
The SAT-based Approach to Separation Logic

ALESSANDRO ARMANDO, CLAUDIO CASTELLINI,

ENRICO GIUNCHIGLIA and MARCO MARATEA
DIST, University of Geneva, Viale F. Causa, 13-16145 Geneva, Italy.
e-mail: {armando, drwho, enrico, marco}@dist.unige.it

Abstract. The SAT-based approach to the decision problem for expressive, decidable, quantifier-

free first-order theories has been investigated with remarkable results at least since 1993. One such

theory, successfully employed in the formal verification of complex, infinite state systems, is

Separation Logic (SL), which combines Boolean logic with arithmetic constraints of the form x j

y (c, where (is e, <, >, Q, =, or m. The SAT-based approach to SL was first proposed and

implemented in 1999: the results in terms of performance were good, and since then a number of

other systems for SL have appeared. In this paper we focus on the problem of building efficient

SAT-based decision procedures for SL. We present the basic procedure and four optimizations that

improve dramatically its effectiveness in most cases: (a) IS2 preprocessing, (b) early pruning, (c)

model reduction, and (d) best reason detection. For each technique we give an example of how it

might improve the performance. Furthermore, for the first three techniques, we give a pseudo-code

representation and formally state the soundness and completeness of the resulting optimized

procedure. We also show how it is possible to check the satisfiability of valuations involving

constraints of the form x j y < c using the BellmanYFord algorithm. Lastly, we present an

extensive comparative experimental analysis, showing that our solver TSAT++, built along the

lines described in this paper, is currently the state of the art on various classes of problems,

including randomly generated, hand-made, and real-world instances.

Key words: SAT-based decision procedures, separation logic.

1. Introduction

The SAT-based approach to satisfiability problems beyond propositional logic

dates back to at least the early 1990s (Armando and Giunchiglia, 1993), when it

was noted that, under some suitable conditions, the problem of determining the

satisfiability of any decidable, quantifier-free first-order theory can be reduced to

Boolean search coupled with a satisfiability procedure (i.e., procedure capable of

deciding whether any given set of literals in satisfiable or not w.r.t. the given

theory). In more detail, the SAT-based approach to the satisfiability problem of a

formula � in a theory T amounts to using:

Y a SAT solver to generate a valuation m entailing � in propositional logic,

and
Y a satisfiability procedure to test whether m is satisfiable in the theory T,

Journal of Automated Reasoning (2005) 35: 237Y263

DOI: 10.1007/s10817-005-9002-1

Springer 2005

till a satisfiable m is found (in which case also � is satisfiable), or a set of

valuations whose disjunction is logically equivalent to � has been generated and

tested (in which case � is unsatisfiable). Over the years, the SAT-based approach

has been applied to more theories and even to different problems, such as pro-

positional modal logics (Giunchiglia and Sebastiani, 1996; Giunchiglia et al.,

2002), conformant planning (Castellini et al., 2003), and combination of ex-

pressive theories (Stump et al., 2002), with remarkable results. As the research

proceeded, it became clear that the approach could harvest the technological

improvements achieved in propositional satisfiability. See (Armando et al., 2005b)

for a unifying perspective on the SAT-based approach.

Many verification and scheduling problems involve arithmetic constraints of

the form x j y (c, where x and y are variables ranging over the reals or the

integers and (is e, <, >, Q, =, or m. These constraints are called separation
terms by Pratt (Pratt, 1977), and Separation Logic (from now on, SL) is the name

now used to denote the logic allowing for arbitrary Boolean combination of

separation terms.j SL is also called Bdifference logic[by some authors (see,

e.g., Cotton et al., (2004)) and can be seen as a generalization of a well-known

framework for temporal reasoning, the Temporal Constraint Network, introduced

by Decther, Meiri and Pearl (Dechter et al., 1989). SL is the logic we focus on in

this paper.

The first application of the SAT-based approach to a significant fragment of SL

was given in Armando et al. (1999). In this case, as well as with modal logics and

conformant planning, excellent results were obtained. Since then, a number of

other systems for SL have appeared (see, e.g., Oddi and Cesta, 2000; Audemard

et al., 2002; Strichman et al., 2002; Armando et al., 2005a; Cotton et al., 2004).

In this paper we focus on the problem of building efficient SAT-based de-

cision procedures for SL. To this end, we present the basic procedure and four

optimizations that improve dramatically its effectiveness in most cases: (a) IS2

preprocessing, (b) early pruning, (c) model reduction, and (d) best reason detec-

tion. Optimizations (a) and (b) were first proposed in Armando et al. (1999),

whereas (c) and (d) have been presented for the first time in Armando et al.

(2005a). For each technique we give an example of how it might improve per-

formance. Furthermore, for the first three techniques, we give a pseudo-code

representation and formally state the soundness and completeness of the cor-

responding procedure. We also show how it is possible to check the satisfiability

of valuations involving constraints of the form x j y < c using the well-known

BellmanYFord algorithm (from now on, BF).

We then present an extensive comparative experimental analysis, showing

that our solver TSAT++, built along the theoretical lines of the approach, is

j Unfortunately, the name Separation Logic is also used to denote an extension of Hoare
logic. Strichman et al. (2002) is the first reference we are aware of where the name is resumed
from Pratt’s paper.

238 ALESSANDRO ARMANDO ET AL.

currently the state of the art on various classes of problems, including randomly

generated, hand-made, and real-world instances.

The paper is structured as follows. Section 2 is about SL and presents its

syntax, semantics, and some other formal properties of SL; Section 3 introduces

the basic SAT-based procedure for SL, while the optimizations are presented in

Section 4; in Section 5 we present a satisfiability algorithm for valuations based

on BF; in Section 6 we describe the actual implementation of our system and

present a thorough experimental evaluation; in Section 7 we outline the related

work; lastly, in Section 8 we have the conclusions.

2. Theoretical Background

In this section we give some theoretical background and fix the terminology that

will be used throughout the paper.

2.1. SEPARATION LOGIC

2.1.1. Syntax

Let V and P be two disjoint sets of symbols, called variables and propositional
letters, respectively. A constraint is an expression of the form x j y (c, where

x; y 2 V, (2 {e, <, >, Q, =, m} and c is a numeric constant. The notations x (
y + c and x j c (y will also be freely used in place of x j y (c. An atom is

either a constraint or a propositional letter. A formula is a combination of atoms

via the unary connective BK[for negation and the n-ary connectives B$[and B¦[
(n Q 0) for conjunction and disjunction, respectively. We will write B and ± for

the empty conjunction and the empty disjunction, respectively. A literal is either

an atom or its negation. If a is an atom, then ā abbreviates Ka and :a stands for a.

EXAMPLE 1. In Bryant et al. (2002), the case-study is introduced of a bounded

model checking problem for the memory unit of the Motorola Elf microproces-

sor. The unit is initially modeled as 20 K lines of VERILOG, with 80 integer-

valued variables and 70 propositional letters. After some translation stages, the

problem is reduced to checking satisfiability of a formula in SL, a fragment of

which, call it �Elf, looks like this:

p1 _ K VPred ¼ IRRð Þð Þ ^
Kp1 _ VPred ¼ IRRð Þ ^
Kp2 _ VPred < IRR þ 1ð Þ ^
p2 _ K VPred < IRR þ 1ð Þð Þ ^
p3 _ p4ð Þ ^
p3 _ Kp4 _ KVenI0 ¼ VenIð Þ ^
p5 _ K VenI0 þ 2 ¼ VenIð Þð Þ ^
Kp5 _ VenI0 þ 2 ¼ VenIð Þ

THE SAT-BASED APPROACH TO SEPARATION LOGIC 239

In the above formula, VPred, IRR, VenI, VenI0 are variables and p1, p2, p3, p4,

p5 are propositional letters. VPred < IRR + 1 is a constraint, and p5 and K(VenI0 +

2 = VenI) are literals.

2.1.2. Semantics

Let the set D (domain of interpretation) be either the set of the real numbers R or

the set of integers Z. An assignment is a total function mapping variables to D
and propositional letters to the truth values false and true, standing for falsehood

and truth respectively.

