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1 Introduction

The research and technological area of data management
encompasses various concepts, techniques, algorithms and
technologies, including data modeling, data integration and
ingestion, transactional data management, query languages,
query optimization, physical data storage, data structures,
analytical techniques (including On-Line Analytical Pro-
cessing – OLAP), as well as service creation and orches-
tration (Garcia-Molina et al., 2009). Data management
technologies are core components of every information
system, either centralized or distributed, deployed in an on-
premise hardware architecture or in a cloud ecosystem. Data
management technologies have been used in commercial,
mature products for decades. They were originally devel-
oped for managing structured data (mainly expressed in the
relational data model).

Yet, the ubiquitous big data (Azzini et al., 2021)
require development of new data management techniques,
suitable for the variety of data formats (from structured,
through semi-structured, to unstructured), overwhelming
data volumes and velocity of big data generation. These
new techniques draw upon the concepts applied to managing
relational data.
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One of the most frequently used data format for big
data is based on graphs, which are a natural way of
representing relationships between entities, e.g., knowledge,
social connections and components of a complex system.
Such data not only need to be efficiently stored but also
efficiently analyzed. Therefore, some OLAP-like analysis
approaches from graph data have been recently proposed,
e.g., Chen et al. (2020), Ghrab et al. (2018), Ghrab et al.
(2021), and Schuetz et al. (2021). Thus, combining graph
and OLAP technologies offers ways of analyzing graphs in
a manner already well accepted by the industry (Richardson
et al., 2021).

The complexity of ecosystems for managing big data
results in challenges for orchestrating these components and
in optimizing their performance, as there are too many parame-
ters in each system to be manually tuned by a human
administrator. Thus, more and more frequently, machine
learning techniques are applied to performance optimiza-
tion, e.g., Hernández et al. (2018) and Witt et al. (2019).
Conversely, data management techniques are used to solve
challenges in machine learning, such as building end-to-end
data processing pipelines (Romero & Wrembel, 2020).

In this editorial to the special section of Information
Systems Frontiers, we outline research problems in graph
processing, OLAP and machine learning. These problems
are addressed by the papers in this special section.

2 Selected Research Problems in Data
Management and Information Systems

2.1 Graph Processing

Graph processing algorithms have been attracting attention
of researchers since the 1950’s. Several knowledge repre-
sentation techniques (such as semantic networks) studied in
the 1970’s utilize graph structures, including applications
to rule-based systems (Griffith, 1982), data structures for
efficient processing (Moldovan, 1984)), and several other
aspects.
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The concepts of semantic networks served as a base for
the Semantic Web and evolved into knowledge graphs, also
known as knowledge bases. Processing of large distributed
RDF knowledge bases with the SPARQL language is
addressed in Peng et al. (2016).

Graph-based models become a natural choice for a rep-
resentation of semi-structured data (McHugh et al., 1997).
Graph representations proved their usefulness for modeling
hypertexts, including the World Wide Web (Meusel et al.,
2014). Documents (e.g., Web pages) are mapped to vertices,
while directed edges represent links. The graph represen-
tations of the WWW provided several features (such as
page rank and simrank) for deep analysis of its structure
and definition. Sources of large graphs include social net-
works, bioinformatics, road networks, and other application
domains.

The need to store and process large graphs supports
growing interest to graph databases. An overview of several
aspects of graph databases can be found in (Deutsch &
Papakonstantinou, 2018). Typically, such databases can
store graph vertices and nodes, labeled with sets of
attributes. A widespread opinion states that graph databases
provide more powerful modeling features than the relational
model used in traditional relational databases. This is
doubtful, as a relational database schema (represented for
example as an ER model) is also a graph (Pokorný, 2016).
Actually, the advantage of graph databases is that the
expensive and time-consuming modeling can be pushed
forward to later phases of the information system lifecycle,
providing more options for rapid prototyping and similar
application development methodologies (Brdjanin et al.,
2018).

A need of highly expressive tools for graph processing
specification triggered a number of efforts in declarative
query languages design. A step toward the standardization
of graph query languages (Angles et al., 2018) is focused
on providing a balance between high expressiveness and
computational performance, avoiding constructs that may
result in unacceptable computation complexity. The GSQL
graph query language (Deutsch et al., 2020) supports the
specification of complex analytical queries over graphs,
including pattern matching and aggregations. A comparison
of different graph processing techniques, available in the
Neo4j graph database management system, can be found
in Holzschuher and Peinl (2013).

