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Abstract
In this paper, we analyze the impact of various factors on meeting service level agreements (SLAs) for information technol-
ogy (IT) incident resolution. Using a large IT services incident dataset, we develop and compare multiple models to predict 
the value of a target Boolean variable indicating whether an incident met its SLA. Logistic regression and neural network 
models are found to have the best performance in terms of misclassification rates and average squared error. From the best-
performing models, we identify a set of key variables that influence the achievement of SLAs. Based on model insights, we 
provide a thorough discussion of IT process management implications. We suggest several strategies that can be adopted 
by incident management teams to improve the quality and effectiveness of incident management processes, and recommend 
avenues for future research.
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1  Baruch Spinoza was a Dutch Jewish philosopher, born Benedito 
de Espinosa, later Benedict de Spinoza. He was one of the foremost 
exponents of 17th-century Rationalism and one of the early and 
seminal figures of the Enlightenment. His monumental work, “Eth-
ics”, which was published posthumously in 1677, presents an ethi-
cal vision unfolding out of a monistic metaphysics in which God and 
Nature are identified.

1  Introduction

If you want the present to be different from the past, study 
the past. – Baruch Spinoza (1632 – 1667).1

Quality of Information Technology (IT) services is 
typically evaluated by the reliability of their uninterrupted 
operation. Reliable operation is closely linked to the number 
of IT service incidents, and cost of IT service incidents is 
high. In 2015, IT downtime cost in terms of employee pro-
ductivity was $700 billion for North American companies 
(Saarelainen, 2016). This cost amounted to 4% of the com-
bined GDP of the United States and Canada as reported by 

International Monetary Fund (2015). On average, an outage 
in a data center cost $8,000 per minute, and average over-
all cost per incident is $630,000 (Ponemon Institute, 2013). 
The data center outage cost has been on the rise over the 
years and it increased by 38 percent between 2010 and 2018 
(Splunk, 2019).

In 2016, the average outage cost nearly three quarters 
of a million dollars, an increase of nearly 50% from 2010. 
Each minute of outage cost nearly $9,000, which meant the 
typical IT downtime was approximately 80 min. Although 
this may appear a short period of time, the cost and stress 
for the IT department of an outage is overwhelming (Splunk, 
2019). In another study of about three hundred firms with 
downtime incidents, it was found that approximately 15% of 
the outages in the survey cost over a million dollars. Even 
in one case, the cost of the outage exceeded 50 million dol-
lars (Uptime Institute, 2018). Information security incidents 
have been on the rise since 2009 with an average of 117,339 
incidents per day, and they have caused millions of dollars in 
financial losses (Tan et al., 2015). It is important to mention 
that the numbers reported here are opportunity costs from 
the outage, rather than direct costs associated with fixing it 
(Ponemon Institute, 2016).

With expanding online markets, the downside risk from 
an outage is on the rise. The largest costs associated with 
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outages are business disruption, productivity, and lost rev-
enue, which combinedly make up over 60% of the total cost 
of an outage. Costs are highest in high-transaction industries 
like finance and e-commerce, where downtime means lost 
money (Dwivedi et al., 2015; Splunk, 2019). Therefore, pre-
venting or eliminating the number of IT service incidents is 
important at the organizational and national level. Although 
the financial impact of IT services incidents on society is 
found to be significant, as illustrated above, few studies 
have been conducted in this area. There is a need for studies 
investigating the factors responsible for IT service incidents, 
so that we can better understand the cause of IT service inci-
dents (March & Scudder, 2019; Saarelainen, 2016). Given 
the enormous amount of data generated by modern organiza-
tions, mining these data might help organizations predict and 
prevent future IT outages and the costs associated with them.

Large volumes of incidents are challenging to manage 
even in well-staffed companies. Incident classification is a 
common challenge (Jäntti & Cater-Steel, 2017) which can 
lead to inaccurate priority identification and increased ticket 
reassignment counts. Additionally, mistakes in the crea-
tion of incident categorization and prioritization systems, 
as well as in incident data entry, expose organizations to 
greater risk of failing to meet SLAs (Astuti et al., 2017). 
These factors not only prolong incident resolution, but also 
result in widespread ramifications beyond the information 
systems; finance, marketing, operations, and supply chain 
management are among the key areas impacted by service 
management design and execution (Bardhan et al., 2010). 
The resulting degradation in employee workflows and cus-
tomer service leads companies to suffer from reputational 
and financial repercussions due to customer dissatisfaction 
(Järveläinen, 2013).

A Service Level Agreement (SLA) is typically an agree-
ment between a customer and a provider to receive a par-
ticular service. SLAs contain a variety of parameters such 
as response time, bandwidth, storage, reliability, deadline, 
throughput, delay, and cost that must be maintained by a 
provider. The provider must measure and monitor these 
parameters during the service to avoid violations that have 
been agreed in the SLA. Therefore, the SLA plays a role 
in adapting to dynamic environmental changes and hetero-
geneous resources (Goo, 2010; Mubeen et al., 2017; Sahal 
et al., 2016).

In light of the COVID-19 pandemic, business leaders 
are faced with significant challenges in ensuring business 
continuity (Biddle, 2020). Effective incident management 
strategies are thus more critical to business continuity than 
ever before. Employees and customers around the world 
have been forced to adopt remote operating practices, so the 
achievement of incident service level agreements (SLAs) 
is crucial for companies to sustain quality customer and 
employee experiences. Adherence to SLAs is also key to 

mitigating business risk, fulfilling contractual obligations, 
and meeting legal requirements, particularly in scenarios 
where service provision is outsourced all or in part to third 
party providers (Desai, 2010). While many system events 
are occurring simultaneously, effective incident management 
is needed to determine whether the events are truly related 
to an incident (IBM Cloud Education, 2019), thereby cut-
ting through the noise and avoiding exploration of dead-end 
troubleshooting routes.

The process of learning from business failure benefits 
society through application of that knowledge to subsequent 
businesses to prevent reoccurrence of such failures. Learning 
typically involves several processes: situation assessment, 
problem detection, potential solution synthesis, solution 
implementation, outcome evaluation, and identification of 
patterns among the problems and failures. Organizational 
learning results when members of the organization react 
to changes in the internal or external environment of the 
organization by detection and correction of failures (Sage 
& Rouse, 1999). By pursuing success and avoiding fail-
ure, firms introduce errors that not just inhibit learning and 
interpretation processes but also make failure more likely 
or expensive than necessary. Moreover, it is often easier 
to point out why a failure has occurred than to explain a 
success, making failure analysis a powerful mechanism for 
resolving uncertainty (McGrath, 1999). Arguing that failure 
is more important than success for organizational learning, 
Sitkin (1992) suggests that firms that focus entirely on suc-
cess could suffer from complacency, decreased resilience 
and eventual failure. By carefully analyzing failures instead 
of focusing only on successes, scholars and business deci-
sion makers can begin to make systematic progress on better 
analytical models of organizational value creation (McGrath, 
1999). There is enough evidence in literature suggesting that 
organizations can learn from both success and failure (e.g., 
Chen et al., 2020; KC et al., 2013; Madsen & Desai, 2010). 
These arguments and evidence provide a motivation for this 
study.