Let s be an assignment and � be a formula. Then s î � (s satisfies a formula
�) is defined as follows.

s î x j y (c if and only if s(x) j s(y) (c,

s î p with p 2 P if and only if s(p) = true,

s î K� if and only if it is not the case that s î �,

s î ($i=1
n �i) if and only if for each i 2 [1, n], s î �i, and

s î (¦i=1
n �i) if and only if for some i 2 [1, n], s î �i.

If s î �, then s will also be called a model of �. We also say that

Y a formula � is satisfiable if and only if there exists an assignment satisfying

it;
Y a formula � is valid if and only if every assignment satisfies it;
Y two formulas � and are logically equivalent if and only if the formula

(K� ¦) $ (� ¦ K) is valid.

Here we consider the problem of deciding whether a formula is satisfiable or

not in the given domain of interpretation D. Notice that satisfiability of a formula

depends on D, e.g., x j y > 0 $ x j y < 1 is clearly satisfiable if D is R but

unsatisfiable if D is Z. However, the problems of checking satisfiability in Z and

R are closely related and will be treated uniformly almost always. Therefore,

from now on, we will drop the distinction, and we will reintroduce it only when

needed.

EXAMPLE 2. Consider Example 1. �Elf is satisfiable, and a model is s = {p1 [
true, VPred [12, IRR [l2, p2 [true, p3 [true, p4 [true, p5 [true, VenI [
10, VenI0[8}.

2.2. VALUATIONS

A valuation is a finite set m of literals such that for each atom a, if a 2 m
then Ka =2 m. In the following if m is a valuation, then by m we also denote

240 ALESSANDRO ARMANDO ET AL.

the formula ^l2�l. Context will make clear what is intended. Moreover, we say

that

1. a valuation m propositionally entails a formula � if (Km $ �) can be proved

in propositional logic;

2. two formulas are propositionallly logically equivalent if one formula pro-

positionally entails the other, and vice versa.

The following result shows the importance of valuations.

THEOREM 3. A formula � is satisfiable if and only if there exists a valuation m
such that

1. m is satisfiable,

2. all atoms in m occur in �, and
3. m propositionally entails �.

Proof. The right-to-left direction is trivial. For the left-to-right direction, first

notice that it is always possible to convert � to a logically equivalent formula in

the same atoms and in disjunctive normal form (DNF). Let S be the set of

disjuncts in the DNF. Then by the semantics of $ it follows that � is satisfiable if

and only if there is m 2 S such that m is satisfiable. Furthermore, for such m, also

the second and third properties hold. Ì

Given the above result, in order to check the satisfiability of a formula �, the

issue becomes that of efficiently building a set S of valuations that is

propositionally complete for �, that is, such that the disjunction of the valuations

in S is propositionally logically equivalent to �. Given such a set, we can then

separately check the satisfiability of its elements.

3. The SAT-based Approach to Separation Logic

Theorem 3 lays the foundation of a simple method for determining the satis-

fiability of a formula �:

1. generate a set S of valuations that is propositionally complete for �, and

then

2. test whether at least one of the valuations in S is satisfiable: if this is the case,

then � is satisfiable; otherwise � is unsatisfiable.

Further, if one valuation m in S is satisfiable, then the models of m are also

models of �. Thus, in the above schema, the problem of finding a model of an

arbitrary formula has been reduced to the problem of finding a model of a

THE SAT-BASED APPROACH TO SEPARATION LOGIC 241

valuation. Notice that the ability to return a model if the formula is satisfiable is

highly desirable in many applications. For example, if the formula represents an

instance of a bounded model-checking problem, then from any model of the

formula it is usually possible to extract a trace witnessing the violation of the

desired property.

The reason why this method has become quite popular is that state-of-the-art

SAT solvers can be employed to efficiently generate valuations on-the-fly. In

fact, valuations propositionally entailing the formula can be generated one by

one, and each can then be checked for satisfiability before generating the next

one, until a positive answer is returned, or there are no more valuations left. This

way the need to generate all (potentially exponentially many) satisfying valu-

ations beforehand is avoided. This is the foundation of the SAT-based approach,

first envisioned in Armando and Giunchiglia (1993) and first applied to SL in

Armando et al. (1999).

The reasons of its success are at least three:

1. more than 40 years of research on propositional satisfiability have made SAT

solvers reliable, efficient and, in some cases, reusable;

2. the two phases, namely, enumeration and satisfiability checking, can be ef-

fectively decoupled, nevertheless allowing for a great deal of search guid-

ing information to flow between the modules that take care of each phase;

3. the range of theories this approach can tackle is quite wide and interesting.

In the rest of this section we give a precise characterization of the SAT-based

approach and prove its fundamental properties.

Without loss of generality, in the following we assume that all formulas

are in conjunctive normal form (CNF) and do not contain any constraint

of the form x j y j c or x j y m c. Constraints of the form x j y = c and x j y
m c can be always replaced by the logically equivalent formulas (xjy e c) $ (x
j y Q c) and (x j y > c) ¦ (x j y < c) respectively. Further, by using the

structure-preserving clause form transformation described in, for example,

Tseitin, 1970; Plaisted and Greenbaum, 1986, translation in CNF can be done

efficiently. Given the CNF assumption, a formula is represented as a conjunc-

tively intended set of clauses, each clause being a disjunctively intended set of

literals.

3.1. BASIC PROCEDURE

A pseudo-code description of a procedure that can be used to carry out the

propositional analysis phase is given in Figure 1. It is essentially the Davis,

Logemann and Loveland algorithm (from now on, DLL) (Davis et al., 1962) for

propositional satisfiability extended in such a way to support the enumeration of

all the valuations propositionally entailing the input formula.

242 ALESSANDRO ARMANDO ET AL.

In the procedure:

1. Simplify (l, �) simplifies the formula � under the assumption that the literal

l is true. This is done by removing from � all clauses in which l appears and

by moving l from all clauses in which l appears;

2. ChooseLiteral(�) picks a literal l in � according to some heuristic function.

Notice that if � = ;, then the current valuation, m, is printed and FALSE is

returned so as to force backtracking.

There is strong empirical evidence in the literature (see, e.g., Le Berre and

Simon (2003)) that DLL is the current best among the complete algorithms for

solving the SAT problem. A number of improvements to DLL have been

proposed, especially on the heuristic function used in ChooseLiteral(�), on the

data structures employed, on the way unit propagation and backtracking are

performed, but the basic algorithm still stands unchanged.

LEMMA 4 (DLL as an enumerator). Let � be a propositional formula.
DLL_ENUM(�, B) prints a set of valuations that is propositionally complete
for �.

Proof. The statement is proved in Giunchiglia et al. (2002). Ì

DLL_ENUM(�,m) can be readily turned into a decision procedure for SL as

shown in Figure 2. The modifications are limited to the case in which � = ;
Instead of printing m and unconditionally returning FALSE, we now return the

result of invoking SatCheck(m), where SatCheck(m) is a satisfiability procedure

for valuations, that is, it returns TRUE if m is satisfiable, and FALSE otherwise. This

procedure clearly depends on the decidable theory under consideration. As we will

see in Section 5, a satisfiability procedure for SL valuations can be readily built

by using BF, which runs in polynomial time (see, e.g., Cormen et al. (2001)).

THEOREM 5 (Soundess and completeness of TSAT). Let � be a formula. Then
TSAT (�, B) returns TRUE if � is satisfiable, and FALSE otherwise.

Proof. It readily follows from Theorem 3, from the soundness and com-

pleteness of the DLL algorithm, and from Lemma 4. Ì

Figure 1. DLL algorithm as enumerator.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 243

EXAMPLE 6. Once again, let us consider Example 1. Assume, moreover, that

ChooseLiteral simply returns the first atom in lexicographical order. Then here is

how TSAT (�Elf, B) works:

1. since there are no unit clauses, p1 is chosen and m = {p1};

2. after Simplify (p1, �Elf) is executed, the second clause has become unit since

Kp1 has been removed from it; therefore VPred = IRR is detected as appearing

in a unit clause and added to m;

3. same as Items 1 and 2, but with p2 and VPred < IRR + 1; now m = {p1,

VPred =IRR,p2,VPRED < IRR + 1};

4. again, there are no unit clauses, and therefore p3 is chosen and added to m;

5. after Simplify (p3, �Elf) is executed, no unit clauses are left, so p5 is chosen

and added to m;

6. lastly, VenI0 + 2 = VenI is detected in a unit clauses and added to m where

now {p1, VPred = IRR,p2, VPred < IRR +1, p3, p5, VenI0 + 2 = VenI};

7. �Elf has now become empty; SatCheck is called and a model of m, which also

is a model of �Elf, is found, for instance, the model in Example 2.