Several similarities can be found between relational
and graph declarative query languages: as soon as sets of
labeled nodes or edges are produced as intermediate results,
the remaining processing is typically expressed in terms
of relational operations. The most significant differences

between graph and relational database query languages
follow.

• Graph traversal (implicit and rarely used in relational
languages) requires the intensive use of recursion and
an efficient implementation in graph databases.

• Graph query languages provide support for computa-
tionally complex processing, such as weighted shortest
path search, potentially with additional constraints.

• Locality of data placement is essential for high
performance of relational systems. Data placement in
graph databases is much more complex and often results
in poor performance when the size of the database
exceeds the available main memory of a single server.

The items listed above are inter-related: the performance
of graph processing depends on locality needed for efficient
traversing of a graph. However, traversing depends on the
problem being solved. A generic approach is to rely on
certain graph properties to optimize the storage of graph
nodes and edges, that is, graph partitioning.

2.2 On-Line Analytical Processing

The term “On-Line Analytical Processing” (OLAP) was
coined by Edgar F. Codd in 1993 (Codd et al., 1993). OLAP
is defined in contrast to operational database systems that
run On-Line Transactional Processing (OLTP). In OLTP,
data representing the current state of information may be
frequently modified and are interrogated through relatively
simple queries. OLAP’s data are typically sourced from one
or several OLTP databases, consolidated and historicized
for decision-support purposes. They are seldom modified
and are queried by complex, analytical queries that run over
large data volumes.

Conceptually, OLAP rests on a metaphor that is easy to
grasp by business users: the (hyper)cube. Facts constituted
of numerical Key Performance Indicators (KPIs), e.g.,
product sales, are analysis subjects. They are viewed as
points in a multidimensional space whose dimensions are
analysis axes, e.g., time, store, salesperson, etc. Dimensions
may also have hierarchies, e.g., store → city → state.
Thus, dimensions represent the coordinates of facts in the
multidimensional space.

In the 1990’s, OLAP research mainly focused on design-
ing efficient logical and physical models, synthetically sur-
veyed by Vassiliadis and Sellis (1999). Relational OLAP
(ROLAP) relies on storing data in time-tested relational
Database Management Systems (DBMSs), complemented
with new, OLAP-specific operators and queries available
in SQL99. ROLAP is cheap and easy to implement, can
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handle large data volumes, and schema evolution is rel-
atively easy. However, ROLAP induces numerous, costly
joints that hinder query performance, and analysis results
are not suitable to end-users, i.e., business users, and thus
must be reformatted.

In contrast, Multidimensional OLAP (MOLAP) sticks
to the cube metaphor. Hypercubes are natively stored
in multidimensional tables, allowing quick aggregate
computations. However, it turned out that MOLAP systems
and languages (e.g., MDX) were in majority proprietary and
difficult to implement. Moreover, data volume is limited
to the RAM size and a cube can be quite sparse, wasting
memory. Eventually, refreshing the system is limited,
inducing full and costly periodical reconstructions.

Eventually, Hybrid OLAP (HOLAP) was proposed
as the best of both worlds (Salka, 1998), by storing
atomic data in a relational DBMS and aggregated data in
MOLAP cubes, thus achieving a good cost/performance
tradeoff on large data volumes. However, HOLAP is
difficult to implement and neither as fast as MOLAP
nor as scalable as ROLAP. Later on, in 2014, Gartner
introduced the Hybrid Transaction/Analytical Processing
(HTAP1), where an in-memory DBMS helps process OLTP
and OLAP simultaneously, which allows transactional
data to be quickly available for analytics and induces
fast, distributed query computation while avoiding data
redundancy. However, this is a complex and drastic change
in decision-support architectures.

After OLAP pioneers, many lines of research went on
for more than fifteen years, which can be classified in two
trends. In the first trend, OLAP is adapted to particular data
formats. One of the most prominent of such adaptations
is probably Spatial OLAP (SOLAP Han, 2017), where
OLAP is applied on spatial (and even spatio-temporal)
data, allowing for example to zoom and dezoom (i.e., drill-
down and roll-up in terms of OLAP operations) spatial
representations such as maps. Another well-researched
adaptation was XML-OLAP (also called XOLAP), which
allows OLAP on semi-structured data. Related approaches
are surveyed in Mahboubi et al. (2009). Other examples
include OLAP on trajectory data (Marketos & Theodoridis,
2010) and mobile OLAP (Maniatis, 2004).