Over the years, scholars (e.g., Rizk and Elragal 2020) 
have criticized the dominance of gap-spotting types of 
research and encouraged forward-thinking and innovative 
research in IS to bring in theoretical contributions to the IS 
field via data science. More recently, there appears to be a 
consensus that research can start with data or data-driven 
discoveries, rather than with theory. This study responds 
to the call from researchers (e.g., Agarwal & Dhar, 2014; 
Shmueli & Koppius, 2011) for more studies that use predic-
tive analytics to investigate research questions. This study 
attempts to extract predictive and prescriptive knowledge 
on the phenomenon of IT incident resolution and the ability 
to predict certain future scenarios that can guide preven-
tive action. The goal here is to derive meaningful insights 
by leveraging analytical tools that have not previously been 
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applied to incident SLA analysis. The findings of this study 
contribute to the incident management body of literature 
particularly related to ITIL® and service level management, 
and they can be useful for proactive incident management. 
The objectives of this study are two-fold. First, we aim to 
identify a set of key factors influencing SLAs for incident 
resolution, and then to suggest strategies for prevention or 
reoccurrence of these incidents.

This is how the paper is organized. In the following 
section, we present a review of related work in incident 
resolution along with the data and research methodology. 
The results with major findings are presented in Sect. 3. In 
Sect. 4, we discuss the implications of the findings of this 
study for theory and practice. A concluding summary of the 
study is presented in the final section with a discussion on 
limitations and future research options.

2 � Literature Review and Methodology

2.1 � IT Service Management

Grown out of the need for addressing and managing complex 
IT architecture issues, IT service management (ITSM) is a 
strategy that focuses on defining, managing, and delivering 
customer-focused IT performance as a service (Winniford 
et al., 2009). To guide ITSM and in response to businesses 
demanding better and more disciplined IT services, best 
practice frameworks such as the IT Infrastructure Library 
(ITIL) have emerged to help IT organizations become more 
adaptive, flexible, cost-effective, and service-oriented. ITIL 
focuses on a complex set of processes, functions, and roles 
within five stages of the service lifecycle: service strategy, 
service design, service transition, service operations, and 
continual service improvement. Most service management 
efforts emphasize the final stage of the service lifecycle 
(continual service improvement) to better manage continued 
IT services such as service desk, incident management, and 
problem management (Pollard et al., 2010).

Incident management defines incidents as unplanned dis-
ruptions or quality degradations of service. Therefore, the 
objective of incident management is not to solve the root 
problem or systemic cause but to quickly restore normal 
service to end-users. These users may be final consumers or 
internal business users, so the ITIL standard may be applied 
to enhance the quality of various steps in the product or 
service delivery process (Gil-Gómez et al., 2014). The basic 
steps in an incident management process as recommended 
by ITIL are: Incident resolution and recording; Classification 
and assignment; Investigation and diagnosis; Resolution and 
recovery; and Incident closure (Muhren et al., 2007). Lucid-
chart (Lucidchart Content Team, 2019), a platform used by 
various Fortune 500 companies for collaborative process 

design and organization, expands the ITIL recommended 
steps and describes a typical flow of incident management 
in eight steps as follows:

1.	 Incident identification—An end user or automated noti-
fication reports a service interruption.

2.	 Incident logging – The service desk identifies the report 
as an incident and logs information including user con-
tact information and issue description.

3.	 Incident categorization and prioritization – The service 
desk tags the incident under the appropriate categories 
based on organizational schemas (e.g., hardware—office 
supplies—printer failure) and assigns priority level, 
in order to determine how and by whom the issue is 
addressed.

4.	 Initial diagnosis – The assigned IT support team con-
ducts research to describe the problem, develop a 
hypothesis, and attempt issue resolution.

5.	 Functional and hierarchic escalation – The initially 
assigned IT support team, if not successful in the initial 
resolution attempt, escalates the issue to a specialized 
technical team or consults with managing authorities 
to determine whether more resources are required to 
resolve the incident.

6.	 Investigation and diagnoses – Support technicians con-
tinue to troubleshoot the issue and attempt various solu-
tions, based on likely causes, to find the correct diagno-
sis.

7.	 Resolution and recovery – The support team fixes the 
issue after identifying the correct diagnosis, in order to 
restore normal service.

8.	 Incident closure – The service desk confirms with the 
reporting user that the incident has been resolved and 
closes the incident ticket.

Service management platforms offer solutions to organize 
and track user incident reports, which is especially critical 
for large companies fielding hundreds of IT incidents daily. 
One standout among service management providers is Ser-
viceNow™, founded by Fred Luddy in 2005. Providing ITIL 
out of the cloud, it offers access to an ITIL conform service 
management solution. It is a Platform-as-a-service (PaaS) 
provider that provides a unified cloud-computing platform 
for automating and transforming IT processes, including 
security operations, IT service, asset, business operations 
and event management. ServiceNow™ offers clients sim-
ple, customizable tools that create centralized automation 
for common IT support tasks, including “tracking incidents, 
recovering passwords, requesting equipment, setting up new 
user accounts, troubleshooting and managing IT systems 
and responses through simply designed service portals” 
(Chaykowski & Coatney, 2018). Its industry prevalence 
is marked by its recent No. 1 ranking on the Forbes Most 
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Innovative Companies list and by its 4,000-strong customer 
base, including 850 companies on Forbes’ Global 2000 list 
of the world’s largest firms (Chaykowski & Coatney, 2018). 
ServiceNow™’s Incident Management product includes fea-
tures such as omnichannel capture, predictive intelligence, 
calculated priority, reports and dashboards, and service level 
agreements (ServiceNow, 2020). With over 30 common 
attributes describing each incident, ServiceNow™ provides 
a wealth of data with which to analyze the effectiveness of a 
company’s incident management processes. This study uses 
data collected by the ServiceNow™ platform in a large IT 
services company.

2.2 � Data Mining and IT Service Management

Data mining can be defined as “…the analysis of (often 
large) observational datasets to find unsuspected relation-
ships and to summarize the data in novel ways that are both 
understandable and useful to the data owner…” (Hand 
et al., 2001). It has been an effective tool in extracting use-
ful information from large multi-dimensional databases to 
aid decision-making. The data mining methodology uses 
several analytical tools that use available large data for clas-
sification, prediction, clustering, summarization, aggrega-
tion, and optimization (Zurada & Lonial, 2011; Motiwala 
et al., 2019), in a form amenable to use for decision-making 
purposes. Historically, data mining methodology has been 
used for fraud detection, customer relationship manage-
ment, market segmentation analysis, risk/affinity analysis, 
and healthcare (Swain, 2016; Johnson et al., 2021), but not 
so much in incident management studies. This study adds 
a new data mining analysis perspective to the IT incident 
management body of literature.

Several studies have explored and recommended ways 
to improve IT Service Management using insights derived 
from the data generated over the IT services lifecycle 
(e.gKloeckner et al., 2018; Pratiwi & Tanaamah, 2020). 
Gupta et al. (2018) studied an approach to reduce the num-
ber of user input requests in the life cycle of IT tickets (inci-
dents). They proposed a preemptive model to prompt users 
for information needed to service a ticket, based on the pre-
dictions of whether a user input request will be needed to 
process the ticket, and if so, what specific information is 
likely to be requested. Kloeckner et al. (2018) used logistic 
regression, gradient boosting tree, and RDF models to quan-
tify ticket resolution quality on a real-world dataset. They 
found that the length of the resolution was the best indicator 
of resolution quality. However, we have not discovered any 
studies that use decision trees in the context of achieving 
SLAs in incident resolution.