4. Optimizations

The clear separation between the enumeration of valuations propositionally

entailing � and the check of their satisfiability is the key feature of the SAT-

based approach to building decision procedure. However, the naı̈ve application

of this idea may suffer from the generation of exponentially many unsatisfiable

valuations. The reason for this inefficiency is that the SAT solver is not aware of

the properties of the background theory, in our case SL. To illustrate this point,

let us again consider the problem of Example 1. If VPred = IRR is assigned to true

then it is pointless to assign false to VPred < IRR + 1 as this valuation (or any

extension thereof) will be later found to be unsatisfiable and hence rejected by

SatCheck.

As a matter of fact most optimizations to the basic procedure that have been

proposed in the literature aim at preventing the generation of unsatisfiable (and

hence useless) valuation. In this section we described four optimization that Y as

shown in Section 6 Y make TSAT++ the current fastest decision procedure for

SL on a wide range of benchmark problems.

Figure 2. Basic SAT-based decision procedure based on DLL.

244 ALESSANDRO ARMANDO ET AL.

4.1. ISn PREPROCESSING

To reduce the enumeration of unfruitful valuations at a reasonable price,

Armando et al., 1999 introduced the so-called ISn preprocessing. The name

stands for inconsistent subsets and the subscript number represents the size of the

subsets sought for. Naively put, if P is the set of constraint literals occurring

positively in the input formula, ISn checks the satisfiability of all the valuations

P0 subset of P such that jP 0j e n: for each unsatisfiable subset P0, the clause _l2P0 l
is added to the imput formula before calling TSAT.

Although ISn can be exponential in general, for each fixed n polynomially

many subsets of cardinality n exists, and if satisfiability checking is done in

polynomial time, the resulting procedure runs in polynomial time.

For a given value of n, it also makes sense to generalize the idea in order to

check the satisfiability of set P, with jPj e n, of literals whose atom occurs in the

input formula. To ease the presentation, we restrict to the case in which n = 2.

The generalization of IS2 works as follows: for each unordered pair {ci, cj} of

distinct SL-constraints appearing in � and involving the same variables, all

possible pairs of literals built out of them are checked for satisfiability.

The resulting optimized version of TSAT is given in Figure 3.

THEOREM 7 (Soundness and completeness of TSAT_IS2). Let � be a formula.
Then TSAT_IS2 (�) returns TRUE if � satisfiable, and FALSE otherwise.

Proof. By Theorem 5, since �0 is logically valid and therefore � and �0 $ �
are logically equivalent. Ì

EXAMPLE 8. Consider Example 1 once more. After the preprocessing step of

TSAT_IS2(�Elf), the clauses

: VPred ¼ IRRð Þ _ VPred < IRR þ 1

and

: VenI0 ¼ VenIð Þ _ : VenI0 þ 2 ¼ VenIð Þ

are added to �Elf. These added clauses allow for more pruning while descending

the search tree.

Figure 3. IS2 preprocessing.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 245

Consider Example 6. In TSAT_IS2(�Elf), choosing p1 forces VPred = IRR by

unit propagation; but now, thanks to the clause added by IS2, this also forces

VPred < IRR + 1, which in turn forces p2. TSAT (�Elf, B) on the other hand, had

to branch on p2.

IS2 is a simple way of guiding the generation phase by taking into account the

structure of the constraints in the input formula. IS2 has been proved to speed

the search, especially on randomly generated problems such as the binary

disjunctive temporal problems (DPTs), which are made of binary clauses con-

taining constraints only (see Section 6.1). In that case, the effectiveness of the

technique is dramatic, since adding more binary clauses, which is what IS2 does,

paves the way to detect and propagate more unit clauses once a literal has been

selected by ChooseLiteral.

4.2. EARLY PRUNING

An alternative approach that aims at limiting the generation of unsatisfiable

valuations is based on the idea of checking the valuations while they are gen-

erated by TSAT. This technique is called early pruning (EP) and relies on the

fact that no unsatisfiable valuation can be extended into a satisfiable one by

adding more constraints. EP can be readily incorporated in TAST, as shown in

Figure 4.

THEOREM 9 (Soundness and completeness of TSAT_EP). Let � be a formula.

TSAT_EP (�, B) returns true if � is satisfiable, and FALSE otherwise.

Proof. By Theorem 5 we know that TSAT is sound and complete. Now,

first notice that TSAT_EP differs from TSAT only in that one more recursion

base case, possibly returning FALSE, has been introduced at line 4. This fact

ensures soundness of the function: if TSAT finds no model of �, neither will

TSAT_EP.

As far as completeness is concerned, assume by contradiction that a satisfiable

valuation m is found by TSAT, which is not found by TSAT_EP. By the above

consideration, this means that a subset of m, call it m0, must have been reached by

Figure 4. TSAT with early pruning.

246 ALESSANDRO ARMANDO ET AL.

TSAT_EP and rejected. This means that m0 is unsatisfiable and m, a superset of it,

is satisfiable, which is contradictory. Ì

EXAMPLE 10. Consider Example 1, TSAT_EP as in the figure, and assume

ChooseLiteral returns the first literal that appears in the formula. Then, TSAT_EP

(�Elf, B) picks and add to m, in turn, p1, VPred =IRR and Kp2. The last choice

force K(VPred < IRR + 1) into m by unit propagation, but clearly the valuation is

now unsatisfiable. Therefore backtracking happens, and both K(VPred < IRR + 1)

and Kp2 are removed from m. ChooseLiteral then switches to p2, and the algo-

rithm goes on as in Example 6.

Notice that in this case TSAT, with the same ChooseLiteral, would have ex-

plored a totally useless portion of the search space, namely, checking all models

prefixed with the unsatisfiable m detected above by EP.

4.3. MODEL REDUCTION

A further optimization, called model reduction, is based on the observation that

a valuation m generated by TSAT can be redundant; that is, there might exist a

valuation m0 Î m that propositional entails the input formula. When this is the

case, we can check the satisfiability of m0 instead m. This has the following

advantages:

1. if m and m0 are either both satisfiable or both unsatisfiable, then the value

returned by SatCheck is the same. However, checking the satisfiability of m0

can be easier if we use, for example, BF.

2. if m is unsatisfiable, it may nevertheless be the case that m0 is satisfiable: in

this case SatCheck(m0) returns TRUE, thereby pruning any further search.

Model reduction can be easily incorporated in TSAT as shown in Figure 5.

The main difference with respect to TSAT is that the reduced valuation m0, rather

than m, is checked for satisfiability. It is assumed that ReduceModel(m) returns a

valuation m0� m propositionally entailing the initial input formula.

THEOREM 11 (Soudness and completeness of TSAT_MR). Let � be a formula.

TSAT_MR (�, B) returns TRUE if � is satisfiable, and FALSE otherwise.
Proof. It suffices to note that, since m0 � m, there are three possible cases:

both m0 and m are satisfiable; both are unsatisfiable; or m0 is satisfiable, but m is

not. In the first two cases, SatCheck(ReduceModel(m)) coincides with

SatCheck(m); in the third case, a satisfiable valuation propositionally entailing

the input formula has been found, and the algorithm terminates. Ì

Here again it is important to check that, on average, the time spent in

reducing the valuation does not overwhelm the advantage gained by reduc-

THE SAT-BASED APPROACH TO SEPARATION LOGIC 247

ing it. So far, we have been experimenting with two techniques for reduc-

ing valuations:

Triggering: if m contains a literal l that does not belong to any clause in the

input formula �, then m propositionally entails � if and only if m\{l} does;

therefore l can be safely removed from m. This technique, introduced in

Wolfman and Weld (1999), is called triggering. Triggering has a linear cost in

jmj if realized, for example, via a simple table of the occurrences of literals in �.