In the second trend, OLAP is hybridized with other
techniques for specific purposes. Quite quickly, OLAP
was associated with data mining, with OLAP providing
data navigation and identifying a subset of a cube; and

1https://www.gartner.com/imagesrv/media-products/pdf/Kx/
KX-1-3CZ44RH.pdf

data mining featuring association, classification, prediction,
clustering, and sequencing on this data subset (Han, 1997).

With the Web becoming an important source of data,
OLAP systems could not rely only on internal data any
more and had to discover external, Web data, as well as
their semantics. This issue was addressed with the help of
Semantic Web (SW) technologies that support inference and
reasoning on data. An extensive survey covers this research
trend (Abelló et al., 2015). OLAP was also combined
with information networks akin to social media, in the
sense that they can be represented by very similar graphs.
A comprehensive survey of the so-called Graph OLAP,
with a focus on bibliographic data analysis, is provided in
Loudcher et al. (2015).

Eventually, the Big Data era made OLAP meet new
challenges such as: (1) design methods that handle a high
complexity that tends to make the number of dimensions
explosive; (2) computing methodologies that leverage the
cloud computing paradigm for scaling and performance;
and (3) query languages that can manage data variety
(Cuzzocrea, 2015).

Big Data also pushed forward the exploitation of textual
documents, which are acknowledged to represent the
majority of the information stored worldwide. In the context
of OLAP, i.e., Text or Textual OLAP, the key issue is to find
ways of aggregating textual documents instead of numerical
KPIs. Two trends emerge, based on the hypercube structure
and text mining, respectively. They are thoroughly surveyed
and discussed in Bouakkaz et al. (2017).

Finally, with the emergence of Data Lakes (DLs) in
the 2010’s, the concept of Data Warehouse (DW), on
which OLAP typically rests, is challenged in terms of
data integration complexity, data siloing, data variety
management and even scaling. However, DLs and DWs are
actually synergistic. A DL can indeed be the source of a
DW, and DWs can be components, among others, of DLs.
Thence, OLAP remains very useful as an analytical tool in
both cases. Two recent and complimentary surveys cover
DL, DW and OLAP-related issues (Sawadogo & Darmont,
2021; Hai et al., 2021).

2.3 Machine Learning

Artificial intelligence (AI) has been a hot research and
technological topic for a few years. AI refers to the
computing techniques that allow stimulation of human-like
intelligence in machines. AI is a broad area of research
and technology that includes a sub-area - Machine Learning
(ML), which enables a computer system to learn models
from data.
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The most frequent ML techniques include regression,
clustering, and classification (they are supported by multiple
software tools (Krensky & Idoine, 2021)). Regression aims
at building statistical models to predict continuous values
(e.g., electrical or thermal energy usage in a given point
in time or time period). Clustering aims at dividing data
items into a non-predefined number of groups, such that
the instances in the same group have similar values of
some features (e.g., grouping customers by their purchase
behaviour). Classification aims at predicting a predefined
class to which belongs a given data item (e.g., classifying
patients into a class of high blood pressure risk or a class of
no-risk).

ML in turn includes a sub-area - Artificial Neural
Networks (ANNs). ANNs are based on a statistical model
that reflects the way a human brain is build, thus it
mathematically models how the brain works. ANNs are the
foundation of Deep Learning (DL) (Bengio et al., 2021). DL
applies algorithms that allow a machine to train itself from
large volumes of data, in order to learn new models based
on new input (data). DL turned out to be especially efficient
in image and speech recognition.

In order to build prediction models by ML algorithms,
massive amounts of pre-processed data are needed. The
pre-processing includes a workflow of tasks (a.k.a. data
wrangling (Bogatu et al., 2019), data processing/preparation
pipeline (Konstantinou & Paton, 2020; Romero et al., 2020)
or ETL (Ali & Wrembel, 2017)). The workflow includes
the following tasks: data integration and transformation,
data cleaning and homogenization, data preparation for a
particular ML algorithm. Based on pre-processed data, ML
models are built (trained, validated, and tuned Quemy,
2020). Since the whole workflow is very complex,
constructing it requires a deep knowledge from its developer
in multiple areas, including software engineering, data
engineering, performance optimization, and ML. Thus,
multiple works focus on automating the construction of such
workflows. This research area is commonly called AutoML.
It turned to be a hot research area in recent years (Bilalli
et al., 2019; Giovanelli et al., 2021; Koehler et al., 2021;
Quemy, 2019). (Kedziora et al., 2020) provides an excellent
state of the art of this research area.