Regression is one of the most popular techniques for pre-
dictive modeling (e.g., Singh et al., 2020). Still, not many 
studies have used logistic regression models to predict 

adherence to incident SLAs. Neural Network (NN) models 
have found their applications in areas such as natural lan-
guage processing and information retrieval (Ghosh et al., 
2018), but these models have rarely been used by researchers 
in the context of incident management analysis. Son et al., 
2014) described the automation of help desk ticket clas-
sification by using a Softmax Regression Neural Network 
(SNN) text classification algorithm. Lyubinets et al., 2018) 
also explored text classification in the automated labeling of 
bugs and tickets in customer support systems, using recur-
rent neural networks. Kloeckner et al. (2018) used convo-
lutional neural networks (CNNs) to extract non-functional 
requirements (“how” services should be delivered) from cli-
ent requirements documents for IT solutions. The extracted 
requirements were used to create structured representations 
for SLAs to assess the compatibility of a proposed solution’s 
capabilities to the solution request. To the best of our knowl-
edge, neural networks have not been used in predicting the 
achievement of SLAs in incident resolution, as we attempt 
to do in this study.

Gupta et al. (2018) used Support Vector Machine (SVM) 
when creating preemptive models to predict characteristics 
of IT incidents in order to efficiently reduce the need for 
user input throughout the life cycle of the ticket. Al-Hawari 
and Barham (2021) also used an SVM-based algorithm to 
associate help desk tickets with the correct services early in 
the resolution process, in order to minimize resolution time. 
Our use of SVM models to predict achievement of incident 
SLAs and to identify key factors in this adherence adds a 
new complementary dimension to the existing literature for 
the application of SVM models in IT incident analysis.

2.3 � Data and Variables

The data used in this study  are from an event log of an 
incident management process extracted from the audit sys-
tem of an instance of the ServiceNow™ platform used by 
a large IT company. The data  are loaded from a relational 
database underlying a corresponding process-aware informa-
tion system. The original dataset contains 141,712 records 
corresponding to each state in the lifecycle of 24,918 unique 
incidents, so the dataset was limited to the 24,918 records 
for which the incidents are in the final “Closed” state. The 
repository notes that missing values (denoted by a “?” sym-
bol) should be considered unknown information, so the con-
tent in cells with a “?” symbol was redacted to be empty, in 
order to facilitate recognition of missing variables within 
SAS Enterprise Miner. Additionally, company-specific infor-
mation (names, locations, categories, etc.) was anonymized 
by the repository for privacy, so many attributes contain 
values such as “Caller 1”, “Location 5”, “Symptom 10”, 
“Group 25”, and so on.
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Table 1 contains a summary of the variables with their 
role and measurement levels. The incident identifier num-
ber was selected for the ID role. The attribute made_sla 
is the binary target variable. Thirteen other variables were 
selected as inputs. Although the ordinal variable priority is 
a function of impact and urgency, all three variables were 
included to analyze the individual effect of priority on the 
outcome made_sla. The remaining eight nominal variables 
were rejected due to having too many levels (100 or more) 
to be useful for analysis. Furthermore, it was not possible to 
perform a reduction to consolidate the number of levels, due 
to the anonymized nature of the variables.

2.4 � Data Exploration

In this study, the SAS Enterprise Miner (SAS EM) 15.1 
package was used for data analysis and model building. 
SAS EM is a Windows based package that allows creation 
of highly accurate predictive and descriptive models and 
facilitates comparison of many common data mining tech-
niques. It can create a wide range of predictive models. SAS 
EM provides a convenient graphical-user-interface (GUI) to 
create a diagram workspace where a process flow diagram 

can be constructed from a tool palette using a drag-and-drop 
approach.

An initial histogram exploration of three interval vari-
ables (reassignment_count, reopen_count, sys_mod_count) 
reveals interesting relationships with the target made_sla. 
Incidents that had 0 reassignments during their lifecycle 
had a roughly 2:1 ratio of meeting the SLA. The subgroup 
with the highest proportion of made_sla = TRUE appears 
to be incidents that had three or fewer updates during their 
lifecycles. The ratio for meeting the SLA is nearly 6:1 for 
this subgroup. Conversely, incidents with four or more 
updates (up to a max of 129) have a proportion of made_
sla = FALSE which is more than double the proportion of 
made_sla = TRUE. It is worth noting that this subgroup 
constitutes mostly the incidents that did not meet the SLA.

2.5 � Model Selection and Descriptions

As decision tree, logistic regression, neural network, 
and support vector machine models have not been 
widely used in analyzing incident resolution manage-
ment issues, we chose to use all four model types in our 
study to derive meaningful insights from incident SLA 

Table 1   Variable Details

Name Description Role Level

number Incident identifier ID Nominal
made_sla Boolean attribute that shows whether the incident met the target SLA (1-True, 0-False) Target Binary
knowledge Boolean attribute that shows whether a knowledge base document was used to resolve the inci-

dent (1-True, 0-False)
Input Binary

u_priority_confirmation Boolean attribute that shows whether the priority field has been double-checked (1-True, 0-False) Input Binary
reassignment_count Number of times the incident has the group or the support analysts changed Input Interval
reopen_count Number of times the incident resolution was rejected by the caller Input Interval
sys_mod_count Number of incident updates until that moment Input Interval
assignment_group Identifier of the support group in charge of the incident Input Nominal
category First-level description of the affected service Input Nominal
closed_code Identifier of the resolution of the incident Input Nominal
contact_type Categorical attribute that shows by what means the incident was reported Input Nominal
notify Categorical attribute that shows what notifications were generated for the incident Input Nominal
impact Description of the impact caused by the incident (1-High; 2-Medium; 3-Low) Input Ordinal
priority Value calculated by the system based on impact and urgency (1-Critical; 2-High; 3-Moderate; 

4-Low)
Input Ordinal

urgency Description of the urgency informed by the user for the incident resolution (1-High; 2- Medium; 
3-Low)

Input Ordinal

assigned_to Identifier of the user in charge of the incident Rejected Nominal
caller_id Identifier of the user affected Rejected Nominal
location Identifier of the location of the place affected Rejected Nominal
opened_by Identifier of the user who reported the incident Rejected Nominal
resolved_by Identifier of the user who resolved the incident Rejected Nominal
subcategory Second-level description of the affected service (related to the first-level description, i.e., to 

category)
Rejected Nominal

u_symptom Description of the user perception about service availability Rejected Nominal

823Information Systems Frontiers (2023) 25:819–834



1 3

analysis. Twelve models were created to evaluate model 
effectiveness based on variations in assessment criteria 
and data transformation. To have a fair comparison, all 
models were developed using the same initial dataset, 
with model-specific settings or transformations applied 
within the models’ properties. A process flow diagram 
was created in SAS EM to partition the data and run the 
models. The node properties are summarized in Table 2. 
Default settings were used unless otherwise noted. The 
global interactive sampling settings (Options > Pref-
erences > Interactive Sampling) were set to Sample 
Method = Random and Fetch Size = Max.

Decision Trees  The Decision Tree 1 (DT1) model 
included seven variables (sys_mod_count, knowledge, 
assignment_group, priority, u_priority_confirmation, 
impact, and reassignment_count) with sys_mod_count 
and knowledge having the highest importance. The Deci-
sion Tree 2 (DT2) model was based on the assessment 
criteria of Average Squared Error (ASE) also included 
seven variables (the same seven as in DT1) that were 
selected to create the node rules, with sys_mod_count 
and knowledge having the highest importance. The Deci-
sion Tree 3 (DT3) model was based on the assessment 
criteria of ASE, with maximum branch settings permit-
ting up to three subsets per splitting rule. Nine variables 

were selected to create the node rules (the same seven 
as in the previous two trees, plus category and urgency), 
with sys_mod_count and u_priority_confirmation having 
the highest importance.

