of modifying an existing operating system. We are also planning the
deployment of our proposal in the MEDERI living lab (http://mederi.ai2.upv.es/en/) in
our university. This living lab is a multidisciplinary environment, mainly focused on
health technology, that will give us the needed tools for a real involvement of users in
order to improve the experience and robustness of the proposed techniques.

6. Acknowledgments

This work is partially supported by the Spanish Government through the MINECO/FEDER
project TIN2015-65515-C4-1-R.

References

[1] M. Huhns, et al., Research directions for service-oriented multiagent systems,
IEEE Internet Computing 9 (2005) 69–70.

[2] Y. Reddy, Pervasive Computing: Implications, Opportunities and Challenges for
the Society, 1st International Symposium on Pervasive Computing and Applica-
tions (2006) 5.

[3] J. M. Molina, J. M. Corchado, J. Bajo, Ubiquitous Computing for Mobile Envi-
ronments , in: Issues in Multi-Agent Systems, Birkhäuser Basel, 2008, pp. 33–57.

[4] M. R. Alam, M. B. I. Reaz, M. A. M. Ali, A review of smart homes: Past, present,
and future, Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on 42 (6) (2012) 1190–1203.

[5] L. C. De Silva, C. Morikawa, I. M. Petra, State of the art of smart homes, Engi-
neering Applications of Artificial Intelligence 25 (7) (2012) 1313–1321.

26

[6] C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic computing through reuse of
variability models at runtime: The case of smart homes, Computer 42 (10) (2009)
37–43.

[7] F. Dalpiaz, P. Giorgini, J. Mylopoulos, An architecture for requirements-driven
self-reconfiguration, in: Advanced Information Systems Engineering, Springer,
2009, pp. 246–260.

[8] D. J. Cook, Multi-agent smart environments, Journal of Ambient Intelligence and
Smart Environments 1 (1) (2009) 51–55.

[9] R. B. Matthews, N. G. Gilbert, A. Roach, J. G. Polhill, N. M. Gotts, Agent-based
land-use models: a review of applications, Landscape Ecology 22 (10) (2007)
1447–1459.

[10] M. U. Iftikhar, D. Weyns, Activforms: active formal models for self-adaptation.,
in: SEAMS, 2014, pp. 125–134.

[11] A. Andrushevich, M. Staub, R. Kistler, A. Klapproth, Towards semantic build-
ings: Goal-driven approach for building automation service allocation and con-
trol, in: Emerging Technologies and Factory Automation (ETFA), 2010 IEEE
Conference on, IEEE, 2010, pp. 1–6.

[12] I. Ayala, M. Amor, L. Fuentes, Self-configuring agents for ambient assisted living
applications, Personal and ubiquitous computing 17 (6) (2013) 1159–1169.

[13] K. Kucher, D. Weyns, A self-adaptive software system to support elderly care,
Modern Information Technology, MIT.

[14] G. Loseto, F. Scioscia, M. Ruta, E. Di Sciascio, Semantic-based smart homes: a
multi-agent approach, in: 13th Workshop on Objects and Agents (WOA 2012),
Vol. 892, 2012, pp. 49–55.

[15] J. Palanca, M. Navarro, V. Julian, A. García-Fornes, Distributed
Goal-oriented Computing, Journal of Systems and Software
(http://dx.doi.org/10.1016/j.jss.2012.01.045) 85 (7) (2012) 1540–1557.

[16] L. de Silva, L. Padgham, Planning as needed in BDI systems, International Con-
ference on Automated Planning and Scheduling.

[17] A. Rao, M. Georgeff, BDI agents: From theory to practice, Proceedings of the
first international conference on multi-agent systems (ICMAS95) (1995) 312–
319.

[18] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, others, OWL-S: Semantic markup
for web services, W3C member submission 22 (2004) 2007–2004.

[19] P. Singh, The public acquisition of commonsense knowledge, in: Proceedings of
AAAI Spring Symposium: Acquiring (and Using) Linguistic (and World) Knowl-
edge for Information Access, 2002.

27

[20] H. Liu, P. Singh, ConceptNet—a practical commonsense reasoning tool-kit, BT
technology journal 22 (4) (2004) 211–226.

[21] H. Lieberman, J. Espinosa, A goal-oriented interface to consumer electronics us-
ing planning and commonsense reasoning, Proceedings of the 11th international
conference on Intelligent user interfaces (2006) 226–233.

28

