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Abstract Geometry Constructions Language (gcl) is a language for explicit descrip-

tions of constructions in Euclidean plane and of their properties. Other mathematical

objects can also be described in the language. The language gcl is intuitive and sim-

ple, yet it supports arrays, flow control structures, user-defined procedures, etc. The

processors for the gcl language — applications gclc and Wingclc— enable visu-

alization of described objects and producing of mathematical illustrations, provide

different semantical information and support for automated proving of properties of

the constructed objects. These features make the tools gclc and Wingclc powerful

mechanized geometry systems and they have thousands of users worldwide.

Keywords Geometric Constructions · Dynamic Geometry Software · Automated

Geometry Theorem Proving

1 Introduction

Euclidean geometry and geometric constructions have important role in mathemat-

ics and in mathematical education for thousands of years. In twentieth century, there

was a shift from classical, synthetic geometry in favor of algebraic geometry in univer-

sity education. However, synthetic geometry still holds a very important position in

lower levels of mathematical education and also, in recent years, it has been making a

comeback to university education, thanks to important applications in computer-aided

design, computer graphics, computer vision, robotics, etc.

There is a range of geometry software tools, covering different geometries and ge-

ometry problems. Many of them focus on Euclidean geometry and on construction

problems. These problems are very suitable for interactive work and animations, typ-

ical for dynamic geometry software (e.g., Cinderella, Geometer’s Sketchpad, Cabri).

In dynamic geometry software, the user can create and manipulate geometric con-

structions. Typically, the user starts a construction with several points, construct new

objects depending on the existing ones, and then move the starting points to explore
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how the whole construction changes. Dynamic geometry software can help teachers to

illustrate and students to explore and understand abstract concepts in geometry. In

addition, dynamic geometry software can be used for producing digital mathematical

illustrations. In most of these tools, the user uses a graphical user interface, tools from

toolbars, and the point-and-click approach for describing geometric constructions step-

by-step. The alternative is describing constructions explicitly, in a suitable geometric

language. The language gcl is one such language.

The basic idea behind the gcl language is that geometric constructions are for-

mal procedures made of abstract steps, rather than drawings, and that the abstract

(i.e., formal, axiomatic) nature of geometric objects has to be distinguished from their

semantics, usual models, and visualizations. Therefore, in gcl one describes construc-

tions, rather than draws figures.1 The figure descriptions are declarative and concise

descriptions of mathematical contents and from them corresponding illustrations can

be generated.

The primary focus of the first versions of the language gcl and its processor gclc

was producing digital illustrations of Euclidean constructions in LATEX form (hence the

name “Geometric Constructions → LATEX Converter”), but now it is much more than

that. For instance, there is support for symbolic expressions, for parametric curves

and surfaces, for drawing functions, graphs, and trees, support for flow control, etc.

Libraries of gcl procedures provide additional features, such as support for hyperbolic

geometry. Complex geometry theorems can be expressed in gcl and proved by the auto-

mated geometry theorem provers built into gclc. So, gclc now provides mathematical

contents directly linked to visual representation and supported by machine–generated

proofs and, hence, can serve as a powerful mechanized geometry assistant. Wingclc

is a dynamic geometry tool built on top of gclc with a graphical user interface and a

range of additional functionalities.

The language gcl and its processors gclc and Wingclc are under constant de-

velopment since 1996. The language has been only the subject of extensions, so the

full vertical compatibility is kept with the earliest versions. There are command-line

versions of gclc for Windows and for Linux. A version with a graphical user-friendly in-

terface is available only for Windows. The applications gclc and Wingclc are accom-

panied by a detailed user manual and are freely available from http://www.matf.bg.

ac.rs/~janicic/gclc and from emis (The European Mathematical Information Ser-

vice) servers (http://www.emis.de/misc/index.html). They have thousands of users

worldwide and their main areas of applications are in:

– publishing, i.e., in producing digital mathematical illustrations;

– storing mathematical contents;

– mathematical education;

– studies of automated geometric reasoning.

Various aspects of gcl, gclc, and Wingclc are described in publications referred

to in the following text, in appropriate parts.

Overview of the paper. The rest of the paper is organized as follows: Section 2 briefly

introduces Euclidean geometric constructions, Section 3 describes the geometry con-

structions language gcl, while Section 4 describes its processors, Section 5 reviews

1 In a sense, this approach is in spirit close to the approach used in the TEX/LATEX system
[21,23]. Within the TEX/LATEX system, authors (explicitly) describe the layout of their texts.
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main areas of applications of gcl and its processors, and Section 6 discusses related

languages and tools. In Section 7 we draw final conclusions and we briefly discuss

further development of the language gcl and its processors.

2 Geometric Constructions

A geometric construction is a sequence of specific, primitive construction steps. These

primitive construction steps are also called elementary constructions by ruler and com-

pass and they are:

– construction (by ruler) of a line such that two given points belong to it;

– construction of a point such that it is the intersection of two lines (if such a point

exists);

– construction (by compass) of a circle such that its center is one given point and

such that the second given point belongs to it;

– construction of intersections between a given line and a given circle (if such points

exist).

– construction of intersections between two given circles (if such points exist).

