
Heuristic-Based Backtracking Relaxation for

Propositional Satisfiability

ATEET BHALLA*, INÊS LYNCE, JOSÉ T. DE SOUSA

and JOÃO MARQUES-SILVA
Technical University of Lisbon, IST/INESC-ID, Rua Alves Redol 9, 1000-029, Lisbon, PortugalR
e-mail: {ateet.bhalla, ines.lynce, jts, jpms}@inesc-id.pt

Abstract. In recent years backtrack search algorithms for propositional satisfiability (SAT) have

been the subject of dramatic improvements. These improvements allowed SAT solvers to

successfully solve instances with thousands or tens of thousands of variables. However, many new

challenging problem instances are still too hard for current SAT solvers. As a result, further

improvements to SAT technology are expected to have key consequences in solving hard real-

world instances. This paper introduces a new idea: choosing the backtrack variable using a

heuristic approach with the goal of diversifying the regions of the space that are explored during

the search. The proposed heuristics are inspired by the heuristics proposed in recent years for the

decision branching step of SAT solvers, namely, VSIDS and its improvements. Completeness

conditions are established, which guarantee completeness for the new algorithm, as well as for any

other incomplete backtracking algorithm. Experimental results on hundreds of instances derived

from real-world problems show that the new technique is able to speed SAT solvers, while aborting

fewer instances. These results clearly motivate the integration of heuristic backtracking in SAT

solvers.

1. Introduction

Propositional satisfiability is a well-known NP-complete problem, with theoret-

ical and practical significance and with extensive applications in many fields of

computer science and engineering, including artificial intelligence and electronic

design automation.

Current state-of-the-art SAT solvers incorporate sophisticated pruning

techniques as well as new strategies for organizing the search. Effective search

pruning techniques are based, among others, on no-good learning and

dependency-directed backtracking [24] and back-jumping [8], whereas recent

effective strategies introduce variations on the organization of backtrack search.

Examples of such strategies are weak-commitment search [25], search restarts

[12], and random backtracking [15, 20].

Advanced techniques applied to backtrack search SAT algorithms have

achieved remarkable improvements [2, 11, 18, 19], having been shown to be

* Author for correspondence.

Journal of Automated Reasoning (2005)

DOI: 10.1007/s10817-005-9005-y

Springer 2005

crucial for solving hard instances of SAT obtained from real-world applications.

Moreover, and from a practical perspective, the most effective algorithms are

complete and so are able to prove unsatisfiabiltiy. Indeed, this is often the

objective in a large number of significant real-world applications.

Nevertheless, it is also widely accepted that local search has some advantages

compared to backtrack search. Although it is debatable which are the real ad-

vantages of local search (e.g., see [7]), one of them seems to be the use of search

restarts. Search restarts prevent the search form getting stuck in a locally optimal

partial solution. The advantage of search restarts has motivated the study of

approaches for relaxing backtracking conditions (while still ensuring complete-

ness). The key idea is to unrestrictedly choose the point to backtrack to, in order

to avoid thrashing, that is, exploring useless portions of search space corres-

ponding to very similar conflicting sets of assignments. Moreover, one can think

of combining different forms of relaxing the identification of the backtrack point.

In this paper, we propose to use heuristic knowledge to select the backtrack

point. Besides describing the generic heuristic backtracking search strategy, we

establish backtracking heuristics inspired by the most effective branching

heuristics proposed in recent years, namely, the VSIDS heuristic used by Chaff

[19] and the BerkMin’s branching heuristic [11].

Simply replacing deterministic backtracking with heuristic backtracking in

SAT algorithms has two major drawbacks: (1) the resulting algorithm is no

longer complete, and (2) an algorithm applying heuristic backtracking for every

backtrack step becomes very unstable.

To eliminate these drawbacks, we introduce the concept of unrestricted

backtracking algorithms. Each backtrack step is either a complete form of

backtracking (i.e., chronological or nonchronological backtracking) or an

incomplete form of backtracking (e.g., heuristic backtracking). Clearly an

unrestricted backtracking algorithm applying heuristic backtracking after every

k steps (with k > 1) and nonchronological backtracking every other steps is

more stable than an unrestricted backtracking algorithm applying heuristic

backtracking for every backtrack step. Moreover, we establish completeness

conditions for unrestricted backtracking algorithms. These conditions guarantee

completeness for any instantiation of the unrestricted backtracking algorithm.

This paper extends previous work. We first introduced our heuristic back-

tracking ideas in [3], where we showed that heuristic backtracking is superior to

other forms of unrestricted backtracking such as search restarts and random

backtracking. In [4], we introduced the completeness conditions and modified the

algorithm accordingly to make it complete. Some preliminary and promising

results have been presented in [3] and in [4]. This paper gives a more com-

prehensive description of the different forms of backtracking and integrates

heuristic backtracking within the framework of unrestricted backtracking. In

addition, we present improved experimental results that show that the benefits of

heuristic backtracking increase for hard-to-solve problem instances.

ATEET BHALLA ET AL.

We summarize the contributions of this paper as follows: (1) we introduce

heuristic backtracking algorithms; (2) we show that heuristic backtracking is a

special case of unrestricted backtracking, and we describe different approaches

for guaranteeing completeness of unrestricted backtracking; and (3) we give

experimental results that indicate that the proposed heuristic backtracking

algorithm is a competitive approach for solving real-world instances of SAT.

The remainder of this paper is organized as follows. The next section presents

definitions used throughout the paper. In Section 3 we briefly survey backtrack

search SAT algorithms. In Section 4 we introduce heuristic backtracking. Section

5 describes unrestricted backtracking algorithms for SAT and explains

how heuristic backtracking can be regarded as a special case or unrestricted

backtracking. In addition, we address completeness issues. Section 6 gives

experimental results, and Section 7 describes related work. In Section 8, we

conclude the paper and give directions for future research work.

2. Definitions

This section introduces the notational framework used throughout the paper.

Propositional variables are denoted x1 , . . . , xn and can be assigned truth values 0

(or F) or 1 (or T). The truth value assigned to a variable x is denoted by n(x).

(When clear from context we use x = nx, where nx Z {0,1}). A literal l is either a

variable xi or its negation Kxi. A clause w is a disjunction of literals and a CNF

formula 8 is a conjunction of clauses. A clause is said to be satisfied if at least

one of its literals assume value 1, unsatisfied if all of its literals assume value 0,

unit if all but one literal assume value 0 and unresolved otherwise. Literals with

no assigned truth value are said to be free literals. A formula is said to be

satisfied if all its clauses are satisfied, and is unsatisfied if at least one clause is

unsatisfied. A truth assignment for a formula is a set of pairs of variables and

their corresponding truth values. The SAT problem consists of deciding whether

there exists a truth assignment to the variables such that the formula becomes

satisfied.

SAT algorithms can be characterized as being either complete or incomplete.

Complete algorithms can establish unsatisfiablity if given enough CPU time;

incomplete algorithms cannot. Examples of complete and incomplete algorithms

are backtrack search and local search algorithms, respectively. In a search

context, complete algorithms are often referred to as systematic, whereas

incomplete algorithms are referred to as nonsystematic.