Other major trends in ML are pointed to by the
Gartner report on strategical technological trends for
2021 (Panetta, 2020). Among the trends AI engineering
is listed. It is defined as means to “facilitate the
performance, scalability, interpretability and reliability of
AI models”. Interpretability and reliability is crucial, since
AI systems are typically applied to support decision
making by providing means of prediction models and
recommendations, which by definition must be reliable.
Moreover, a decision maker must be able to figure out and
understand how a decision was reached by a given model.

Unfortunately, models built by ML algorithms may be
difficult to understand for a user, for two main reasons.
First, a model may be too complex to be understood by
a user. Second, a user typically has access to an input
and output of a model, i.e., internals of the model are
hidden. Such models are typically referred to as black-box
models. They typically include ensemble models produced
by classification techniques (e.g., Random Forest, Bagging,
Adaboost) and ANN models. Even a simple classification
model may be difficult to understand if a decision tree is
large. ANN models are by their nature non-interpretable
(e.g., an ANN with a hundred of inputs and several hidden
layers). As a consequence, a user is not able to fully
understand how decisions are reached by such complex
models (Du et al., 2019).

Yet, in a decision making process, it is necessary to
understand how a given decision was reached by a ML
model. Therefore, there is a need for developing methods
for explaining how ML black-box models work internally.
As the response to this need, the so-called Explainable
Artificial Intelligence (EAI) (Biggio et al., 2021; Goebel
et al., 2018; Liang et al., 2021; Langer et al., 2021;
Miller, 2019) or Interpretable Machine Learning (IML) (Du
et al., 2019) techniques are being developed. This research
problem is defined as “investigating methods to produce
or complement AI to make accessible and interpretable
the internal logic and the outcome of the model, making
such process human understandable” (Bodria et al., 2021).
Explaining ML models turned out to be crucial in multiple
business and engineering domains, such as system security
(Mahbooba et al., 2021), health care (Danso et al., 2021),
chemistry (Karimi et al., 2021), text processing (Moradi
& Samwald, 2021), finance (Ohana et al., 2021), energy
management (Sardianos et al., 2021), and IoT (Garcı́a-
Magariño et al., 2019).

A substantial growth of this research topic is observed in
years 2018-2019. The DBLP service2 includes in total 215
papers on EAI and 163 papers on IML (as of September 25,
2021). Google Trends3 shows an increasing popularity trend
of this research topic. Figure 1 shows an aggregated trend
for EAI and IML.

Techniques for building interpretable ML models can
be divided into two categories, namely intrinsic and post-
hoc. An orthogonal classification divides the techniques into
global and local interpretable models (Du et al., 2019).

Models from the intrinsic interpretability incorporate
interpretability directly to their structures, making them
self-interpretable. Examples of such models include for

2https://dblp.uni-trier.de/
3https://trends.google.com/trends/
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Fig. 1 Aggregated popularity
trend of EAI and IML topics
(Google Trends)

example: decision trees, rule-based models, and linear mod-
els. Models from the post-hoc interpretability require con-
structing an additional model, which provides explanations
to the main model.

A globally interpretable model means that a user is
able to understand how a model works globally, i.e., in a
generalized way. A locally interpretable model allows a user
to understand how an individual prediction was made by the
model.

Multiple approaches to explaining models have been
proposed. They may be specific to a type of data used
to build a model, i.e., there are specific approaches for
table-like data, for images, and for texts.

For explaining models that use table-like data, the
most popular method is based either on rules or on
feature importance. A rule-based explanation uses decision
rules understandable by a user, which explain reasoning
that produced the final prediction (decision). A feature
importance explanation assigns a value to each input
feature. The value represents the importance of a given
feature in the produced model.

For explaining models that work on images, the most
frequently used technique is called the Sailency Map (SM).
The SM is an image where a brightness and/or color of
a pixel reflects how important the pixel is (it is typically
visualized as a divergent color map). This way, it can be
visualized whether and how strongly a given pixel in an
image contributes to the given output of a model. The SM

is typically modeled as a matrix, whose dimensions are the
sizes of the image being analyzed.