Logistic Regression  The Regression 1 model is a 
logistic regression created from data that was both 
transformed and imputed as described in Table  2. 
Applying the log transformation to reassignment_
count ,  reopen_count ,  and sys_mod_count  greatly 
reduced the skewness. Eight variables (LOG_sys_
mod_count, u_priority_confirmation, priority, IMP_
assignment_group, IMP_category, knowledge, LOG_
reassignment_count, and M_assignment_group) were 
selected by the model, with LOG_sys_mod_count and 
u_priority_confirmation having the highest signifi-
cance. The prefixes are visual identifiers provided by 
SAS EM to indicate variables that were transformed 
(LOG_), variables that were eligible for imputation 
(IMP_), and dummy variables for events, which had 
missing values that were, then imputed (M_). Table 3 
includes a summary of The Regression 1 output.

The Regression 2 model is a logistic regression based 
on data that was only imputed as described in Table 2. 
Eight variables (sys_mod_count, u_priority_confirma-
tion, priority, IMP_assignment_group, IMP_category, 

Table 2   Node Properties

Node Properties

File Import Default; variables were assigned roles and levels as described in Table 1
Stat Explore Default
Data Partition Train > Data Set Allocations > Training = 50.0, Validation = 50.0
Decision Tree 1 Train > Subtree > Assessment Measure = Decision
Decision Tree 2 Train > Subtree > Assessment Measure = Average Squared Error
Decision Tree 3 Train > Splitting Rule > Maximum Branch = 3

Train > Subtree > Assessment Measure = Average Squared Error
Regression 1
Regression 2
Regression 3

Train > Model Selection > Selection Model = Stepwise, Selection Criterion = Validation Error
(Note: The three regression nodes all use the same settings.)

Impute Default (Note: There were no missing interval variables in the data. For non-interval variables, the default 
value for imputation is the mode)

Transform Variables Train > Variables > reassignment_count = log, reopen_count = log, sys_mod_count = log
Neural Network Train > Variables > *Selected only top 4 variables from Regression 1 model, in order to achieve convergence

Train > Optimization > Maximum Iterations = 500, Preliminary Training: Enable = No
Train > Model Selection Criterion = Average Error

Auto Neural Train > Variables > *Selected only top 4 variables from Regression 1 model
Train > Model Options > Train Action = Search, Number of Hidden Units = 1, Tolerance = Low
Train > Activation Functions > Direct = No, Normal = No, Sine = No

HP SVM Linear Optimization Method > Interior Point > Kernel = Linear
HP SVM Poly Optimization Method > Active Set > Kernel = Polynomial
HP SVM RBF Optimization Method > Active Set > Kernel = Radial Basis Function
HP SVM Sigmoid Optimization Method > Active Set > Kernel = Sigmoid
Model Comparison Default
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knowledge, M_assignment_group, and reassignment_
count) were selected by the model, with sys_mod_count 
and u_priority_confirmation having the highest signifi-
cance. The Regression 3 model included three variables 
(sys_mod_count, u_priority_confirmation, and priority) 
were selected by the model, with sys_mod_count having 
the highest significance.

Neural Networks  SAS EM does not have a built-in variable 
selection method in the neural network tool, so the regres-
sion node results facilitate the variable selection process for 
the models. Due to the high number of levels in categori-
cal variables such as assignment_group and category, each 
model had several hundred estimated weights.

Support Vector Machines  As with the neural networks, the 
Linear, Polynomial, Radial Basis Function (RBF), and Sig-
moid High Performance (HP) SVM models were connected 
to The Regression 1 node, so that the data transformation 
from The Regression 1 path would also be applied to the 
SVM models.

2.6 � Model Comparison

Table 4 contains a comparison of variables selected by the 
decision tree (DT) and regression models. The accuracy, sen-
sitivity (true-positive), and specificity (true-negative) rates for 
the neural network and support vector machine (SVM) models 
are provided in Table 5.

The Model Comparison node was used to generate an 
aggregate view of the misclassification rate and ASE for all 
twelve models. The comparison fit statistics summary is pro-
vided in Table 6, and an overview of the event classification for 
all models is provided in Table 7. The SVM models generated 
the highest validation ASEs of all the models, with a 2.31% 
difference between the “best” SVM model (RBF) and the 
“worst” non-SVM model (Regression 3). The SVM (linear) 

model had the lowest misclassification rate of all the models 
at 13.93%. The Sigmoid model had the worst performance 
under both ASE and misclassification criteria. The ASEs of 
the non-SVM models matched very closely, with a range of 
approximately 1.36% between the minimum and maximum 
values. Regression 1, Regression 2, and the Neural Network 
models have the same ASE at 13.96%. Regression 3 generated 
the highest error rates among the non-SVM models. In the 

Table 3   Summary of Stepwise Selection for Regression 1

Step/Effect Statistic

Degrees of 
Freedom 
(DF)

Chi-Square Pr > ChiSq

1 LOG_sys_mod_count 1 4748.9949  < 0.0001
2 u_priority_confirmation 1 1276.4829  < 0.0001
3 IMP_assignment_group 3 633.6992  < 0.0001
4 IMP_category 66 663.4149  < 0.0001
5 knowledge 46 203.8849  < 0.0001
6 LOG_reassignment_

count
1 55.7970  < 0.0001

7 knowledge 1 43.2769  < 0.0001
8 M_assignment_group 1 38.8723  < 0.0001

Table 4   Variables Selected by 
Decision Tree and Regression 
Models

Variable Model

DT1 DT2 DT3 Regression 1 Regression 2 Regression 3

sys_mod_count x x x x x x
priority x x x x x x
u_priority_confirmation x x x x x x
urgency x
impact x x x
category x x x
knowledge x x x x x
assignment_group x x x x x
reassignment_count x x x x x

Table 5   Comparison of Neural Network and SVM Models

Model Accuracy Sensitivity Specificity

Neural Network 0.860262 0.884080 0.818960
AutoNeural 0.854483 0.876234 0.816765
HP SVM Linear 0.860663 0.898001 0.795918
HP SVM Polynomial 0.858817 0.893951 0.797893
HP SVM RBF 0.858817 0.887623 0.808865
HP SVM Sigmoid 0.473473 0.595545 0.261795
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following section, we discuss the model outputs in more detail 
in terms of the impacts of key input variables on the target.

3 � Results

The Logistic Regression and Neural Network (NN) mod-
els appeared to be the most accurate for SLA prediction. 
These models are in both sets of the four “best” models 
with the lowest misclassification rate and ASE. While the 
Neural Network is the best of the three models as it has the 
same misclassification rate and the best ASE, Regression 
1 does mitigate the potential overfitting effects of extreme 
outliers in sys_mod_count (mode = 2; max = 129) and 
reassignment_count (mode = 0; max = 27). Transforming 
the skewed variables prevents the model from only select-
ing skewed inputs that appear to dominate additional vari-
ables that would help more accurately define the model. 

