
Vol.:(0123456789)1 3

Information Technology and Management (2022) 23:193–211
https://doi.org/10.1007/s10799-022-00370-y

Adapting agile development practices for hyper‑agile environments:
lessons learned from a COVID‑19 emergency response research
project

Salman Nazir1 · Brad Price1 · Nanda C. Surendra1 · Katherine Kopp2

Accepted: 21 June 2022 / Published online: 30 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Agile development is known for efficient software development practices that enable teams to quickly develop software to
cope with changing requirements. Although there is evidence that agile practices are helpful in such environments, the litera-
ture does not inform us as to whether agile practices can also be beneficial in hyper-agile environments. Such environments
are characterized by an extremely fast pace of change with fluid requirements. COVID-19 vaccine distribution is one such
problem that governments have had to deal with. To solve this problem, governments need to come up with robust responses
by formulating teams that have the capability to provide software solutions enabling information visibility into the vaccine
distribution process. Such emergent teams need to quickly understand the distribution process, oftentimes define the pro-
cess itself because it might be non-existent, and build software systems to solve the problem in a matter of days. Not much
is known about how systems can be developed at such a fast pace. We adopt a clinical research methodology and employ
agile software development practices to develop such a mission-critical system. In the process of building the system, we
learn important lessons that can be used to adapt and extend agile methodologies to be used in hyper-agile development
environments. We offer these lessons as important first steps to understanding the best practices needed to develop software
systems that have the capability to provide visibility into the unprecedented health challenge of distribution of life-saving
COVID-19 vaccine.

Keywords Hyper-agile · Agile · COVID-19 · Software development

1 Introduction

Agile development practices continue to grow in popular-
ity as organizations adopt them to meet changing software
requirements. Agile practices are known to enable short iter-
ations, constant communication with customers and flexibil-
ity to adapt to changing requirements [1]. Even though agile
practices espouse change in requirements and are valued by
organizations for their superior speed of delivery and flex-
ibility relative to alternative methodologies [2, 3], there is
no research that informs us as to whether agile practices can
be employed in highly complex, hyper-agile, mission-critical
environments. Hyper-agile environments can be defined as
contexts having extremely volatile requirements in which the
inability to rapidly understand and adapt to the constantly
evolving requirements can lead to severe consequences,
including loss of lives. We know that traditional approaches
do not lend themselves to be used in such environments,
but we do not know whether agile development practices

Salman Nazir and Brad Price: Co-first authors.

 * Salman Nazir
 salman.nazir@mail.wvu.edu

 Brad Price
 brad.price@mail.wvu.edu

 Nanda C. Surendra
 nanda.surendra@mail.wvu.edu

 Katherine Kopp
 katherine.kopp@datarobot.com

1 John Chambers College of Business and Economics, West
Virginia University, Morgantown, WV 26506-6025, USA

2 AI Academic Partnerships Director. DataRobot, Inc., Boston,
MA, USA

http://orcid.org/0000-0001-7882-8463
http://crossmark.crossref.org/dialog/?doi=10.1007/s10799-022-00370-y&domain=pdf

194 Information Technology and Management (2022) 23:193–211

1 3

can help us achieve the required speed and flexibility that is
needed for hyper-agile environments. Without this knowl-
edge, we would need to resort to expensive trial-and-error
exercises that can translate to loss of lives. This research
describes how a team of researchers adapted agile practices
to develop a system tasked with managing the complex prob-
lem of COVID-19 vaccine distribution.

The Sars-CoV-2 virus (COVID-19) caught the world by
surprise. As scientists scrambled to understand the virus and
its behavior to come up with effective vaccines, and govern-
ments shut down schools and businesses, the virus claimed
close to 4.6 million lives as of September 2021 [4]. Once
vaccines were developed, it fell upon government agen-
cies to come up with effective and efficient processes and
supply chains to administer the vaccines in order to save
precious lives. A major stumbling block in this effort was
to build the capability to understand the information com-
ing from multiple sources [5]. This information is vital and
there is an urgent need to quickly develop processes that
can be employed to absorb and understand this information
on a real-time basis [6] to supply the right amount of vac-
cine to the right place at the right time. If vaccine is sent to
the wrong location there is a chance that it may be wasted.
At the same time, not providing vaccines where they are
urgently needed is also an equally disastrous scenario. The
key issue is gaining visibility of information to tackle the
vaccine distribution and administration problem. With no
processes in place and no previous experience with han-
dling such a scenario, governments find themselves in a dif-
ficult situation. As is customary, emergent teams may be
put together [7] and these teams might resort to solving the
problem by attempting to develop a software solution that
provides visibility into processes that are developed for vac-
cine distribution.

The systems development literature is silent as to how
emergent teams that have no previous experience of work-
ing together can come together and develop software solu-
tions that can handle such a crucial information visibility
problem. Emergent teams are characterized by great urgency
and fickle operating environments that are in a state of con-
stant flux as information about needs and resources comes
at a high pace and from a plethora of sources [7]. As team
members are unaware of each other’s capabilities, they also
lack a shared understanding of the problem at hand. Coupled
with this is the fact that the information coming from mul-
tiple sources might often be contradicting and might need
to be sorted out before it becomes actionable. These teams
also need to adopt a software development methodology that
meets the need of the context and the emergent nature of
the team. One possible route is adopting agile development
methodologies that are suited for fast system development
efforts [1, 2, 8–10]. However, agile methodologies have their
own specific requirements. Although they are suited to fast

paced development efforts, members of the team must gel
together and develop communication routines that enable
a shared understanding of the problem at hand [11, 12].
There is also a need to follow formal team organizational
practices that may go against the fluid nature of emergent
teams. There is no research that exemplifies and explains
how agile methodologies can be effectively applied to such
fast-paced scenarios where the delivery times are in days,
rather than weeks or months, and errors can result in loss
of human lives.

This research describes the efforts of a team of research-
ers that helped their U.S. State government in solving this
problem by developing a software solution. The software
solution is built to enable the distribution of the COVID-19
vaccine to meet changing demands and save lives. The team
adopted an agile development methodology and adapted it
to suit their high-pace, high-risk context. We expect to con-
tribute to the agile development literature by showing how
agile practices can be adapted to suit a hyper-agile context
in order to fulfil user requirements that are changing at an
extremely fast pace. We offer lessons learned as a first step
to understanding the best practices needed to evolve agile
practices as applied to emergent contexts characterized by
unprecedented health challenges.

2 Literature review

There is limited research regarding the use of information
systems as applied to crisis management. Most of this lit-
erature has studied systems that allow situational aware-
ness [13]. Situational awareness is the understanding of
environmental elements during crises to enable decision-
making processes that help first responders [14]. Indeed,
information systems are key to providing situational
awareness as they provide timely, accurate and complete
information regarding environmental conditions, respond-
ing participants, casualties and available resources [13].
The primary information system studied in prior literature
is social media (e.g. Twitter, Facebook, etc.). Research has
looked at how social media use can, in some instances,
promote rumor mongering which decreases population’s
morale and increases anxiety, leading to worsening the
impact of the crisis [15]. The effect of social media has
also been investigated in providing connective affordances
that allow a network of loosely connected users to reorgan-
ize themselves and cope with disaster [16–18]. Finally,
the literature has looked at how coordinated action can
be achieved by connecting like-minded individuals and
improving their ability to self-organize by promoting situ-
ational awareness [13]. As noted, social media is the pri-
mary underlying system in all this literature. Clearly, vac-
cine distribution is a more complex phenomenon in which

195Information Technology and Management (2022) 23:193–211

1 3

stakeholders have to look at demand side requirements
and match them up with supply side flow while consider-
ing the constraints of time and availability and keeping a
close eye on casualties. Such level of coordination is not
found in any social media platform and there are no pre-
existing systems that can be quickly employed to achieve
this complex task. We also do not find any literature that
suggests actionable best practices that guide the devel-
opment of such an emergency response system while the
pandemic unfolds. Since agile development methodology
is the closest actionable framework that has the potential
to deliver software in a short time frame, we based our
development efforts on it and applied it to our emergent
context. Next, we review the agile development and emer-
gent teams’ literature.

2.1 Agile development

Changing requirements pose a significant threat to software
project success. In fact, a crucial challenge in responding to
change is that what the software is required to do remains a
moving target [19]. This incessant change in user require-
ments is perpetuated by continuously evolving business
requirements [20, 21]. It is also increased by the frequency
and speed of change in market competition that continuously
require businesses to adapt their processes and products
[22]. In response, organizations are increasingly adopting
agile development [12]. Agile development is characterized
by a flexible development process where short iterations
and frequent communication among stakeholders enable the
development team to respond more quickly and efficiently to
changing customer requirements [23–25]. It is a lightweight
and adaptable alternative to traditional, plan-driven software
development methodologies [20]. Agile development values
software developers as individuals and as important mem-
bers of the team where interactions are considered the key
elements in comparison to processes and tools. It views cus-
tomers as integral members of the team rather than adversar-
ies that cannot be trusted. The focus is on delivering value
to customers by creating software that is usable rather than
documentation that is cumbersome to create and maintain
[26].

The team and its members have to collaborate within
the software development subunit and with customers
when adopting agile methodologies [27, 28]. This makes
the team a crucial element of the process. Agile software
development teams are essentially self-managing teams that
organize themselves to assign tasks, schedule work and take
action to solve problems [29, 30]. Research suggests that
team members are able to effectively collaborate when they
develop shared mental models [12]. The shared mental mod-
els allow team members to develop compatible expectations

of the task and the team, enabling the team to understand
current events, consider what may happen in the near future
and understand why these events occur [30]. This level of
understanding and knowledge coordination is not available
in emergent teams responding to disaster scenarios.

