
Backdoor Sets for DLL Subsolvers

Stefan Szeider

Department of Computer Science
Durham University

DH1 3LE Durham, England, UK

Abstract

We study the parameterized complexity of detecting small backdoor sets

for instances of the propositional satisfiability problem (SAT). The notion
of backdoor sets has been recently introduced by Williams, Gomes, and
Selman for explaining the ‘heavy-tailed’ behavior of backtracking algo-
rithms. If a small backdoor set is found, then the instance can be solved
efficiently by the propagation and simplification mechanisms of a SAT
solver. Empirical studies indicate that structured SAT instances com-
ing from practical applications have small backdoor sets. We study the
worst-case complexity of detecting backdoor sets with respect to the sim-
plification and propagation mechanisms of the classic Davis-Logemann-
Loveland (DLL) procedure. We show that the detection of backdoor sets
of size bounded by a fixed integer k is of high parameterized complex-
ity. In particular, we determine that this detection problem (and some
of its variants) is complete for the parameterized complexity class W[P].
We achieve this result by means of a generalization of a reduction due to
Abrahamson, Downey, and Fellows.

Keywords: Satisfiability, unit propagation, pure literal elimination, back-
door sets, parameterized complexity, W[P]-completeness.

1 Introduction

The propositional satisfiability problem (SAT) is the first problem shown to be
NP-complete. It holds a central role in the theory of computational complex-
ity and is of practical relevance for applied areas like verification or planning.
SAT instances with n variables can be solved by brute force, checking all 2n

truth assignments; no algorithm is known that runs in time 2o(n) in the worst
case. However, SAT instances arising from applications often impose a “hid-
den structure” which allow significantly faster SAT decision than by brute force
search.

One example of such hidden structure is based on the concept of backdoor
sets of variables, recently introduced by Williams, Gomes, and Selman [11, 12].
A weak backdoor set of a SAT instance is a set B of variables such that for at least
one truth assignment to the variables in B, simplifying the instance according to
that assignment yields a satisfiable instance that can be decided in polynomial
time by a “subsolver.” A subsolver is an incomplete polynomial-time algorithm
that uses the propagation and simplification mechanisms of a SAT-solver. A

1



strong backdoor set of a SAT instance is a set B of variables such that for every
truth assignment to the variables in B, the resulting simplified SAT instance
can be decided by the subsolver (exact definitions are given in Sections 2 and
3 below). As reported by Williams, Gomes, and Selman [12], highly structured
problem instances have small weak backdoor sets; for example, for a logistics
planning benchmark instance with about 7000 variables, a weak backdoor set
of size 12 could be found. However, the minimum size of backdoor sets of
non-structured instances, like random 3-SAT, appears to be a constant fraction
(about 30%) of the total number of variables (Interian [7]). The dependency
among the variables of minimal weak backdoor set is studied by Ruan, Kautz,
and Horvitz [10]. It is observed that SAT-solvers may heuristically be quite
capable of exploiting the existence of small weak backdoor sets in practice,
without necessarily identifying the backdoor sets explicitly [12, 10].

In the sequel we address the worst-case time complexity of deciding whether
a given SAT instance has a weak or strong backdoor set of size bounded by
some integer k. We study this problem with respect to subsolvers of the stan-
dard Davis-Logemann-Loveland (DLL) algorithm. That is, subsolvers that are
based on unit propagation and pure literal elimination, or on one of these two
principles.

We can detect a weak/strong backdoor set of size at most k by considering
all sets B of k or fewer variables of the given instance, and by checking whether
one/all of the 2|B| assignments to the variables in B yields an instance that can
be decided by the subsolver under consideration. Thus a backdoor set can be
detected in time O(2knk+α) where O(nα) is the worst-case time complexity of
the subsolver. However, such a trivial approach becomes impractical for large
n even if the parameter k, the maximum size of a backdoor set, is chosen small.
In this paper we tackle the question of whether, in general, a small backdoor
set can be found significantly faster than by brute force search.

The framework of Parameterized Complexity (Downey and Fellows [5]) pro-
vides an excellent framework for studying this question. A parameterized prob-
lem is a set L ⊆ Σ∗ × Σ∗ for some fixed alphabet Σ. For a problem instance
(x, k) ∈ L, we refer to x as the main part, and to k as the parameter. Typi-
cally (and for all problems considered in the sequel), the parameter is a positive
integer (presented in unary). XP denotes the class of parameterized problems
which can be solved in polynomial time whenever the parameter is considered as
a constant; the above considerations show that the detection of a backdoor set is
in XP. If a parameterized problem L can be solved in time O(f(k)nc) where f is
any computable function of the parameter and c is a constant (independent from
k), then L is called fixed-parameter tractable; FPT denotes the class of all fixed-
parameter tractable problems. Parameterized complexity classes are defined as
equivalence classes of parameterized problems under a certain parameterized
reduction. This parameterized reduction is an extension of the polynomial-time
many-one reduction where a parameter for one problem maps into a parameter
for another. More specifically, a parameterized problem L reduces to a param-
eterized problem L′ if we can transform an instance (x, k) of L into an instance
(x′, g(k)) of L′ in time f(k) · |x|O(1) (f, g are arbitrary computable functions),
such that (x, k) is a yes-instance of L if and only if (x′, g(k)) is a yes-instance
of L′. The class XP contains a hierarchy of parameterized complexity classes

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P] ⊆ XP.