3. Backtrack Search SAT Algorithms

Over the years a large number of algorithms have been proposed for SAT, from

the original DavisYPutnam procedure [6], to recent backtrack search algorithms

[2, 11, 18, 19] and local search algorithms [23], among many others.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

The vast majority of backtrack search SAT algorithms are built on the

original backtrack search algorithm of Davis, Logemann, and Loveland [5].

The backtrack search algorithm is implemented by a search process that

implicitly enumerates the space of 2n possible binary assignments to the n
variables of the problem. Each different truth assignment defines a search path
within the search space. A decision level is associated with each variable

selection and assignment. (The notation x@d is used to denote that variable x has

been assigned at decision level d.) The first variable selection corresponds to

decision level 1, and the decision level is incremented by 1 for each new

decision assignments.j In addition, and for each decision level, the unit clause
rule [6] is applied. The iterated application of the unit clause rule is often

referred to as Boolean constraint propagation (BCP). If a clause is unit, then the

sole free literal must be assigned value 1 for satisfying the formula. In this case,

the values of the literal and of the associated variable are said to be implied.

Thus, assigned variables can be distinguished as decision variables and implied
variables.

In chronological backtracking, the search algorithm keeps track of which

decision assignments have been toggled. Given an unsatisfied clause (i.e., a

conflict or a dead end) at decision level d, the algorithm checks whether at the

current decision level the corresponding decision variable x has already been

toggled. If not, the algorithm erases the variable assignments that are implied by

the assignment on x, including the assignment on x, assigns the opposite value to

x, and marks decision variable x as toggled. In contrast, if the value of x has

already been toggled, the search backtracks to decision level d j 1.

Recent state-of-the-art SAT solvers utilize different forms of nonchronolog-

ical backtracking [2, 18, 19]. In these algorithms each identified conflict is

analyzed to identify the variable assignments that caused it, and a new clause

(no-good) is created to explain and prevent the identified conflicting conditions

from happening again. The created clause is then used to compute the backtrack

point as the most recent decision assignment represented in the recorded clause;

moreover, some of the (larger) recorded clauses are eventually deleted. Clauses

can be deleted opportunistically whenever they are no longer relevant for the

current search path [18].

Figure 1 illustrates the differences between chronological backtracking (CB)

and the nonchronological backtracking (NCB). On the top of the figure appears a

generic search tree (either possible in the context of CB or NCB). The search

is performed according to a depth-first search, and therefore the non-dashed

branches define the search space explored so far. On the one hand, and when a

conflict is found, the chronological backtracking algorithm makes the search

backtrack to the most recent, yet untoggled decision variable (see CB(a)). On the

j All assignments made before the first decision assignment correspond to decision level 0,
a preprocessing step.

ATEET BHALLA ET AL.

other hand, when nonchronological backtracking is applied, the backtrack point

is computed as the most recent decision assignment from all the decision

assignments represented in the recorded clause. In this case the search backtracks

to a higher level in the search tree (NCB(a)), skipping portions of the search tree

that are found to have no solution (see NCB(b)). From the final figures (CB(b)

and NCB(b)) it is plain to conclude that the number of nodes explored by NCB is

always equal or smaller than the number of nodes explored by CB.j (Observe

that no-goods can also reduce the search space because similar conflict paths of

the search space are avoided in the future).

4. Heuristic Backtracking

Heuristic backtracking consists of selecting the backtrack point in the search tree

using a heuristic function of the variables in the most recently recorded clause.

Different heuristic functions can be envisioned for applying heuristic back-

tracking. In this work we implemented three heuristics:

1. Plain heuristic: uses a simple heuristic function.

j Assuming that a fixed-order branching heuristic is used.

CB(b)

NCB(a)

NCB(b)

CB(a)

CB/NCB

Figure 1. Chronological backtracking (CB) vs nonchronological backtracking (NCB).

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

2. VSIDS-like heuristic: inspired by the VSIDS branching heuristic used by

Chaff [19].

3. BerkMin-like heuristic: inspired by the BerkMin’s branching heuristic [11].

In all cases the backtrack point is computed as the variable with the largest

heuristic metric. Next, we describe how the three approaches are implemented in

a heuristic backtracking algorithm.

4.1. PLAIN HEURISTIC BACKTRACKING

After a conflict (i.e., an unsatisfied clause) is identified, a conflict clause is

created. The conflict clause is then used for heuristically deciding which decision

assignment is to be toggled. Observe that when a conflict clause is created, all the

literals in the clause are assigned value 0. This fact motivates the search to

backtrack to the most recent decision level with implications on the conflict

clause.

Under the plain heuristic backtracking approach, the search is allowed to

backtrack to any decision level with implications on the literals of the conflict

clause. The backtrack point (i.e., decision level) is computed by selecting the

decision level with the largest number of occurrences (assigned or implied

literals) in the newly recorded clause. In addition, ties are broken randomly. This

approach contrasts with the usual nonchronological backtracking approach, in

which the most recent decision variable with implications on the conflict is

selected as backtrack point.

EXAMPLE 1. Suppose that plain heuristic backtracking is to be applied after

recording clause w = (x1 ¦ x3 ¦ Kx5 ¦ Kx9 ¦ x12). Also, suppose that each literal

in w has been assigned at a given decision level: w = (x1@10 ¦ x3@7 ¦ Kx5@8

¦ Kx9@7 ¦ x12@2). Clearly, the decision level with the largest number of

occurrences (in this case 2 occurrences) is decision level 7. Hence, plain heuristic

backtracking makes the search backtrack to level 7.

4.2. VSIDS-LIKE HEURISTIC BACKTRACKING

The second approach to heuristic backtracking is based in the variable-state

independent decaying sum (VSIDS) branching heuristic. The heuristic [19].

VSIDS was the first of a new generation of decision heuristics. This heuristic has

been used in Chaff, a highly optimized SAT solver. More than to develop a well-

behaved heuristic, the motivation in Chaff has been to design a fast heuristic. In

fact, one of the key properties of this strategies is the low computational

overhead, due to being independent of the variable state. As a result, the variable

metrics are updated only when there is a conflict.

ATEET BHALLA ET AL.

Similarly to Chaff, in our VSIDS-like backtracking heuristic we have a

counter for each literal. Each counter is initialized with the number of

occurrences of the literal in the formula. Moreover, each counter is incremented

when a new conflict clause containing the literal is added to the clause database.

In addition, after every 255 decisions, the metric values are divided by a constant

factor of 2, to give preference to variables occurring in the latest conflict clauses.

With our VSIDS-like backtracking heuristic, whenever a conflict occurs, the

literal in the just recorded clause with the highest metric is used to select the

backtrack point.

EXAMPLE 2. Suppose that the VSIDS-like heuristic backtracking is to be

applied after recording clause w = (x1@10 ¦ x3@7 ¦ Kx5@8 ¦ Kx9@7 ¦

x12@2). In addition, suppose that the VSIDS metric for a given variable x is

given by vsids(x) and that vsids(x1) = 45, vsids(x3) = 5, vsids(x5) = 94, vsids(x9) =

32 and vsids(x12) = 41. The literal in the just recorded clause with the highest

metric is x5. Hence, the VSIDS-like backtracking heuristic makes the search

backtrack to level 8, that is, the level where x5 was assigned.