2.2 Responding to disasters with emergent teams

The Sars-CoV-2 (COVID-19) pandemic is one scenario
where there was an immediate need for emergent teams
to form and spring into action to battle the pandemic. As
thousands died, millions of people went into quarantine, and
many businesses did not survive [31], scientists struggled
to come up with vaccines, while governments scrambled to
create effective and efficient supply chains to deliver those
vaccines. In such disaster scenarios, there are often no estab-
lished lines of communication, or pre-existing plans that can
be incorporated to quickly respond to the impending needs.
Information about the disaster or emergency comes from a
plethora of sources and is often hard to reconcile in a timely
manner because of the increased pace, complexity and level
of detail [7]. Research has highlighted the importance of
emergent response teams in such disaster environments (e.g.
[32]). Such teams are markedly different from stable disas-
ter response teams that are trained to respond to expected
emergencies, such as police and firefighter teams [7]. Stable
teams have experienced team members who are trained to
encounter a multitude of potential scenarios and have expe-
rience in working with the same team members. Emergent
response teams, on the other hand, have team members who
are not familiar with each other’s knowledge and capabili-
ties. They may also lack shared goals, reward structure, and
the time to share who knows what on the team [7]. All this
unfamiliarity with the team and the context leads to difficulty
in coordination of knowledge and expertise, resulting in poor
response to the emergency.

Research has looked into coordination of expertise in
different organizational contexts, such as coordination in
software development [33] and coordination practices of
medical trauma centers [34]. From software development
research, we know that expertise coordination are pro-
cesses that manage knowledge and skill interdependen-
cies [33]. Expertise coordination processes help develop
a common mental model that allows team members to
understand the task at hand, know where expertise is
located in the team, recognizing when and where it is
needed and finally bringing it to bear [33]. From the
coordination of medical trauma centers, we know that
teams can incorporate dialogic coordination practices in
addition to the expertise coordination practices to achieve
coordination of expertise [34]. However, both of these
contexts are characterized by teams where group mem-
berships, tasks, roles and knowledge can be specified ex

196 Information Technology and Management (2022) 23:193–211

1 3

ante [7]. Emergent teams are unable to easily capitalize
on these characteristics because the preconditions that
facilitate coordination are almost non-existent. In emer-
gency scenarios, such as the COVID-19 pandemic, pro-
cesses are non-existent and data has to be gathered and
reconciled from multiple sources. Although agile devel-
opment practices are well known to deliver software at a
faster pace, this pace is not fast enough to accommodate
response times that span mere days with rapidly chang-
ing requirement and have life threatening consequences.
The literature is silent as to how software systems can be
developed at this hyper-agile pace. The problem is further
exacerbated by the fact that the team most likely tasked
with the development will be an emergent team where the
members are unaware of each other’s expertise, have no
shared mental model and do not know how coordination
can be achieved. Shared mental models are metastructures
that establish the extent to which team members share
the same understanding of the task, the tools, the team
and the situation [35]. This shared understanding ben-
efits the team members in better understanding and pre-
dicting the actions of other group members and enables
better coordination of tasks [36]. This level of coordina-
tion develops over time as team members interact with
each other on a regular basis [7]. Unfortunately, emergent
teams do not come to the task with this level of shared
understanding of the problem at hand. Such teams are at
a disadvantage as there may be communications errors,
and significant inefficiency in how knowledge about the
task is shared and acted upon in such scenarios [37]. One
interesting work that highlights the role of developing
shared mental models in agile development teams is that
of [12]. This research shows that some agile practices
(system metaphor, stand-up meetings and on-site cus-
tomer) help develop a shared understanding about the task
to be completed, and also help establish shared mental
models about team processes and team interactions [12].
Another study [38] looked at a team member’s capabil-
ity to integrate different disciplines and graft them into
one (T-skill) and their capability to combine or integrate
another member’s skill onto one’s own knowledge base
(A-skill). The study reported that such skills help team-
mates coordinate their skills and enhance the develop-
ment of shared mental models. However, the literature
primarily does not inform us how software development
can be achieved in emergent teams that do not have estab-
lished mental models. Also, it is not known how agile
practices can be extended to respond to such challenging
scenarios where teams are emergent in nature.

In this study, we borrow from agile development lit-
erature and emergent teams literature to understand how
teams that have no past experience in working together
and have no shared mental models about the task at hand,

move at a hyper-agile pace to produce a software solution
that exceeds expectations in the coordination of activities
related to COVID-19 vaccine distribution. With this study,
we aspire to offer lessons that can help extend and evolve
the agile development literature as applied to hyper-agile
contexts.

3 Research methodology and context

We used a clinical research methodology for this study.
Clinical research focuses on solving a client’s real world
problem and, in the process of solving the problem, helps
advance research understanding [39, 40]. Clinical research
is appropriate because it allows us to primarily focus on
solving the problem of the client and the researcher plays
the role of an interventionist who helps diagnose and solve
the problem. When using clinical research methodology,
the researcher plays the role of an “expert” or a “doctor”
in a helping relationship. The researcher takes on the obli-
gations to diagnose the problem and suggest and imple-
ment a solution, but the initiative to seek help remains
with the client [39]. It is similar to action research as it
administers interventions in organizations but differs in
prioritizing the achievement of practical outcomes as its
primary goal [41]. The client is involved in initiating and
engaging the researcher and is involved throughout the
intervention. There are several examples of using clini-
cal research methodology in organizations. For instance,
[42] used clinical inquiry to help improve the digital infra-
structure in a large Swedish municipality. Another work
used clinical inquiry to understand how digital strategy-
as-practice emerges [43]. The study reported that strategy
emerges in a rhizomatic order where offshoots de- and
reterritorialize concepts, functions and logics in a con-
tinuous process. This process was facilitated through a
combination of slack resources and adaptive governance
[43]. Overall, clinical inquiry allows for engaged scholar-
ship par excellence, where the aim is to help the client
organization through sustained engagement in order to
understand challenges from the client’s perspective and
suggesting interventions that help overcome these chal-
lenges [44].

3.1 Project background

In January 2021, we were contacted by the National Guard
of a U.S. state to assist with COVID-19 vaccine distribu-
tion efforts. At the start of the conversation, the client
contact did not even know the extent of their needs and
was aware of this fact. He just knew that we had the skills
to help get the right data to the right people in order to

197Information Technology and Management (2022) 23:193–211

1 3

make strategic decisions. Working with the military on
a COVID-response effort, we knew we had to be “hyper-
agile” as changes were to happen frequently and often
urgently. We also did not have the time to work through a
typical software development lifecycle. We were going to
have to build and test while the system was in production.
As previous work with this client had taught us integra-
tion into analytics and analysis platforms was a key com-
ponent and would be necessary to make the application
useful. For this reason, we opted to use RShiny for our
application(s). Shiny is an R package that allows users to
create web-based applications for interactive data visuali-
zation [45].

3.2 Definitions

Operational week: The operational week for the project was
decided to be from Friday to Thursday. Operational weeks
are designed on a Friday to Thursday schedule, to coincide
with vaccine arrival. Vaccine shipments will arrive begin-
ning Friday afternoon. Also based on policies, vaccines can
only be requested and distributed at different points during
the week. Hubs are not open during the weekend, and pick-
ups may not be scheduled for Friday as preparation is needed
for the coming distribution days.

Distribution hubs: There are five distribution hubs in the
state based on proximity to all counties in the state and ease
of access via the interstate system. The hubs serve as a pick
up location for various entities in the state. Each hub serves
a different area, and is based on location to different areas of
the state, serving a different population size and number of
counties. The activities performed at each hub are the same
and are to intake, store, and distribute the COVID vaccine
to the counties. The hubs serve as a room where a vaccine is
stored using refrigeration capacity necessary for the vaccines
to be distributed.

Unallocated vaccine (UAV): Excess inventory resulting
from vaccine administrators picking up fewer vials than what
was requested or allotted for the week and/or planned excess
inventory for upcoming mass vaccination efforts.

Joint interagency task force (JIATF): A concept typically
used in military constructs that requires close working rela-
tionships between two or more organizations or agencies.
Allows the ability to utilize assets from all agencies involved
and is typically focused on a single goal or mission, under
a single director.

Customers: Customers were anyone who was approved
to administer vaccines. So think of this as your healthcare
providers, hospitals, pharmacies, health departments, etc.

Users: Users were the users of the software such as the
JIATF stakeholders associated with compiling orders, and

the members of the State National Guard who interacted
with the system as the key users in vaccine distribution.

3.3 Process details

The following timeline occurs weekly.
Friday: UAV is rolled over from previous operational

week. Vaccine and related supplies are received by each hub
from the CDC shipments.

Monday: Additional CDC shipments of vaccine and
related supplies are received and customer pick-ups begin
including interhub transfers.

Tuesday: Notification of CDC supply quantities for next
operational week and customer pick-ups at each of the 5
Hubs.

Wednesday: Customer pick-ups, vaccine requests submit-
ted and distribution plan prepared for next operational week.

Thursday: New work orders and change orders reconciled
before next operational week begins. Order placed with CDC
for next operational week.

Ongoing: Customer pick-ups with the majority happening
on Tuesdays and Wednesdays; inter-hub transfers of vaccine
inventory. Reconciliation processes (Fig. 1).

Previously the distribution process had been extremely
manual. On Wednesdays customers would send spreadsheets
with the demand of vaccines for their customers in a non-
standard spreadsheet by UAV on Tuesday. There could be
8–10 spreadsheets per week accounting for over 200 + orders
from different entities throughout the state. A distribution
plan was then created which entailed assigning each request
a work-order, a pick-up day, and pick-up time. From there,
state leadership would reconcile each demand based on sup-
ply levels from the CDC, and assign an order quantity to
each order. If supply exceeded or met demand, each order
was filled at the requested levels. Once the orders were allo-
cated, the operational team would then reconcile the number
of vials of each brand of vaccine that would need shipped
to each hub. As vials can only be shipped in boxes or trays
(i.e. partial boxes cannot be shipped), the operational team
would then decide what hubs the full allocations would go
to, and then schedule inter-hub transfers. An assessment
would also be made on secondary supplies (e.g. syringes,
needles, gloves), as certain tool combinations maximize the
return on vaccine distribution. For instance, a certain needle
syringe combination is known to be able to get more vac-
cine doses out of a single vial. Finally, the distribution plan
is finalized and sent to all stakeholders (customer entities,
customers, hubs, and leadership). Throughout the week new
work orders would be added as entities are unable to pick-up
vaccines, or need to change the amount of requested vials
leading to a dynamic distribution.