2



All inclusions are assumed to be proper; FPT 6= XP is known [5]. The higher
a problem is located in this hierarchy, the more unlikely it is fixed-parameter
tractable. The canonical W[P]-complete problem is the following (cf. [5]).

weighted circuit satisfiability

Input: A decision circuit D.
Parameter: A positive integer k.
Question: Does D accept an input assignment of weight k?

If a W[P]-complete problem turns out to be fixed-parameter tractable, then
the n-variable SAT problem can be solved in time 2o(n) (Abrahamson, Downey
and Fellows [1]); a recent treatment of the relationship between parameterized
complexity classes and SAT upper bounds can be found in Flum and Grohe [6].
The parameterized problem weighted monotone circuit satisfiability

arises from weighted circuit satisfiability by restricting the instances to
monotone circuits. Surprisingly, weighted monotone circuit satisfiabil-

ity remains W[P]-hard [1, 5]. Furthermore, the problems remain W[P]-complete
if we ask for an accepted input assignment of weight at most k (see Section 1).

In this paper we completely classify the parameterized complexity of the
problem of whether a SAT instance has a weak or strong backdoor set of size
not exceeding a parameter k w.r.t. subsolvers that arise from the DLL proce-
dure. In particular, we determine that detection of weak and strong backdoor
sets is W[P]-complete for the considered subsolvers. Thus we provide strong
theoretical evidence that these problems are not fixed-parameter tractable. We
generalize the proof technique used by Abrahamson, Downey, and Fellows [1] for
k-induced satisfiability and other problems by introducing a certain param-
eterized problem on cyclic monotone circuits (see, e.g., Malik [8]). We show that
this new problem, cyclic monotone circuit activation, is W[P]-complete.
Parameterized reductions of this problem provide the base for our W[P]-hard-
ness results. We think that cyclic monotone circuit activation is in-
teresting on its own as its W[P]-hardness proof is conceptually simple, and it
provides a means for several other W[P]-hardness proofs.

Notation and Preliminaries

We assume an infinite supply of propositional variables. A literal is a variable
x with an assigned parity ε ∈ {0, 1} and is denoted by xε. We also write x = x1

and x = x0. A set S of literals is tautological if it contains both x and x for some
variable x. A clause is a finite non-tautological set of literals. We consider a
finite set of clauses as a CNF formula (or formula, for short). Clauses of size one
are called unit clauses. The set of variables occurring (negated or unnegated)
in a formula F is denoted by var(F ). A literal xε is a pure literal of a formula
F if x ∈ var(F ) and no clause of F contains x1−ε.

A truth assignment (or assignment, for short) is a map τ : Xτ → {0, 1}
defined on some set Xτ of variables. If Xτ is a singleton {x} with τ(x) = ε,
then we denote τ simply by x = ε. An assignment τ is total for a formula F

if Xτ = var(F ). For x ∈ Xτ we define τ(x) = 1 − τ(x). For an assignment τ

and a formula F , F [τ ] denotes the formula obtained from F by removing all
clauses which contain a literal x with τ(x) = 1 and removing literals y with
τ(y) = 0 from the remaining clauses. An assignment τ satisfies a formula

3



F if F [τ ] = ∅. A formula is satisfiable if it is satisfied by some assignment;
otherwise it is unsatisfiable. Let F be a formula and (x, ε) ∈ var(F )×{0, 1}. If
F contains the unit clause {xε} (or xε is a pure literal of F ), then we say that
the assignment x = ε can be inferred (in one step) by unit propagation (or pure
literal elimination, respectively). If both x = 0 and x = 1 can be inferred, then
F is unsatisfiable (F contains both {x} and {x}).

A decision circuit (or circuit, for short) D is a triple (G, E, λ) where (G, E)
is an acyclic digraph (the underlying digraph of D) and λ is a mapping from G

to {and,or,not}. The elements of G are the gates and the elements of E are
the lines of D. A gate g ∈ G is called λ(g)-gate. D is monotone if it contains
no not-gates. The fanin (fanout) of a gate g ∈ G is its in-degree (out-degree)
in the underlying digraph. We assume that not-gates have fanin 1 and that
and/or-gates have fanin at least one. Gates with fanin 2 are binary gates. If
E contains the line (g, h) then we say that g is a predecessor of h and that h

is a successor of g. Gates with fanin 0 are the input gates of the circuit and
gates with fanout 0 are the output gates of the circuit. We assume that every
circuit has exactly one output gate. If the underlying digraph of a circuit D is
a tree, then D can be identified with a boolean formula. An input assignment
ν for a circuit D is a mapping from the set of input gates to {0, 1}. An input
assignment ν propagates through the circuit in the natural way, e.g., for an
and-gate g with predecessors g1, . . . , gn, we have ν(g) = minn

i=1 ν(gi). A circuit
D accepts an input assignment ν if ν(u) = 1 holds for the output gate u of
D. The weight of an input assignment is the number of input gates that are
assigned to 1.