4.3. BERKMIN-LIKE HEURISTIC BACKTRACKING

The third approach for implementing heuristic backtracking is inspired by the

BerkMin’s branching heuristic [11], which, in turn, has been inspired by the

VSIDS heuristic used in Chaff. In the BerkMin’s branching heuristic, the process

for updating the metrics of the literals is different. On the one hand, in Chaff

the current activity of a variable x is computed by counting the number of

occurrences of x in the conflict clause. On the other hand, in BerkMin a wider

set of clauses involved in causing the conflict is taken into account for computing

each variable’s activity. This procedure avoids overlooking some variables

that do not appear in the conflict clause, while actively contributing to the

conflict.

In our BerkMin-like backtracking heuristic, we increment the metrics of the

literals in all clauses that are directly involved in producing the conflict. The

metrics are updated during the process of conflict analysis, which can find all

clauses involved in producing the conflict by traversing an implication graph data

structure. This process finishes with the creation of the conflict clause. As in the

case of the VSIDS-like backtracking heuristic, the literal in the conflict clause

with the highest metric is used to select the backtrack point.

EXAMPLE 3. Consider again the clause given in Example 2: w = (x1@10 ¦

x3@7 ¦ Kx5@8 ¦ Kx9@7 ¦ x12@2). Also, suppose that the values given for

the BerkMin’s metric are given by function berkmin and that berkmin(x1)

= 31, berkmin(x3) = 38, berkmin(x5) = 2, berkmin(x9) = 15 and berkmin(x12) = 53.

The literal in the just recorded clause with the highest metric is x12. Hence,

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

BerkMin-like heuristic backtracking makes the search backtrack to level 2,

that is, the level where x12 has been assigned.

5. Unrestricted Backtracking

Heuristic backtracking can be viewed as a special case of unrestricted

backtracking [16]. While in unrestricted backtracking any form of backtrack

step can be applied, in heuristic backtracking the backtrack point is computed

from heuristic information, obtained from the current and past conflicts.

Unrestricted backtracking algorithms allow the search to unrestrictedly
backtrack to any point in the current search path whenever a conflict is reached.

Besides the freedom for selecting the backtrack point in the decision tree,

unrestricted backtracking allows the application of different types of backtrack

steps. Each backtrack step can be selected among chronological backtracking,

nonchronological backtracking, (e.g., search restarts, weak-commitment

search, random backtracking, or heuristic backtracking). More formally,

unrestricted backtracking (UB) allows the application of a sequence of backtrack

steps {BSt1, BSt2, BSt3, . . .} such that each backtrack step BSti can be a

chronological (CB), a nonchronological (NCB), or an incomplete form of

backtracking (IFB). This formalism allows capturing the backtracking search

strategies used by state-of-the-art SAT solvers [2, 11, 18, 19]. Indeed, if

the backtracking sequence consists of always applying chronological back-

tracking steps or always applying nonchronological backtracking steps, then we

capture the chronological and nonchronological backtracking search strategies,

respectively.

Unrestricted backtracking gives a unified representation for different back-

tracking strategies, which allows establishing general completeness conditions

for classes of backtracking strategies. This is more convenient than analyzing

each individual strategy, as has been done in [22, 25]. In what follows, we es-

tablish general completeness conditions for unrestricted backtracking, which are

valid for any special case of unrestricted backtracking; this includes heuristic

backtracking, the main thrust of this paper.

Figure 2 exemplifies how an incomplete form of backtracking can lead

to incompleteness, by providing possible sequels to the search process shown

in Figure 1. Three backtracking strategies are illustrated: chronological

(CB), nonchronological (NCB) and incomplete form of backtracking (IFB).

The search path that leads to the solution is marked with the letter S. For CB

and NCB the solution is found by orderly exploring the search space. With IFB

the search backtracks to any point, which may cause skipping the search

subspace that leads to the solution. Hence, something must be done to ensure the

correctness and completeness of an unrestricted backtracking algorithm that

includes incomplete backtracking steps. First, and similar to local search, we

have to assume that variable toggling in unrestricted backtracking is reversible.

ATEET BHALLA ET AL.

This means that the solution can be found later, even if the solution is skipped

during the search. Irreversible variable toggling would yield an incorrect or

incomplete algorithm. Second, with reversible variable toggling, we must ensure

that the algorithm terminates or otherwise it may loop forever in the search

space.

A number of techniques can be used to ensure the completeness of

unrestricted backtracking algorithms. These techniques are analyzed in [16]

and reviewed in the remainder of this section. Completeness techniques for

unrestricted backtracking can be organized in two classes:

Y Marking recorded clauses as nondeletable. This solution may yield an

exponential growth in the number of recorded clauses.j

Y Increasing a given constraint (e.g., the number of nondeletable recorded

clauses) in between applications of different backtracking schemes. This

solution can be used to guarantee a polynomial growth of the number

recorded clauses.

5.1. COMPLETENESS ISSUES

It has been explained above how unrestricted backtracking can yield

incomplete algorithms. Hence, it is important to be able to apply conditions

that guarantee the completeness for each newly devised SAT algorithm that

utilizes IFB Steps.

The results presented in this section generalize completeness results that have

been proposed in the past (for specific backtracking relaxations) to UB. We start

by establishing a few already known results, and then we establish additional

results for UB.

In what follows we assume the organization of a backtrack search SAT

algorithm as described earlier in this paper. The main loop of the algorithm

consists of selecting a decision variable, assigning the variable, and propagating

the assignment by using BCP. If an unsatisfied clause occurs (i.e., a conflict) the

NCB

S

IFB

S

?
S

CB

Figure 2. Comparing chronological backtracking (CB), nonchronological backtracking

(NCB) and incomplete forms of backtracking (IFB).

j In practice an exponential growth in the number of recorded clauses hardly ever arises.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

algorithm backtracks to a decision assignment that can be toggled.j Each time a

conflict is identified, all the current decision assignments define a conflict path in

the search tree. (We restrict the definition of conflict path solely with respect to

the decision assignments.) After a conflict is identified, we may apply a conflict
analysis procedure [2, 18, 19] to identify a subset of the decision assignments

that represent a sufficient condition for producing the same conflict. The subset

of decision assignments that is declared to be associated with a given conflict

is referred to as a conflict subpath. A straightforward conflict analysis procedure

consists of construction a clause with all the decision assignments in the conflict

path. In this case the created clause is referred to as a path-clause. Figure 3

illustrates these definitions. We can now established a few general results that

will be used throughout this section.

PROPOSITION 1. If an unrestricted backtracking search algorithm does not
repeat conflict paths, then it is complete.

Proof. Assume a problem instance with n variables. Observe that there are 2n

possible conflict paths. If the algorithm does not repeat conflict paths, then it

must necessarily terminate.

PROPOSITION 2. If an unrestricted backtracking search algorithm does not
repeat conflict subpaths, then it does not repeat conflict paths.

Proof. If a conflict subpath is not repeated, then no conflict path can contain

the same subpath, and so no conflict path can be repeated.

Figure 3. Search tree definitions.

j Without loss of generality, we assume that NCB uses irreversible variable toggling after

backtracking. In some recent algorithms this happens as an implication caused by the newly
derived conflict clause [19].

ATEET BHALLA ET AL.

PROPOSITION 3. If an unrestricted backtracking search algorithm does not
repeat conflict subpaths, then it is complete.

Proof. Given the two previous results, if no conflict subpaths are repeated,

then no conflict paths are repeated, and so completeness is obtained.