By using this set of primitive constructions, one can define more involved, com-

pound constructions (e.g., construction of right angle, construction of the midpoint of

a segment, construction of the perpendicular bisector of a segment, etc.). In order to

describe geometric constructions, it is usual to use higher level constructions as well as

the primitive ones.

3 gcl Language

The syntax of the gcl language is very simple and intuitive. It is a high-level language

designed for mathematicians and not a machine-oriented script language (which are

used internally in some geometry tools). Descriptions of mathematical objects by gcl

commands are easily comprehensible to mathematicians and, in the same time, gcl

commands enable describing very complex objects in a very few lines. All primitive con-

structions by ruler and compass and a range of higher-level constructions and isometric

transformations are supported in the language. In addition, some objects that are not

constructible by ruler and compass (for instance, the image of a point in rotation for

the angle of 1◦) can also be used.

In order to reduce syntactic overhead and to improve simplicity and readability,

the language gcl is format-free (i.e., line-terminations and multiple white spaces are

ignored), there are no command separators/terminators, arguments of commands are

separated by white spaces, and the use of brackets is very limited. There are several

types: number (for real numbers), point, line, circle, conic (all for objects in Euclidean

plane). Again for the sake of simplicity, the language is dynamically typed, i.e., vari-

ables are not declared and can change their types during program execution. Elements

of one array may have different types. There is support for arrays and there are flow

control structures if-then-else and while-loop, sufficient for the language gcl to be

computationally complete (in a sense in which, for instance, the languages C or Pascal

are computationally complete). There is support for user-defined procedures and pa-

rameters are always passed by reference (so one procedure can return several results),
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unless they are numerical constants. Other gcl files (for instance, containing libraries

of some procedures) can be included.

An extract of the EBNF description of gcl is given in Figure 1. There are around

150 elementary commands, but they are intuitive, so fundamentals of the language can

be acquired in a very short time.

Some gcl commands are aimed at describing a content (geometrical or other math-

ematical objects), while some are aimed at describing a presentation (i.e., visualization

of the described objects). According to their semantics, gcl commands can be divided

into the following groups:

Basic definitions: commands for introducing points, for defining a line on the basis of

two selected points, for defining a circle, a numerical constant, etc.

Basic constructions: constructions of intersection points for two lines, for a line and a

circle, construction of the midpoint of a given segment, the bisector of an angle,

the perpendicular bisector of a segment, the line passing through a given point and

perpendicular to a given line; the line passing through a given point and parallel

to a given line, etc.

Transformations: commands for translation, rotation, line-symmetry, half-turn, and

also for some non-isometric transformations like scaling, circle inversion, etc.

Calculations, expressions, and flow control structures: commands for calculating an-

gles determined by triples of points, distances between points, for generating (pseudo)-

random numbers, for calculating symbolic expressions, support for if-then-else

structures and while-loops, etc.

Drawing commands: commands for drawing (in various modes) lines, line segments,

circles, arcs, ellipses, etc.

Labelling and printing commands: commands for labelling and marking points, and

for printing text;

Cartesian commands: commands for direct access to a user–defined Cartesian system.

A user can define a system, its unit, and, within it, he/she can define points, lines,

conics, tangents, curves given in parametric form, etc. A similar support is available

for 3D Cartesian space.

Low level commands: commands for changing line thickness, color, clipping area, figure

dimensions, etc.

Commands for describing animations: commands for specifying animations. Several

points can simultaneously move from one position to another and points can be

traced (i.e., a loci can be specified).

Commands for automated geometry theorem proving: commands for specifying a ge-

ometry conjecture, a level of proof details, a maximal number of proof steps, and

a time limit.

A simple example of a gcl program, with one geometry conjecture, is given in

Figure 2.

As in all geometry tools, descriptions of constructions in gcl include several (usu-

ally very few) starting points and other points and construction steps dependent on

these starting points. The starting points are usually referred to as free points as they

do not depend on other points. While an Euclidean construction is an abstract proce-

dure, there is its counterpart in the standard Cartesian model that can be visualized. In

order to visualize a described construction, its free points should be assigned concrete

Cartesian plane coordinates. In the given example, one has to select three particular
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〈GCL program〉 ::= (〈statement block〉
| 〈procedure definition〉
| 〈include directive〉)∗

〈statement block〉 ::= (〈statement〉)∗

〈statement〉 ::= 〈elementary command〉
| while "{" 〈condition〉 "}"

"{" 〈statement block〉 "}"
| if-then-else "{" 〈condition〉 "}"

"{" 〈statement block〉 "}"
"{" 〈statement block〉 "}"

| call 〈identifier〉 "{" 〈parameter list〉 "}"

〈elementary command〉 ::= point 〈identifier〉 〈number〉 〈number〉
| line 〈identifier〉 〈identifier〉 〈identifier〉
| circle 〈identifier〉 〈identifier〉 〈identifier〉
| array 〈identifier〉 "{" (〈number〉)∗ "}"
. . .

| intersection 〈identifier〉 〈identifier〉 〈identifier〉
| midpoint 〈identifier〉 〈identifier〉 〈identifier〉
| bisector 〈identifier〉 〈identifier〉 〈identifier〉 〈identifier〉
| perp 〈identifier〉 〈identifier〉 〈identifier〉
. . .