Note that a monotone circuit with n input gates accepts an input assignment
of weight at most k for some k ≤ n if and only if it accepts an input assignment
of weight exactly k. If D is non-monotone, then we can still obtain in polynomial
time a circuit D′ with nk input gates such that D accepts an input assignment
of weight at most k if and only if D′ accepts an input assignment of weight
exactly k (D′ can be obtained from D by adding an or-gate of fanin k in front
of each input gate). Furthermore, by means of a standard construction, we can
transform a circuit D into a circuit D2 (D2 has the same input gates as D) by
replacing gates of fanin greater than 2 by several binary gates. The construction
of D2 from D can be carried out in polynomial time, and both circuits accept
the same input assignments.

2 Subsolvers

The Davis-Putnam (DP) procedure [4] and the related Davis-Logemann-
Loveland (DLL) procedure [3] are certainly the best known complete algorithms
for solving the satisfiability problem. Complete state-of-the-art SAT-solvers are
typically based on variants of the DLL procedure. A concise description of these
procedures can be found in Cook and Mitchell [2]. Both procedures, DP and
DLL, search for a satisfying assignment, applying first unit propagation and pure
literal elimination as often as possible. Then, DLL makes a case distinction on
the truth value of a variable, and DP eliminates a variable x by replacing the
clauses in which x occurs by all the clauses that can be obtained by resolving
on x. The DLL procedure is sketched in Fig. 1.

If we use only unit propagation and pure literal elimination, then we get an

4



Procedure DLL(F )
Input: A CNF formula F .
Output: Either a truth assignment which satisfies F or “unsatisfiable”.

1. Trivial Decision: If F = ∅, then return the empty satisfying
assignment; if F contains the empty clause, then return “unsat-
isfiable.”

2. Unit Propagation: If F contains a unit clause {xε}, then call
DLL(F [x = ε]). If a satisfying assignment τ for F [x = ε] is re-
turned, then return τ∪{x = ε}; otherwise return “unsatisfiable.”

3. Pure Literal Elimination: If F contains a pure literal x
ε, then

call DLL(F [x = ε]). If a satisfying assignment τ for F [x = ε] is
returned, then return τ ∪ {x = ε}; otherwise return “unsatisfi-
able.”

4. Branching: Choose a variable x ∈ var(F ).

(a) Call DLL(F [x = 0]). If a satisfying assignment τ for F [x =
0] is returned, then return τ ∪ {x = 0}.

(b) Otherwise, call DLL(F [x = 1]). If a satisfying assignment
τ for F [x = 1] is returned, then return τ ∪ {x = 1}.

(c) Otherwise return “unsatisfiable.”

Figure 1: The Davis-Logemann-Loveland (DLL) procedure

incomplete algorithm which decides satisfiability for a subclass of CNF formulas.
(Whenever the algorithm reaches the branching step, it halts and outputs “give
up”.) This incomplete algorithm is an example of a “subsolver” as considered
by Williams, et al. [11]; a polynomial-time algorithm S is called a subsolver if
it either correctly decides satisfiability of the given formula F or it gives up.
Moreover, it is required that if the subsolver S decides that F is satisfiable,
it also returns a satisfying assignment, and that S satisfies the following basic
conditions: first, that it decides the empty formula as being satisfiable and a
formula containing the empty clause as being unsatisfiable, and second, that if
it decides the satisfiability of a formula F , then it does so for F [x = ε] for any
(x, ε) ∈ var(F ) × {0, 1}.

The DLL procedure gives rise to three non-trivial subsolvers: up+pl (unit
propagation and pure literal elimination are available), up (only unit propaga-
tion is available), pl (only pure literal elimination is available).

3 Backdoor Sets

The power of a subsolver can be enhanced by taking an assignment τ to a few
variables of the given formula F and inputting F [τ ] to the subsolver. This idea
leads to the concept of backdoor sets (cf. [11, 12]).

A set B of variables is a weak backdoor set of a formula F w.r.t. a subsolver
S if B ⊆ var(F ) and there exists an assignment τ : B → {0, 1} such that S
returns a satisfying assignment for the input F [τ ]; we also say that B is a weak
S-backdoor set. The set B is a strong backdoor set of F w.r.t. S if B ⊆ var(F )
and for every assignment τ : B → {0, 1}, the subsolver S decides whether F [τ ]

5



is satisfiable or not; we also say that B is a strong S-backdoor set.
Similarly one can define backdoor sets with respect to a class C of formulas

where membership in C and satisfiability of formulas in C can be decided in
polynomial time.

Note that by definition, unsatisfiable formulas do not have weak backdoor
sets, and that B = var(F ) is always a weak backdoor set of any satisfiable
formula F . Moreover, if F is satisfiable, then every strong backdoor set of F is
also a weak backdoor set of F w.r.t. any subsolver S, but the converse does not
hold in general.

For a subsolver S we consider the following two parameterized problems.

weak S-backdoor

Input: A formula F .
Parameter: A positive integer k.
Question: Does F have a weak S-backdoor set B of size at most k?

strong S-backdoor

Input: A formula F .
Parameter: A positive integer k.
Question: Does F have a strong S-backdoor set B of size at most k?

In the next section we formulate an intermediate problem on cyclic monotone
circuits which will allow us to determine the complexity of backdoor set detection
for the nontrivial subsolvers up+pl, up, and pl.