Additionally, though Neural Network has the best ASE, 
regression model results generally yield more accessible 
model interpretability than do neural networks. The ASE 
for Regression 1 is only 0.27% higher than that of Regres-
sion 2 and 0.46% higher than that of Neural Network. The 
minimal difference in ASE, model interpretability, and 
consistent misclassification rate thus provide the basis for 
selecting Regression 1 as the best model for predicting the 
achievement of SLAs.

A summary of the odds ratio estimates for Regression 2 
is provided in Table 8. Due to a large number of levels for 
IMP_assignment_group and IMP_category, only a partial 
list of odds ratios for those variables is included. Many of 
the ratios for IMP_assignment_group and IMP_category 
appear to imply that incidents assigned to any other group 
or category besides Group 9 or Category 9 have a dispropor-
tionately higher probability of meeting the SLA than do inci-
dents in Group 9 or Category 9. Contrary to our expectation, 

Table 6   Model Fit Statistics 
(Misclassification Rate and 
Average Squared Error)

Model Validation Misclassifica-
tion Rate

Model Validation
Average 
Squared Error 
(ASE)

HP SVM Linear 0.139337 Neural Network 0.095569
Regression 2 0.139578 Regression 2 0.097498
Regression 1 0.139578 DT3 0.099829
Neural Network 0.139578 Regression 1 0.100174
HP SVM RBF 0.141183 AutoNeural 0.103974
HP SVM Polynomial 0.141183 DT2 0.104043
DT3 0.145517 DT1 0.104190
AutoNeural 0.145517 Regression 3 0.109171
DT2 0.149771 HP SVM RBF 0.132247
DT1 0.150012 HP SVM Linear 0.160068
Regression 3 0.155229 HP SVM Polynomial 0.167199
HP SVM Sigmoid 0.526527 HP SVM Sigmoid 0.253133

Table 7   Event Classification 
Table for All Models

Model Count of Events

False Negative True Negative False Positive True Positive

DT1 929 3617 940 6973
DT2 929 3620 937 6973
DT3 914 3658 899 6988
Regression 1 629 3252 1305 7273
Regression 2 641 3459 1098 7261
Regression 3 755 3573 984 7147
Neural Network 916 3732 825 6986
AutoNeural 978 3722 835 6924
HP SVM Linear 806 3627 930 7096
HP SVM Poly 838 3636 921 7064
HP SVM RBF 888 3686 871 7014
HP SVM Sigmoid 3196 1193 3364 4706
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the reassignment_count ratio suggests that the likelihood of 
meeting the SLA increases by 64.7% each time an incident 
is reassigned.

The knowledge ratio suggests that incidents which were 
resolved without the use of a knowledge base (KB) article 
are overall 2.6 times more likely to meet the SLA than those 
that did use a KB. The LOG_sys_mod_count ratio indicates 
that the likelihood of meeting the SLA decreases by 2.2% 
each time an incident is updated. The u_priority_confirma-
tion ratio implies that the likelihood of meeting the SLA 
decreases by 8.2% when incident priority is not double-
checked. The priority ratios indicate that incidents marked 
with Critical, High, or Moderate priority are less likely to 
meet the SLA than incidents marked with Low priority.

The odds ratios of Regression models (Tables 9 and 
10) provide additional insights. In Table 9, the ratio for 
sys_mod_count indicates that the likelihood of meeting the 
SLA decreases by 56.5% each time an incident is updated. 
The u_priority_confirmation ratio indicates that the likeli-
hood of meeting the SLA decreases by 11.8% when incident 
priority is not double-checked. In Table 10, the ratio for 
sys_mod_count indicates that the likelihood of meeting the 
SLA decreases by 61.2% each time an incident is updated. 
The u_priority_confirmation ratio indicates that the likeli-
hood of meeting the SLA decreases by 11% when incident 
priority is not double-checked.

As is evident in Table 6, the difference between the DT3 
ASE and that of DT2 is marginal at 0.42%, so the complex-
ity and overfitting of DT3 are not sufficiently justified to 
select it as a superior decision tree model. DT2 is thus the 
best decision tree model. The Node Rules from DT2 reveal 
three key variable profiles presented in Table 11. Events 
that will certainly not meet the SLA at a 0% achievement 
rate are described by Profile 1, which is characterized by 
nineteen assignment_group values and sys_mod_count val-
ues between 7 and 11, inclusive. For the small subset of 
observations (52 total) assigned to the node, the values of 
knowledge and priority appear to indicate that failure to meet 
the SLA corresponds with not using KB articles on critical 
or high priority incidents.

Profile 2 describes events that will almost certainly not 
meet the SLA at a 1% achievement rate. Excluding miss-
ing values, the 715 events that fall into Profile 2 have 

Table 8   Select Odds Ratio Estimates for Regression 1

Effect Point Estimate

IMP_assignment_group Group 2 vs Group 9 999.000
Group 13 vs Group 9 999.000
Group 25 vs Group 9 999.000
Group 32 vs Group 9 999.000
Group 44 vs Group 9 999.000
Group 56 vs Group 9 999.000
Group 65 vs Group 9 999.000

IMP_category Category 4 vs Category 9 999.000
Category 10 vs Category 

9
999.000

Category 21 vs Category 
9

999.000

Category 50 vs Category 
9

766.808

LOG_reassignment_
count

1.647

LOG_sys_mod_count 0.022
M_assignment_group 0 vs 1 1.942
knowledge 0 vs 1 2.162
priority 1—Critical vs 4—Low  < 0.001
priority 2—High vs 4—Low  < 0.001
priority 3—Moderate vs 4—Low 0.029
u_priority_confirmation 0 vs 1 0.082

Table 9   Select Odds Ratio Estimates for Regression 2

Effect Point Estimate

IMP_assignment_group Group 2 vs Group 9 999.000
Group 13 vs Group 9 999.000
Group 25 vs Group 9 999.000
Group 32 vs Group 9 999.000
Group 44 vs Group 9 999.000
Group 56 vs Group 9 999.000
Group 65 vs Group 9 999.000

IMP_category Category 4 vs Category 9 608.955
Category 10 vs Category 

9
999.000

Category 21 vs Category 
9

999.000

Category 50 vs Category 
9

234.279

M_assignment_group 0 vs 1 2.761
knowledge 0 vs 1 2.830
priority 1—Critical vs 4—Low  < 0.001
priority 2—High vs 4—Low  < 0.001
priority 3—Moderate vs 4—Low 0.017
reassignment_count 1.356
sys_mod_count 0.565
u_priority_confirmation 0 vs 1 0.118

Table 10   Odds Ratio Estimates for Regression 3

Effect Point Estimate

priority 1—Critical vs 4—Low  < 0.001
priority 2—High vs 4—Low  < 0.001
priority 3—Moderate vs 4—Low 0.044
sys_mod_count 0.612
u_priority_confirmation 0 vs 1 0.110
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sys_mod_count values of 18 or greater and impact values 
of Medium or higher, and they are in one of the 39 listed 
assignment groups. The wide range of assignment groups 
suggests that incidents with several modifications to the 
ticket are susceptible to breaching their SLA, regardless of 
the assignment group. The 4,528 events in Profile 3 will 
almost certainly meet the SLA at a 99% achievement rate. 
The node rules for Profile 3 indicate that SLA achievement 
is associated with incidents that have been modified less 
than four times, whose priority is confirmed to be moderate 
or lower, and in which a KB article was not used. The DT2 
node rules for Profiles 2 and 3 are thus consistent with the 
odds ratio observations from the regression models.