| translate 〈identifier〉 〈identifier〉 〈identifier〉 〈identifier〉
| rotate 〈identifier〉 〈identifier〉 〈number〉 〈identifier〉
| towards 〈identifier〉 〈identifier〉 〈identifier〉 〈number〉
| oncircle 〈identifier〉 〈identifier〉 〈identifier〉
. . .

| getx 〈identifier〉 〈identifier〉
| distance 〈identifier〉 〈identifier〉 〈identifier〉
| angle 〈identifier〉 〈identifier〉 〈identifier〉 〈identifier〉
| random 〈identifier〉
| expression 〈identifier〉 "{" 〈expression〉"}"
. . .

| drawsegment 〈identifier〉 〈identifier〉
| drawline 〈identifier〉
| drawarc 〈identifier〉 〈identifier〉 〈number〉
| filltriangle 〈identifier〉 〈identifier〉 〈identifier〉
| drawbezier3 〈identifier〉 〈identifier〉 〈identifier〉
| drawtree 〈identifier〉 〈number〉 〈number〉 〈number〉 〈number〉

〈tree description〉
| drawgraph a 〈identifier〉 〈number〉 〈number〉

〈list of nodes〉 〈list of edges〉
. . .

| mark lt 〈identifier〉
| cmark lt 〈identifier〉
| printat lt 〈identifier〉 "{" 〈text〉) "}"
. . .

| dim 〈number〉 〈number〉
| color 〈number〉 〈number〉 〈number〉
| fontsize 〈number〉
| linethickness 〈number〉
. . .

〈procedure definition〉 ::= procedure 〈identifier〉 "{" 〈parameter list〉 "}"
"{" 〈statement block〉 "}"

〈include directive〉 ::= 〈include〉 〈file name〉

Fig. 1 An extract of the EBNF description of the language gcl
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Cartesian points as vertices of the triangle. The similar approach is used for describing

other mathematical objects.

Figure 3 illustrates the use of libraries of procedures in gcl, in this case — support

for Poincare’s disc model of hyperbolic plane (provided by another, 300 lines long gcl

file). Figure 4 illustrates the use of flow control structures and recursive procedures

in gcl. Figure 5 illustrates the support for Cartesian system and parametric curves.

More gcl examples can be found in [16].

% free points

point A 10 10

point B 40 10

point C 30 40

% perpendicular bisectors of the sides

med a B C

med b A C

med c B A

% intersections of the bisectors

intersec O 1 a b

intersec O 2 a c

% labelling the points

cmark lb A

cmark rb B

cmark t C

cmark lt O 1
cmark rt O 2

% drawing the sides of the triangle ABC

drawsegment A B

drawsegment A C
drawsegment B C

% drawing the circumcircle of the triangle

drawcircle O 1 A

% specifying a conjecture

prove { identical O 1 O 2 }

A B

C

O1 O2

Fig. 2 Example of a gcl description of a geometric construction and a conjecture (left) and
the corresponding (LATEX) output (right)

3.1 Specifying Geometry Conjectures

In gcl, a geometry conjecture is not expressed explicitly in terms of first-order logic,

but by the description of a construction itself and by a given goal. Conjectures, given

in this form, are universally quantified sentences in the underlying theory of Euclidean

geometry with theory of real numbers.

For the construction shown in Figure 2, for any particular three non-collinear points

A, B, and C, the points O_1 and O_2 (pairwise intersections of the perpendicular bisec-

tors of the sides) are identical. This statement relies only on the specification of the
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% include support for Poincare’s disk model

include hyp.gcl

point O 25 25

point X 45 25

circle k O X

call h drawabsolute { O k }

point P 10 20

point Q 12 31

point R 30 10

cmark l P

cmark lt Q

cmark b R

call h-drawsegment { O k P Q }
call h-drawsegment { O k Q R }
call h-drawsegment { O k P R }

call h-med { a O k P Q }
call h-med { a1 O k P R }
call h-intersec { X O k a a1 }
call h-drawcircle { O k X P }

P

Q

R

Fig. 3 A gcl description of a geometric construction in hyperbolic plane (left) and the cor-
responding illustration in Poincare’s disc model (right)

procedure Koch { A B n }
{

if then else { n>0 }
{

expression r { 1/3 }
towards C A B r

towards E B A r

rotate D C -120 A
expression n’ { n-1 }
call Koch { A C n’ }
call Koch { C D n’ }
call Koch { D E n’ }
call Koch { E B n’ }

}
{

drawsegment A B

}
}

point A 0 10

point B 40 10

call Koch { A B 6 }

Fig. 4 A gcl description of Koch’s curve (left) and the corresponding (LATEX) output (right)

construction and not on specific Cartesian coordinates of the points (used only for vi-

sualization). The goal of the statement is expressed in gcl by the following command:

prove { identical O 1 O 2 }

Generally, a conjecture can be either of one of the basic sorts, such as the one

above (see also below), or it can be of the form L = R, where L and R are expressions
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ang picture 3 3 49 49

ang origin 20 20

ang unit 6

ang drawsystem a

ang draw parametric curve x

{-2.5; x<4; x+0.05}
{ x; sin(pow(x,2))*cos(x) }

% polar coordinates

number rho 2

ang draw parametric curve phi

{ 0 ; phi<6; phi+0.1}
{ phi*rho*sin(phi)/5 ;

rho*cos(phi) }

0 1 2 3 4−1−2

1

2

3

4

−1

−2

x

y

Fig. 5 A gcl description of two parametric curves (left) and the corresponding (LATEX) output
(right)

over geometric quantities (quantities used in the area method for automated theorem

proving [7,8]). The following geometric quantities are used:

ratio of directed segments: for four collinear points P , Q, A, and B such that A 6= B,

it is the ratio PQ

AB
;

signed area: it is the signed area SABC of a triangle ABC or the signed area SABCD

of a quadrilateral ABCD;

Pythagoras difference: for three points, PABC is defined as follows:

PABC = AB
2 + CB

2 − AC
2

.