198 Information Technology and Management (2022) 23:193–211

1 3

Before the research team was engaged, this process
was completely manual and the creation of a distribution
plan could take 72–96 h. The process was error prone as
it required a single individual to copy, paste, and develop
all content necessary. Furthermore, during distribution files
changing due to the dynamic nature of changing orders cre-
ated havoc between hubs and leadership as the common
operating picture was muddied. After the research team
was involved, the distribution plan took less than 4 h to be
finalized, and a common operating picture was developed to
share information and real time insights between the hubs
and the operations leadership.

We chose the SCRUM framework to guide the overall
process and aspired to use all SCRUM ceremonies. However,
using the agile development methodology during the pan-
demic was a challenge. As the team had to work remotely, it
wasn’t a regular standup meeting, but check-ins were mul-
tiple times a day and very unscheduled as the requirements
changed multiple times a day based on situation dynam-
ics. The team would meet as requirements changed, but did
meet at least once a day to continue inspecting progress
towards project goals of the iteration. During these meet-
ings, the team would discuss any problems or identify any
obstacles to task progression. These meetings were also a
good way to discuss any updates to the project backlog that
would be needed to match the changing requirements.

The team was not able to maintain any scrum boards
for items and tasks. Since things changed so rapidly that

updating the board would have been a job in itself. One of
the national guard members used a task board to keep fea-
tures he would like added on there, but it wasn’t directing the
development team’s processes. It was more of a wishlist that
he maintained because of all the dynamics on the ground.

Overall, the team had planning on specific goals in
each iteration which helped us define the project goals
that would be achieved by each app. We also defined the
time period this app will need to be completed in. Sprint
reviews were done when we hit milestones with stake-
holders, and trainings with them. The team did these at
every major update or introduction of an application. The
team did not have time to do the retrospectives. With the
continuous changes dictated by the emergent nature of
the context, the goal was simply to meet the next urgent
requirement.

3.4 Data collection

In line with interpretive research, we used several data
collection techniques [40]. The data was collected mainly
through scheduled open-ended interviews and discussions
with users and stakeholders. We also conducted several
unscheduled discussions with stakeholders, which usually
occurred when a new or revised functionality was needed or
when users reported problems with the system. Moreover,
we observed the users in their workplace setting by visiting

Friday: UAV is
rolled over

from previous
operational

week. Vaccine
and related
supplies are
received by

each hub from
the CDC

shipments.

Monday:
Additional CDC

shipments of
vaccine and

related supplies
are received and

customer pick-ups
begin including

interhub transfers

Tuesday:
Noti�ication

of CDC
supply

quantities
for next

operational
week and
customer

pick-ups at
each of the

5 Hubs.

Wednesday:
Customer pick-

ups, vaccine
requests

submitted and
distribution

plan prepared
for next

operational
week

Thursday:
New work
orders and

change orders
reconciled
before next
operational

week begins.
Order placed
with CDC for

next
operational

week.

Ongoing:
Customer pick-

ups with the
majority

happening on
Tuesdays and
Wednesdays;

inter-hub
transfers of

vaccine
inventory.

Reconciliation
processes.

Fig. 1 Process timeline

199Information Technology and Management (2022) 23:193–211

1 3

the distribution hubs to gain a better understanding of the
scale and complexity of the requirements. In addition, we
employed participant-observation and studied any docu-
ments used by users for performing their work and created
as a result of their work. Data collection for this system
was chaotic at best. Many conversations happened in an ad-
hoc manner, as the dynamic nature of the project did not
facilitate the time to collect all necessary implementations.
Table 1 catalogues the time spent on each type of data col-
lection and Table 2 shows major parameters of the system.

4 Research analysis

We used an agile iterative approach and went through three
iterations during this research project. For each iteration,
we first describe the overall business need as understood
by the researchers at the beginning of the iteration. Next,
we describe the solution created by the development
team. Finally, we describe the lessons learned during the
iteration.

4.1 First research iteration

The entities involved in the vaccine delivery effort con-
sisted of groups such as Hospitals, Local Health Depart-
ments, Higher Education, PK-12, etc. In the state’s Joint
Interagency Task Force (JIATF), one member was assigned
as the liaison for each entity. This liaison would submit
an Excel spreadsheet once weekly with details regarding
customer details, point of contact details, vials requested
including vaccine manufacturer and series [prime (first
dose) or booster (second dose)]. These spreadsheets would
be manually aggregated by another member of the JIATF
and re-sorted to prepare the distribution plan for each dis-
tribution hub. Due to the manual nature of the process,
it was highly susceptible to human error. The process
was inefficient and would often take up to four days to
complete.

To address immediate needs, we needed to help automate
the process of several entities submitting vaccine requests.
In turn, this would automate the creation of the distribu-
tion plan, increasing the time to plan execution of vaccine
delivery. Within less than a week of our initial conversation
with the State’s National Guard, we had two applications
in operation. The first was an interface to allow the entity
liaisons a place to upload their weekly spreadsheet. We mini-
mized the information they had to provide and validated
their submission before accepting the upload. In a separate
application, we allowed the management team the ability
to download two reports. The first was an overall vaccine
request that summarized the requests by hub, vaccine brand
and series. The second was the foundation of the distribu-
tion plan. This document is what the hubs use to facilitate
the distributions directly to the medical providers who give
the shots. We automated the creation of new fields and cre-
ated a workbook tab for each distribution hub. There was
still some manual work to be completed as there were no
business rules in place for some of the work, but in the first

Table 1 Catalogue of time spent in various data collection activities

Type of data collection Who was involved? How long and how many times?

Scheduled interviews and discussions
(scheduled for 30 min to 2 h)

The JIATF Liaisons, HUB Staff, Technical team liaison, Customer
Liaisons

12 h (10 meetings)

Unscheduled interviews and discussions JIATF Liaison, HUB Staff, Technical Team Liaisons, Customer
Liaisons

100 h (80 meetings)

Observation JIATF Floor, Technical Liaisons, Technical Team, Operations Team,
HUB Workers

16 h (3 times)

Reading/reviewing documents Documents explaining vaccine efficacy, procedures for giving a
shot, necessary equipment. Other documents such as working
documents used prior to research teams engagement to understand
the process of distribution. Obtaining information that was not
necessarily tracked in systems or formally prior to research team
engagement

20 h

Table 2 Major system parameters

Parameter Number

Number of functionalities
Data processing functions 6
Data update/augmentation 9
Data visualization/analysis 7
Total number of applications 7
Approximate number of lines of code 5000
Approximate number of system development hours 500

200 Information Technology and Management (2022) 23:193–211

1 3

week we cut a four day process down to a four hour process
and minimized human error.

At this point in the process, communication was done
predominantly via email with some phone calls and Zoom
sessions when more complex questions or answers needed to
be discussed. All code version control and collaboration was
managed through GitHub. In the first week, it was all hands
on deck from early in the morning through the late hours
of the night. Necessary data collection was done via e-mail
and discussion with our State National Guard liaison and
stakeholder who received feedback from the entity liaisons.
Furthermore, the excel spreadsheet used for upload was not
standard so entity liaisons needed to be trained on the sys-
tem as we were developing it. The diagram of applications
and interactions is shown in Fig. 2. It shows that the first
iteration's focus was on developing a better understanding
of weekly vaccine demand.

4.2 Lessons learned during the first iteration

(1) The best agile practices in an emergency are the prac-
tices that quickly adapt to changing user requirements
to deliver a usable product. We focused on delivering a
minimum viable product to meet the immediate needs
and then continued building from there. The data came
from a plethora of sources and was hard to reconcile
due to the pace and complexity of the data [7]. With
this amount of data, it is easy to inflict information
overload on the decision makers by trying to provide
all possible reports that could be generated. With a
targeted focus on delivering the minimal viable prod-
uct, we were able to maintain just enough visibility for
all stakeholders without overloading them with infor-

mation that was not useful for their decision-making
needs.

(2) As this emergency had the potential to impact mil-
lions of lives across the state, each vaccine dose was
extremely precious. There were risks of not meeting
demand due to misallocated doses, under-supplying
the need, or simply not allocating the federally allot-
ted doses. We were aware that we will not have the
luxury of using the agile development recommendation
of iterations that span one or two weeks. We adapted
each agile iteration such that it should be done as fast
as needed without adhering to the one or two week
iteration recommendations. The iteration was made to
be as short as possible to release a minimum viable
functionality. In many cases, there were two releases
per day for meeting evolving user requirements. This
allowed us to move at a hyper-agile pace.

(3) Use the lightest weight tools and software possible to
build the required functionalities. Many of the lightest
weight tools tend to be open source tools—such as R
and Shiny, and Shiny Server Studio—that were used
in developing the applications. Not only are the light-
weight tools easy to use but there are often open source
communities that respond in an agile manner to add or
extend packages that might help developers in an emer-
gency. RStudio actually donated a piece of their non-
open source system called RStudio Connect that allows
for some of the additional security features we wanted
beyond what we have now. The part of this too is that
visualization and analysis are the key components to
building in a language built to analyze data and make
life easier. Also, the functional programming nature of
the development language made life a bit easier, as we

Fig. 2 Diagram of research
iteration 1, consisting of two
applications to process vaccine
demand from stakeholders,
while distribution of vaccine
was based on the provided
distribution plan with no real
time visibility. All demand
was collected by stakeholders
and uploaded to the system for
internal leadership review

201Information Technology and Management (2022) 23:193–211

1 3

were able to use pre-built components to develop the
application because minimum viability and functional-
ity, not “style”, were the key.