PROPOSITION 4. If the number of times an unrestricted backtracking search
algorithm repeats conflict paths or conflict subpaths is upperbounded by a
constant, then the backtrack search algorithm is complete.

Proof. We prove the result for conflict paths; the proof for conflict subpaths is

similar. Let M be a constant denoting an upper bound on the number of times a

given conflict path can be repeated. Since the total number of distinct conflict

paths is 2n, and since each can be repeated at most M times, then the total number

of conflict paths the backtrack search algorithm can enumerate is M � 2n, and so

the algorithm is complete.

PROPOSITION 5. For an unrestricted backtracking search algorithm following
holds:

1. If the algorithm creates a path clause for each identified conflict, then the

search algorithm repeats no conflict paths.

2. If the algorithm creates a conflict clause for each identified conflict, then the

search algorithm repeats no conflict subpaths.

3. If the algorithm creates a conflict clause (or a path clause) after every M iden-

tified conflicts, then the number of times an unrestricted backtracking search

algorithm repeats conflict sub-paths (or conflict paths) is upper-bounded.

In all of the above cases, the search algorithm is complete.

Proof. Recall that the search algorithm always applies BCP after making a

decision assignment. Hence, if a clause describing a conflict has been recorded

and not deleted, BCP may trigger the same conflict with a different set of

decision assignments. As a result, conflict paths are not repeated. The same holds

true for conflict sub-paths. Since neither conflict paths nor conflict subpaths are

repeated, the search algorithm is complete (form Propositions 1 and 3). With

respect to creating (and recording) a conflict clause (or a path clause) after every

M identified conflicts, clearly the number of times a given conflict subpath (or

conflict path) is repeated is upper-bounded. Hence, using the results of

Proposition 4 completeness is guaranteed.

Observed that Proposition 5 holds independently of which backtrack step is

take each time a conflict is identified. Hence, as long as we record a conflict for

each identified conflict, any form of unrestricted backtracking yields a complete

algorithm. Less general formulations of this result have been proposed in the

recent past [9, 22, 25].

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

The results established so far guarantee completeness at the cost of recording

(and keeping) a clause for each identified conflict. Next, we propose and analyze

conditions for relaxing this requirement. As a result, we allow for some

clauses to be deleted during the search process and require only some specific

recorded clauses to be kept.j (We note that clause deletion does not apply to

chronological backtracking strategies and that existing clause deletion policies

for nonchronological backtracking strategies do not compromise the complete-

ness of the algorithm [18].) We also propose other conditions that do not require

specific recorded clauses to be kept.

PROPOSITION 6. An unrestricted backtracking algorithm is complete if it
records (and keeps) a conflict-clause for each identified conflict for which an IFB
step is taken.

Proof. At most 2n IFB steps can be taken because a conflict clause is recorded

for each identified conflict after an IFB step is taken. Hence, conflict subpaths

due to IFB steps cannot be repeated. Moreover, additional backtrack steps that

may be applied (CB and NCB) also ensure completeness. Hence, the resulting

algorithm is complete.

PROPOSITION 7. Given an integer constant M, an unrestricted backtracking
algorithm is complete if it records (and keeps) a conflict-clause after every M
identified conflicts for which an IFB step is taken.

Proof. The result immediately follows from the Propositions 5 and 6.

Under the conditions above, the number of recorded clauses grows linearly

with the number of conflicts after IFB steps. Thus the number of recorded clauses

is worst-case exponentially in the number of variables.

Other approaches to guarantee completeness involve increasing the value of

some constraint associated with the search algorithm. The following results

illustrate these approaches.

PROPOSITION 8. Suppose that an unrestricted backtracking strategy applies a
sequence of backtrack steps. If for this sequence the number of conflicts between
IFB steps is allowed to increase strictly after each IFB step, then the resulting
algorithm is complete.

Proof. If only CB or NCB steps are taken, then the resulting algorithm is

complete. When the number of conflicts in between IFB steps reaches 2n, the

algorithm is guaranteed to terminate.

We note that this result can be viewed as a generalization of the completeness

condition used in search restarts, which consists of increasing the backtrack

j We say that a recorded clause is kept provided it is prevented from being deleted during

the subsequent search.

ATEET BHALLA ET AL.

cutoff value after search restart [1].j Also observe that in this situation the

growth in the number of clauses can be made polynomial, provided clause

deletion is applied on clauses recorded form NCB and IFB steps.

The next result establishes conditions for guaranteeing completeness in

algorithms that opportunistically delete recorded clauses (as a result of an IFB

step). The idea is to increase the size of the recorded clauses that are kept after

each IFB step. Another approach is to increase the life-span of large recorded

clauses, by increasing the relevance-based learning threshold [2].

PROPOSITION 9. Suppose that an unrestricted backtracking strategy applies a
specific sequence of backtrack steps. If, for this sequence, either the size of the
largest recorded clause kept or the size of the relevance-based learning threshold
is strictly increased after each IFB step is taken, then the resulting algorithm is
complete.

Proof. When either the size of the largest recorded clause reaches value n or

the relevance-based learning threshold reaches value n, all recorded clauses will

be kept, and so completeness is guaranteed from Proposition 5.

Observe that for this last result the number of clauses can grow exponentially

with the number of variables. Moreover, we note that the observation regarding

the increase of the relevance-based learning threshold was first suggested in [19].

One final result addresses the number of times conflict paths and conflict

subpaths can be repeated.

PROPOSITION 10. Under the conditions of Proposition 8 and Proposition 9,

the number of times a conflict path or a conflict subpath is repeated is upper-

bounded.

Proof. The resulting algorithms are complete and thus known to terminate

after a maximum number of backtrack steps (which is constant for each

instance). Hence, the number of times a conflict path (or conflict subpath) can be

repeated is necessarily upper-bounded.

5.2. HEURISTIC BACKTRACKING UNDER THE UNRESTRICTED BACKTRACKING

FRAMEWORK

Unrestricted backtracking provides a framework for combining different forms

of backtracking. These forms of backtracking may be complete, incomplete, or a

combination of both. The completeness conditions established for unrestricted

backtracking hold regardless of the comprised forms of backtracking.

We have noted before that applying heuristic backtracking at every backtrack

step may lead to very unstable algorithms. Conversely, keeping all the recorded

clauses to avoid this instability may lead to a significant memory overhead.

j Given this condition, the resulting algorithm resembles iterative-deepening.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

Hence, the solution adopted for this problem is to combine heuristic backtracking

with other complete forms of backtracking.

In what follows we refer to heuristic backtracking as an instantiation of

unrestricted backtracking where incomplete heuristic backtracking steps are

combined with complete nonchronological backtracking steps. For each algo-

rithm, we will specify the frequency of the heuristic backtracking steps and the

heuristic used. As mentioned before, we have developed three backtracking

heuristics: the plain, VSIDS-like, and BerkMin-like backtracking heuristics.

6. Experimental Results

This section presents experimental results of applying heuristic backtracking

to different classes of problem instances. We compare heuristic backtracking

with nonchronological backtracking and nonchronological backtracking com-

bined with search restarts [12], one of the most effective backtracking relaxation

schemes known to date. Search restarts are now part of the most competitive

backtrack search SAT algorithms [19, 11], and our goal here has been to de-

monstrate that heuristic backtracking is a more competitive form of backtracking

relaxation.