For four points, PABCD is defined as follows:

PABCD = PABD − PCBD .

real number: it is a constant real number.

Geometric quantities can be combined together into more complex terms by op-

erators for addition, multiplication and division (written in prefix form as sum, mult,

ratio). For instance, the conjecture (corresponding to Ceva’s theorem):

((

AF

FB
·
BD

DC

)

·
CE

EA

)

= 1

is written in the following way:

prove { equal { mult { mult { sratio A F F B }

{ sratio B D D C } }

{ sratio C E E A } }

1 }

All supported geometry conjectures of basic sorts can also be stated in terms of

geometric quantities, as shown in the following table:



9

gcl specifications semantics expressed in terms of

of basic conjectures geometric quantities

identical A B points A and B are identical PABA = 0

collinear A B C points A, B, C are collinear SABC = 0

perpendicular A B C D AB is perpendicular to CD PACD = PBCD

parallel A B C D AB is parallel to CD SACD = SBCD

midpoint O A B O is the midpoint of AB AO

OB
= 1

same_length A B C D AB has the same length as CD PABA = PCDC

harmonic A B C D points A, B, C, D are harmonic AC

CB
= DA

DB

A conjecture may involve geometric quantities only over objects already introduced

within the current construction.

More details on specifying geometry conjectures can be found in [32].

3.2 xml Interchange Format

There is a xml counterpart of a fragment of the language gcl — of a core of the

language covering geometric constructions [33]. This format is designed with motivation

to serve as an interchange format for different geometry tools. The format is supported

by a suite of tools including:2

– converters from gcl and the language Eukleides3 to xml-based format; these con-

verters were implemented in the programming language C/C++;

– converters from xml-based format to gcl and the language Eukleides; these con-

verters were implemented as xslt files;

– a converter from xml-based format to a html form; this converter was implemented

as a xslt file;

– a converter from xml-based format to a natural language form (currently, only for

English language); this converter was implemented as a xslt file;

– a tool for generating figures in svg format on the basis of gcl code; this tool was

implemented in the programming language C++;

– newly defined xml-based format for representing proofs of properties of geometric

constructions with a corresponding dtd; the format is adapted for the methods

supported by gclc;

– tools for exporting proofs from automated theorem provers to xml-based form

(there is support for all theorem provers built into gclc); these tools were imple-

mented in the programming language C++;

– a converter for proofs from xml-based form to a simple, readable html form; this

converter was implemented as a xslt file.

This suite is suitable for storing geometric constructions, theorems, and proofs and

presenting them on Internet, as demonstrated by the repository GeoThms4 [31]. More

details on this suite and the xml-based formats can be found in [33].

2 Note that the format and the listed tools (except export to svg) deal only with textual
descriptions of constructions and not with figures.

3 See more about the language Eukleides in Sec. 6.
4 http://hilbert.mat.uc.pt/~geothms
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4 gcl Processor

The tool gclc is a processor for the gcl language. It compiles a gcl document and gen-

erates a corresponding visual output description in intermediate low-level data struc-

tures. This representation consists of simple primitives, such as drawing line segments,

circles, and text printing, and can be simply exported to different formats. Thanks to

the object-oriented design, processors for other geometric or visual languages can be

simply plugged in to use the intermediate format. Also, support for additional export

formats can be easily added.

The command-line application gclc takes a gcl document and a list of parame-

ters as input. If there is an error in the gcl code, gclc reports it. Otherwise, gclc

produces images in selected formats and generates a log file with Cartesian values of

all constructed objects. If there is a geometry conjecture given in the gcl document,

then gclc invokes the selected automated theorem prover and exports its output to

LATEX or xml form.

gclc is implemented in standard C++, consists of around 1Mb or 40000 lines of

code. The executable versions both for Linux and Windows have less than 1Mb.

4.1 Built-in Theorem Provers

The system gclc has three geometry theorem provers for Euclidean constructive the-

orems built in (for a survey of automated deduction in geometry, see, for instance

[26]):

– a theorem prover based on the area method [7,8].5 This method belongs to the

group of semi-algebraic methods. It produces human-readable proofs (still not tra-

ditional, synthetic proofs), with a clear justification for each proof step. The con-

jecture is expressed by an equality of expressions in geometric quantities. Along the

proof, this equality is transformed step-by-step, until it becomes trivial. For more

details about this prover, see [17].

– theorem provers based on the Gröbner bases method and on the Wu’s method.6

These methods belong to the group of algebraic methods. For more details about

these provers, see [29].

The provers are tightly integrated in gclc. This means that one can use the prover

to reason about a gcl construction without changing and adapting the description

of the construction for the deduction process — only the geometry conjecture has to

be provided within the prove command (see the example in Figure 2). By this, gclc

directly links geometric contents, visual information, and machine–generated proofs.