4.3 Second research iteration

The second iteration of this work, diagrammed in Fig. 3,
focused on providing visibility into the actual distribution
process from the hubs. This required understanding chal-
lenges the hubs faced with distribution such as scheduling,
and other state and federal data entry requirements on dis-
tribution. The unseen issues to our systems were the exist-
ence of systems such as the federal vaccine management
system (VAMS), and state level immunization tracking
systems that required information from users. As federal
systems focused more on the federal pharmacy program
(of which our state was the only one to originally opt out
of) and no API’s to immunization records systems had ever
been needed, connecting to traditional medical systems
was not possible. Thus, minimum standards were of major
concern. The necessary requirements were to be able to
track distribution, but also produce real time insights into
potential issues with distribution. Three applications were
designed to produce insights on behaviors of customers
such as late pickups, partial pickups, or errors in the dis-
tribution files. Partial pickups occur when an incorrect
amount of vaccine is ordered, or the provider is unable to
pick up the full order due to capacity issues.

Within less than 9 days of the request being made
three new applications were online, with appropriate

considerations and adjustments. The initial production
applications were done with feedback only from JIATF
leadership and stakeholder liaisons, because of the time-
line for the application development. A week after the
product was live, the developers spent four hours at a Hub
(the first exposure to actually viewing a Hub and the pro-
cess performed rather than hearing second hand). This
first-hand experience allowed for a simplification of the
distribution hub application within hours of leaving the
Hub and was in full production by the following morn-
ing. Furthermore, adjustments of visualizations had to be
made to meet military guidance on visualizations such as
the ability to take static quad charts and turn them into
dynamic dashboards, causing additional tools to be made
available to meet reporting needs.

This implementation had complexities that needed to be
addressed as the three applications had many moving parts
of data. The first application was designed for hubs to be
able to indicate the current state of orders on the distribution
report. It allowed them to confirm pickups and deliveries,
which allowed a real-time account of demand for vaccine
and stock levels of all vaccine types. The second application
was to allow changes in the distribution report by the JIATF
to account for the dynamic environment of vaccinations. For
instance, if an order needed to be added, this application
gave the JIATF the ability to add the order without call-
ing the hub and it would automatically be reflected on the
distribution report for the hub. Finally, the third applica-
tion provided the ability to visualize the distribution and
stock of vaccines. Changes in the distribution process and

Fig. 3 Research Iteration 2,
which adds real time visibil-
ity into hub operations and
distribution of vaccine, while
simultaneously assessing
upcoming vaccine demand. The
stakeholders are still responsible
for acquiring demand informa-
tion in this iteration, but real
time changes to distribution
plan can be made, and real-time
insights into distribution can be
given so that decision making
can be dynamic in nature

202 Information Technology and Management (2022) 23:193–211

1 3

stocks can be monitored by leadership to make necessary
decisions such as creation of vaccine clinics and where to
route vaccines that had not been distributed from mobile
clinics. In cases such as this, data persistence must always
be a concern, the developers considered this when doing
the storage, and created a methodology for allowing users
to interact with the most up to date distribution plan while
minimizing data persistence without the use of a production
level database.

4.4 Lessons learned during the second iteration

(1) Divide and conquer: We often found it hard to encom-
pass the set of requirements if we considered a com-
plete application for the entire vaccine distribution
system. Instead, we found it expedient to think of
major functionalities as applications on their own. We
decided to create multiple applications rather than one
large application with several modules. This mecha-
nism enabled us to achieve quick delivery of function-
alities. With this approach, developers only needed to
worry about minimal coordination among applications.

(2) Practice a minimalistic approach when testing: As time
was limited, we often needed to develop and test the
system as it was in production. This meant that unit
tests and stress tests that are key components of agile
development were not adhered to. Since we had created
multiple applications, when a bug needed to be fixed
or an enhancement needed to be implemented, it only
impacted one application at a time and subsequently
fewer users at a time. We could keep certain processes
in operation without disruption. This was key, as we
never had minimal testing time.

4.5 Third research iteration

As supply increased to meet demand, the ability for all pro-
viders to request vaccine in a more direct manner was of
interest. For the first time during the development process,
this was not “emergency based”. With this said, the goal was
to create our next iteration of the system based on current
applications and new requirements such as the ability for
each of the 2000 + approved representatives in the state’s
vaccination program to log-in and request vaccine for their
respective entities while maintaining current capabilities.
A later observed requirement was integration with exist-
ing email accounts that were registered to the state. This
required new cyber-security concerns that would need to be
handled. Furthermore, the addition of 2000 + users created
the need for more resources. The development team took
on a new developer, and the JIATF used existing resources
to stand up and create a help desk. GitHub would be used
to communicate errors and issues from the help desk to

developers, and the JIATF would be responsible for enroll-
ing and submitting user names and credentials to the devel-
opment team. As third party developers, the development
team could not be responsible for an unenrolled user getting
access. Thus, it was left to the JIATF to review all users and
then submit them to the application.

These new requirements not only required all current
builds of every application to be changed or reconsidered
but also was a major shift in distribution protocols for
the state, meeting the changing needs of the public health
dynamics in the state. The rebuild also allowed us to focus
on streamlining applications targeted at different users as
opposed to a part of a process, which had previously been
the approach due to phased development. A three week
timeline was given for this massive rebuild, the application
was also to be rebranded and take a new name, emergency
inventory management system (EIMS). New applications
had to be developed to give users access to request vac-
cines, and for JIATF stakeholders to review these requests
and integrate with any needs they may be planning, such
as state run vaccination clinics. Additionally, new appli-
cations were needed to manage the approved users and
align them with immunization policies at a state and
federal level. With this new request network, the unifica-
tion of processes from the JIATF to hubs was also to be
considered.

The first step was to add a second Shiny Server that was
used to account for 2000 users entering the system, but it
also served as a partition between request and distribution
of vaccine. The original server was to be kept to be accessed
by JIATF stakeholders only. An elastic file system (EFS)
would be used to bind the two servers and allow commu-
nication of data when necessary. The new applications to
manage user access from the JIATF were to be hosted on
the original server. The combination and reduction of capa-
bilities from the original application can be found in Fig. 4.
The new distribution process had all requests for the coming
week to be put in by Tuesday 11:59PM, and then would lock
users out from requesting. Request files would be created
and uploaded to a new application where stakeholders could
add requests, approve, disapprove or change on Wednesdays.
Once approved, the distribution report would be created off
the approved data and compiled appropriately. Figure 4
shows the full diagram of the system, specifically how the
system is split to handle the influx of users, while maintain-
ing security by regulating access through dual Shiny servers.

The system went live May 14, and had a two week burn in
to register users. Capabilities for direct shipments to provid-
ers as well as others had modules in place, but national dis-
tribution strategies were not yet to a point where this imple-
mentation would be useful. The minimum order quantities
for major vaccines do not meet requirements for rural areas
to this point, given limited demand as time has moved on.

203Information Technology and Management (2022) 23:193–211

1 3

As of October 2021, this approach has been responsible for
1.8 million + doses of vaccine and played a role in achieving
66% of the eligible population having received at least one
dose of vaccine.

This implementation was not without some bumps in the
road. The role of creating a single sign on utilizing AWS
Cognito with a Microsoft hosted sign on is not a non-triv-
ial feat. In addition, the additional developer had a 2-week
burn in on the system prior to being able to be effectively
deployed and even then some of the “lessons learned” from
the prior implementations had to be re-learned by the new
developer. Also, some of the more “cutting edge” solutions
that can be found on common help sites such as stack-over-
flow and others in the open source community may not scale
to a larger user base.

4.6 Lessons learned during the third iteration

(1) Practice the philosophy of "build to tear down." If we
think of retaining the system beyond this emergency,
we will create more than is necessary and cannot be as
agile as needed. An example from this system would
be storage of data in a file system rather than a complex
database structure. Throughout the project, we had to
maintain a sharp focus on which applications can be

created rapidly to be put in production quickly. This
often meant making choices that may not work in the
long term and only consider what would work in the
near future, but that constraint was part of the volatile
nature of the context that we were dealing with. One
basic tenet of agile development is welcoming chang-
ing requirements. We needed to expand this tenet dras-
tically to the extent of re-imagining and redoing several
moving parts of the project, often in short periods of
time.

(2) Strive for stability in team membership by minimiz-
ing team composition changes. The development team
realized early on that the knowledge gained during the
first few iterations was complex and not easily transfer-
able. The members also understood that they did not
have the time and energy to expend on onboarding new
members. Hence, conscious efforts were made to mini-
mize core team composition changes until the project
reached a steady state. Onboarding could be done once
the system achieved some major milestones, but can
cause chaos if the new member is not familiar with the
principles and system requirements across the board.
This is also true for the tools and technologies used
in creating the application; for instance, the use of a
package could override functionality across the system.

Fig. 4 Research iteration three which allows for vaccinators to
directly request vaccine and stakeholders to approve each week, while
maintaining visibility into hub operations. The dual servers connected
by the Amazon Web Services Elastic File System, serves dual pur-

poses: To deal with load balancing for 2000 + vaccinators using the
system, while segmenting user privileges to management of vaccines
and requesting vaccines

204 Information Technology and Management (2022) 23:193–211

1 3

An example of this would be when we used dplyr (a
newer version of plyr) which overwrote the namespace
used by plyr, causing the functionality to fail. Overall,
members of the team need to be very familiar with one
another and should use a common set of tools with
which they are already familiar. Avoid bringing in
members who are not familiar with the core team or
with the tools being used.

(3) Span the boundary beyond the core. Although the core
development team needed to minimize team composi-
tion changes, it was necessary for the team to embrace
change from the client side. The client side often
involved representatives from the various government
agencies that made up the JIATF. The dynamic situa-
tion based on stakeholders who were engaged at each
time, led to individuals who would only be engaged at
certain times (depending on situations) forcing the core
team to adapt their communication and working strate-
gies. Overall, the team needed to practice ambidexterity
to be able to accept changing members to the overall
team, while maintaining minimal composition changes
to the core team. A corollary of this practice was that
the core team members needed to be boundary span-
ners, needing to connect with new members, exploring
and understanding the different facets of the distribu-
tion process continuously and bringing it back to the
development team to incorporate the functionalities
in the system. This could be seen as connecting with
vaccinators to better understand the minimal amount
of information they wanted to enter to request vaccine
or with hubs to determine their process to make the
system more efficient. It also corresponds with commu-
nicating with leadership about the entities that would

be engaged in the distribution process. Moreover, pri-
oritizing needs versus wants was also an important
task for the development team. Clear expectations are
necessary, but also understanding the outcome is more
important than efficiency at first. User input matters,
but in the immediate, too much user input may become
a problem. Users may ask for bells and whistles and
may think that their suggested feature is immediately
important. They would discuss the software/application
in its final state rather than the possible paths to the
functional solution. As a developer charged with pro-
viding an emergency response system, it is paramount
to know how to prioritize requirements over complete
solutions. In such high cadence scenarios, the devel-
opment team needed to decide what is an emergency
and what is a want. From the outset, everything may
feel like an emergency because of what is on the line.
However, some things will need to wait and can have
longer time lines (Table 3).