The algorithms have been experimentally evaluated by using the JQuest2

SAT solver [17]. JQuest2 is a competitive solver and has been ranked among the

top solvers in the industrial category in the SAT 2003 competition.j JQuest2 has

been implemented in Java for providing an integrated framework for rapid

prototyping of SAT algorithms.

It offers a significantly faster development time for testing new ideas in SAT

algorithms, but its overall performance is slower than a C or C++ implementation

because of the overhead associated with the Java virtual machine. It has been

demonstrated that JQuest2 is slower than Chaff by an average factor of 2 [17].

The CPU time limit for each instance was set to 104 s. All experiments were run

on the same P4/1.7 Ghz/1 GByte of RAM Linux machine.

Different SAT algorithm prototypes have been implemented and compared.

The algorithms differ only in the unrestricted backtracking strategy applied. Five

backtracking strategies are compared:

1. Plain heuristic backtracking.

2. VSIDS-like heuristic backtracking.

3. BerkMin-like heuristic backtracking.

4. Search restarts.

5. Nonchronological backtracking.

All algorithms use the VSIDS decision branching heuristic. In choosing a

decision or backtrack variable, a slight randomization is used to select among the

j http://www.satlive.org/SATCompetition/2003/.

ATEET BHALLA ET AL.

variables with the best metrics provided by the different heuristics. Combining

the values of the metrics with a certain degree of randomization is known to

produce good results.

The algorithms have been applied to 14 classes of problem instances

containing 320 problem instances in total. In NCB, a nonchronological backtrack

step is performed every step. In the other algorithms is defined as follows: an

incomplete form of backtracking step (HB or restarts) is performed after every

104 + i � 103 backtracks, where i is incremented every time an IFB step is

performed. The increase of constant i and the fact that conflict derived clauses

are marked undeletable guarantee the completeness of the algorithms.

Table I shows the results obtained for each class of instances. #I denotes the

number of problem instances, Dec denotes the average number of decision nodes

per instance, Time denotes the average CPU time per instance, and X denotes the

number of aborted instances. In addition, each column indicates a different form

of backtracking relaxation:

Y HB(P) indicates the plain heuristic backtracking algorithm is applied after 104

+ i � 103 backtracks, where i is incremented every time a HB step is taken.
Y HB(V) indicates the VSIDS-like heuristic backtracking algorithm is

applied after 104 + i � 103 backtracks, where i is incremented every time

a HB step is taken.
Y HB(B) indicates the BerkMin-like heuristic backtracking algorithm is

applied after 104 + i � 103 backtracks, where i is incremented every time a

HB step is taken.
Y RST indicates that search restarts are applied after 104 + i � 103 backtrack,

where i is incremented every time a search restart is taken.
Y NCB indicates nonchronological backtracking is applied in every back-

track step.

From the results in Table I several observations and comments can be made.

HB algorithms abort fewer instances. An instance is aborted whenever the

memory or CPU time constraint is reached. In these experiments all instance

abortions have been caused by memory exhaustion, which shows that fewer

clauses using HB as compared to search restarts. A possible explanation is that

our heuristics are more likely to reuse information provided by earlier conflicts

than is the search restarts algorithm, which is more prone to encounter new

conflict clauses after each restart. Equivalently, one can say that HB favors a

more local search rather than search restarts.

The nonchronological backtracking algorithm is not a competitive approach,

in terms of both decisions and CPU time. This is true when compared with any of

the other four algorithms. In addition, the search restarts algorithm seems to be

the second worst approach, although more competitive than the nonchronological

backtracking algorithm. The computed average speedup against the nonchrono-

logical backtracking algorithm for the set of instances used is 1.95�.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

T
ab

le
I.

P
er

fo
rm

an
ce

o
f

d
if

fe
re

n
t

al
g

o
ri

th
m

s.

B
en

ch
m

ar
k
s

#
I

H
B

(P
)

H
B

(V
)

H
B

(B
)

R
S

T
N

C
B

D
ec

T
im

e
X

D
ec

T
im

e
X

D
ec

T
im

e
X

D
ec

T
im

e
X

D
ec

T
im

e
X

b
m

c-
b

ar
re

l
8

1
3

0
7
4

9
2

4
0

7
0
.2

2
0

1
0

1
3

7
8

7
1

8
1

9
.1

1
0

5
8

4
6

8
0

7
3

5
.6

1
0

1
0

3
1
2

9
7

2
3

9
7
.8

1
0

1
3

3
9

7
9

8
4

7
8

9
.3

6
0

b
m

c-
q

u
eu

ei
n

v
ar

1
0

8
4

7
8
4

3
3

.0
2

0
8

5
6

6
6

4
2

.0
4

0
6

9
7

5
8

2
5

.8
6

0
6

6
7

1
3

2
0

.9
3

0
1

1
7

8
2

3
6

9
.3

4
0

b
m

c-
lo

n
g

m
u

lt
1

6
1

1
1

2
4

6
7

5
8

6
8
.8

7
3

9
3

7
6
4

9
3

0
8

8
.8

3
3

9
4

6
8

1
3

4
2

7
6

.7
7

3
1

1
7

7
4

6
3

7
8

7
3
.1

9
5

1
4

9
0

6
6

7
8

1
5

6
.6

9
5

ss
s-

sa
t-

1
.0

1
0
0

3
4
7
0
7
5
0

3
0
1
8
.8

3
0

3
0
0
5
8
6
8

1
7
8
5
.3

8
0

1
4
8
6
2
7
4

8
7
7
.5

8
0

3
1
4
2
0
7
8

2
4
2
5
.2

7
0

3
5
2
7
7
1
7

4
0
2
9
.9

4
0

ss
s-

1
.0

4
8

9
3

9
5
3

5
6

5
8

.8
7

0
6

8
1

0
2

5
1

9
9

.6
8

0
4

6
7

6
5

0
9

3
.9

7
0

7
3

6
8
5

1
4

0
8

.5
6

0
9

4
5

5
8

8
1

1
6

7
.8

2
0

ss
s-

1
.0

a
9

1
9

1
8
3

8
2

3
0

.4
0

1
7

6
2
2

7
1

0
8

.7
7

0
9

8
2

1
7

3
7

.5
0

1
9

8
3
6

3
4

5
9

.6
8

0
2

6
0

3
8

9
8

5
8

.8
7

0

fv
p

-u
n

sa
t.