All conjectures are internally transformed into statements in terms of geometric

quantities. The theorem provers consider only abstract specification of the conjecture

and do not consider Cartesian values of the points involved (they are used only for

visualization). The proofs, given in terms of the supported methods (as yet, there are no

object-level proofs, verifiable by theorem proving assistants), can be exported to LATEX

5 This theorem prover was developed in collaboration with Pedro Quaresma from University
of Coimbra.

6 These theorem provers were developed in collaboration with Goran Predović from Univer-
sity of Belgrade.
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or to xml form, with explanations for each proof step. Proofs are also accompanied by

semantical counterparts — as a check whether a conjecture is valid in the specific case,

determined by the given Cartesian points.

All three provers can prove hundreds of complex geometry theorems very efficiently,

usually in only milliseconds (for a selection of proved theorems, see, for instance, a

repository GeoThms [31]).

4.2 Syntactical, Semantical, and Deductive Checks

The gcl processor detects syntactical errors in input gcl files. The processor can also

detect semantical errors — situations when, for a given concrete set of geometrical

objects, a construction step is not possible. For instance, in the construction shown in

Figure 2, it is impossible to construct a line O1O2, since the points O1 and O2 are

identical. Moreover, in this example, construction of the line O1O2 is always illegal (for

any Cartesian coordinates of the free points) and it can be deductively shown. When

gclc encounters a construction step that is semantically invalid (e.g., two identical

points do not determine a line), it reports that the step is illegal with respect to a

given set of free points. Then, it automatically invokes the theorem prover to check if a

construction step is geometrically sound, i.e., if it is possible in general case. The prover

is ran on the critical conjecture (e.g., it tries to prove that two points are identical)

and, if successful, it reports that the construction step is always illegal/impossible.

By this verification mechanism, the deductive nature of geometry conjectures and

proofs are linked to the semantic nature of models of geometry and, also, to human

intuition and geometric visualizations. As we are aware of, gclc is the only geometry

tool with such a verification system. Some related mechanisms are discussed in Sec. 6.

More details on verification of regular constructions within gclc can be found in

[19].

4.3 Graphical User Interface

Wingclc is a Microsoft Windows application that provides graphical user interface to

gclc (as yet, there is no version with a graphical user interface for Linux). Descriptions

in the gcl language are edited in an integrated syntax coloring editor and can be

visualized within an internal viewer.

Wingclc has a range of interactive functionalities and tools typical for dynamic

geometry software. Some of them are watch window for monitoring values of selected

constructed objects in Cartesian plane (so Wingclc can work as a geometric calcu-

lator), tools for interactive moving of free points, updating figures, animations, etc.

Wingclc has also functionalities for locating errors in the gcl code and for listing

logs for gcl documents.

Figure 6 illustrates some of the mentioned tools and features (loci, animations,

watch windows, etc.). More details on the graphical user interface of Wingclc can be

found in [20].
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Fig. 6 Trace and watch windows in Wingclc

4.4 Export Formats

Figures described in the gcl language can be exported by the tool gclc to a range of

vector formats: a simple LATEX format, a LATEX format based on the package pstricks,

a LATEX format based on the package TikZ, eps (Encapsulated PostScript), and svg

(Scalable Vector Format). In all exported files there are comments for all commands,

so the files are readable and can be a subject of post-editing if necessary. In addition,

in Wingclc there is support for the bitmap format.

5 Areas of Applications

Four main areas of application for the language gcl and its processors are in: publish-

ing (i.e., producing digital mathematical illustrations), storing mathematical contents,

mathematical education, and studies of automated reasoning in geometry.

5.1 Producing Digital Illustrations

gclc can serve as a tool for making digital mathematical illustrations of high quality.

Figures in LATEX format produced by gclc can be included directly in LATEX docu-

ments and they use LATEX fonts and formulae which is often essential for high quality

illustrations in LATEX documents (while this is a problem for many other formats and

tools). Figures in svg format are suitable for web-publication. Generated figures in

all formats are suitable for different sorts of postprocessing and conversions to other

formats. gclc has been used for producing digital illustrations for a number of math-

ematical books and journal articles.
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5.2 Storing Mathematical Contents

A lot of mathematical contents, both in education and in research, is of visual nature.

Mathematical illustrations carry mathematical messages that are represented visually

rather than in textual or numerical form. Such messages are, usually, better understand-

able to a reader when represented visually. On the other hand, this visual information

is typically not mathematically rigorous; it is usually approximation and/or interpre-

tation of some mathematical objects, notions, concepts, numerical data, proofs, ideas,

etc. It is assumed that the reader (with a support from the given textual explana-

tions, earlier experience and mathematical background, intuition, etc.) can understand

the correct mathematical message from the illustration and can interpret the visual

information in terms of formal mathematical information. However, that information

cannot always be reproduced from the illustration itself. In addition, a mathematician,

the author or a reader of a mathematical text, may need to alter an image, to modify

some of its characteristics, to make it more general or more specific, and also to store

it in a way that enables these sorts of transformations.

A complex geometric construction may be illustrated by an image and can make

the understanding of the mathematical text easier. However, as in the wider context

of mathematics, without a given context and textual explanations of the construc-

tions, it is unlikely that one can guess the correct specification of the construction.