5 Discussion

This research project was undertaken to respond to an imme-
diate need for an information system that would provide
visibility of data into the COVID-19 vaccine distribution
process for a U.S. state. Although we adopted an agile devel-
opment methodology for the development of the system,
we were aware that the pace of the project requirements
was beyond the capabilities of agile development practices.
We found that with carefully chosen adjustments, the agile

Table 3 Project milestones Date Milestone

15-Jan Project scope and start
22-Jan Stakeholder upload and JIATF management apps deployed
1-Feb Requirements and enhancements for dynamic supplies
5-Feb Capacity for additional vaccine types and doses
15-Feb Real time hub integration to application
27-Feb Real time visualization on inventory and hub operations added
15-Mar Hub operations and change orders features operational
20-Mar Receipt of vaccine shipments added
30-Mar Begin maintenance on version 1 (protocol changes around distribution and

Prioritization
15-Apr Version 2 scoped and development begins
23-Apr Automation of stakeholder review launched
30-Apr Automation of distribution report of provider confirmations
10-May Integration with state systems and provider enrollment/training begins
16-May Update distribution restrictions for providers and introduce pediatric doses
30-May Version 2 launches

205Information Technology and Management (2022) 23:193–211

1 3

methodology can be employed to meet the hyper-agile pace
of the project. These adjustments allowed us to distill impor-
tant lessons at the system, process and team levels.

5.1 System‑level lessons

In the course of the development, we found that the infor-
mation required to make important decisions came from a
plethora of sources and at a rapid pace. Timely and accu-
rate information about demand and supply are crucial for
efficient flow in supply chains [46]. While providing vis-
ibility to the stakeholders has always been an objective
of paramount importance in any information system and
especially needed in supply chains [47], the development
team had to walk a thin line between providing just enough
functionality and overloading the end-users with more fea-
tures than needed. With information overload, research
suggests that irrelevant information may cause useful
information to be ignored due to a deluge of unnecessary
facts and figures, leading to poor decision making [48].
The team often needed to carefully assess how to develop
modules and reports that had just enough functionality. At
this crucial stage, the team had to be extremely vigilant
about making the process easy through useful graphs that
had drill-down capability, but at the same time were cau-
tious to hold back features that had the potential to cause
confusion for the end-user who had limited experience
using a system like this one.

In emergency situations, it is very likely that the require-
ments are so convoluted that they cannot be easily attained
by creating a complex system that has several perfectly inte-
grated modules working in perfect harmony. Instead, we
found it prudent to think of major requirements as systems
on their own. This enables the development team to focus on
solving one major requirement and then move on to another.
Each major requirement is attained through an individual
system. The current agile development approach is to build
systems that are continuously integrated and have a high
degree of connectivity [24]. Our approach was contrary to
this agile practice. We strived to create loose coupling in
systems such that each system handles its own major require-
ment while maintaining minimal level of connectivity. This
promotes flexibility in the overall set of applications. The
different systems allowed each unit to take responsibility for
sub-processes (activities) that formed a complex higher-level
process. Each application helped the stakeholders manage
their own chunk of the complex overall process while main-
taining some requisite coordination [49, 50]. This mecha-
nism of handling major requirements with different applica-
tions allowed a combination of capabilities that manifested
greater responsiveness to the environment [51].

Finally, at the system level, we found it judicious for
the development team to play the role of gatekeepers with

respect to the requirements that will be of utmost impor-
tance and those that could wait. As the development team
engaged with different stakeholders in the process of gath-
ering requirements, they were given ideas for several func-
tionalities. It fell upon the development team to decide what
constituted the most judicious usage of their resources. They
had to analyze whether a requirement was really a need or a
want. Agile development methods stress the customers’ role
during the entire development process by involving them in
discussing product features and prioritizing the feature list
[52]. The customer is assigned the role of the product owner
who tells the development team what is important to deliver
[53]. However, in an emergency situation, we found that
the development team has to assume the role of the product
owner. This role fell upon the development team because
they had a complete picture of all the parts of the process
and thus were better able to decide how best to utilize the
capabilities to meet the need.

5.2 Process‑level lessons

Agile development practice espouses short iterations [9].
The development team needed to extend this practice to the
level of completing iterations in weeks and sometimes even
days. Due to the nature of the urgency, the development team
had to resolve to adopt an all-hands-on-deck approach to
make sure that development did not stop until the applica-
tion was up and running. The team also needed to work with
lightweight tools. Agile development practices do not give
any suggestions concerning the tools that would be better
suited for development tasks. It has been our observation,
however, that tools which are lightweight and can be quickly
put together are best suited for systems that need to be devel-
oped at an urgent pace. Research suggests that agile devel-
opment practices and open source software development
share several principles and practices that may help sup-
port the utilization of best practices from both [54]. Light-
weight tools are often developed with the goal of frugal use
of resources to maximize output that is immediately useful
for the end-user [55, 56]. These lightweight tools often have
supporting online communities working on a voluntary basis
that help resolve any functional issues. The added support
through these communities may help overcome any technical
hurdles in building the system [57, 58]. Often this level of
support is non-existent for more established industry stand-
ard, proprietary software. The support networks for such
tools are often slow to respond and issues with the capabili-
ties of software are often resolved in the next iteration of
updates that can come in months, if not years.

When responding to an emergency, development teams
may think that they have to test the system thoroughly to
make sure every functionality is operational. The agile prac-
tice of comprehensive unit testing is key to ensuring that

206 Information Technology and Management (2022) 23:193–211

1 3

each functionality is extensively tested [59]. Although that
should be the goal for an ideal scenario, emergencies can-
not wait for perfection in response. The development team
had to resort to minimal testing and primarily testing only
the major functionalities. This is one possible mechanism to
enable quick iterations that match the pace of the emergency
[60]. This does not mean that the possibility of failure should
not be assessed. We worried about failure every morning
we woke up. Partially it was imposter syndrome, partially
because we knew what was at stake and what would happen
if it failed. We tried to build it as robust and independent as
possible to the point where all data is recorded and stored,
and logs are tracked so that even if something fails the data
is recorded and we can restore it. There are redundancies
and version control is of utmost importance when building.
There were times the system went off line for hours to bug
hunt, because it was critical. This is where the lack of test-
ing was a problem. We could not stress test, but partially
because it was a new process on all sides. Overall, testing
had to be relegated to a back seat due to the minimalistic
approach that we had to espouse.

The development team also needed to be flexible with
respect to the functionality provided by the current applica-
tions as they faced changing requirements. They realized
that there was often a need to rethink the purpose and scope
of a previously built application. They had to be open to
the idea of completely tearing down an application to build
another one. As the requirements changed, the functionality

provided by a certain application would not match the
change in requirements. This meant rebuilding the applica-
tions to match the new needs. Although this may seem to be
a waste of time, with requirements that are fickle, holding on
to previously built applications was infeasible.

5.3 Team‑level lessons

We also learned important lessons at the team level. First,
we found that the core development team had to maintain
stability in the core, which meant that new members were
not allowed to join even when there was a need for helping
hands. The team was put together in an emergent manner
and there were no formal processes followed. As the core
team came together, they strived to keep the core stable.
The core team members realized that they did not have the
capacity to allow new members as that would have put a
greater strain on the time constraints due to on-boarding
and training needs of new members. Team instability due to
addition of new members can severely impact team cogni-
tive structures and can be harmful to team effectiveness [61,
62]. At the same time, membership from the stakeholder side
varied markedly. This goes against the agile development
practice of maintaining stable teams. The core team needed
to maintain stability at the core while embracing changing
membership at the periphery. In order to thrive in this dual
natured context, the development team had to strive to attain
a balance between the two conflicting team structures. The

Table 4 Extensions needed for adapting agile practices to hyper-agile contexts

Agile practice Needed extension for hyper-agile context

Continuous integration Divide and conquer:
Requirements can be more easily managed when different applications are created to meet the major needs. A

single, completely integrated application is a much more complex and time-consuming target to achieve
On-site customer Assume gatekeeper role:

Development team assumes the role of a gatekeeper to decide which functionalities are provided by the systems.
This is important because it is the development team that has the complete picture of the overall process

Development focuses on
functionalities identified for
a sprint

Functionality to meet emergency needs:
Development must maintain a minimalistic, frugal approach to provide the functionalities that are just enough to

meet emergencies that emerge on a daily and sometimes hourly basis
Short iterations (a few weeks) Extremely short iterations (days):

Iterations of the agile process should be kept as short as possible in hyper-agile contexts. The team can also
adjust the iteration duration as needed, contrary to the fixed duration as per standard agile practice

No recommendations for tools Use open source tools:
Open source tools are often lightweight and thus can be very useful in quickly achieving the needed functional-

ity when working in hyper-agile contexts
Testing first Minimal testing:

Contrary to the agile standard of testing every feature before release, teams will need to resort to minimal test-
ing. The team will need to build redundancies in the system to prevent data loss

Refactoring and retrospectives Build to tear down:
As requirements change drastically, there may be need to completely tear down existing applications to create

new ones
Stable team Ambidextrous team:

The development team will need to strive for stability at the core but be fluid at the periphery

207Information Technology and Management (2022) 23:193–211

1 3

team adopted an ambidextrous attitude and strove to gain
efficiency at the core while combining it with a sharp focus
on the changing needs at the periphery of the team. Research
shows that teams that often need to work in conflicting envi-
ronments adopt ambidexterity. This enables teams to form
explorative and exploitative routines, where the former pro-
motes flexibility while the latter focuses on attaining goals
related to stability, routinization and efficiency [63, 64]. The
team members played the role of boundary spanners beyond
the core to be able to make sense of the changing nature of
the requirements and the distribution process which varied
with changes in supply and demand as well as the capabili-
ties of the client. A summary of all the extensions needed for
adapting agile practices is provided in Table 4.