Minimization: a better idea is to remove as many redundant constraint literal

l as possible. This can be done by recursively eliminating from m one constraint

literal l at a time such that for each clause C containing l, there exists another

literal l0 in m ? C. Minimization can be done in linear time in the size of the

input formula � provided that a data structure associating to each literal l the

clauses of � whom l belongs to is available.

EXAMPLE 12. Consider again �Elf; in this case, a possible valuation found by

TSAT_MR is m = {p1, VPred = IRR, p2, VPred < IRR + 1, VenI0 = VenI, p4, p3, p5,

VenI0 + 2 = VenI}. A reduced version of it, according to minimization, is m0=
{p1, VPred = IRR, p2 VPred < IRR + 1, p3, p4, p5, VenI0 + 2 = VenI}, obtained from

m by removing the constraint literal VenI0 = VenI. Further, while m is

unsatisfiable, m0 is not.

Given a valuation m it is important to notice that model reduction that is,

ReducedModel(m) in Figure 5, does not consider the set IS of clauses possibly

added by ISn to the input formula �: these clauses are valid and thus do not need

to be taken into account. Considering them would slow ReduceModel(m) and,

even worse, may partly shadow its effects. In fact if m0 and m00 are the valuations

returned by ReduceModel(m) when considering � and � ? IS respectively, we

have that m0 � m00. Furthermore, ReducedModel(m) is not performed when the

valuation m does not propositionally entail the input formula �, that is, when we

are checking the satisfiability of a valuation because of early pruning. Indeed,

with early pruning we hope to detect the unsatisfiability of m in order to cut the

search. On the other hand, it may be the case that m0 = ReducedModel(m) in

satisfiable while m is not: in this case, considering m0 instead of m would make

vain early pruning.

Figure 5. TSAT with model reduction.

248 ALESSANDRO ARMANDO ET AL.

4.4. BEST REASON DETECTION

So far, we have discussed how to extend an SAT solver in order to obtain a de-

cider for SL, focusing in particular on SAT solvers based on DLL. Our motivation

for this has been that most of the state-of-the-art complete SAT solvers are based

on DLL. However, such solvers extend the basic DLL procedure in different ways

in order to be more effective on different classes of problems. Broadly speaking,

we can divide such solvers in two categories, following the distinction that is

usually made in the SAT competition (Le Berre and Simon, 2003):

Y those designed for real-world problems, e.g., zchaff (Moskewicz et al.,

2001), the winner of the last SAT competition in this category. The fea-

tures of these solvers are that they have a fast-to-compute heuristics, a

simple but efficient pruning mechanism based on unit propagation, and a

sophisticated backtracking mechanism based on back-jumping and learning

(see Moskewicz et al., 2001).
Y those designed for solving difficult either randomly generated or hand-made

problems, for example, kcnfs (Dequen and Dubois, 2004) and March_eq

(Heule and Maaren, 2005) the winners of the last SAT competition in

these categories. These solvers have a complex-to-compute heuristics, so-

phisticated pruning mechanisms significantly extending unit-propagation,

and a simple but efficient back-tracking mechanism without learning.

The modification needed in order to obtain a SAT-based solver for SL can be

done along the lines so far outlined if we start from a solver without back-

jumping and/or learning. Still, in case we want to use a backtracking schema

based on learning, whenever FALSE is returned, a Breason[for the failure has to be

computed. Intuitively, whenever we are backtracking from a valuation m, a

reason is a subset m0 of m such that any valuation extending m0 will fail. While

backtracking, these reasons m0 are used in order to back-jump over the literals

which are not in m0. Further, if the solver uses learning, the clause _l2�0 l is

(temporarily) added to the input set of clauses in order to avoid future explo-

rations of valuations extending m0.
Thus, in order to use SAT solvers with learning, it is not enough for

SatCheck(m) to return FALSE when m is not satisfiable. Indeed, SatCheck(m) must

also compute a reason for such a failure, that is, an unsatisfiable subset m0 of m.

One such set is obviously m itself. However, in order to try to maximize the

advantages of learning, it is important that m0 be as Bsmall[as possible with

respect to some ordering relation on valuations. Let m be an unsatisfiable val-

uation. We found it useful to consider the following forms of minimality:

Y Minimal reasons with respect to set inclusion. An unsatisfiable valuation

m0 � m is a minimal reason form with respect to set inclusion if and only if

for all unsatisfiable valuations m00 such that m00 � m0 we have that m00 = m0.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 249

Y Reasons of minimal cardinality. An unsatisfiable valuation m0 � m is a

reason for m of minimal cardinality if and only if for all unsatisfiable

valuation m00 � m, we have that jm0j e jm00j.
Y Shallowest reasons. Let l1,l2, . . . ln (n Q 0) be the literals in m, listed

according to the total order with which they have been assigned. Such a

sequence induces a total order on the subsets of m defined as follows: if m0

and m00 are subsets of m, then m0 � m00 if and only if for all literals li 2 m0 \ m00

there exists a literal lj 2 m00 \ m0 such that i e j. An unsatisfiable valuation m0

� m is the shallowest reason for m if and only unsatisfiable valuation m00 �
m, we have that m0 � m00.

Intuitively, there is no point in returning a reason that is not minimal under set

inclusion: if we unnecessarily include a literal l in the reason, this may lead to

branch on l, and such a branch is bound to fail. Among the reasons that are

minimal under set inclusion, those with minimal cardinality have the further

advantage that, once added to the input formula because of learning, they prune a

larger portion of the search space. Finally, while backtracking from a valuation

m, and even returning a reason m0 with minimal cardinality, it may still be the

case that the next branch being explored is deemed to fail. In fact, m may still

contain a shallowest reason.

EXAMPLE 13. Consider Example 1 once again and assume that the heuristics

is such that it first sets p1 (forcing also VPred = IRR by unit propagation), then

Kp2 (forcing K(VPred < IRR + l)), and then VenI0 = VenI, p3 and p5 (this last one

forcing also VenI0 + 2 = Venl). The corresponding valuation {p1, VPred = IRR,

Kp2, K(VPred < IRR + 1), VenI0 = VenI, p3, p5, VenI0 + 2 = VenI} propositionally

entails �Elf but is unsatisfiable. The standard procedure detects that m is un-

satisfiable, but it backtracks only up to the choice of p5, which is not involved in

the unsatisfiability of m; then a whole search branch is explored, which is totally

useless, since the assignment still contains both VPred = IRR and K(VPred < IRR +

l), which are responsible of the contradiction. The same, even worse, goes for the

choice of p3.

On the other hand, if reason detection is enabled, upon detection of the

unsatisfiability of m, a reason is found, backtracking starts up to a point

where the contradiction corresponding to the reason is solved. In our exam-

ple, there are two minimal reasons, namely, x = {VPred = IRR, K(Vpred <
IRR + 1)} and x0 = {VenI0 = VenI, VenI0+ 2 = Venl}. Both x and x0 are mini-

mal under set inclusion and of minimal cardinality. However, x is the shal-

lowest. Indeed, if the reason is set to x, backtracking will stop at the choice

point where Kp2 was chosen. Also notice that, assuming the reason being

returned is x0, backtracking will stop at the choice VenI0 = VenI: however,

the following search is bound to fail given that the valuation will still contain

x.

250 ALESSANDRO ARMANDO ET AL.

The above example and discussion seems to point out that a reason of minimal

size is better than a reason minimal under set inclusion, and that the shallowest

reason is better than a reason of minimal size. Indeed, the shallowest reason tries

to remove as soon as possible the unsatisfiability from the valuation built so

far. However, despite the Bsmartness[of the reason being returned, there is

no guarantee whatsoever that the tree being explored with a Bsmart[reason

mechanism will be smaller than the tree explored with another reason mech-

anism. As Prosser (1993) pointed out, it may be the case that the a priori known

fruitless exploration of a branch will lead to a failure and the discovery of a reason

causing a long jump to the top of the search stack. To this end, a simple

implementation of SatCheck(m) returning, m as reason whenever, m is not sat-

isfiable, can turn out to be more effective than other implementations, at least in

some cases. However, trivially, a solver with back-jumping and/or learning can

never explore more nodes than a solver with backtracking, assuming, for ex-

ample, a static branching heuristics.