In addition, the Cartesian interpretation of Euclidean geometry is just one of possible

interpretations and, hence, potentially misses some of the abstract geometric meaning.

Therefore, an image itself does not provide precise geometric message, so it is better

to have a formal figure description, rather than mathematical illustration itself. Math-

ematical contents stored in this way is easy to understand, visualize, maintain, modify

and process in different ways.

The language gcl and its processors have been developed along the lines of the

given motivation. In gcl, figure descriptions are declarative, precise and concise de-

scriptions of mathematical contents and from them corresponding illustrations can be

generated. This way, the gcl language is a mean for storing mathematical contents of

visual nature in textual form.7

More details on storing mathematical contents and other mathematical knowledge

management aspects of the gcl language and its processors are discussed in [30].

5.3 Mathematical Education

In mathematical education, students can interactively use gclc to make different at-

tempts in making constructions and/or exploring some mathematical (especially ge-

ometrical) objects, notions, ideas, problems, proofs, properties, etc. [10]. Rigorously

describing geometry objects is similar to programming, so construction problems can

help students skilled in programming to understand geometry, while they can also help

students acquainted with geometry and construction problems to understand program-

ming, and this applies to various education levels. Visualizations and interactive work

7 Although all supported picture formats have their advantages, gcl figures are typically
stored in their original, source form. This form is not only precise and sufficient for produc-
ing pictures, but also very concise: for instance, all figures from a university book with 120
illustrated geometry problems [18] have together (in uncompressed, gcl form) around 100Kb.
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make teaching and studying geometry more interesting and more fruitful. The built-in

theorem provers can help students link semantical and deductive aspects of geometry.

The language gcl and its processors are taught in a number of high-school and

university courses on geometry and on technical writing.8 Due to the abstraction level

required for describing constructions, the language gcl and its processors are not very

suitable for use in primary schools.

More details on educational aspects of the gcl language can be found in [10].

5.4 Studies in Automated Reasoning in Geometry

The language gcl is expressible enough to cover a wide range of theorems in Euclidean

plane geometry. The gcl processor, the tool gclc has three powerful automated the-

orem provers built-in. Despite the fact that all these theorem provers are well-known,

widely accepted, and popular (they are probably the three most successful methods

for automated theorem proving in Euclidean geometry)9 there are just a few imple-

mentations. Given that the implementation of these methods within gclc share many

mechanisms and portions of code, gclc can serve as a workbench for testing, compar-

ing, and improving these methods, by combining them together or with some other

methods.

6 Related Languages and Tools

The tools gclc/Wingclc are related to the family of interactive geometry tools.10

Only the (commercial) tools Cabri11 and Geometer’s Sketchpad12 have history of con-

tinuous development longer than gclc/Wingclc. gclc/Wingclc share a number of

features with other geometry tools, but there are also some significant differences and

distinctive features. In this section we briefly survey related geometric languages and

tools and their features.

Languages for describing geometric constructions. All geometry tools store descriptions

of constructions in special purpose formats. Most of them are not intended to be

readable and human-editable. There are attempts at developing a common interchange

format for different geometry tools [4,33].

Many (almost all) dynamic geometry tools provide, in some form, textual descrip-

tions for the constructions that are described through the graphical interface, in the

8 Mathematical education can also be closely related to producing mathematical images
and to storing mathematical contents. For instance, Zoran Lučić with his students (Faculty of
Mathematics, University of Belgrade) produced an electronic version of a number of classical
books on geometry, including Euclid’s masterpiece — The Elements [11]. This is probably the
first edition of The Elements that includes formal, rigorous description (in the gcl language)
of all images, descriptions that directly reflect the accompanying mathematical text.

9 Wu’s method is sometimes considered as the most efficient automated theorem proving
method in all categories (not only in geometry). It is also often considered to be one of the
“four modern great Chinese inventions”, see http://www.edu.cn/20060215/3173112.shtml.
10 An overview of interactive geometry tools can be found here: http://en.wikipedia.org/
wiki/Interactive_geometry_software.
11 http://www.cabri.com/
12 http://www.dynamicgeometry.com/
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point-and-click manner. However, in these tools such descriptions are not editable and

cannot be used for two-way communication and for modifying constructions (except,

trivially, for deleting constructions steps).

Many dynamic geometry tools, including Cabri and Geometer’s Sketchpad, enable

recording construction steps and repeating them later on other given geometric objects.

Such recorded sequences of steps — macros (sometimes referred to as “scripts”) are

stored as files that are not editable and hence do not provide features of programming

languages.

For accessing constructions and properties of constructed objects, some geometry

tools enable scripting — some of them in general purpose languages, and some of them

in custom-developed languages. In that sense, the framework gcl/gclc/Wingclc is

most closely related to the special-purpose languages Eukleides and CindyScript with

their accompanying tools.

Eukleides13 (developed from 2001) is an Euclidean geometric drawing language,

with a processor eukleides (a compiler that converts descriptions of geometric figures

to LATEX or in other vector graphic formats), and a graphical user interface xeukleides

that enables interactive work. Some dynamic geometry tools (e.g., GeoProof) use Euk-

leides, as a high-level output format, suitable for modifying and for generating figures

in LATEX documents. In Eukleides, one can describe two points and their midpoint in

a very similar manner as in gcl:

A = point(0,0)

B = point(2,0)

C = barycenter(A,B)

draw(segment(A,B))

Only with Eukleides and gcl, descriptions of the constructions are stored in files exactly

the same as they were written by the user. In contrast to gcl, in Eukleides there are

no arrays, flow control structures, support for user-defined procedures, and support for

automated theorem proving.