4 � Discussion

4.1 � Implications of Findings

4.1.1 � Implications for Theory

This study provides several theoretical contributions. First, 
scholars (e.g., Rizk and Elragal 2020; Klein & Hirschheim, 
2008; Agarwal and Lucas Jr. 2005) criticize the domi-
nance of gap-spotting types of research and highlight the 
need to develop forward-thinking and innovative research 
in IS, suggesting to bring in theoretical contributions to 
the IS field via data science. This study is a small step in 
that direction. Second, IS studies focus on sociotechnical 
systems that are difficult to measure and theorize (Müller 

et al., 2016). IS studies have mostly relied on self-reported 
data collected via surveys, experiments, or case studies 
(Hedman et al., 2013). While these methods of data collec-
tion offer many advantages, the processes may be costly, 
cumbersome, and subject to biases. The data used in this 
study was user-generated, and it was not initially collected 
with a specific research purpose in mind hence, it may 
be less contrived or biased. This potential advantage pro-
vides additional authenticity to the study and increases 
its replicability. Third, Müller et al (2016) suggest that 
research can start with data or data-driven discoveries, 
rather than with theory. In this sense, our study advances 
the call from researchers (e.g., Agarwal & Dhar, 2014; 
Shmueli & Koppius, 2011; Muller 2016) for more studies 
that use predictive analytics to investigate research ques-
tions. Fourth, data-driven predictive algorithms can help 
to advance theory (Agarwal & Dhar, 2014; Dhar, 2013) 
as “…patterns [often] emerge before reasons for them 
become apparent” (Müller et al., 2016, p. 291). Predictive 
models can lead to the discovery of new constructs, new 
relationships, nuances to existing models, and unknown 
patterns (Shmueli, 2010). Our findings attempt to advance 
the IS theory for predicting framework by adding more 
empirical evidence to the existing body of knowledge in 
the area of predictive analytics. Finally, data in research 
is increasing in volume, velocity, and variety, calling for 
new ways of systematic extraction of predictive and pre-
scriptive knowledge. Dhar (2013) argues that the useful-
ness of the extracted knowledge is vital, as it is actionable 
for decision-making. In this context, our findings provide 

Table 11   Variable profiles from DT2

Profile Rules Predictions

Profile 1
(52 observations)

• sys_mod_count < 11.5 AND sys_mod_count >  = 6.5 or MISSING
• priority <  = 2—HIGH
• knowledge IS ONE OF: 0 or MISSING
• assignment_group IS ONE OF: GROUP 56, GROUP 23, GROUP 28, GROUP 24, GROUP 54, 

GROUP 65, GROUP 70, GROUP 30, GROUP 55, GROUP 27, GROUP 39, GROUP 20, GROUP 
6, GROUP 60, GROUP 49, GROUP 69, GROUP 62, GROUP 47, GROUP 51

made_sla = 1 = 0.00
made_sla = 0 = 1.00

Profile 2
(715 observations)

sys_mod_count >  = 17.5 or MISSING
impact <  = 2—MEDIUM or MISSING
assignment_group IS ONE OF: GROUP 56, GROUP 25, GROUP 23, GROUP 28, GROUP 29, 

GROUP 24, GROUP 54, GROUP 66, GROUP 65, GROUP 70, GROUP 72, GROUP 30, GROUP 
55, GROUP 27, GROUP 39, GROUP 73, GROUP 20, GROUP 74, GROUP 33, GROUP 12, 
GROUP 31, GROUP 76, GROUP 6, GROUP 61, GROUP 68, GROUP 15, GROUP 69, GROUP 
3, GROUP 10, GROUP 57, GROUP 58, GROUP 37, GROUP 75, GROUP 59, GROUP 22, 
GROUP 50, GROUP 26, GROUP 9, GROUP 51 or MISSING

made_sla = 1 = 0.01
made_sla = 0 = 0.99

Profile 3
(4,528 observations)

u_priority_confirmation IS ONE OF: 1 or MISSING
sys_mod_count < 4.5 or MISSING
priority >  = 3—MODERATE or MISSING
knowledge IS ONE OF: 0 or MISSING
assignment_group IS ONE OF: GROUP 56, GROUP 25, GROUP 23, GROUP 28, GROUP 24, 

GROUP 66, GROUP 65, GROUP 70, GROUP 55, GROUP 27, GROUP 39, GROUP 73, GROUP 
20, GROUP 46, GROUP 5, GROUP 33, GROUP 31, GROUP 6, GROUP 49, GROUP 69, 
GROUP 64, GROUP 10, GROUP 58, GROUP 22, GROUP 13, GROUP 34 or MISSING

made_sla = 1 = 0.99
made_sla = 0 = 0.01
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new insights on the phenomenon of IT incident resolution 
and the ability to predict certain future scenarios that can 
guide preventive action. Additionally, our use of predictive 
analytics techniques adds to the methodological diversity 
within IS studies.

4.2 � Implications for Practice

The findings of this study provide a set of specific action-
able implications for practitioners. The models identified 
the following variables in descending order of significance: 
sys_mod_count, u_priority_confirmation, priority, assign-
ment_group, category, knowledge, reassignment_count, and 
assignment_group. The activities associated with these vari-
ables should thus be central to creating process improvement 
strategies to provide efficient service and increase the over-
all rate of meeting incident resolution SLAs. Based on the 
analysis reports in the previous section, we present the fol-
lowing summary of practical implications for each variable.

•	 sys_mod_count. Each time an incident is updated, the 
probability of meeting the SLA decreases by 2.2%. 
Though the decrease is small, the risk of breaching the 
SLA becomes much higher as incident updates accumu-
late. More updates imply that more time was spent gath-
ering information to resolve the issue, suggesting that 
there may not be sufficient knowledge resources or pro-
cedures to quickly diagnose issues and close incidents.

•	 u_priority_confirmation. Failure to double check the 
priority of an incident will decrease the likelihood of 
meeting the SLA by 8.2%. Double-checking priority can 
ensure that incidents are assigned the appropriate level 
of urgency and impact, so that the calculated SLAs are 
consistent with the true nature of the incidents.

•	 priority. Higher-priority incidents are consistently less 
likely to meet SLAs than lower-priority incidents. This 
insight is counterintuitive, but it may suggest that the 
SLAs for high-priority incidents need to be revisited. The 
SLAs may have been based on a generic standard or arbi-
trary assumption that was not realistic for the company 
from which the data was gathered; high priority incidents 
may inherently be more complex and thus require more 
time to remediate appropriately and effectively.

•	 assignment_group. Incidents assigned to Group 9 appear 
to be at an exceedingly higher risk of breaching SLAs 
than is the case for any other group. This could be an 
indicator that the support team is short-staffed or lacks 
the training needed to effectively resolve incidents.

•	 category. Incidents assigned to Category 9 appear to be 
at an exceedingly higher risk of breaching SLAs than is 
the case for any other category. It can be inferred that 
the software applications associated with this category 

have high user traffic that exposes the need to invest in 
application fixes and hardening.

•	 knowledge. It was counterintuitive to find that the use of 
KB articles is detrimental to the probability of meeting 
the SLA. This could be an indicator of an immature or 
outdated knowledge base system.