One might think that adapting agile methodologies by
simply increasing the pace of iterations might be sufficient
to meet the needs of hyper-agile environments. However,
we found that just increasing the pace of the iterations was
insufficient to effectuate a robust response to this hyper-
agile environment. We had to adapt and go against several
established agile practices. For instance, one cornerstone
practice of agile development is the use of continuous inte-
gration. Continuous integration (CI) is a software develop-
ment practice that requires developers to integrate software
into the production environment often during development
[65]. Agile teams often consider this as a useful practice
that results in significantly reduced integration problems
and allows the development of cohesive software rapidly
[66]. Our context required us to take a divide-and-conquer
approach instead. We found that requirements can be more
easily managed when different applications are created to
meet the major needs. Aiming for integration with previ-
ously created applications would have added an additional
layer of complexity as integration points would need to be
careful decided upon. Research shows that CI poses chal-
lenges in identifying component dependencies during devel-
opment and integration [67] which could potentially cost
more time or break a working application by introducing
bugs into the production environment. Overall, component
interfaces need to be clearly defined, more failures can be
experienced during integration and there is a need to wait
until other components are completed before integrating
work [68].

Another agile practice that we had to forego was that
of having an on-site customer representative. On-site cus-
tomer and its extension, active stakeholder participation,
are important agile practices that promote close interaction
between the development team and the customer. Increasing
the pace of agile would have meant getting the user to join
the team more often to make sure that requirements are pri-
oritized and developed to provide value at a faster pace. This
would have also meant getting the user to give requirements
faster than the usual pace. However, the emergent nature of

the context characterized by a hyper-agile pace of require-
ments resulted in the customer being not confident of what
the process was supposed to be. The process was actually
non-existent. The development team had to become gate-
keepers of the project so as to be able to define the process
and prioritize the requirements to meet the needs. Often-
times, the development team needed to turn down require-
ments requests from the customer as they were deemed not
functionally critical. The development team had to make
decisions as to which functionality is a crucial need with
high priority rather than a mere want that the users may con-
sider good to have. Another reason for assuming the gate-
keeper role was that the users were not aware of the entire
business process and often understood only a subset of the
system needs. Educating the user would have also cost time
which was a critical resource in this project.

Testing is another key recommended activity during agile
development. Agile development suggests integrating test-
ing into the development process instead of having it as a
separate phase [69]. Testing continues even as development
of the entire application has not completed and more fea-
tures are being added. It can consist of a plethora of dif-
ferent types of tests, such as unit tests, integration tests, UI
tests, acceptance tests and exploratory tests, to name a few
[70]. Speeding up the standard agile process would have
meant accelerating the iteration cycle to have shorter, more
frequent sprints. This would have resulted in compacting
more testing in the iteration as more functionality needs to
be built, tested and deployed in a small amount of time. This
would have delayed the deployment of major mission critical
features needed for vaccine distribution. For this reason, we
decided to keep testing to a bare minimum level. Our multi-
application design enabled us to put in needed enhancements
with minimal testing. If a bug was discovered in an applica-
tion at a later point in time, it impacted only that application.
The other applications and related processes were able to
continue operation without disruption.

Refactoring and retrospectives are two distinct activities
in agile software development. Refactoring is related to mak-
ing minor adjustments to code such that its internal structure
improves but overall functionality stays the same [71]. It is
undertaken to improve the non-functional attributes such as
design, structure or implementation of code, while preserv-
ing overall functionality. This has the potential to improve
the code’s simplicity, clarity, internal structure or extensi-
bility. Retrospectives is the practice of inspecting how the
past Sprint went. Essentially, this is an exercise to determine
what went well, what problems were encountered, and how
those problems were or were not resolved [72]. Research
suggests that coordinating emergency responses often
requires breaking established protocol if it may negatively
affect the outcome [7]. Speeding up sprints in the iterations
would mean that refactoring and retrospective would have

208 Information Technology and Management (2022) 23:193–211

1 3

to be undertaken more often, costing more time in devel-
opment and distracting the development team’s attention
from developing new functionalities to perfecting existing
functionality. Foreseeing the disadvantage of this, the devel-
opment team consciously chose to revisit an application’s
functionality only when it was unavoidable, such as when it
severely constricted the process by producing bottlenecks or
producing erroneous outcomes.

Another beneficial practice of agile development is that
of maintaining stable development teams. Stable teams
allow team members to spend time together and have fre-
quent interactions which translates to strong cohesion among
the members making them high-performing [73]. Research
confirms that high team stability leads to higher amount of
work completed at the end of each iteration by the team [74].
Stability in teams also allows for a higher capability to build
knowledge and gain mastery of the problems and tradeoffs
in a business domain [75]. Emergent teams, however, do not
have the luxury to spend time and energy to build stable rela-
tionships that translate to all the above-mentioned benefits
[7]. We had to resort to maintaining a team that was stable
at the core but that allowed members to move in and out at
the periphery. This created a team that was ambidextrous
as it maintained focus at the core while maintaining a fluid
membership at the periphery.

The remaining three extensions (minimal functionality,
extremely short iterations and using open source tools) are
related to adopting the concept of frugality throughout the
development process. In agile development minimal func-
tionality is a key practice. However, the main goal is to gain
further feedback from the customer and add more features
as per the priorities decided upon in the set of features of the
overall project. In our hyper-agile context the goal was not
to add these bells and whistles at a later stage. As a matter
of fact, requests for any bells and whistles were discouraged
by the development team. This practice allowed the team
to maintain a sharp focus on the frugal list of functionali-
ties that it had come up with. The concept of frugality was
also relevant to the tools selected for development. As func-
tional viability was the only metric for success, we chose
lightweight tools that enabled us to use pre-existing com-
ponents that could be quickly deployed. Lightweight tools
are often developed with the goal of frugal use of resources
to maximize output that is immediately useful for the end-
user [55, 56]. None of the agile methodologies (XP, Scrum,
etc.) provide any suggestions about any development tools
to be used. Keeping iterations short is a key suggestion when
working in an agile environment. The standard suggestion
can range from weeks to months and the duration is set as
a standard across all iterations. For our hyper-agile context,
we suggest pushing this suggestion further by using itera-
tions over only a few days. We also suggest that the team
should be able to adjust the durations as needed, contrary

to the standardized duration across all iterations in standard
agile development.

In any flavor of agile development (e.g. Scrum, XP,
DSDM, etc.) features are developed quickly, tested fre-
quently and integrated continuously into the main code base.
Feedback is encouraged at every step, clients are involved
throughout the process, and development continues until the
client is satisfied. For hyper-agile development, we believe
the suggested extensions are crucial as simply speeding up
the iterations in Scrum, XP or another agile flavor would
not make the team hyper-agile. Instead, it may have the
contrary effect of delaying development. This is primarily
due to the emergent nature of the context where the process
is unknown, the team members have no past experience of
working together and the client is not available to test out
each feature to perfection. Simply speeding up the itera-
tions would have forced the development team to repeatedly
undertake practices that were not supportable. For instance,
having an on-site customer who was unaware of the overall
process and the different sources of data would have wasted
the development team’s time as they would need to first edu-
cate the customer about the process and its complexities.
Similarly, the standard practices of refactoring and retro-
spectives would have forced the team to take up a continu-
ous cycle to reevaluating the code base which would have
put additional time constraints on the development team.
For these reasons, we believe that existing agile frameworks
are deficient in nature to cater to the needs of this hyper-
agile context. The suggested extensions are crucial as they
help better match the emergent, hyper-agile context of this
project.

6 Contributions and conclusion

The development of a software system at an extremely fast
pace by an emergent team while using agile development
methodology is a complex task. This research reported the
process followed and the lessons learned during the develop-
ment of a system which was quickly put together to achieve
efficient COVID-19 vaccine distribution capability. We offer
several important contributions with this project. First, we
offer important lessons for the application and adaptability
of the agile development process at the system, process and
team levels. Although agile development is meant to offer
fast-paced results, the pace of this project was beyond any
that we find in the software development literature. With this
project we now know that the agile process can be adapted
but with careful adjustments. At the system level, the devel-
opment team has to strive for minimal functionality, adopt
a divide and conquer approach while assuming the role of
the gatekeeper of the system. At the process level, the team
has to maintain the shortest possible iterations, use open

209Information Technology and Management (2022) 23:193–211

1 3

source tools and perform minimal testing flanked by care-
fully managed redundancies. At the same time, they have
to assume a build-to-teardown approach to be pliant with
process changes. At the team level, the team has to adopt an
ambidextrous stance by striving for a stable core set of mem-
bers but being flexible to allow changes at the periphery.
Although some research does show that agile methodologies
can be tailored by software development teams as they prefer
to use selective agile practices [30, 31], the literature does
not show whether the practices themselves can be tailored.
Our research contributes to this literature by showing how
individual agile practices can be adapted to match the need
of a highly mission-critical system. We were able to adapt
agile practices by extending them to achieve minimal func-
tionality, dividing and conquering, gatekeeping, building-to-
teardown, and achieving ambidexterity in team.

Second, we contribute to the emergent teams’ literature
by studying how emergent teams can take on the chal-
lenge of developing a system that has the potential to save
lives. The team achieved a dual nature as an emergent
team that strove for stability at the core while embrac-
ing flexibility at the periphery. The emergent nature of
the team meant that team memberships and member roles
could change, but at the same, to achieve stability at the
core, the membership of the main developers had to be
preserved. Moreover, we show that in the absence of any
metastructures guiding the team’s coordination efforts [7],
the team evolved dialogic coordination practices [34] by
impromptu sense-making practices (unscheduled discus-
sions and interviews, hub visits) which allowed members
to develop a sufficient level of shared understanding of the
problem. The lessons and contributions from this research
serve as a first step to understanding best practices to fol-
low in emergent contexts characterized by unprecedented
health challenges.