Cinderella.214 has its custom built scripting language — CindyScript. It is designed

to allow high-level interaction with geometric constructions created in the geometric

part of the program. CindyScript is functional language, yet functions may have side

effects, affecting constructions (e.g., by drawing operations). CindyScript does not have

explicit typing of values and there are no declarations of variables and functions. Any

value of any type can be assigned to any variable. A variable is created when it is

assigned for the first time. For defining a function, the name of the function, a parameter

list, and the body have to be given, but types of arguments and return value are not

required. For entering CindyScript programs the user uses a script editor and specifies

the occasion on which the program will be executed (e.g., after every move of the

construction). Scripts can read and change most of the parameters of the elements

of a geometric construction. For instance, A.xy=(B+C)/2 sets the point A to be the

midpoint of B and C. Starting with Cinderella version 2.1, points can also be created

and destroyed on the fly from CindyScript.

Xcas15 is a computer algebra system with support for dynamic geometry. All geo-

metric instructions can be described in the custom-built programming language with

several syntax styles.

13 http://www.eukleides.org
14 http://doc.cinderella.de
15 http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
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GeoGebra16 uses JavaScript for scripting. Scripts can be used not only for changing

states of the constructed objects, but also for creating buttons for user-defined actions.

DrGeo II17 uses the Smalltalk programming language as a script language. The

language can also be used to define interactive figures. A script depends on a set of

items in the geometric figure and the returned value of the script is printed in the

drawing area.

Kig18 uses the Python scripting language. Each user-defined function creates one

new object from several existing objects and shows it. All kinds of objects can be

used in the Python code and all kinds of objects can be returned. The user selects the

arguments for the script through the graphical interface and enter a code for the script

object. For instance, the following code returns and shows the midpoint of the segment

with endpoints a and b:

def calc(a, b):

m = (a.coordinate()+b.coordinate())/2; return Point(m)

In all of the above tools (except Eukleides), support for scripting has been added

only recently and in later stages of development, following the need for easier describing

complex constructions and operations, for situations in which not even macros are suf-

ficient. As an example, Kig’s manuals reads: “if you have some fancy way of calculating

an interesting point on a conic, then instead of messing with complex constructions and

macros, you could just write down in Python code how the point is to be calculated

and then Kig will show it for you”. Difficulties with describing complex constructions

in the point-and-click manner only bring the above tools to the need of procedural de-

scriptions of constructions and operations, and hence — closer to the motivation with

which gclc was built. Still, there is a substantial difference: in the above tools, the

primary mean for describing constructions is the point-and-click approach with avail-

able buttons and menu options for various constructions steps. Instructions given by

scripts make a substantially different way of communication. Moreover, expressiveness

of scripts typically does not match the expressiveness available by the graphical inter-

face (with missing possibilities on both sides). On the other hand, in gclc/Wingclc,

there is only one, consistent and expressive way for describing constructions. Although

developing a point-and-click mode for using gcl is always an option, it is not likely that

further development will go in that direction. Namely, the main comparative strength

of gclc/Wingclc is the powerful, expressive, custom-built language. A move to the

point-and-click approach would make just yet another geometry tool in that family,

typically not-suitable for describing complex geometric configurations. Also, the largest

part of the gcl language would remain unaccessible through the graphical interface

(since there are around 150 commands) and there would still be a need for using script-

ing. In addition, there seem to be many users that prefer explicit textual descriptions

to the point-and-click approach.

Related to the gcl language is also the language Gool (an interpreter for it is still

not available) [24,25]. Gool is an object-oriented language for specifying and visualizing

geometric objects, for reasoning about their properties, and for creating interactive

documents automatically. In describing geometric objects in Gool, one has to deal with

a number of technical issues, which could be difficult for mathematicians not familiar

16 http://www.geogebra.org
17 http://wiki.laptop.org/go/DrGeo
18 http://edu.kde.org/kig/



17

with programming. Most computations in Gool will be based on algebraic methods,

which could often make geometric intuition and information lost.

Geolog19 is a logic programming language suitable for expressing geometry con-

jectures and proving them in traditional, readable manner using coherent logic [2,13].

Geoprolog is an interpreter for Geolog. The language Geolog and its interpreter do not

address presentation issues and there are no visualizations of the geometric contents

described.

There are several widely used low-level languages and vector based formats for

graphics in which geometric objects can be described. Encapsulated PostScript20 is a

graphics file format derived from PostScript with support for a number of geometric

objects. MetaPost21 is a language with interpreter, that shares Donald Knuth’s Meta-

font’s declarative syntax for manipulating lines, curves, points, and geometric trans-

formations. It produces figures in Encapsulated PostScript from geometric/algebraic

descriptions. PSTricks22 is a set of macros for describing figures directly within TEX

or LATEX code. PGF/TikZ23 is a pair of languages for producing vector graphics from

geometric/algebraic descriptions. The top-level PGF and TikZ commands are invoked

as TEX macros. The listed (and related) languages are all much lower level compared

to gcl and actually gcl can transform complex descriptions of figures into some of

the above languages, using them as export formats.