A concept similar to SM can be used to explain models
that work on text data. When the SM is applied to a text, then
every word in the text is assigned a color, which reflects the
importance of a given word in the final output of a model.

An excellent overview of explanation methods in ML for
various types of data is available in Bodria et al. (2021).

3 Special Section Content

This editorial paper overviews research topics covered in
this special section of the Information Systems Frontiers
journal. The special section contains papers invited from the
24th European Conference on Advances in Databases and
Information Systems (ADBIS).

3.1 ADBIS Research Topics

The ADBIS conference has been running continuously
since 1993. An overview of ADBIS past and present
activities can be found in (Tsikrika & Manolopoulos, 2016)
and at http://adbis.eu. ADBIS is considered among core
European conferences on practical and theoretical aspects
of databases, data engineering, data management as well
as information systems development and management. In
this context, the most frequent research topics addressed
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by researchers submitting papers to ADBIS within the
last ten years include: Data streams, Data models and
modeling, Data cleaning and quality, Graph processing,
Reasoning and intelligent systems, On-Line Analytical
Processing, Software and systems, Ontologies and RDF,
Algorithms, Indexing, Spatio-temporal data processing,
Data integration, Query language and processing, Machine
Learning.

All research topics covered within the last 10 editions
(years 2012-2021) of ADBIS are visualized in Fig. 2. We
constrained the analysis to the 10-years period in order to
reflect the recent research interests. Moreover, we analyzed
papers published only in the LNCS volumes, to include the
highest quality papers. In Fig. 2, the Y axis shows a total
number of papers addressing a given topic (the median is
equal to 7). Q1-Q4 represent the first, second, third, and
fourth quartile, respectively.

The papers included in this special section address topics
from Q3 and Q4, and thus represent frequent ADBIS
topics. These papers cover: Graph processing, OLAP, and
Machine Learning (marked in black in Fig. 2). These three
topics are outlined in Section 2, whereas the papers included
in this special section are summarized in Section 3. It is
worth to note that the most frequent ADBIS topics reflect
world research trends and they follow research topics of
top world conferences in databases and data engineering,
including SIGMOD, VLDB, and ICDE (Wrembel et al.,
2019). This special section includes three papers covering:
Graph processing, OLAP, and Machine Learning.

3.2 Papers in this Special Section

The first paper (Belayneh et al., 2022), Speeding Up
Reachability Queries in Public Transport Networks Using
Graph, authored by Bezaye Tesfaye Belayneh, Nikolaus

Augsten, Mateusz Pawlik, Michael H. Böhlen, and Christian
S. Jensen, addresses the challenges discussed in Section 2.1
for a special case of temporal road networks graphs and a
special case of queries, namely, reachability queries over
public transport network.

An evaluation of such queries involves multiple computa-
tions of shortest paths with additional temporal constraints.
Specifically, the connection time calculated as a difference
between a departure of the outgoing vehicle and an arrival
of previous incoming vehicle is added to the length of a
path. The problem is, in general, NP -hard. Therefore, an
approximate algorithm is needed to solve the problem effi-
ciently. To this end, the authors propose an algorithm based
on graph partitioning: the problem is split into smaller prob-
lems. A set of boundary nodes is pre-calculated for each
partition. The shortest path is found in each partition (called
a cell in the paper) and a choice of a path between parti-
tions. Pre-calculated paths inside cells constitute an index
that significantly speeds up the search. In the proposed eval-
uation, the search is limited to startpoint and endpoint cells
and search for chains of cells, as the paths inside cells and
boundary nodes are pre-calculatied. The partitioning pro-
vides locality, but of course actual performance depends
on the choice of partitioning algorithm. The paper con-
tains deep performance analysis and comparison of different
partitioning algorithms.

The second paper (Francia et al., 2022), entitled
Enhancing Cubes with Models to Describe Multidimen-
sional Data, by Matteo Francia, Patrick Marcel, Veronika
Peralta, and Stefano Rizzi, presents a first step toward a
proof of concept of the Intentional Analytics Model (IAM).

IAM mobilizes both Online Analytical Processing
(OLAP) and various machine learning methods to allow
users express the so-called analysis intentions and obtain
the so-called enhanced (annotated) data cube. Analysis

Fig. 2 Research topics within
the last 10 years of ADBIS
(based on papers published only
in LNCS volumes)
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intentions are expressed with five operators. The paper
focuses on formalizing and implementing the describe
operator, which describes cube measures. Enhanced cube
cells are associated with interesting components of models
(e.g., clustering models) that are automatically extracted
from cubes. For example, cells containing outliers can be
highlighted.