1
.0

4
1

9
1

3
0

0
1

8
0

.9
3

1
1

9
6

6
7

1
2

1
7

.2
8

1
1

0
2

6
5

7
3

8
.9

4
1

1
6

7
7
1

4
1

0
9

.3
1

1
2

2
2

7
2

5
3

9
5

.1
8

1

q
g

2
2

4
0

2
2
5

7
1

7
6

2
.7

5
0

3
8

1
7
9

0
1

3
4

4
.6

9
0

2
3

6
2

5
8

5
7

7
.6

3
0

2
8

3
4
5

9
9

5
0

.0
8

0
4

9
4

6
1

6
2

8
2

9
.9

4
0

B
ei

ji
n

g
1

6
5

2
2

8
8

4
5

0
5

5
.5

6
2

5
0

9
7
6

4
4

0
6

3
.4

2
2

5
1

7
4

6
2

4
9

0
6

.9
4

2
5

2
3

8
4

9
5

2
8

4
.3

8
2

5
8

5
1
9

4
5

6
5

3
.0

4
2

eq
u

iv
-c

h
ec

k
in

g
2

5
2

3
1

7
4

9
4

2
0

3
5
.2

6
2

2
3

5
5

5
0

8
2

2
8

2
.4

9
2

9
1

3
8

3
5

1
1

0
1

.2
6

2
2

8
5

3
2

8
0

3
4

6
7
.2

4
2

3
3

0
7

2
0

3
4

1
6

3
.9

9
2

p
ar

1
6

1
0

7
4

6
4
1

4
1

.1
2

0
7

2
6

0
7

2
7

.8
0

5
6

6
1
9

1
8

.1
0

1
1

1
2
2

8
7

9
.9

5
0

1
2

2
6
1

4
1

0
6

.5
9

0

d
es

-e
n

cr
y

p
ti

o
n

3
2

5
3

3
5
2

0
3

8
0

1
.0

9
2

5
1

2
6
4

0
3

1
9

4
.0

6
2

4
8

0
8

1
2

2
8

8
5

.3
9

2
5

7
8

1
2

8
5

0
0

5
.2

6
2

7
8

4
2
0

6
9

0
5

5
.6

2
2

sa
tp

la
n
_
sa

t
1
1

7
8
7
7
7

7
9
.4

5
0

4
7
4
0
3

3
3
.1

0
2
8
6
8
2

2
7
.0

5
0

5
8
4
1
2

7
1
.4

2
0

1
2
7
0
1
7

1
0
2
.3

9
0

sa
tp

la
n
_
u
n
sa

t
9

3
9
0
4
2

6
5
.5

0
2
7
3
7
1

4
1
.2

0
1
0
0
2
1

2
4
.3

0
5
1
5
0
2

8
9
.5

4
0

5
6
7
8
0

9
5
.6

8
0

ATEET BHALLA ET AL.

The plain heuristic backtracking algorithm performed slightly better on

average than the search restarts algorithm. Although these results are not very

conclusive, they seem to indicate that using some heuristic information when

performing backtracking is better than not using any information at all, as is the

case of search restarts. Moreover, in the next table it is shown that, when applied

to some instances, the plain backtracking heuristic is significantly superior to

search restarts and nonchronological backtracking.

The VSIDS-like heuristic backtracking algorithm performed better than the

search restarts algorithm for most of the instances, in terms of both the number of

decisions and CPU time, even though slower in performance on some test

instances. Its computed average speedup against the search restarts algorithm for

the set of instances used is 1.77�. (Note that this is a lower bound of the average

speedup, since the instances aborted by the search restarts algorithm are a

superset of the instances aborted by the VSIDS-like heuristic backtracking

algorithm; the aborted instances have not been taken into account in computing

the average speedup).

The BerkMin-like heuristic backtracking algorithm performed better than

the VSIDS-like heuristic backtracking algorithm. This result is consistent

with the fact that the BerkMin decision branching heuristic is generally

superior to the VSIDS decision backtracking heuristic. Its computed average

speedup against the search restarts algorithm for the set of instances used is

3.32�.

Given the large number of instances tested, these results clearly demonstrate

the backtracking heuristic can speed up execution time for the classes of

problems tested. It is also remarkable that their effect is similar to the effect of

decision branching heuristic: if a heuristic A is better than a heuristic B for

decision branching, then A is also better than B for backtracking.

The result presented in Table I are significantly better than the preliminary

results previously presented in [4]. The reason is that we eliminated many easy-

to-solve instances from each problem class. These instances do not benefit from

heuristic backtracking or search restarts because they can be solved quickly

before a significant number of IFB steps are applied, if any. Large instances do

benefit from HB or restarts because these techniques help get out of dead-ends in

the search tree. Hence, they should be applied infrequently. In our studies we

concluded that, similar to search restarts, HB is best when applied once in every

104 backtracks. More frequent applications cause the algorithms to wander

without focusing in regions of search space that need a more thorough

exploration. When applied infrequently, HB allows finding a solution or proving

unsatisfiability using a significantly lower number of decisions.

To show that the performance of the heuristics improve with the hardness of the

problem instances, we manually selected a set of 18 harder-to-solve instances.

The results in Table II show that for the set of harder-to-solve instances the

benefits of heuristic backtracking are more visible. The three HB algorithms

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

performs better than the search restarts algorithm and nonchronological

backtracking, which aborted two of the instances (marked with *).

Clearly, the search restarts algorithm performs better than the nonchronolog-

ical backtracking algorithm, in terms of both the number of decisions and CPU

time.

The plain heuristic backtracking algorithm performed better than both the

search restarts algorithm and the nonchronological backtracking algorithm for

most of the instances. This is true both in terms of the number of decisions and

CPU time.

The VSIDS-like heuristic backtracking algorithm performed better than the

search restarts algorithm, both in terms of the number of decisions and CPU

time. Its average speed-up has been computed as greater than 2.62�.

The BerkMin-like heuristic backtracking algorithm was again the best of the

three backtracking algorithms. Its average speed-up against the search restarts

algorithm has been computed as greater than 9.63�.

As can be concluded from the experimental results, heuristic backtracking can

yield significant savings in CPU time, allows significant reductions in the number

of decision nodes and also allows for a smaller number of instances to be

aborted. This is true for several of the classes of problem instances analyzed.

7. Related Work

Dependency-directed backtracking and no-good learning were originally pro-

posed by Stallman and Sussman in [24] in the area of truth maintenance systems.

In the area of constraints satisfaction problems (CSPs), the topic was

independently studied by J. Gaschnig [8] and others (see, e.g., [21]) as different

forms of backjumping.

The introduction of relaxations in the backtrack steps is also related to

dynamic backtracking [9]. Dynamic backtracking establishes a method by which

backtrack points can be moved deeper in the search tree. This avoids the

unneeded erasing of the amount of search that has been done thus far. The

objective is to find a way to directly Berase^ the value assigned to a variable as

opposed to backtracking to it, moving the backjump variable to the end of the

partial solution in order to replace its value without modifying the values of the

variables that currently follow it. More recently, Ginsberg and McAllester

combined local search and dynamic in an algorithm that enables arbitrary search

movement [10], starting with any complete assignment and evolving by flipping

values of variables obtained from the conflicts.

Local search and dynamic backtracking have also been combined by

Prestwich in the Constrained Local Solver (CLS) [20]. CLS is constructed by

randomizing the backtracking component of a systematic algorithm: that is,

allowing backtracking to occur on arbitrarily chosen variables. The new

algorithm has the drawback of being incomplete.

ATEET BHALLA ET AL.