•	 reassignment_count. The likelihood of meeting the SLA 
increases by 64.7% each time an incident is reassigned. 
This statistic is contrary to expectations and needs further 
investigation. It may be that the increase is only appli-
cable up to a certain threshold of reassignments, after 
which the likelihood of meeting the SLA will sharply 
begin to decrease. One possible explanation is that inci-
dents are frequently incorrectly assigned or classified 
when they are opened, as highlighted by Jäntti and Cater-
Steel (2017), so at least one reassignment is needed in 
order to reach the appropriate support team.

The implications described for each variable provide 
a baseline from which to identify and implement process 
improvements for incident resolution. In particular, the high-
est priority should be given to addressing the effects of inci-
dent update count (sys_mod_count) and priority confirma-
tion (u_priority_confirmation), as these attributes appear to 
have the greatest influence on SLA achievement outcomes. 
When analyzing the service management process implica-
tions, IT management must include key stakeholders includ-
ing support team staff, software developers, and software 
users, so that each party can provide the context necessary 
to accurately interpret the regression model statistics.

5 � Conclusions, Limitations, and Future 
Research

Data science brings a plethora of opportunities to scientific 
research, including the IS discipline. By focusing on con-
cepts and following more inductive data-driven approaches, 
with less emphasis on pre-existing theory, data science could 
bring additional theoretical and practical contributions to 
the IS domain. The objective of this study was to identify 
key factors that influence whether SLAs are achieved in the 
resolution of IT incidents. By analyzing a dataset of inci-
dent event logs for the ServiceNow™ incident management 
process of an undisclosed IT company, we developed and 
compared twelve models to predict the outcome of the target 
Boolean variable made_sla. In doing so, our goal was to 
derive meaningful insights by leveraging analytical tools that 
have not previously been applied to incident SLA analysis. 
By extension, we also attempted to establish an initial ref-
erence point of the models’ performance for incident SLA 
analysis, which may pave the way for continued research in 
this area of incident management.
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We acknowledge a few limitations of this research. 
First, the findings pertain to a certain IT service provider 
and a specific IT area, and thereby may not be easily gen-
eralized across an entire industry. It was challenging to 
find a public, sufficiently large dataset pertaining to inci-
dent management, with good candidates for a binary target 
variable and a variety of input variables. However, the 
apparent scarcity of publicly available data is a reminder 
that, even if this research is continued by IT companies 
internally, it may not be possible or straightforward to vali-
date and compare the models against industry data. As a 
result, it is also difficult to prescribe best practices for 
achieving SLAs for IT incident resolution at an industry 
level.

The interpretation of model results also was not without 
challenges. Although the models in this study did have the 
similar variable selection and error rates, output statistics 
such as odds ratios sometimes indicated relationships that 
were the opposite of what was expected for those vari-
ables (e.g., use of a KB article decreasing the likelihood 
of meeting the SLA). Additionally, the numerous levels 
for the selected nominal variables (e.g., assignment_group 
and category) created tens of odds ratio entries for those 
variables, making it difficult to draw accurate, generalized 
conclusions about how the variables affected made_sla.

These challenges highlight the importance of think-
ing creatively and (when possible) consolidating variable 
levels in order to extract meaningful insights from exten-
sive incident management datasets. The limitation of data 
anonymization made it impossible to consolidate the vari-
able levels in a meaningful way. However, companies that 
wish to conduct similar research internally would have 
full access to identifiable, company-specific information 
pertaining to the variables. The thoroughness of this study 
may thus be improved by evaluating the following action 
items:

•	 Consolidate the number of levels for nominal vari-
ables based on practical boundaries that are known to 
the company (e.g., assignment_group consolidated by 
departments, category consolidated by software appli-
cation portfolios), in order to facilitate the interpretability 
of decision tree node rules and regression odds ratios. 
Level consolidation will also permit more variables (e.g., 
assigned_to, caller_id) to be included for model consid-
eration, which may surface new relationships between 
the inputs and made_sla.

•	 Create reports combining metrics about application inci-
dents with metrics about environmental factors, such as 
user traffic to applications or network/infrastructure sta-
bility, in order to identify possible trends and patterns 
between incidents and environmental factors.

•	 Implement real-time incident monitoring for the most 
significant factors (e.g., sys_mod_count and u_prior-
ity_confirmation), in order to detect incidents at risk of 
breaching the SLA and proactively prescribe actions to 
facilitate incident resolution.

The findings of this study contribute to the incident man-
agement body of literature particularly related to ITIL® and 
service level management, and they can be useful for pro-
active incident management. Incident management teams 
may consider modifying applicable processes according to 
the implications and suggestions presented in this study. 
The authors await studies that further explore linkages 
and relationships among factors influencing SLAs with a 
larger sample from more firms across more industries. In 
the meantime, the authors believe that the integration of 
company-specific information with the methodologies pre-
sented in this research will enable IT analysts and managers 
to develop more robust models and long-term strategies for 
effective and efficient IT incident management.

Appendix: Additional Discussion 
on Predictive Models

Decision Trees

Decision trees are rule induction type models that can seg-
ment data by applying a set of rules. Using search heuristics, 
decision trees find explicit and understandable rules-like 
relationships among the input and output variables. Search 
heuristics use recursive-partitioning algorithms to split a 
large collection of observations into smaller homogeneous 
group with respect to a particular target variable. The algo-
rithms find the optimum number of splits and determine 
where to partition the data to maximize the information gain.

Decision trees are built of nodes, branches and leaves 
that indicate the variables, conditions, and outcomes, respec-
tively. Given a target and a set of explanatory variables, deci-
sion algorithms automatically determine which variables 
are most important, and subsequently sort the observations 
into the correct output category. The target variable is usu-
ally categorical, and the decision tree model calculates the 
probability of a given record belonging to each of the target 
categories, or classifies the record by assigning it to the most 
likely category. The common decision tree algorithms in 
data mining software are chi-square automatic interaction 
detector (CHAID), classification and regression tree (CART) 
and C5. CART uses Gini; C5 uses entropy; and CHAID uses 
chi-square as the splitting criteria (Yap et al., 2011).

To build a decision tree (Wu et al., 2014), the space of 
values for the predictors x =

(
x1,… , xn

)
 is first partitioned 
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into a collection of M regions �1,… ,�M that correspond to 
a tree’s terminal nodes or leaves. The data consist of N 
observations 

(
xi, yi

)
=
(
xi1,… , xiN , yi

)
 fori = 1,… ,N. In a 

nodem , suppose there are Nm observations, and 
p̂ml =

1

Nm

∑
xi��m

I(yi = l) denote the proportion of class 
l(l = 0, ) observations in that node for the responseyi . The 
observations within node m are then classified to the major-
ity class lm = argmaxlp̂ml.

Decision trees have several advantages over other mod-
eling techniques. These models provide interpretable logic 
statements in the form of classification (if–then) rules. Each 
rule represents a path from the root node to each leaf. They 
can also classify observations with missing data, and clas-
sification can be performed for both continuous and cat-
egorical variables with fewer complicated computations. 
However, decision trees are susceptible to noisy data and 
do not perform as well for nonlinear data and time series 
data without visible trends and patterns.

Logistic Regression

Logistic regression models can predict a binary outcome 
variable or multi-class dependent variables using a mix of 
continuous and discrete predictors. The model can predict 
the odds of outcome occurrence instead of a point estimate 
as predicted in a traditional linear regression model. Logistic 
regression is a widely used statistical modeling technique 
in which the probability of a dichotomous outcome ( Y = 1 ; 
event happened, or Y = 0 ; otherwise) is related to a set of 
potential predictor variables. It belongs to the larger class 
of generalized linear models that link the expected value of 
the target variable to a linear predictor through a logit link 
function.