Generalizability is a concern in a study like this one.
Although we recognize that our context is somewhat unu-
sual, we do believe that there are findings that can be gen-
eralized to other contexts and organizations. Even though
many organizations use standardized processes, there are
scenarios within organizations where organizational mem-
bers need to make teams that are emergent in nature. For
instance, we offer important lessons for disaster recovery
situations caused by natural disasters like flooding, hur-
ricanes and tornadoes which call for swift action by emer-
gent teams. Moreover, as businesses recover from COVID-
19 related lockdowns, there is a need to reflect on past
experiences to gain opportunities to inculcate resilience
that enables quick recovery from disturbances in the future
[76, 77]. The lessons learned from our hyper-agile vac-
cine distribution context can facilitate gaining this under-
standing. Finally, our suggested extensions to the agile
development methodology may also be applicable to other

fast-response medical and non-medical settings where
there is an urgent need to gain accurate visibility into sup-
ply and demand processes. Future research is needed to
corroborate our findings in other contexts where emergent
nature of teams play a crucial role in the road to recovery
from disturbances.

Funding The project described was supported by the National Insti-
tute of General Medical Sciences, 2U54GM104942-02. The content is
solely the responsibility of the authors and does not necessarily repre-
sent the official views of the NIH. Research reported in this publication
was also supported by the National Institute On Minority Health And
Health Disparities of the National Institutes of Health under Award
Number 1U01MD017419-01. The content is solely the responsibility
of the authors and does not necessarily represent the official views of
the National Institutes of Health.

References

 1. Elbanna A, Sarkar S (2016) The risks of agile software develop-
ment: learning from adopters. IEEE Softw 33:72–79

 2. De Cesare S, Lycett M, Macredie RD, Patel C, Paul R (2010)
Examining perceptions of agility in software development prac-
tice. Commun ACM 53:126–130

 3. Dingsoyr T, Nerur S, Balijepally V, Moe NB (2012) A decade of
agile methodologies: towards explaining agile software develop-
ment. J Syst Softw 85:1213–1221

 4. John Hopkins University (nd.) Covid-19 dashboard by the
Center for Systems Science and Engineering (CSSE) Johns
Hopkins University. https:// coron avirus. jhu. edu/ map. html.
Accessed 9 Sept 2021

 5. Comito C (2021) How COVID-19 information spread in US?
The role of Twitter as early indicator of epidemics. IEEE Trans
Serv Comput. https:// doi. org/ 10. 1109/ TSC. 2021. 30912 81

 6. Rowe F, Ngwenyama O, Richet J-L (2020) Contact tracing
apps and alienation in the age of COVID-19. Eur J Inf Syst
29:545–562

 7. Majchrzak A, Jarvenpaa SL, Hollingshead AB (2007) Coor-
dinating expertise among emergent groups responding to dis-
asters. Organ Sci 18:147–161. https:// doi. org/ 10. 1287/ Orsc1
06002 28

 8. Harvie DP, Agah A (2016) Targeted scrum: applying mission
command to agile software development. IEEE Trans Softw Eng
42:476–489

 9. Nerur S, Mahapatra R, Mangalaraj G (2005) Challenges of
migrating to agile methodologies. Commun ACM 48:73–78

 10. Holmstrom H, Fitzgerald B, Agerfalk PJ, Conchuir EO (2006)
Agile practices reduce distance in global software development.
Inf Syst Manage 23:7–18

 11. Mishra D, Mishra A, Ostrovska S (2012) Impact of physical
ambiance on communication, collaboration and coordination in
agile software development: an empirical evaluation. Inf Softw
Technol 54:1067–1078

 12. Yu X, Petter S (2014) Understanding agile software development
practices using shared mental models theory. Inf Softw Technol
56:911–921. https:// doi. org/ 10. 1016/j. infsof. 2014. 02. 010

 13. Bonaretti D, Piccoli G (2018) Effective use of information systems
for emergency management: a representation theory perspective.
In: Proceedings of 38th International Conference on Information
Systems, ICIS 2018, San Francisco, CA

https://coronavirus.jhu.edu/map.html
https://doi.org/10.1109/TSC.2021.3091281
https://doi.org/10.1287/Orsc10600228
https://doi.org/10.1287/Orsc10600228
https://doi.org/10.1016/j.infsof.2014.02.010

210 Information Technology and Management (2022) 23:193–211

1 3

 14. Silvius G (ed) (2016) Strategic integration of social media into
project management practice: advances in it personnel and pro-
ject management. IGI Global, Hershey

 15. Oh O, Kwon KH, Rao H R (2010) An exploration of social
media in extreme events: rumor theory and twitter during the
Haiti earthquake 2010. In 31st International Conference on
Information Systems, Saint Louis, MO

 16. Leong CML, Pan SL, Ractham P, Kaewkitipong L (2015) ICT-
enabled community empowerment in crisis response: social
media in Thailand flooding 2011. J Assoc Inf Syst 16(3):174

 17. Tim Y, Pan SL, Ractham P, Kaewkitipong L (2017) Digitally
enabled disaster response: the emergence of social media as
boundary objects in a flooding disaster: social media for disaster
response. Inf Syst J 27(2):197–232

 18. Vaast E, Safadi H, Lapointe L, Negoita B (2017) Social media
affordances for connective action: an examination of micro-
blogging use during the Gulf of Mexico oil spill. MIS Q
41(4):1179–1206

 19. Lee G, Xia W (2005) The ability of information systems devel-
opment project teams to respond to business and technology
changes: a study of flexibility measures. Eur J Inf Syst 14:75–92

 20. Hoorn JF, Konijn EA, van Vliet H, van der Veer G (2007)
Requirements change: fears dictate the must haves; desires the
won’t haves. J Syst Softw 80:328–355

 21. Maruping LM, Venkatesh V, Agarwal R (2009) A control theory
perspective on agile methodology use and changing user require-
ments. Inf Syst Res 20:377–399

 22. MacCormack A, Verganti R, Iansiti M (2001) Developing prod-
ucts on “Internet time”: the anatomy of a flexible development
process. Manage Sci 47:133–150

 23. Sutherland J, Sutherland JJ (2014) Scrum: the art of doing twice
the work in half the time. Random House, New York

 24. Wang X, Conboy K, Pikkarainen M (2012) Assimilation of agile
practices in use. Inf Syst J 22:435–455. https:// doi. org/ 10. 1111/j.
1365- 2575. 2011. 00393.x

 25. Fitzgerald B, Hartnett G, Conboy K (2006) Customizing agile
methods to software practices at Intel Shannon. Eur J Inf Syst
15:197–210

 26. Surendra NC, Nazir S (2019) Creating ‘informating’ systems
using Agile development practices: and action research study.
Eur J Inf Syst 28:549–565

 27. Kude T, Mithas S, Schmidt CT, Heinzl A (2019) How pair
programming influences team performance: the role of backup
behavior shared mental models and task novelty. Inf Syst Res
30:1145–1163. https:// doi. org/ 10. 1287/ isre. 2019. 0856

 28. Waizenegger L, McKenna B, Cai W, Bendz T (2020) An affor-
dance perspective of team collaboration and enforced working
from home during COVID-19. Eur J Inf Syst 29:429–442

 29. Kirkman BL, Shapiro DL (2001) The impact of cultural values on
job satisfaction and organizational commitment in self-managing
work teams: the mediating role of employee resistance. Acad
Manage J 44:557–569

 30. Mohammed S, Ferzandi L, Hamilton K (2010) Metaphor no more:
a 15-year review of the team mental model construct. J Manage
36:876–910. https:// doi. org/ 10. 1177/ 01492 06309 356804

 31. Ågerfalk PJ, Conboy K, Myers MD (2020) Information systems
in the age of pandemics: COVID-19 and beyond. Eur J Inf Syst
29:203–207. https:// doi. org/ 10. 1080/ 09600 85X20 20177 1968

 32. Drabek TE, McEntire DA (2003) Emergent phenomena and the
sociology of disaster: lessons trends and opportunities from the
research literature. Disaster Prev Manage 12:97–112

 33. Faraj S, Sproull L (2000) Coordinating expertise in software
development teams. Manage Sci 46:1554–1568

 34. Faraj S, Xiao Y (2006) Coordination in fast-response organiza-
tions. Manage Sci 52:1155–1169

 35. Blickensderfer E, Cannon-Bowers JA, Salas E (1997) Theoretical
bases for team self-correction: fostering shared mental models.
In: Beyerlein MM, Johnson DA, Beyerlein ST (eds) Advances
in interdisciplinary studies of work teams: team implementation
issues, vol 4. JAI Press, London

 36. Mohammed S, Dumville BC (2001) Team mental models in a
team knowledge framework: expanding theory and measurement
across disciplinary boundaries. J Organ Behav 22:89–106

 37. DeSanctis G, Monge P (1999) Communication processes for vir-
tual organizations. Organ Sci 10:693–703

 38. Yang HD, Kang HR, Mason R (2008) An exploratory study on
meta skills in software development teams: antecedent coopera-
tion skills and personality for shared mental models. Eur J Inf Syst
17:47–61. https:// doi. org/ 10. 1057/ palgr ave. ejis. 30007 30

 39. Schein EH (1995) Process consultation action research and clini-
cal inquiry: are they the same? J Manage Psychol 10:14–19

 40. Baskerville RL, Myers MD (2004) Special issue on action
research in information systems: making IS research relevant to
practice—foreword. MIS Q 28:329–335

 41. Baskerville R, vom Brocke J, Mathiassen L, Scheepers H (2020)
special issue call for papers: clinical research from information
systems practice. Eur J Inf Syst

 42. Khisro J, Lindroth T, Magnusson J (2021) Mechanisms of con-
straint: a clinical inquiry of digital infrastructuring in municipali-
ties. Transform Gov 16(1):81–96

 43. Magnusson J, Nilsson A, Lindroth T, Khisro J, Norling K (2022)
Rhizomatic strategizing in digital transformation: a clinical field
study. In: Annual Hawaii International Conference on System
Sciences.