T
ab

le
II

.
P

er
fo

rm
an

ce
o

f
d

if
fe

re
n

t
al

g
o

ri
th

m
s

o
n

in
d

iv
id

u
al

in
st

an
ce

s

B
en

ch
m

ar
k

s
In

st
an

ce
H

B
(P

)
H

B
(V

)
H

B
(B

)
R

S
T

N
C

B

D
ec

T
im

e
D

ec
T

im
e

D
ec

T
im

e
D

ec
T

im
e

D
ec

T
im

e

b
m

c
b

ar
re

l9
8

6
9

8
9

6
3

3
3

2
.6

8
7

8
0

6
5

0
2

5
4

2
.1

7
2

3
8

5
6

6
3

9
1

.1
7

0
7

0
3

3
1

9
0

3
.5

8
7

9
0

0
2

9
2

6
6

0
5

1

b
m

c
lo

n
g

m
u

lt
1

0
2

2
9

3
7

3
1

7
2

0
.5

7
2

2
0

4
3

2
1

2
3

4
.4

1
8

8
6

5
4

5
7

3
.4

1
*

*
*

*

b
m

c
lo

n
g

m
u

lt
1

5
2

8
4

6
5

8
2

5
0

0
.6

1
1

7
5

4
2

2
6

7
2

.6
8

2
1

9
0

8
7

1
4

8
7

.7
7

*
*

*
*

ss
s-

sa
t-

1
.0

2
d

lx
_

..
.b

u
g

0
5

6
5

6
1

9
7

3
4

.8
8

5
5

2
4

0
3

1
.8

6
2

4
5

6
5

1
9

.4
8

6
0

3
4

5
4

8
.2

3
6

3
3

0
3

5
6

.3
2

ss
s.

1
.0

a
d

lx
2

_
..

.b
u

g
5

4
2

9
7

4
4

3
6

.7
1

2
4

4
6

6
3

3
.2

1
2

3
0

4
1

1
.6

0
3

6
5

9
6

5
8

.9
4

3
5

0
1

8
5

3
.0

1

ss
s.

1
.0

d
lx

2
_

cl
1

7
1

4
4

9
.6

5
1

2
8

8
2

4
.9

2
1

3
2

0
6

6
.9

5
3

3
2

4
4

1
4

.1
3

3
6

7
8

1
1

5
.9

8

fv
p

-u
n

sa
t.

1
.0

2
d

lx
_

ca
_

..
.b

p
_

f
3

6
1

5
6

3
0

.3
6

3
2

2
9

4
1

9
.2

4
3

1
1

8
1

1
5

.4
2

4
2

0
2

7
4

0
.4

7
4

7
9

8
2

8
3

.6
7

q
g

q
g

2
-0

8
1

3
7

1
0

2
7

6
2

.7
2

3
6

2
6

5
4

7
.4

8
4

1
4

5
5

2
7

8
.5

2
5

8
2

7
1

5
5

4
.2

3
6

7
9

5
4

6
0

8
.5

9

q
g

q
g

5
-1

3
9

7
0

8
6

2
9

8
.6

7
1

0
3

8
9

1
7

7
1

.3
2

7
7

6
3

4
1

8
6

.8
1

5
1

8
3

9
1

1
6

.4
6

8
0

3
7

0
2

1
7

.3
6

eq
u

iv
-c

h
ec

k
in

g
c7

5
5

2
1

9
8

2
4

0
9

5
.9

2
2

4
3

1
0

1
1

4
5

.4
8

1
5

1
0

2
1

7
5

.9
3

3
1

3
5

9
2

2
9

3
.6

1
3

1
8

8
3

1
4

6
1

.3
4

eq
u

iv
-c

h
ec

k
in

g
c7

5
5

2
-s

2
9

5
6

8
9

1
5

8
.5

2
4

0
0

8
7

5
3

4
7

.8
4

1
7

5
0

7
0

5
8

.9
1

4
1

1
6

2
6

5
9

4
.2

4
4

4
4

8
8

8
8

6
7

.9
6

eq
u

iv
-c

h
ec

k
in

g
c3

5
4

0
_

b
u

g
2

2
1

1
1

.3
4

2
5

6
0

2
.6

9
5

5
7

0
.3

8
3

3
7

8
4

.9
5

8
4

7
2

1
5

.2
4

d
es

-e
n

cr
y

p
ti

o
n

cn
f-

r3
-b

1
-k

1
.1

9
9

4
3

6
.2

5
1

0
9

3
7

9
.3

4
7

1
6

1
.1

1
1

3
0

6
8

1
8

.7
5

1
3

9
6

0
2

1
.6

5

d
es

-e
n

cr
y

p
ti

o
n

cn
f-

r3
-b

1
-k

2
.2

2
2

7
5

1
.1

8
5

5
6

6
2

.8
2

1
2

2
0

0
.7

6
7

7
9

2
3

.3
6

8
0

4
2

4
.7

6

p
ar

1
6

p
ar

1
6

-1
-c

8
8

6
6

3
.6

5
8

0
1

9
2

.7
0

7
2

7
3

1
.3

1
1

1
4

3
1

8
.8

2
1

7
7

3
2

5
.7

4

p
ar

1
6

p
ar

1
6

-4
1

9
6

4
2

.4
1

1
1

7
1

.6
5

8
8

7
0

.4
3

3
7

8
3

.5
5

3
3

8
6

4
.4

8

sa
tp

la
n

_
sa

t
b

w
-l

ar
g

e.
d

3
4

8
9

0
6

2
.1

3
2

2
4

3
8

2
7

.8
4

1
8

8
0

5
1

7
.0

9
3

0
8

5
5

5
3

.3
7

4
9

1
1

0
8

2
.5

5

sa
tp

la
n

_
u

n
sa

t
lo

g
is

ti
cs

.c
5

4
5

8
3

.9
5

0
1

8
2

.6
1

4
2

1
1

1
.0

2
5

3
3

4
3

.4
5

7
5

4
6

.4
9

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

In weak-commitment search [25], the algorithm constructs a consistent partial

solution but commits to the partial solution weakly. In weak-commitment search,

whenever a conflict is reached, the whole partial solution is abandoned, in

explicit contrast to standard backtracking algorithm where the most recently

added variable is removed form the partial solution.

Moreover, search restarts have been proposed and shown effective for hard

instances of SAT [12]. The search is repeatedly restarted whenever a cutoff value

is reached. In [1], search restarts were jointly used with learning for solving hard

real-world instances of SAT. This latter algorithm is complete because the

backtrack cutoff value increases after each restart. One additional example of

backtracking relaxation is described in [22], which is based on attempting to

construct a complete solution, that restarts each time a conflict is identified. More

recently, highly optimized complete SAT solvers [11, 19] have successfully

combined nonchronological backtracking and search restarts, again obtaining

remarkable improvements in solving real-world instances of SAT.

Other algorithms are known for performing an overall local search while

using systematic search to prune the search space. For example, Jussien and

Lhomme introduced the path-repair algorithm for CSP [14], which adds domain

filtering techniques and no-good learning to local search. Furthermore, Hirsch

and Kojevnikov introduced the UnitWalk SAT solver [13], which combines the

iterative application of the unit clause rule with local search.

8. Conclusions and Future Work

This paper proposes the utilization of heuristic backtracking in backtrack search

SAT solvers. The proposed algorithm, based on heuristic knowledge, is presented

in the context of a backtracking-based SAT algorithm, which is currently the

most successful class of general-purpose SAT algorithms especially for real-

world applications. The most well-known branching heuristic used in state-of-

the-art SAT solvers were adapted to the backtrack step of SAT solvers. The

experimental results illustrate the usefulness of heuristic backtracking and realize

the potential of this technique on practical examples, especially those coming

from real-world applications.

The main contributions of this paper can be summarized as follows:

1. A new heuristic backtracking search SAT algorithm is proposed that

heuristically selects the point to backtrack to.