The first SAT-based solver for SL using a backtracking schema with learning

has been proposed in Audemard et al. (2002). However, in that paper, there is no

indication about how the reason is computed when SatCheck(m) fails.

5. Satisfiability Checking

It is a well-known fact that BF can be used to check the satisfiability of a finite

set Q of constraints of the form x j y e c; see, for example, Cormen et al. (2001).

This is done by first building a constraint graph for Q, that is, a weighted di-

rected graph whose nodes are the variables occurring in Q and having an edge
from y to x of weight c for each constraint x j y e c in Q. An extra node, the

source, is also included and is linked to all the other nodes with edges of weight

0. BF is then used to solve the Bsingle source shortest-paths[problem. The set of

constraints Q is satisfiable if and only if the constraint graph for Q contains no

negative cycles, that is, cycles with cumulative negative weight.

Here we show that satisfiability checking of a generic valuation m can be done

efficiently with BF. As a preliminary step, we turn m into an equisatisfiable set

me,< whose literals are of the form x j y e c or x j y < c. This can be done by

deleting all the literals of the form p and Kp where p is a propositional letter and

by replacing constraint literals

Y y j x Q j c, K(y j x < jc), K(x j y > c) with the logically equivalent

constraint x j y e c, and
Y y j x > j c, K(y j x e j c), K(x j y Q c) with the logically equivalent

constraint x j y < c.

A further step is needed to transform the valuation me,< into an equisatisfiable

set of constraints of the form x j y e c whose satisfiability can be checked with

THE SAT-BASED APPROACH TO SEPARATION LOGIC 251

BF. If the domain of interpretation is Z, this can be done by replacing in me,<

every constraint of the form x j y < c with x j y e c0, where c0 is the maximum

integer strictly smaller than c. It is easy to see that the resulting set of constraint

is satisfiable if and only if me,< is. If the domain of interpretation is R, then we

rely on the following result.

LEMMA 14. Let Q and Q0 be two finite sets of constraints of the form x j y e c
and x j y < c, respectively. Let n be the number of variables in Q0. Let p be the
maximum number of digits appearing to the right of the decimal point in any
numeric constant in Q ? Q0. If C is x j y < c, let Ce be x� y � c� 1

10 p nþ1ð Þ.
Finally, let Qe

0 = {Ce : C 2 Q0}.

Q ? Q0 is satisfiable in R if and only ij Q ? Qe

0
is satisfiable in R.

Proof. The right-to-left direction is trivial, and therefore here we focus on the

left to right direction. In the following, if Q00 � Q ? Q0 is a set of constraints, by

Qe
00 we mean the set obtained from Q00 by replacing each constraint C of the form

x j y < c with Ce. Further, e is 1
10 p nþ1ð Þ.

We proceed by contradiction and assume that Q ? Q0 is satisfiable while Q
? Qe

0 is not. In this case, there exists a subset Q00 of Q ? Q0 such that

Y Q00 is satisfiable and Qe
00 is not,

Y Qe
00 has the form{x1 j x2 e c1 j e1, x2 j x3 e c2 j e2, . . . , xm j xi e cm j

em}, where each ei is either 0 or e, and
Y in Qe

00 there are at least one and at most n constraints for which ei = e, that

is, 1 ejQ007Q0je n.

Q00 is satisfiable and Qe
00 unsatisfiable imply

Pm
i¼1 ci > 0 and

Pm
i¼1 ci � eið Þ < 0

respectively (notice that it cannot be the case that
Pm

i¼1 ci ¼ 0 because Q
0 0
7 Q0 m

; and Q00 has to be satisfiable by hypothesis). Since
Pm

i¼1 ci > 0, then
Pm

i¼1

ci � 1
10 p. But then we have a contradiction, because
Pm

i¼1 ci � eið Þ ¼Pm
i¼1 ci �

Pm
i¼1 ei �Pm

i¼1 ci � ne ¼Pm
i¼1 ci � 1

10p
n

nþ1
�

1
10p � 1

10p
n

nþ1
> 0

Ì

Notice that the application of the above result requires, if the domain of

interpretation is R, to determine the values of n and p, which in turn depend on m.

The next result shows that the values for n and p can be computed beforehand

and once and for all, on the basis of the input formula �.

THEOREM 15. Let � be a formula with n variables. Let p be the maximum
number of digits appearing to the right of the decimal point in any numeric
constant in �. Let m be a valuation whose atoms occur in �. The valuation m is

252 ALESSANDRO ARMANDO ET AL.

satisfiable in R if and only ij the valuation obtained from me,< by replacing each
constraint x� y � c� 1

10p nþ1ð Þ is satisfiable in R.
Proof. Clearly, m is satisfiable in R if and only if me,< is satisfiable in R. The

thesis trivially follows from Lemma 14 once we observe that, given that the

atoms in m occur in �,

Y the number of variables in me,< is less than or equal to n and
Y the maximum number of digits appearing to the right of the decimal point

in any of the numeric constants in me,< is less than or equal to the max-

imum number of digits appearing to the right of the decimal point in any of

the numeric constants in �. Ì

The above results allow us to use BF in order to check the satisfiability of

any valuation. Given a valuation m with n variables, BF runs in time O(n �
jmj), and is the current best known method for this task (see Cormen et al., 2001).

Further BF has the following advantages, in the case the valuation m is

unsatisfiable:

Y each negative cycle in the constraint graph G corresponds to a minimal

(with respect to set inclusion) unsatisfiable subset of m, and
Y assuming there is more than one negative cycle in G and that R is the

corresponding set of reasons, it is easy to modify BF so to make it return a

reason that is of minimal cardinality or the shallowest among those in R
without modifying its overall complexity O(n � jmj).

6. Implementation and Experimental Analysis

We have implemented the techniques described in Sections 3Y5 in a system

called TSAT++. The system is based on a C++ implementation of an iterative

version of the algorithm of Figure 2 featuring all optimizations presented in

Section 4.

TSAT++ uses two distinct modules for the enumeration of valuations, m
propositionally entailing the input formula � and for checking the satisfiability of

m. A detailed analysis of the architecture of TSAT++ is beyond the scope of this

paper; the interested reader may refer to Armando et al. (2004).

In the current version, enumeration is done by a modified version of SIMO

(Giunchiglia et al., 2003). SIMO features a number of SAT optimization tech-

niques inspired by Chaff, among which are l-UIP learning, VSIDS heuristics, and

two-literal watching (Moskewicz et al., 2001).

In order to assess the effectiveness of the optimizations described in Section 4,

we have carried out a thorough experimental analysis using TSAT++ and

TSAT++ plain, on a wide variety of publicly available random, hand-made, and

THE SAT-BASED APPROACH TO SEPARATION LOGIC 253

real-world SL-formulas.j TSAT++ plain is the same as TSAT++ except that IS2,

early pruning, and model reduction are disabled while best reason detection is set

so to return a reason minimal with respect to set inclusion. Further, in order to

evaluate the effectiveness of our system, we have compared TSAT++ with a

number of rival, publicly available, and state-of-the-art systems specifically

designed for (a significant fragment of) SL or with a specialized satisfiability

procedure for SL valuations.jj We have thus considered the system presented

in Stergiou and Koubarakis (1998), which we will call SK; Tsat (Armando et al.,

1999), the predecessor of TSAT++; CSPi (Oddi and Cesta, 2000); and Epilitis

(Tsamardinos and Pollack, 2003). All these systems are restricted to DTPs (see

Section 6.1). Moreover, we have considered SEP (Strichman et al., 2002) and

MathSAT (Audemard et al., 2002). TSAT++ is as expressive as SEP and not

comparable to MathSAT: while MathSAT allows for arbitrary linear constraints

as atoms, it does not allow to consider the integers as domain of interpretation.

After a first run, we have discarded SK, because it is clearly noncompetitive with

respect to the others.