4 Cyclic Monotone Circuits

A cyclic monotone circuit is a monotone circuit whose underlying digraph may
contain directed cycles. Cyclic circuits have been considered by several authors,
see, e.g., Malik [8] for references. We assume that a cyclic monotone circuit may
have no input or output gates.

Consider a set A of gates of a cyclic monotone circuit D (we think of the
gates in A to be activated). The successor set s(A) of A contains all gates g of
D for which at least one of the following holds:

• g ∈ A;

• g is an and-gate and all predecessors of g are in A;

• g is an or-gate and at least one predecessor of g is in A.

If we take iteratively successor sets of A (i.e., we compute a sequence of sets
A0 ⊆ A1 ⊆ A2 ⊆ . . . with A0 = A and Ai+1 = s(Ai)) then we end up with
a set A∗ such that s(A∗) = A∗. We call A∗ the closure of the starting set A.
Since Ai ⊆ s(Ai) holds always by monotonicity, the closure of A for a cyclic
monotone circuit D with n gates is obtained after at most n iterations. We say
that A activates D if the closure A∗ contains all gates of D.

Consider, for example, the cyclic monotone circuit exhibited in Fig. 2.
The set {g1} activates the circuit, since we have s(s({g1})) = s({g1, g2}) =
{g1, g2, g3}. However, the set {g2} does not activate the circuit, since s({g2}) =
{g2} = {g2}∗ 6= {g1, g2, g3}.

We are interested in finding a small set of gates that activates a given cyclic
monotone circuit. To this end, we define the following parameterized problem.

6



and and

or

g1

g2

g3

Figure 2: A cyclic monotone circuit.

cyclic monotone circuit activation

Instance: A cyclic monotone circuit D.
Parameter: A positive integer k.
Question: Does some starting set A containing at most k gates
activate D?

Lemma 1. cyclic monotone circuit activation is W[P]-complete. The
problem remains W[P]-complete for instances without input or output gates.

Proof. We show membership in W[P] by reducing the problem to weighted

circuit satisfiability. Given a cyclic monotone circuit D with n gates, we
construct an acyclic monotone circuit C as follows. For every ◦-gate g of D,
◦ ∈ {and,or}, with predecessors g1, . . . , gr and 0 ≤ t ≤ n, we add a gate g[t]
to C as follows. For t = 0, the gate g[0] is an input gate of C, and for t > 0, we
put

g[t] = g[t − 1] ∨ (©r
i=1gi[t − 1]).

Finally, we add the output gate

u =
∧

g∈D

g[n].

It is straightforward to verify that C accepts a weight k input assignment if
and only if some starting set of size k activates D. Hence cyclic monotone

circuit activation is in W[P].
To show W[P]-hardness, we reduce from weighted monotone circuit

satisfiability, using ideas from Abrahamson, Downey, and Fellows [1]. Let C

be a monotone circuit with n input gates x1, . . . , xn and the output gate u. We
construct a cyclic monotone circuit D as follows. We take k +1 copies of C, say
C[1], . . . , C[k + 1], and denote the copy of a gate g in C[j] by g[j]. We add n

identical and-gates h1, . . . , hn, each defined by

hi =

k+1
∧

j=1

u[j].

We ‘feed-back’ the gates hi to the input gates of the circuits C[1], . . . , C[k + 1],
adding all the lines (hi, xi[j]) for j = 1, . . . , k+1 and i = 1, . . . , n. This concludes
the construction of D. Observe that D has no input or output gates.

We show that C accepts an input assignment of weight at most k if and only
if a starting set of size at most k activates D.

Assume that C accepts an input assignment ν of weight k. We take A =
{hi : 1 ≤ i ≤ n, ν(xi) = 1 } and put A0 = A and Ai = s(Ai−1) for i > 0.

7



Let d be the length of a longest path in the underlying digraph of C from
some input gate xi to the output gate u (i.e., d is the ‘depth’ of C). Since
C accepts ν, it follows that after d + 1 iterations all output gates u[j] are
activated, i.e., {u[1], . . . , u[k + 1]} ⊆ Ad+1. Hence {h1, . . . , hn} ⊆ Ad+2. In
the next step all input gates of the circuits C[i] are activated. After d more
iterations, going through the circuits C[i] a second time, finally all gates of D

belong to A2d+2 = A∗. Hence A activates D.
Conversely, assume that a starting set A of size at most k activates D, but C

accepts no input assignment of weight at most k (we aim to get a contradiction).
Since |A| ≤ k, there must be at least one C[j], j ∈ {1, . . . , k + 1}, such that A

does not contain any gate of C[j]. Since A activates D, u[j] ∈ A∗. Let t be the
smallest integer such that u[j] ∈ At. Since no gate of C[j] is in the starting set
A, some of the input gates of C[j] are activated at some later step such that the
activation of the input gates propagates through C[j] to u[j]. In other words,
we have X ′ ⊆ {x1[j], . . . , xn[j]} ∈ As for some s < t such that C[j] accepts
the input assignment ν′ of C[j] with ν′(xi[j]) = 1 if and only if xi[j] ∈ As. By
assumption, |X ′| > k follows. Consequently, |{h1, . . . , hn} ∩ As| > k. This is
only possible if all u[i], 1 ≤ i ≤ n, are in As−1. In particular, u[j] ∈ As−1 and
so t ≤ s − 1, a contradiction to s < t. Hence C accepts some input assignment
of weight at most k. This completes the proof of the lemma.