2. The proposed algorithm is shown to be a special case of unrestricted

backtracking, and different approaches for ensuring completeness are

described.

3. Experimental results indicate that significant savings in search effort can be

obtained for different organizations of the proposed heuristic backtrack

search algorithm.

ATEET BHALLA ET AL.

In fact, hundreds of problems instances have been analyzed in this paper,

where heuristic backtracking algorithms have been compared to a state-of-the-art

SAT solver algorithm. The only difference between the new algorithms and the

reference SAT solver is the backtracking step: the new algorithms apply heuristic

backtracking steps instead of search restarts, the best form of incomplete

backtracking known to date.

Three backtracking heuristics have been tested: a plain heuristic that uses

information from the conflict-clause, a VSIDS-like heuristic, and a BerkMin-like

heuristic. Our results show that the better the heuristic is for decision branching,

the more useful it is for backtracking, which is a consistent result.

In a set of 320 instances, the best backtracking heuristic (BerkMin’s) shows

an average speedup of about 3.5� as compared with the search restarts

algorithm. For a set of 18 harder-to-solve instances, the heuristic backtracking

algorithms have been able to solve all of them, while the search restarts

algorithm and nonchronological backtracking aborted two instances.

The heuristic backtracking procedure developed in this work is now ready to

be incorporated in SAT solvers, with guaranteed performance improvement.

For future work, a more comprehensive experimental evaluation is required

for combining different forms of decision heuristics and backtracking relaxation

algorithms, thus motivating the utilization of multiple search strategies in

backtrack search SAT algorithms.

Acknowledgements

This work is partially supported by the European research project IST-2001-

34607 and by Fundação para a Ciência e Tecnologia under research projects

POSI/CHS/34504/2000, POSI/SRI/41926/2001 and POSI/EIA/61852/2004.

References

1. Baptista, L. and Marques-Silva, J. P.: Using randomization and learning to solve real-world

instances of satisfiablility, in R. Dechter (ed.), Proceedings of the International Conference of
Principles and Practice of Constraint Programming, Vol. 1894 of Lecture Notes in Computer

Science, 2000, pp. 489Y494.

2. Bayardo Jr., R. and Scharg, R.: Using CSP look-back techniques to solve real-world SAT

instances, in Proceedings of the National Conference on Artificial Intelligence, 1997,

pp. 203Y208.

3. Bhalla, A., Lynce, I., de Sousa, J. and Marques-Silva, J.: Heuristic backtracking algorithms

for SAT, in Proceedings of the International Workshop of Microprocessor Test and
Verification, 2003, pp. 69Y74.

4. Bhalla, A., Lynce, J., de Sousa, J. and Marques-Silva, J. P.: Heuristic-based backtracking for

propositional satisfiability, in F. Moura-Pires and S. Abreu (eds.), Proceedings of the
Portuguese Conference on Artificial Intelligence, Vol., 1894 of Lecture Notes in Artificial

Intelligence, 2003, pp. 116Y130.

HEURISTIC-BASED BACKTRACKING RELAXATION FOR PROPOSITIONAL SATISFIABILITY

5. Davis, M., Logemann, G. and Loveland, D.: A machine program for theorem proving,

Commun. Assoc. Comput. Mach. 5 (1962), 394Y397.

6. Davis, M. and Putnam, H.: A computing procedure for quantification theory, J. Assoc.
Comput. Mach. 7 (1960), 201Y215.

7. Freuder, E. C., Dechter, R., Ginsberg, M. L., Selman, B. and Tsang, E.: Systematic versus

stochastic constraint satisfaction, in Proceedings of the International Joint Conference on
Artificial Intelligence, 1995, pp. 2027Y2032.

8. Gaschnig, J.: Performance Measurement and Analysis of Certain Search Algorithms, PhD

thesis, Carnegie-Mellon University, Pittsburgh, PA.

9. Ginsberg, M. L.: Dynamic backtracking, J. Artif. Intell. Res. 1 (1993), 25Y46.

10. Ginsberg, M. L. and McAllester, D.: GSAT and dynamic backtracking, in Proceedings of the
International Conference of Principles of Knowledge and Reasoning, 1994, pp. 226Y237.

11. Goldberg, E. and Nonikov, Y.: BerkMin: A Fast and Robust SAT-Solver, in Proceedings of
the Design and Test in Europe Conference, 2002, pp. 142Y149.

12. Games, C. P., Selman, B. and Kautz, H.: Boosting combination search through randomiza-

tion, in Proceedings of the National Conference on Artificial Intelligence, 1998, pp. 431Y437.

13. Hirsch, E. A. and Kojevnikov, A.: Solving Boolean satisfiability using local search guided by

unit clause elimination, in Proceedings of the International Conference on Principles and
Practice of Constraint Programming, 2001, pp. 605Y609.

14. Jussien, N. and Lhomme, O.: Local search with constraint propagation and conflict-based

heuristics, in Proceedings of the National Conference on Artificial Intelligence, 2000,

pp. 169Y174.

15. Lynce, I., Baptista, L. and Marques-Silva, J. P.: Stochastic systematic search algorithm for

satisfiability, in Proceedings of the LICS Workshop on Theory and Applications of
Satisfiability Testing, 2001, pp. 1Y7.

16. Lynce, I. and Marques-Silva, J. P.: Complete unrestricted backtracking algorithms for

satisfiability, in Proceedings of the International Symposium on Theory and Applications of
Satisfiability Testing, 2002, pp. 214Y221.

17. Lynce, I. and Marques-Silva, J. P.: On implementing more efficient SAT data structures, in

Proceedings of the International Symposium on Theory and Applications of Satisfiability
Testing, 2003, pp. 510Y516.

18. Marques-Silva, J. P. and Sakallah, K. A., GRASPVA search algorithm for propositional

satisfiability, IEEE Trans. Comput. 48(5) (1999), 506Y521.

19. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L. and Malik, S.: Engineering an efficient

SAT solver, in Design Automation Conference, 2001, pp. 530Y535.

20. Prestwich, S.: A hybrid search architecture applied to hard random 3-SAT and low-

autocorrelation binary sequences, in R. Dechter (ed.), Proceedings of the International
Conference on Principles and Practice of Constraint Programming, Vol. 1894 of Lecture

Notes in Computer Science, 2000, pp. 337Y352.

21. Prosser, P.: Hybrid algorithms for the constraint satisfaction problems, Comput. Intell. 9(3)

(1993), 268Y299.

22. Richards, E. T. and Richards, B.: Non-systematic search and no-good learning, J. Autom.
Reason. 24(4) (2000), 483Y533.

23. Selman, B. and Kautz, H.: Domain-independent extensions to GSAT: Solving large

structured satisfiability problems, in Proceedings of the International Joint Conference on
Artificial Intelligence, 1993, pp. 290Y295.

24. Stallman, R. M. and Sussman, G. J.: Forward reasoning and dependency-directed back-

tracking in a system for computer-aided circuit analysis, Artif. Intell. 9 (1977), 135Y196.

25. Yokoo, M.: Weak-commitment search for solving satisfaction problems, in Proceedings of
the National Conference on Artificial Intelligence, 1994, pp. 313Y318.

ATEET BHALLA ET AL.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SPSFont4Medium
 /SpsFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