 44. Heracleous L (2022) Helping at NASA: guidelines for using
process consultation to develop impactful research. Inf Organ
32(1):100388

 45. Schlüter J, Vetter F (2020) An interactive visualization of Google
Books Ngrams with R and Shiny: exploring a(n) historical in-
crease in onset strength in a(n) huge database. J Data Mining Digit
Humanit 7:1–25

 46. Mohr J, Spekman K (1994) Characteristics of partnership suc-
cess: Partnership attributes communication behavior and conflict
resolution techniques. Strateg Manage J 15:135–152

 47. Wang ETG, Wei H-L (2007) Interorganizational governance value
creation: coordinating for information visibility and flexibility in
supply chains. Decis Sci 38:647–674. https:// doi. org/ 10. 1111/j.
1540- 5915. 2007. 00173.x

 48. Xie C, Wu D, Luo J, Hu X (2010) A case study of multi-team
communications in construction design under supply chain part-
nering. Supply Chain Manage 15:363–370

 49. Gosain S, Malhotra A, El Sawy OA (2005) Coordinating for flex-
ibility in e-business supply chains. J Manage Inf Syst 21:7–45

 50. Orton DJ, Weick KE (1990) Loosely coupled systems: a recon-
ceptualization. Acad Manage Rev 15:203–223

 51. Christopher M (2000) The agile supply chain competing in vola-
tile markets. Ind Mark Manage 29:37–44

 52. Hoda R, Noble J, Marshall S (2012) The impact of inadequate
customer collaboration on self-organizing agile teams. Inf Softw
Technol 53:521–534

 53. Schwaber K, Beedle M (2002) Agile Software Development with
SCRUM. Prentice-Hall, Hoboken

 54. Gandomani TJ, Zulzalil H Ghani AA, Sultan AB (2012) A sys-
tematic literature review on relationship between agile SD and
open source SD International review on computers and software
(IRECOS) 7:1602–1607. Accessed from https:// arxiv. org/ abs/
1302. 2748

 55. Anders G (2014) How to launch a billion dollar startup on a shoe-
string. Forbes. https:// www. forbes. com/ sites/ georg eande rs/ 2012/
05/ 02/ thrif ty- start up/. Accessed 10 Sept 2021

https://doi.org/10.1111/j.1365-2575.2011.00393.x
https://doi.org/10.1111/j.1365-2575.2011.00393.x
https://doi.org/10.1287/isre.2019.0856
https://doi.org/10.1177/0149206309356804
https://doi.org/10.1080/0960085X20201771968
https://doi.org/10.1057/palgrave.ejis.3000730
https://doi.org/10.1111/j.1540-5915.2007.00173.x
https://doi.org/10.1111/j.1540-5915.2007.00173.x
https://arxiv.org/abs/1302.2748
https://arxiv.org/abs/1302.2748
https://www.forbes.com/sites/georgeanders/2012/05/02/thrifty-startup/
https://www.forbes.com/sites/georgeanders/2012/05/02/thrifty-startup/

211Information Technology and Management (2022) 23:193–211

1 3

 56. Ahuja S, Chan Y (2014) The enabling role of IT in frugal innova-
tion. Proceedings of ICIS.

 57. Chou S-W, He M-Y (2011) The factors that affect the performance
of open source software development – the perspective of social
capital and expertise integration. Inf Syst J 21:195–219. https://
doi. org/ 10. 1111/j. 1365- 2575. 2009. 00347.x

 58. Scacchi W, Feller J, Fitzgerald B, Hissam S, Lakhani K (2006)
Understanding free/open source software development processes.
Softw Process Improve Pract 11:95–105

 59. Gary K, Enquobahrie A, Ibanez L, Cheng P, Yaniv Z, Cleary K,
Kokoori S, Muffih B, Heidenreich J (2011) Agile methods for
open source safety-critical software. J Softw 41:945–962. https://
doi. org/ 10. 1002/ spe. 1075

 60. Mäntylä MV, Adams B, Khomh F, Engstrom E, Peterson K (2015)
On rapid releases and software testing: a case study and a semi-
systematic literature review. Empir Softw Eng 20:1384–1425.
https:// doi. org/ 10. 1007/ s10664- 014- 9338-4

 61. Davern M, Shaft T, Te’eni D (2012) Cognition matters: enduring
questions in cognitive IS research. J Assoc Inf Syst 13:273–314

 62. Kude T, Bick S, Schmidt CT, Heinzl A (2014) Adaptation patterns
in agile information systems development teams. In: Proceedings
of the 22nd European Conference on Information Systems. pp
1–15

 63. Gibson CB, Birkinshaw J (2004) The antecedents consequences
and mediating role of organizational ambidexterity. Acad Manage
J 47:209–226

 64. Vinekar V, Slinkman CW, Nerur S (2006) Can agile and tradi-
tional systems development approaches coexist? An ambidextrous
view. Inf Syst Manage 23:31–42

 65. Dingsøyr T, Lassenius C (2016) Emerging themes in agile soft-
ware development: Introduction to the special section on continu-
ous value delivery. Inf Softw Technol 77:56–60. https:// doi. org/
10. 1016/j. infsof. 2016. 04. 018

 66. Fowler (2006) Continuous integration. https:// marti nfowl er. com/
artic les/ conti nuous Integ ration. html. Accessed 10 May 2022

 67. Olsson H, Alahyari H, Bosch J (2012) Climbing the “stairway to
heaven”—a multiple case study exploring barriers in the transi-
tion from agile development towards continuous deployment of
software. In: 38th EUROMICRO Conference on Software Engi-
neering and Advanced Applications, 392–399 (September)

 68. Debbiche A, Dienér M, Berntsson Svensson R (2014) Chal-
lenges when adopting continuous integration: a case study. In:

Jedlitschka A, Kuvaja P, Kuhrmann M, Männistö T, Münch J,
Raatikainen M (eds) Product-focused software process improve-
ment. PROFES 2014. Lecture notes in computer science, vol
8892. Springer, Cham

 69. Prasad GP, Hamsini R, Smitha GR (2016) Agile development
methodology and testing for mobile applications—a survey. Int J
New Technol Res 2(9):263424

 70. Vocke H (2018) The practical test pyramid. https:// marti nfowl er.
com/ artic les/ pract ical- test- pyram id. html. Accessed 11 May 2022

 71. Fowler M (nd) https:// refac toring. com. Accessed 12 May 2022
 72. What is a sprint retrospective? https:// www. scrum. org/ resou rces/

what- is-a- sprint- retro spect ive. Accessed 15 May 2022
 73. Verwijs C (2022) In-depth: stable or fluid teams? What does the

science say? https:// www. scrum. org/ resou rces/ blog/ depth- stable-
or- fluid- teams- what- does- scien ce- say. Accessed 17 May 2022

 74. Scott E, Charkie KN, Pfahl D (2020) Productivity, turnover, and
team stability of agile teams in open-source software projects.
In: 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA): 124–131, doi: https:// doi. org/
10. 1109/ SEAA5 1224. 2020. 00029.

 75. Narayan S (2018) Products over projects. https:// marti nfowl er.
com/ artic les/ produ cts- over- proje cts. html. Accessed 19 May 2022

 76. Boh WF, Constantinides P, Padmanabhan B, Viswanathan S
(2020) Call for papers MISQ special issue on digital resilience.
MIS Quarterly. Accessed from https:// misq. org/ skin/ front end/
defau lt/ misq/ pdf/ Curre ntCal ls/ Digit alRes ilien ce. pdf

 77. Sakurai M, Chughtai H (2020) Resilience against crises: COVID-
19 and lessons from natural disasters. Eur J Inf Syst 29(5):1–10.
https:// doi. org/ 10. 1080/ 09600 85X. 2020. 18141 71

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1111/j.1365-2575.2009.00347.x
https://doi.org/10.1111/j.1365-2575.2009.00347.x
https://doi.org/10.1002/spe.1075
https://doi.org/10.1002/spe.1075
https://doi.org/10.1007/s10664-014-9338-4
https://doi.org/10.1016/j.infsof.2016.04.018
https://doi.org/10.1016/j.infsof.2016.04.018
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://refactoring.com
https://www.scrum.org/resources/what-is-a-sprint-retrospective
https://www.scrum.org/resources/what-is-a-sprint-retrospective
https://www.scrum.org/resources/blog/depth-stable-or-fluid-teams-what-does-science-say
https://www.scrum.org/resources/blog/depth-stable-or-fluid-teams-what-does-science-say
https://doi.org/10.1109/SEAA51224.2020.00029
https://doi.org/10.1109/SEAA51224.2020.00029
https://martinfowler.com/articles/products-over-projects.html
https://martinfowler.com/articles/products-over-projects.html
https://misq.org/skin/frontend/default/misq/pdf/CurrentCalls/DigitalResilience.pdf
https://misq.org/skin/frontend/default/misq/pdf/CurrentCalls/DigitalResilience.pdf
https://doi.org/10.1080/0960085X.2020.1814171

	Adapting agile development practices for hyper-agile environments: lessons learned from a COVID-19 emergency response research project
	Abstract
	1 Introduction
	2 Literature review
	2.1 Agile development
	2.2 Responding to disasters with emergent teams

	3 Research methodology and context
	3.1 Project background
	3.2 Definitions
	3.3 Process details
	3.4 Data collection

	4 Research analysis
	4.1 First research iteration
	4.2 Lessons learned during the first iteration
	4.3 Second research iteration
	4.4 Lessons learned during the second iteration
	4.5 Third research iteration
	4.6 Lessons learned during the third iteration

	5 Discussion
	5.1 System-level lessons
	5.2 Process-level lessons
	5.3 Team-level lessons

	6 Contributions and conclusion
	References