Each solver has been run on all the benchmarks it can deal with, not only on

the benchmarks the solver was analyzed on by the authors. In particular, Epilitis

can handle only DTPs with integer-valued variables; CSPi and TSAT can handle

only DTPs with real-valued variables; Math-SAT can handle arbitrary SL-

formulas with real-valued variables; SEP and TSAT++ can handle arbitrary SL-

formulas with real- or integer-valued variables. Each solver has been run by

using the settings or the version of the solver suggested by the authors for the

specific class of problems. All the experiments have been run on a Linux box

equipped with a Pentium IV 2.4 GHz processor and 1 GB of RAM. CPU time is

measured in seconds; timeout has been set to 1,000 s.

6.1. DISJUNCTIVE TEMPORAL PROBLEMS

We start our analysis considering randomly generated DTPs as introduced in

Stergiou and Koubarakis (1998) and since then used as a benchmark in

(Armando et al., 1999; Oddi and Cesta, 2000: Audemard et al., 2002;

Tsamardinos and Pollack, 2003). DTPs are randomly generated by fixing the

number k of disjuncts per clause, the number n of arithmetic variables, and a

j The classification of the benchmarks in Btandem,[Bhandmade,[and Breal-world[
problems is borrowed from the SAT competition (Le Berre and Simon, 2003).
jj Notice that there exist other systems capable of handling SL, e.g., ICS (de Moura et al.,
2004), CVC (Stump et al., 2002), CVC-Lite (Barrett and Berezin, 2004), Verifun (Flanagan

et al., 2003). We did not include these solvers in our analysis since they are not tailored for SL.
MathSAT has been included since it has a specialized satisfiability checker for SL based on
BF.

254 ALESSANDRO ARMANDO ET AL.

positive integer L such that all the constants are taken in [jL, L]. Then, (1) the

number of clauses m is increased in order to range from satisfiable to un-

satisfiable instances, (2) for each tuple of values of the parameters, 100 instances

are generated and then fed to the solvers, and (3) the median of the CPU time is

plotted against the m/n ratio. The results for k = 2, L = 100, and n = 35 are given

in Figure 6: plots (a) and (b) show the performance when the variables are real-

and integer-valued respectively.

When m/n Q 6, TSAT++ clearly outperforms the other systems, including

TSAT++plain: in the peak region, the solver that is closer to TSAT++ in this

domain, namely Epilitis, is a factor of 6 slower on 35 variables (Plot (b)). This is

a very positive result, taking into account that Epilitis works only on DTP with

k = 2, and it has been thoroughly tested and optimized on this type of problems

(see Tsamardinos and Pollack (2003)). All the other systems are about two orders

of magnitude slower than TSAT++ in the peak region. Even more important is

the fact that the gap in performance between TSAT++ and the other systems

increases with the number of variables (we have experimented with problems up

to 50 variables). For this class of problems TSAT++ has been run with early

pruning and preprocessing enabled, with the best reason detection optimization

set to return shortest reason, and with model reduction disabled. The role of the

optimizations is fundamental for the performance on this test set: TSAT++ is

more than one order of magnitude faster than TSAT++plain in the peak region.

6.2. REAL-WORLD PROBLEMS

We have also carried out experiments on

1. the 40 post-office benchmarks introduced in Audemard et al. (2002), coming

in four series (consisting of 7, 9, 11, and 13 instances, respectively) of

increasing difficult. In these problems the domain of the interpretation is the

set of real numbers.

2. the 16 hardware verification problems from Strichman et al. (2002), nine

(resp. 7) of which are with real- (resp. integer-) valued variables.

The post-office benchmarks are bounded model checking problems for timed

automata; the hardware verification suite includes scheduling, cache coherence

protocol, load-store unit, and out-of-order execution problems. Considering the

results of MathSAT, SEP, and TSAT++ on the post-office problems, our first

observation is that SEP is not competitive on these problems: on 13 of the

hardest instances, SEP had a segmentation fault in 11 cases, and on the other two

hardest instances SEP is outperformed by different orders of magnitude by

TSAT++ and MathSAT. Our second observation is that TSAT++ (with IS2 pre-

better than MathSAT up to a factor of 6 on each single instance: this is

particularly remarkable given that the authors have customized a version of

THE SAT-BASED APPROACH TO SEPARATION LOGIC 255

MathSAT explicitly for this kind of problems.j Considering the hardware

verification problems, all of them are easy to solve (i.e., in less than 3 s each) for

all the three solvers, except for SEP that timeouts on one instance. Of the nine

(resp. 16) runs of MathSAT (resp. SEP and TSAT++), only three take more than

0.1 s. These observations are confirmed by Figure 7, which gives the overall

picture of the results for MathSAT, SEP, and TSAT++ on the 49 instances with

real valued variables: the x-axis is the number of instances solved by each solver

within the CPU time specified on the y-axis. The plot also shows that TSAT++

plain can be faster than TSAT++ on the easy instances, that is, those requiring

less than 1 s to be solved. For such problems, the overhead of the optimizations

(and in particular of the preprocessing) outweighs the benefits.

6.3. HAND-MADE PROBLEMS

Finally, we have considered the Bhand-made[diamond problems from Strichman

et al. (2002). A diamond problem is a formula � that depends on a parameter K >

0 and such that there exists a number of unsatisfiable valuations propositionally

entailing � that is exponential in K. Moreover, hard instances having a single

satisfiable valuation propositionally entailing them can be generated. A second

parameter T is also used and it affects the number of variables and the size of the

problem. Variables range over the reals.

Figure 6. Performance on (a) randomly generated DTPs with 35 real valued variables and on (b)

randomly generated DTPs with 35 integer-valued variables. The dotted plot indicates satisfiability

percentage both in (a) and in (b).

j As indicated by the authors, we have used this customized version of MathSAT on this

class of problems.

256 ALESSANDRO ARMANDO ET AL.

Table I shows comparative results on the diamond problems for various

settings of K and T. In particular, we considered all the settings corresponding to

nontrivially solvable instances reported in (Strichman et al., 2002). The third

column denotes whether the problem has a unique valuation propositionally en-

tailing it; the remaining columns show CPU times for TSAT++, TSAT++ plain,

MathSAT, and SEP. For this class of problems TSAT++ has been run with

best-reason detection set to shortest reason, and with model reduction. The

experimental results clearly show that TSAT++ performs best, often by orders

of magnitude. Instances with a unique solution are more difficult than

nonunique ones, as expected, except for SEP.j

For this test set, it is of fundamental importance the model reduction opti-

mization: without it, TSAT++ performance is significantly worse, up to the point

that problems that are solved in 1 s by TSAT++ are not solved without model

reduction within the time limit.

7. Related Work

Several systems tailored for SL, employing different approaches and techniques,

have been built and tested over the years. We now give an overview of them,

highlighting the pros and cons of each one and chronologically reviewing the

techniques introduced by each one. SK (Stergiou and Koubarakis, 1998); Stergiou

Figure 7. Performance on real-problems.

j Following a suggestion by Offer Strichman, we have also tried SEP with an option that

disables the use of a specialized data structure called Bconjunction matrix^ (Strichman et al.,
2002). This can have a dramatic impact on SEP: some problems that are solved with
conjunction matrix within the time limit are not solved without, and vice versa.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 257

and Koubarakis, 2000). The procedure SK has been the first dealing with a

significant fragment of SL. Its main features are the combined usage of forward-
checking, back-jumping, and the minimum remaining value heuristic (MRV).

Forward-checking works by checking whether the valuation built so far entails

either a literal or its negation, form each literal not yet in the valuation. This

actually reduces the search space, at the price of performing a potentially large

number of useless satisfiability. SK is also able to detect conflict sets and to

improve on backtracking via a technique similar to back-jumping. MRV is used

to choose literals that appear in disjunctions with the smallest number of

unassigned disjuncts: if there is a unit clause, the literal in it will be selected by

MRV and then propagated, thus mimicking unit propagation.

The main difference between SK and SAT-based procedures lies in the way

valuations propositionally entailing the input formula are searched. In fact,

SK is based on syntatic branching: given a disjunction l ¦ l0, first l is added

to the current valuation, and, upon failure, l0 is considered. As explained be-

low, this type of search may lead to the exploration of search space already

explored.