It is easy to verify that some starting set of size k activates a cyclic monotone
circuit D if and only if some starting set of size k activates the corresponding
circuit D2 that contains only binary gates (see Section 1). Consequently, cyclic

monotone circuit activation remains W[P]-hard for cyclic monotone cir-
cuits that contain only binary gates.

5 Backdoor Sets for Non-trivial Subsolvers

Lemma 2. weak S-backdoor is in W[P] for any S ∈ {up+pl,up, pl}.

Proof. We reduce weak up+pl-backdoor to weighted circuit satisfi-

ability. Let F be an instance of up+pl-backdoor with n variables. We
construct an acyclic circuit C with 2n input gates that accepts a weight k input
assignment if and only if F has a weak up+pl-backdoor set of size k.

We describe C as consisting of n + 1 layers, L0, . . . , Ln. Each layer Lt

has input gates x0[t] and x1[t] for every x ∈ var(F ). We think of the values
of x0[t] and x1[t] under some assignment ν as representing the value of the
variable x under some assignment τ of F after t propagation steps. That is,
ν(x0[t]) = ν(x1[t]) = 0 means that τ(x) is not defined at step t; ν(xε[t]) = 1
means that τ(x) = ε at step t. The construction of C will guarantee that
ν(x0[t]) = ν(x1[t]) = 1 cannot be the case for any input assignment ν accepted
by C. The input gates of the first layer are the input gates of the whole circuit C.
A layer Lt, t < n, contains gates that are connected to the input gates of the
next layer Lt+1. The last layer Ln defines the output gate u of C. Next we
describe the construction of C in detail.

8



For x ∈ var(F ), ε ∈ {0, 1}, and t ∈ {0, . . . , n − 1}, we put

xε[t + 1] = xε[t] ∨ (1)




∧

C∈F with x1−ε∈C





∨

yη∈C

yη[t]







 ∨ (2)





∨

C∈F with xε∈C





∧

yη∈C\{xε}

y1−η[t]







 . (3)

The disjunctive term in (1) ensures that once an assignment to a variable is
made it is not changed at a later step. The circuits defined in (2) express pure
literal elimination: we set xε to 1 at step t + 1 if all clauses that contain the
complementary literal x1−ε are satisfied at step t. The circuits defined in (3)
express unit propagation: we set xε to 1 at step t+1 if there is some clause in F

containing xε and all other literals in the clause are set to 0 at step t. It remains
to ensure that two input gates xε[t] and x1−ε[t], representing complementary
literals, are never both set to 1, and that finally, at step n, all clauses of F are
satisfied. Hence we define the output gate u as

u =











∧

x ∈ var(F )
0 ≤ t ≤ n

¬(xε[t] ∧ x1−ε[t])











∧
∧

C∈F

∨

yη∈C

yη[n].

It is straightforward to verify that C accepts an input assignment of weight
k if and only if F has a weak up+pl-backdoor set of size k. Hence weak

up+pl-backdoor is in W[P]. For the problems weak up-backdoor and
weak pl-backdoor we proceed similarly, omitting the constructions (2) or
(3), respectively.

Lemma 3. strong S-backdoor is in W[P] for any S ∈ {up+pl,up, pl}.

Proof. We reduce strong up+pl-backdoor to weighted circuit satisfi-

ability, extending the construction of the proof of Lemma 2. Let F be an
instance of strong up+pl-backdoor with n variables. We construct a cir-
cuit D with 2kn input gates that accepts a weight 2kk input assignment if and
only if F has a strong up+pl-backdoor set of size k.

For i = 1, . . . , 2k we construct circuits Di as in the proof of Lemma 2; each
Di consists of n + 1 layers and has input gates xε

i [t] for ε ∈ {0, 1}, x ∈ var(F ),
and t ∈ {0, . . . , n}. The layers of Di consist of gates as defined in (2) and (3).
The output gate ui of Di is defined by

ui =





∧

x∈var(F )

¬(xε[0] ∧ x1−ε[0])



 ∧











∧

C∈F

∨

yη∈C

yη[n] ∨
∨

C∈F

∧

yη∈C

y1−η [0] ∨
∨

x ∈ var(F )
1 ≤ t ≤ n

(xε[t] ∧ x1−ε[t])











.

9



The difference to the construction in the proof of Lemma 2 is that we also
allow the detection of unsatisfiability. We use the fact that unsatisfiability of a
formula can be detected by unit propagation and pure literal elimination if and
only if the formula contains the empty clause, or both x = 0 and x = 1 can be
inferred.

We combine the circuits D1, . . . , D2k and define the output gate u of D by
setting

u =

2k

∧

i=1

ui ∧ (4)





∧

1≤i<j≤2k

∨

x∈var(F )

x0
i [0] 6≡ x0

j [0]



 ∧ (5)











∧

x ∈ var(F )

1 ≤ i < j ≤ 2k

(x0
i [0] ∨ x1

i [0]) ≡ (x0
j [0] ∨ x1

j [0])











(6)

where p 6≡ q abbreviates (p ∧ ¬q) ∨ (¬p ∧ q), and p ≡ q abbreviates (p ∧ q) ∨
(¬p∧¬q). Part (4) ensures that all the circuits Di accept the input assignment.
Part (5) ensures that the input assignment to different copies Di, Dj , for i 6= j,
differ in at least one position. Part (6) ensures that all circuits Di, 1 ≤ i ≤ 2k,
receive input assignments that correspond to the same set B of variables of F .
We claim that F has a strong up+pl-backdoor set B of size k if and only if D

accepts an input assignment of weight k.
Assume that B ⊆ var(F ) is a strong up+pl-backdoor set of F with |B| = k.