Moreover, the authors propose a measure to assess
the interestingness of model components in terms of
novelty, peculiarity and surprise during the user’s data
navigation. A dataviz is also automatically produced by
a heuristic to depict enhanced cubes, by coupling text-
based representations (a pivot table and a ranked component
list) and graphical representations, i.e., various possible
charts. Eventually, the whole approach is evaluated through
experiments that target efficiency, scalability, effectiveness,
and formulation complexity.

The third paper (Ferrettini et al., 2022), entitled
Coalitional Strategies for Efficient Individual Prediction
Explanation, by Gabriel Ferrettini, Elodie Escriva, Julien
Aligon, Jean-Baptiste Excoffier, and Chantal Soulé-Dupuy,
addresses the problem of explaining machine learning
models. The goal of this work was to develop a general
method for facilitating the understanding of how a machine
learning model works, with a particular focus on identifying
groups of attributes that affect a ML model, i.e., a quality of
prediction provided by the model.

A starting point of the investigation is an observation
that attributes cannot be considered as independent of each
other, therefore it was required to verify the influence of
all possible attributes combinations on the model quality.
The influence of an attribute is measured according to
its importance in each group an attribute can belong
to. A complete influence of an attribute now takes into
consideration its importance among all the possible attribute
combinations. Computing the complete influence is of
exponential complexity. For this reason, efficient methods
for finding influential groups are needed.

In this context, the paper describes a method for
identifying groups of attributes that are crucial for a quality
of a ML model. To this end, the authors proposed the so-
called coalitions. A coalition includes these attributes that
influence a ML model. In order to identify coalitions, the
authors proposed to use the following techniques:

• Model-based coalition, where interactions between
attributes used in a model are detected by analyzing the
usage of the attributes by the model. To this end, the
values of attributes in an input data set are modified and
it is observed how the model predictions vary.

• PCA-based coalition, where the PCA method is applied
to create a set of combined attributes, represented by

a new attribute obtained from the PCA. This set is
considered as an influential group of attributes.

• Variance inflation factor-based coalitions, where the
standard variance inflation factor (VIF) is an estimation
of the multicollinearity of the attributes in a dataset,
w.r.t. a given target attribute. VIF is based on the R
coefficient of determination of the linear regression.
Since the value of VIF is computed by means of a linear
regression, this method is suitable for coalitions where
linear correlation between attributes exist.

• Spearman correlation coefficient-based coalition,
which takes into account non-linear correlations
between attributes. The correlations are computed
between all pairs of attributes and their correlations are
represented by the Spearman coefficient.

These methods were evaluated by excessive experiments
on multiple data sets provided by openml.org, for two
classification algorithms, namely Random Forest and
Support Vector Machine. As the baseline, the so-called
complete method was selected. The obtained results, show
that the proposed methods provided promising performance
characteristics in terms of computation time and model
accuracy.

Acknowledgements The Guest Editors thank all friends and col-
leagues who contributed to the success of this special section. We
appreciate the effort of all the authors who were attracted by the topics
of the ADBIS conference and submitted scientific contributions.

Special thanks go to the Editors-In-Chief Prof. Ram Ramesh and
Prof. H. Raghav Rao, for offering this special section to the ADBIS
conference and to the Springer staff, namely to Kristine Kay Canaleja
and Aila O. Asejo-Nuique, for efficient cooperation.

We appreciated the work done by the reviewers who offered their
expertise in assessing the quality of the submitted papers by providing
constructive comments to the authors. The list of reviewers includes:
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C.S. (2022). Speeding up reachability queries in public transport
networks using graph partitioning. Inf. Syst Frontiers 24(1).
https://doi.org/10.1007/s10796-021-10164-2.

Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for ai.
Communcations of the ACM, 64(7), 58–65.

Biggio, B., Diaz, C., Paulheim, H., & Saukh, O. (2021). Big minds
sharing their vision on the future of ai (panel). In Database and
expert systems applications (DEXA), LNCS, Vol. 12923. Springer.
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Universidad de Costa Rica (Costa Rica), Klagenfurt University
(Austria), University of Maribor (Slovenia), Loyola University (USA),
INRIA Paris-Rocquencourt (France), and Université Paris Dauphine
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