Tsat (Armando et al., 1999). Tsat was the first application of the SAT-based

approach to SL. The system employs a branching schema now known as

semantic branching. Unlike syntactic branching, semantic branching selects

a not yet assigned literal l, and considers in turn the case in which l is true

and the case in which l is false. Notice that in the second case, the conjunction

of l with (l ¦ l0) forces the assignment of l0 by unit propagation: as already

observed in D’Agostino (1992), syntactic branching may lead to redundant

exploration of parts of the search space, which semantic branching avoids. The

following example, adapted from Armando et al. (1999), clearly illustrates this

issue.

Table I. Diamond problems: BTIME^ indicates that the solver does not solve the instance within

the time limit.

K T Unique TSAT++ TSAT++ plain MathSAT SEP

50 4 NO 0.00 0.02 0.05 0.12

50 4 YES 0.01 0.14 TIME 0.07

100 5 NO 0.01 0.11 0.61 1.18

100 5 YES 0.04 7.57 TIME 0.17

250 5 NO 0.08 0.76 5.40 52.20

250 5 YES 0.21 194.99 TIME 0.77

500 5 NO 0.29 4.46 21.22 742.99

500 5 YES 1.05 TIME TIME 4.85

1000 5 NO 1.07 22.3 Y TIME

1000 5 YES 6.45 TIME Y 22.53

2000 5 NO 3.76 94.23 Y Y
2000 5 YES 29.90 TIME Y Y

258 ALESSANDRO ARMANDO ET AL.

EXAMPLE 16. Let � be a formula including the following clauses:

x1 � x2 � 3 _ x7 � x8 � 20

x1 � x3 � 4 _ x4 � x3 � �2

x2 � x4 � 2 _ x3 � x2 � 1

..

.

Let �(i, j) denote the jth disjunct of the ith disjunction displayed in �; for

example, �(1, 2) is x7j x8 e 20. Assume that the dots stand for further (possibly

many) unspecified clauses such that no satisfiable extension of the valuation

{�(1, 1), �(2, 1)} exists.

Consider the behavior of syntactic versus semantic branching when {�(1, 1),

�(2, 1)} is the valuation built so far. Since no satisfiable extension of it exists,

after some search, failure is necessarily detected; both procedures backtrack and

remove �(2, 1) from the current valuation.

Now syntactic branching goes on with the valuation {�(1, 1), �(2, 2)},

whereas semantic branching proceeds with {�(1, 1), K�(2, 1)}, which leads

immediately, via unit propagation, to {�(1, 1), K�(2, 1), �(2, 2)}.

Working with the latter valuation rather than with the former may lead to

considerable savings: assume that both procedures extend the valuation with �(3,

1); since {�(1, 1), K�(2, 1), �(2, 2) �(3, 1)} is unsatisfiable, semantic branching

immediately backtracks and considers �(3, 2), whereas syntactic branching may

waste a big amount of resources in the vain attempt of finding a satisfiable

extension of {�(1, 1), �(2, 2), �(3, 1)}.

Semantic branching was shown in Armando et al. (1999) to dramatically

improve the performance with respect to SK, up to one order of magnitude on

randomly generated binary DTPs.

In Tsat, also IS2 was introduced, gaining to the system another order of

magnitude in performanceVthis despite the fact that, to enumerate valuations,

Tsat adapted a rather simple SAT solver, due to Böhm (Böhm and Speckenmeyer

1996), which did not employ any modern optimization such as back-jumping and

learning. Satisfiability checking used lp_solve v2.2 (Berkelaar, 1997), which

provided a free implementation of the Simplex method.

CSPi (Oddi and Cesta, 2000). CSPi features an essentially CSP-based solution

schema, implementing an efficient incremental procedure for forward-checking.

Semantic branching is used, showing results that are better than Tsat on small

instances, and comparable on bigger ones. Notice that performance, up to (Oddi

and Cesta, 2000), was measured in terms of how many calls to the satisfiability

check function were done, rather than CPU time.

MathSAT (Audemard et al., 2002). MathSAT uses SIM (Giunchiglia et al.

2001) as enumerator and a hierarchical satisfiability checker employing Y in this

order Y equality reasoning, BF for SL-constraints, the Simplex method for full

THE SAT-BASED APPROACH TO SEPARATION LOGIC 259

linear arithmetic, and inequalities reasoning. The simplest solver is chosen on-

the-fly, thereby obtaining both expressivity and efficiency at the same time.

MathSAT also introduces a number of optimizations, among which are prepro-

cessing based upon syntactic equivalence, enhanced early pruning, that is, early

pruning conditioned upon a heuristic function, and back-jumping/learning based

upon reason detection. Also, a form of model reduction is used, based upon

triggering. On randomly generated binary DTPs, MathSAT improves the per-

formance over Tsat in terms of CPU time. However, the gap between the two

solvers decreases as the number of variables increases.

Epilitis (Tsamardinos and Pollack, 2003). Epilitis is, so far, the last CSP-

based system. Epilitis is restricted to binary DTPs. It uses semantic branching,

incremental forward checking, a MRV heuristics, and size-bounded learning of

size n (Bayardo and Miranker, 1996). This means that conflict clauses are re-

trieved and stored only if they contain less than n literals (in practice, n = 10 is

used). Once stored, a clause is never forgotten. On randomly generated binary

DTPs, Epilitis shows significantly better performance than Tsat in terms of CPU

time, of up to one order of magnitude.

SEP (Strichman et al., 2002). SEP is a back-end to the UCLID verification

tool (Lahiri et al., 2002), employing the so-called eager variant of the SAT-based

approach. Given a formula �, rather than enumerating valuations and checking

them for satisfiability, SEP builds a propositional formula �0 whose satisfying

valuations are ensured to correspond to satisfiable valuations of �. The current

version of SEP uses Chaff to find valuations satisfying �0. To the best of our

knowledge, SEP is so far the only solver using the eager SAT-based approach to

SL. SEP suffers from the fact that the size of �0 can be exponential in the size of

�. On the other hand, as reported in Strichman et al. (2002), if SEP can get past

the encoding phase, the problem is easy to solve for Chaff.

8. Conclusions

In this paper we have focused on the problem of building efficient SAT-based

decision procedures for SL. We have presented the basic procedure from

Armando et al. (1999) along with some key optimizations. We have also shown

how it is possible to check the satisfiability of valuations involving constraints of

the form x j y < c using BF. An extensive comparative experimental analysis

shows that our solver TSAT++, built along the lines described in this paper, is

currently the state of the art on various classes of problems, including randomly

generated, hand-made, and real-world instances. We believe that the techniques

described in this paper can be fruitfully extended to other (more expressive)

logics than SL.

The benchmark problems used for the experiments presented in this paper and

the executable of TSAT++ are publicly available at the URL http://www.ai.dist.

unige.it/Tsat.

260 ALESSANDRO ARMANDO ET AL.

Acknowledgements

We acknowledge Massimo Idini’s work on the satisfiability checking module.

Mauro Di Manzo is thanked for the many fruitful discussions on the subject of

this paper. Moreover, the authors of the solvers we have compared have helped

us a lot: Gilles Audemard, Angelo Oddi, Ofer Strichman, Ioannis Tsamardinos.

Sergey Berezin and Leonardo De Moura are thanked for discussions related to

the topic of this paper. Sanjit Seshia and the UCLID group provided us with a lot

of interesting problems. We are partially supported by MIUR.

References

Armando, A. and Giunchiglia, E. (1993) Embedding complex decision procedures inside an

interactive theorem prover, Ann. Math. Artif. Intell. 8(3Y4), 475Y502.

Armando, A., Castellini, C. and Giunchiglia, E. (1999) SAT-based procedures for temporal

reasoning, in S. Biundo and M. Fox (eds.), Proceedings of the 5th European Conferevace on
Planning (Durham, UK), Vol. 1809 of Lecture Notes in Computer Science, Springer,

pp. 97Y108.

Armando, A., Castellini, C., Giunchiglia, E., Idini, M. and Maratea, M. (2004) TSAT++: an open

platform for satisfiability modulo theories, in Proceedings of PDPAR, Pragmatics of Decision
Procedures in Automated Reasoning, Cork (Ireland), Vol. 125, Issue 3 of ENTCS, Elsevier,

pp. 25Y36.

Armando, A., Castellini, C., Giunchiglia, E. and Maratea, M. (2005a) A SAT-based decision

procedure for the boolean combination of difference constraints, in Proceedings of SAT,
International Conference on Theory and Applications of Satisfiability Testing, Vancouver
(Canada), Vol. 3542 of LNCS, Springer, pp. 16Y29.