Let {τ1, . . . , τ2k} be the set of all assignments τi : B → {0, 1}. We define an
input assignment ν of D by setting for all (x, ε) ∈ var(F ) × {0, 1}

ν(xε
i [0]) =

{

1 if x ∈ B and τi(x) = ε;

0 otherwise.

We observe that for each Di, τ sets exactly k input gates to 1, hence the weight
of τ is 2kk. Since B is a strong up+pl-backdoor set, it follows by construction
of D that D accepts ν.

Conversely, assume that D accepts an input assignment ν of weight 2kk. For
i = 1, . . . , 2k let Bi = {x ∈ var(F ) : ν(x0

i [0]) = 1 or ν(x1
i [0]) = 1) } and define

an assignment τi : Bi → {0, 1} such that τi(x) = 1 if and only if ν(x1
i [0]) = 1.

Part (6) of the definition of D implies Bi = Bj for all 1 ≤ i < j ≤ 2k, and part
(5) implies |{τ1, . . . , τ2k}| = 2k. Thus τ1, . . . , τ2k are all possible assignments
for the set B = B1 = . . . = B2k . Since D accepts ν, it follows that for every
i ∈ {1, . . . , 2k}, the up+pl-subsolver decides whether F [τi] is satisfiable or not.
In summary, B is a strong up+pl-backdoor set of size k.

Hence we have shown that strong up+pl-backdoor is in W[P]. This
holds as well for strong up-backdoor and strong pl-backdoor, as we
can modify the above construction by omitting (2) or (3), respectively, in the
definitions of the circuits Di.

10



Lemma 4. The problems weak up+pl-backdoor and weak up-backdoor

are W[P]-hard. The problems remain W[P]-hard for CNF formulas that have
exactly one satisfying total assignment.

Proof. We reduce cyclic monotone circuit activation. Let D = (G, E, λ)
be a cyclic monotone circuit without input or output gates. We may assume
that all gates of D are binary (cf. the discussion at the end of Section 4).

For each gate g ∈ G we define a set Fg of clauses, and we obtain a formula
F by taking the union of all sets Fg with g ∈ G. For an and-gate g = x1 ∧ x2,
the set Fg contains the clauses

{x1, y1}, {x1, y1}, {x1, y1},

{x2, y2}, {x2, y2}, {x2, y2},

{x1, y1, x2, y2, g};

the variables y1, y2 are new variables not occurring outside of these 7 clauses
(we call the variables y1, y2 private). Similarly, for an or-gate g = x1 ∨ x2, the
set Fg contains the clauses

{x1, y1}, {x1, y1}, {x1, y1},

{x2, y2}, {x2, y2}, {x2, y2},

{x1, y1, z}, {x2, y2, g};

again, y1, y2 are private variables. By construction, G ⊆ var(F ), and since D

has no input gates, var(F ) \G is the set of all private variables of F . Evidently,
each Fg is satisfied by assigning 1 to all its variables; however, if 0 is assigned
to at least one variable, at least one clause of Fg is not satisfied. Hence the
assignment τ1 that sets all variables to 1 is the only satisfying total assignment
of F . Consequently, for any subsolver S, a set B ⊆ var(F ) is a weak S-backdoor
set of F if and only if S extends the assignment τ0 : B → {1} to the satisfying
assignment τ1.

From yi = 1 for a private variable yi we can infer xi = 1 by means of
unit propagation, since the clause {xi, yi} is contained in F . Consequently,
if B is a weak up-backdoor set of F , then replacing private variables yi of B

with xi, yields a weak up-backdoor set B′ ⊆ G with |B′| ≤ |B|. Moreover, unit
propagation on a set Fg behaves exactly as the activation process on the gate g in
D. For example, consider Fg for an and-gate g = x1 ∧x2. By unit propagation,
we infer from x1 = 1 and x2 = 1 the assignments y1 = 1 and y2 = 1, and, in
turn, g = 1. (However, setting g = 1 does not propagate ‘upward’ to yi or xi.)
Thus, a set B of gates of D activates D if and only if for τ0 : B → {1}, all
clauses of F [τ0] can be satisfied using several steps of unit propagation; that is,
B is a weak up-backdoor set of F . Hence we have shown that some starting set
of size at most k activates D if and only if F has a weak up-backdoor set of size
at most k. Consequently, W[P]-hardness of weak up-backdoor follows from
Lemma 1.