The logistic regression model can be written as:

where n denotes the number of predictors. The term on the 
left is called logit link or log of odds function that transforms 
the domain [0, 1] into a real line (−∞,+∞) through the linear 
predictor. Assuming that the data consists of N  observa-
tions, 

(
xi, yi

)
=
(
xi1,… , xiN , yi

)
 for i = 1,… ,N , the regres-

sion parameters �i are estimated from this modeling dataset.
The logistic regression models developed in SAS Enter-

prise Miner fit a given model through maximum likelihood 
estimation, either using Fisher-scoring or the Newton–Raph-
son optimization algorithm, resulting in the fitted model 
below (Wu et al., 2014).

(1)log

[
P(Y = 1)

1 − P(Y = 1)

]
= �0 +

∑n

j=1
�jxj

(2)log

[
p̂i

1 − p̂i

]
= �0 +

∑N

j=1
�jxij

where i = 1, 2,… ,N and p̂i denotes the estimated probabil-
ity of pi.

Neural Network

Artificial neural network (NN) models are biologically 
inspired analytical techniques used for pattern recognition 
and data classification. By mimicking the neurophysiologi-
cal and cognitive learning functions of the human brain 
(Bishop, 1995), NN models can predict new observations 
(on specific variables) based on other observations (on the 
same or other variables) from existing data. This is done by 
combining a large number of simple processing elements 
called neurons or units into a highly interconnected network, 
hence the name neural network.

A feedforward network, a class of flexible nonlinear 
regression, discriminant, and data reduction models, is 
the simplest and most popular type of neural network. NN 
models have been widely used for nonlinear mapping, data 
reduction, pattern recognition, clustering, and classification 
because of their parallel processing capabilities. They are 
especially useful for real world prediction problems where 
mathematical formulae and prior knowledge on the relation-
ship between inputs and outputs are unknown. NN models 
particularly perform well in applications when the functional 
form is nonlinear (Sengur et al., 2007).

Figure 1 shows a schematic diagram for an artificial 
neural network model. The model consists of neurons and 
connections among those neurons. There are three types 
of nodes: input nodes, hidden nodes for internal computa-
tions, and output nodes that compute the predicted values 
and compare them with the target variable values. Most 
connections in a network have an associated numeric value 
called a weight or parameter estimate. Training a neural 
network is the process of setting the best weights on the 
inputs of each of the units. The training methods attempt 

Inputs Weights 
Wi1 

Wi2 

Wim 
θi 
Bias 

Outputs 

X1 

X2 

Xm 

................... 

f(.) a(.) 

Fig. 1   Artificial Neuron Model (Hanbay et al., 2008)
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to minimize the error function by iteratively adjusting the 
values of the weights. Most nodes also have one or two asso-
ciated numeric values called bias and altitude, which are 
also estimated parameters adjusted by the training methods. 
Hidden and output nodes use two functions to produce their 
computed valus: a combination function which yields a sin-
gle value by feeding all the computed values from previous 
nodes into a given node; and an activation function that then 
transforms the value produced by the combination function 
into outputs which involves no weights or other estimated 
parameters.

As mentioned before, neural network models are trained 
by experience. When an unknown input is applied to the 
network, the network can generalize from experiences and 
product a new result. The output of the neuron net is given 
by the following equations:

where X =
(
X1,X2 … ,Xm

)
 represents the m input applied 

to the neuron,
wi represents the weights for input Xi , θi is a bias value, 

and �(.) is the activation function.
Among many available activation functions, nonlinear 

activation functions such as the S-shaped sigmoid function 
are by far the most used. The sigmoid is given by the fol-
lowing equation:

The advantage of NN models lies in their non-
dependence on the assumptions about the independ-
ence and distribution of residuals or collinearity of 
input variables. The multilayer perceptron (MLP) is 
one of the most popular neural networks. MLPs can be 
used when there is little prior knowledge of the rela-
tionship between inputs and targets. However, a large 
volume of data is required for training the NN mod-
els, and the neural network’s parameters/connection 
weights provide little insight into the details of the 
process. This is an obvious disadvantage because con-
nection weights cannot be easily converted to if–then 
rules that can be well understood.

Support Vector Machine (SVM)

The term SVM is typically used to describe classification 
with support vector methods. The foundations of SVM 
were developed by Vapnik (1995) and are gaining popular-
ity due to many attractive features and promising empirical 

(3)y(t + 1) = a(
∑m

j=1
wijxj(t) − �i)

(4)fiΔneti =
∑m

j=1
wijxj(t) − �i

(5)Sigmoid(x) =
1

1 + e−x

performance. The SVM technique uses structural risk mini-
mization, whereas the neural network technique uses empiri-
cal risk minimization. This difference equips SVM with a 
greater ability to generalize, which is the goal in statistical 
learning (Gunn, 1998).

SVM models are generated through their search for 
an optimal hyperplane which will maximize the dis-
tance from the nearest training data points of any class 
(Ali et  al., 2019). Similar to neural networks, SVM 
models possess the well-known ability of being univer-
sal approximators of any multivariate function to any 
desired degree of accuracy. Traditional neural network 
approaches tend to produce models that can overfit the 
data, resulting in difficulties with generalization. This 
is a consequence of the optimization algorithms used 
for parameter selection and the statistical measures used 
to select the “best” neural network model.

The capability of generalization to new data objects, 
absence of local minima, flexible non-linear decision 
boundary, and dependence on very few hyper-parameters 
are properties that make SVMs suitable for use in vari-
ous types of classification problems (Ali et al., 2019; Mal-
donado et al., 2014). Notable fields of research include 
classification of human biological data, data mining, cus-
tomer fraud detection, credit scoring, network security 
monitoring, and image classification (Şen et al., 2020; 
Yuan et al., 2010; Çomak et al., 2007).

Ali et al. (2019) provide a thorough description of the 
formulation of an L2 regularized SVM model, which we 
present in adapted form as follows: There exists a dataset 
S with k instances: S = {(xi, yi)|xi ∈ RP, yi ∈ {−1, 1}}

k

i=1
 

where xi denotes ith instance and P denotes the dimension 
of each instance or feature vector. The term yi denotes the 
class label, which may be 0 or 1 for an SLA achievement 
b ina r y  c lass i f i ca t ion  p rob lem.  The  func t ion 
f (x) = wT ∗ x + b , where b is the bias and w is the weight 
vector, is used by the SVM model to learn hyper-planes. 
The margin 2

‖w‖ 2

2

  is maximized and the classification 

error is minimized by the hyperplane of the SVM model. 
The margin is computed as the sum of the distances to 
one of the closest positive and one of the closest negative 
instances. The introduction of the slack var ia-
bles �i, i = 1, ..., k and the penalty parameter C force the 
SVM model to try to balance the minimization of ‖w‖ 2

2
 

and the minimization of the misclassification errors. The 
formulation given below presents the corresponding opti-
mization equation and constraints (Ali et al., 2019):

min
w, b, �

1

2
‖w‖

2

2

⏟⏟⏟
+C

Regularizer

∑k

i=1
�i

⏟⏟⏟
Error or loss

s.t.

�
yi
�
wxi + b

�
≥ 1 − �i,

�i ≥ 0, i = 1, ..., k
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