Armando, A., Castellini, C., Giunchiglia, E., Giunchiglia, F. and Tacchella, A. (2005b) SAT-based

decision procedures for automated reasoning: a unifying perspective, in Mechanizing
Mathematical Reasoning: Essays in Honor of Jrg H. Siekmann on the Occasion of His 60th
Birthday, Vol. 2605 of Lecture Notes in Computer Science, Springer.

Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A. and Sebastiani, R. (2002) A SAT based

approach for solving formulas over Boolean and linear mathematical propositions, in A.

Voronkov (ed.), Automated Deduction Y CADE-18, Vol. 2392 of Lecture Notes in Computer
Science, Springer, pp. 195Y210.

Barrett, C. W. and Berezin, S. (2004) CVC Lite: a new implementation of the cooperating validity

checker category B, in 16th International Conference on Computer Aided Verification (CAV’04),
Vol. 3114, Springer, pp. 515Y518.

Bayardo, Jr., R. J. and Miranker, D. P. (1996) A complexity analysis of space-bounded learning

algorithms for the constraint satisfaction problem, in Proceedings of the Thirteenth National
Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial
Intelligence Conference, Menlo Park, AAAI/MIT, pp. 298Y304.

Berkelaar, M. (1997) The lp_solve Solver for Mixed Integer-Linear Programming. Version 2.2.

Available at http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml.

Böhm, M. and Speckenmeyer, E. (1996) A fast parallel SAT-solver Y efficient workload balancing,

Ann. Math. Artif. Intell. 17, 381Y400.

Bryant, R. E., Lahiri, S. K. and Seshia, S. A. (2002) Deciding CLU logic formulas via Boolean and

pseudo-Boolean encodings, in Proceedings of International Workshop on Constraints in Formal
Verification. Associated with International Conference on Principles and Practice of Constraint

Programming, Ithaca, New York (USA).

THE SAT-BASED APPROACH TO SEPARATION LOGIC 261

Castellini, C., Giunchiglia, E. and Tacchella, A. (2003) SAT-based planning in complex domains:

concurrency, constraints and nondeterminism, Artif. Intell. 147, 85Y117.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001) Introduction to Algorithms,

MIT.

Cotton, S., Asarin, E., Maler, O. and Niebert, P. (2004) Some progress in satisfiability checking for

difference logic, in Joint International Conferences on Formal Modelling and Analysis of Timed
Systems (FORMATS) and Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT), Vol. 3253 of Lecture Notes in Computer Science, Springer, pp. 263Y276.

D’Agostino, M. (1992) Are tableaux an improvement on truth-tables? J. Logic, Lang. Inf. 1,

235Y252.

Davis, M., Logemann, G. and Loveland, D. (1962) A machine program for theorem proving,

Journal of the ACM 5(7).

de Moura, L., Ruess, H., Shankar, N. and Rushby, J. (2004) The ICS decision procedures for

embedded deduction, in Proceedings of IJCAR, International Joint Conference on Automated
Reasoning, Cork, Ireland.

Dechter, R., Meiri, I. and Pearl, J. (1989) Temporal constraint networks, in H. J. L. R. J. Brachman

and R. Reiter (eds.), Proceedings of the 1st International Conference on Principles of
Knowledge Representation and Reasoning, Toronto, Canada, Morgan Kaufmann, pp. 83Y93.

Dequen, G. and Dubois, O. (2004) kcnfs: an efficient solver for random K-Sat formulae, in E.

Giunchiglia and A. Taicchella (eds.), 6th International Conference on Theory an Applications of
Satisfiability Testing. Selected Revised Papers, Vol. 2919 of Lecture Notes in Computer Science,

Springer, pp. 486Y501.

Flanagan, C., Joshi, R., Ou, X. and Saxe, J. B. (2003) Theorem proving using lazy proof

explication, in 15th International Conference on Computer Aided Verification (CAV’03), Vol.

2725, Springer, pp. 355Y367.

Gent, I., Maaren, H. V. and Walsh, T. (eds.) (2000) SAT2000. Highlights of Satisfiability Research
in the Year 2000, IOS.

Giunchiglia, F. and Sebastiani, R. (1996) Building decision procedures for modal logics from

propositional decision procedures Y the case study of modal K, in Proc. CADE-96, New

Brunswick, New Jersey, USA, Springer.

Giunchiglia, E., Maratea, M., Tacchella, A. and Zambonin, D. (2001) Evaluating search heuristics

and optimization techniques in propositional satisfiability, in Automated Reasoning, First
International Joint Conference (IJCAR), Vol. 2083 of Lecture Notes an Computer Science,

Springer, pp. 347Y363.

Giunchiglia, E., Giunchiglia, F. and Tacchella, A. (2002) SAT-based decision procedures for

classical modal logics, J. Autom. Reason. 28, 143Y171. Reprinted in (Gent et al., 2000).

Giunchiglia, E., Maratea, M. and Tacchella, A. (2003) (In)Effectiveness of look-ahead techniques

in a modern SAT solver, in Principles and Practice of Constraint Programming (CP), Vol. 2833

of Lecture Notes in Computer Science, Springer, pp. 842Y846.

Heule, M. and Maaren, H. V. (2005) March_eq: implementing additional reasoning into an

efficient look-ahead SAT solver, in 8th International Conference on Theory an Applications of
Satisfiability Testing, Vol. 3542 of LNCS, Springer, pp. 345Y353.

Lahiri, S. K., Seshia, S. A. and Bryant, B. (2002) Modeling and verification of out-of-order

microprocessors in UCLID, Lect. Notes Comput. Sci. 2517, 142Y155.

Le Berre, D. and Simon, L. (2003) The essentials of the SAT’03 competition, in Proceedings of the
6th International Conference on the Theory and Applications of Satisfiability Testing (SAT’03).
Selected revised papers, Vol. 2919 of LNCS.

Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L. and Malik, S. (2001) Chaff: engineering

an efficient SAT solver, in Proceedings of the 38th Design Automation Conference (DAC’01).
Oddi, A. and Cesta, A. (2000) Incremental forward checking for the disjunctive temporal problem,

262 ALESSANDRO ARMANDO ET AL.

in Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-2000), Berlin,

pp. 108Y112.

Plaisted, D. and Greenbaum, S. (1986) A structure-preserving clause form translation, J. Symb.
Comput. 2, 293Y304.

Pratt, V. R. (1977) Two easy theories whose combination is hard, Technical report, Massachusetts

Institute of Technology.

Prosser, P. (1993) Domain filtering can degrade intelligent backjumping search, in Proc. IJCAI, pp.

262Y267.

Siekmann, J. and Wrightson, G. (eds.) (1983) Automation of Reasoning: Classical Papers in
Computational Logic 1967Y1970, Vol. 1Y2, Springer.

Stergiou, K. and Koubarakis, M. (1998) Backtracking algorithms for disjunctions of temporal

constraints, in Proceedings of AAAI/IAAI, Madison, WI (USA), pp. 248Y253.

Stergiou, K. and Koubarakis, M. (2000) Backtracking algorithms for disjunctions of temporal

constraints, Artif. Intell. 120(1), 81Y117.

Strichman, O., Seshia, S. A. and Bryant, R. E. (2002) Deciding separation formulas with SAT,

Lect. Notes Comput. Sci. 2404, 209Y222.

Stump, A., Barrett, C. W. and Dill, D. L. (2002) CVC: a cooperating validity checker, in J. C.

Godskesen (ed.), Proceedings of the International Conference on Computer-Aided Verification.

Tsamardinos, I. and Pollack, M. (2003) Efficient solution techniques for disjunctive temporal

reasoning problems, Artif. Intell. 151, 43Y89.

Tseitin, G. (1970) On the complexity of proofs in propositional logics, Semin. Mat. 8. Reprinted in

(Siekmann and Wrightson, 1983).

Wolfman, S. and Weld, D. (1999) The LPSAT-engine and its application to resource planning, in

Proceedings IJCAI-99.

THE SAT-BASED APPROACH TO SEPARATION LOGIC 263

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