Next we show that W[P]-hardness also holds for weak up+pl-backdoor

by proving that every weak up+pl-backdoor set of F is a weak up-backdoor
set. Consider ∅ 6= B ⊆ var(F ) and τ0 : B → {1}. First we observe that
for any variable x ∈ var(F ), the negative literal x cannot be pure in F [τ0],
since otherwise we could infer x = 0 by means of pure literal elimination, but

11



then F [τ0] would be unsatisfiable. Since the circuit D has no output gates,
every variable of F occurs as xi or yi in some set Fg . However, for every pair
of variables xi, yi, some Fg contains the binary clauses {xi, yi} and {xi, yi}.
Thus, for xi being a pure literal of F [τ0], yi ∈ B must prevail. Then, however,
F [τ0] contains the unit clause {xi}, and so xi = 1 can be inferred by unit
propagation, and pure literal elimination is not needed. Similarly, if yi is a pure
literal of F [τ0], then F [τ0] contains the unit clause {yi}, and again yi = 1 can
be inferred by unit propagation. We conclude that pure literal elimination is
redundant for F [τ0]. Thus, it follows by induction on |var(F ) \ B| that B is a
weak up+pl-backdoor set of F if and only if B is a weak up-backdoor set of F .
Hence weak up+pl-backdoor is W[P]-hard.

Lemma 5. The problems strong up+pl-backdoor and strong up-back-

door are W[P]-hard.

Proof. Let S ∈ {up+pl,up}. We reduce weak S-backdoor. Let F be a
formula with exactly one satisfying total assignment τ ; w.l.o.g., we assume that
τ assigns 1 to each variable of F . We obtain a formula F ∗ from F by taking for
every x ∈ var(F ) a new variable x∗ and adding the clauses {x, x∗} and {x, x∗}
to F . Note that τ also satisfies F ∗ and that every satisfying assignment τ ∗ of
F ∗ extends τ .

We show that F has a weak S-backdoor set of size at most k if and only if
F ∗ has a strong S-backdoor set of size at most k.

Let B be a weak S-backdoor set of F . Thus, with input F [τ0], τ0 : B → {1},
the subsolver S finds the assignment τ that satisfies F . Since the presence of
clauses {x, x∗} and {x, x∗} does not prevent any application of unit propagation
or pure literal elimination, the subsolver S finds the assignment τ also with input
F ∗[τ0]. Hence B is a weak S-backdoor set of F ∗. The set B∗ = {x∗ : x ∈ B }
is evidently a weak S-backdoor set of F ∗ and we have |B| = |B∗|. However, B∗

is also a strong S-backdoor set of F ∗, since, by symmetry, it does not matter
whether a variable x∗ is set to 0 or set to 1.

Conversely, let B∗ be a strong S-backdoor set of F ∗. Since F ∗ is satisfiable,
B∗ is also a weak S-backdoor set of F ∗; thus S extends τ∗

0 : B∗ → {1} to a
satisfying assignment of F ∗. Since {x, x∗} ∈ F ∗, x∗ = 1 yields x = 1 by unit
propagation. Hence we can replace each x∗ ∈ B∗ by x and still have a weak
S-backdoor set B := {x ∈ var(F ) : x ∈ B∗ or x∗ ∈ B∗ } with |B| ≤ |B∗|. Thus,
the subsolver S extends τ0 : B → {1} to a satisfying assignment of F ∗. The
clauses in F ∗ \ F are irrelevant for such extension, since as early as a variable
x ∈ var(F ) gets the value 1 under some extension of τ0, the clauses {x, x∗} and
{x, x∗} are removed. Consequently B is also a weak S-backdoor set of F .

Lemma 6. weak pl-backdoor is W[P]-hard and remains W[P]-hard for CNF
formulas which have exactly one satisfying total assignment.

Proof. We reduce cyclic monotone circuit activation as in Lemma 4.
Again, let D = (G, E, λ) be a cyclic monotone circuit without input or output
gates and where all gates are binary. For each gate g ∈ G we define a set of
clauses Fg , and we obtain a formula F by taking the union of all sets Fg with

12



g ∈ G. For an and-gate g = x1 ∧ x2, the set Fg contains the clauses

{x1, y1}, {x1, y1},

{x2, y1}, {x2, y1},

{y1, g};

for an or-gate g = x1 ∨ x2, the set Fg contains the clauses

{x1, x2, y1},

{x1, x2, y1},

{y1, g};

the variables yi are private variables. We have G ⊆ var(F ), and since D has no
input gates, var(F ) \ G is the set of private variables. We show that F has a
weak pl-backdoor set of size at most k if and only if some starting set of size at
most k activates D. As in the proof of Lemma 4 it follows from the definition of
the sets Fg that the only satisfying total assignment of F sets all variables to 1.
Pure literal elimination on Fg behaves exactly as the activation process on the
corresponding gate: e.g., for an and-gate g = x1 ∧ x2, if τ0(x1) = τ0(x2) = 1,
then the clauses {x1, y1}, {x1, y1}, {x2, y1}, and {x2, y1} are removed from the
formula and g becomes a pure literal, thus g = 1 follows. Hence a set B ⊆ G of
gates activates D if and only if B is a weak pl-backdoor set of F . By replacing
private variables yi by xi, we can find for every weak pl-backdoor set B of F a
weak pl-backdoor set B′ ⊆ G with |B′| ≤ |B|. Hence F has a weak pl-backdoor
set of size at most k if and only if some starting set of size at most k activates
D. Thus we have reduced cyclic monotone circuit activation to weak

pl-backdoor, and the lemma follows.

Lemma 7. The problem strong pl-backdoor is W[P]-hard.

Proof. We reduce weak pl-backdoor. Let F be a formula with exactly one
satisfying total assignment τ ; w.l.o.g., we assume that τ assigns 1 to each vari-
able of F . We obtain a formula F ∗ from F by adding the unit clause {x} for
every variable x of F ; i.e.,

F ∗ = F ∪ { {x} : x ∈ var(F ) }.

Evidently, τ is also the unique satisfying total assignment of F ∗. Let ∅ 6= B ⊆
var(F ) and τ0 : B → {1}. We observe that a variable is pure in F [τ0] if and
only if it is pure in F ∗[τ0]. Hence, it follows by induction on |var(F ) \ B| that
B is a weak pl-backdoor set of F if and only if B is a weak pl-backdoor set of
F ∗. On the other hand, let τ ′

0 : B → {0, 1} be any assignment different from
τ0. There is at least one x ∈ var(F ) such that τ ′

0(x) = 0. Since {x} ∈ F ∗,
F ∗[τ ′

0] contains the empty clause, and so the unsatisfiability of F ∗[τ ′
0] can be

decided by any subsolver. Thus, if B is a weak pl-backdoor set of F , B is also
a strong pl-backdoor set of F . Since F ∗ is satisfiable, every strong pl-backdoor
set of F ∗ is also a weak pl-backdoor set of F ∗. In summary, F has a weak
pl-backdoor set of size at most k if and only if F ∗ has a strong pl-backdoor set
of size at most k. Hence W[P]-hardness of strong pl-backdoor follows from
Lemma 6.

13



In view of the above lemmas we conclude that all the considered problems
are W[P]-complete.

Theorem 1. The problems weak S-backdoor and strong S-backdoor

are W[P]-complete for each subsolver S ∈ {up+pl,up, pl}.

6 Final Remarks

In this paper we have determined the parameterized complexity of the backdoor
set detection problem for subsolvers that arise from the DLL/DP procedures.
Our results indicate that these problems are computationally hard; it is very
unlikely that, in the worst case, smallest backdoor sets for DLL subsolvers can
be found more efficiently than by brute force search. Complementary to the
findings of the present paper are the results of Nishimura, Ragde, and Szeider
[9] on the parameterized complexity of backdoor set detection with respect to the
syntactically defined classes HORN and 2-CNF. It turns out that, although weak
backdoor set detection with respect to these classes is W[2]-hard, the detection of
strong backdoor sets is fixed-parameter tractable! The identification of further
polynomial-time classes of SAT instances that allow fixed-parameter tractable
backdoor set detection is a challenging new direction of research. For example, it
would be interesting to know whether the detection of strong backdoor sets w.r.t.
the class RHORN of renamable Horn formulas is fixed-parameter tractable. It
is well known that RHORN properly contains the class of all Horn formulas,
and RHORN is itself a proper subclass of the class of formulas decidable by unit
propagation.

References

[1] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter
tractability and completeness. IV. On completeness for W[P] and PSPACE
analogues. Annals of Pure and Applied Logic, 73(3):235–276, 1995.

[2] S. A. Cook and D. G. Mitchell. Finding hard instances of the satisfiability
problem: a survey. In Satisfiability problem: theory and applications (Pis-
cataway, NJ, 1996), pages 1–17. American Mathematical Society, 1997.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. ACM, 5:394–397, 1962.

[4] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs
in Computer Science. Springer Verlag, 1999.

[6] J. Flum and M. Grohe. Parameterized complexity and subexponential time.
Bulletin of the European Association for Theoretical Computer Science,
84:71–100, 2004.

[7] Y. Interian. Backdoor sets for random 3-SAT. In Sixth International Con-
ference on Theory and Applications of Satisfiability Testing, S. Margherita

14



Ligure, Portofino, Italy, May 5–8, 2003, (SAT 2003), informal proceedings,
pages 231–238, 2003.

[8] S. Malik. Analysis of cyclic combinatorial circuits. IEEE Transactions on
Computer Aided Design, 13(7):950–956, 1994.

[9] N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with re-
spect to Horn and binary clauses. In H. Hoos and D. G. Mitchell, editors,
Seventh International Conference on Theory and Applications of Satisfi-
ability Testing, 10–13 May, 2004, Vancouver, BC, Canada (SAT 2004),
informal proceedings, pages 96–103, 2004.

[10] Y. Ruan, H. A. Kautz, and E. Horvitz. The backdoor key: A path to
understanding problem hardness. In D. L. McGuinness and G. Ferguson,
editors, Proceedings of the 19th National Conference on Artificial Intelli-
gence, 16th Conference on Innovative Applications of Artificial Intelligence,
pages 124–130. AAAI Press / The MIT Press, 2004.

[11] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complex-
ity. In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2003, pages
1173–1178. Morgan Kaufmann, 2003.

[12] R. Williams, C. Gomes, and B. Selman. On the connections between back-
doors, restarts, and heavy-tailedness in combinatorial search. In Sixth In-
ternational Conference on Theory and Applications of Satisfiability Testing,
S. Margherita Ligure, Portofino, Italy, May 5-8, 2003 (SAT 2003), infor-
mal proceedings, pages 222–230, 2003.

15