Automated proving features. While most dynamic geometry tools focus on visualizing

geometric objects and relationships, some of them also aim at checking properties of

constructed objects. Many dynamic geometry systems use numerical and some use

probabilistic methods to test geometry conjectures. Several tools go a step further

and also address properties of constructed objects in deductive terms, by employing

methods for automated theorem proving. These features are very important as they

directly link visual and semantical geometric information with deductive properties

and machine–generated proofs. We briefly review tools with automated proving and

related features.

Cinderella uses randomized theorem checking for analyzing constructions, for ex-

ample — for checking whether a new element is identical to an already existing element

[22]. It is not a symbolic, deductive theorem proving method, but a probability method

for checking whether a conjecture is likely a theorem.

GEOTHER24 is an environment that combines drawing routines and interface writ-

ten in Java with five algebraic theorem provers implemented in Maple [34]. On the bases

of the textual description of a conjecture, GEOTHER automatically produces dynamic

diagrams, i.e., assigns coordinates to the involved points in an appropriate manner.

MMP/Geometer25 automates geometric diagram generation, geometry theorem

proving, and geometry theorem discovering [14]. MMP/Geometer implements Wu’s

method, the area method, and the geometry deductive database method. Conjectures

are given in a restricted pseudo-natural language or in a point-and-click manner.

19 http://www.csupomona.edu/~jrfisher/www/geolog/
20 http://www.adobe.com/devnet/postscript/
21 http://www.tug.org/metapost.html
22 http://tug.org/PSTricks/
23 http://sourceforge.net/projects/pgf/
24 http://www-calfor.lip6.fr/~wang/GEOTHER/
25 http://www.mmrc.iss.ac.cn/~xgao/software.html
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GeoView26 is a tool that combines a dynamic geometry drawing tool GeoplanJ with

PCoq, a user interface for the general purpose theorem prover Coq [1]. The statements

of plane geometry theorems and their proofs are (manually) constructed and then

verified within Coq theorem prover. Dynamic geometry figures can be automatically

generated from PCoq theorem statements.

Discover and related tools webDiscovery and GDI, combine a dynamic geometry

environment with computer algebra systems, such as CoCoA and Mathematica, and

are capable of loci generation, automated theorem proving, and automatic discovery in

Euclidean geometry [3,5,6]. For a user-defined geometric construction, conditions for

some property to hold can be automatically derived, using algebraic theorem proving

methods (e.g., Gröbner basis method). Also, the system offers an interactive way for

investigating and conjecturing in geometry.

Geometry Explorer is a dynamic geometry tool that produces human-readable

proofs of properties of constructed objects, using the full-angle method [35]. It can

produce diagrammatic proof visualizations that aim to be more intuitive than textual

proofs.

GeoProof 27 is an interactive geometry tool that can communicate with the Coq

proof assistant to perform interactive proofs of geometry theorems [27,28]. It can also

use automatic theorem provers based on the area method, Wu’s method, and Gröbner

basis method for generating formal, verifiable proofs. User-defined constructions are

automatically translated into Coq’s syntax.

Geometry Expert28 (GEX) is a dynamic geometry tool focused on automated the-

orem proving and it implements Wu’s, Gröbner basis, vector, full angle, and the area

methods [9]. Java Geometry Expert29 (JGEX), under development from 2004, is a

new, Java version of GEX [36]. JGEX combines dynamic geometry, automated geome-

try theorem proving, and, as its most distinctive part, visual dynamic presentation of

proofs. It provides a series of visual effects for presentation of proofs and proofs can

be visualized either manually or automatically. Within the program distribution, there

are more than six hundred examples of proofs.

Theorema is a general mathematical tool with support for several methods for

automated proving of theorems in geometry [12].

All of the above tools with deductive mechanisms (all the listed tools except Cin-

derella) were built with focus on automated theorem proving and available support

for constructions and visualization typically directly reflect their proving capabilities.

gclc/Wingclc was built to have a wider scope (automated theorem proving capabili-

ties were added in later stages of development) and has a richer support for visualizing

mathematical, not only geometrical, objects.

In the above tools, geometry conjectures are given either following constructions

described in the point-and-click manner, or as formal statements that do not address

presentation issues. None of these tools uses a language such as gcl in which conjectures

are given within a single specification that describes both geometric contents and the

presentation issues.

Unlike some of the listed tools, in gcl/Wingclc there is no support for interactive

proofs and for visualization of proofs (generated either manually or automatically). In

26 http://www-sop.inria.fr/lemme/geoview/geoview.html
27 http://home.gna.org/geoproof/
28 http://www.mmrc.iss.ac.cn/gex/
29 http://woody.cs.wichita.edu/
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gcl/Wingclc there is no support for discovering properties of constructed objects.

Also, proofs that produce gclc are not verifiable by general theorem proving systems.

Additional features. Most of the dynamic geometry tools focus on Euclidean geometry.

However, some of them have also support for other geometries or for other fields of

mathematics and physics. For example, C.a.R.30 has support for hyperbolic and elliptic

geometry. Cinderella.2 has native support for projective and hyperbolic geometry, but

also provides an environment for doing interactive physics experiments. gclc provides

support for hyperbolic geometry (for Poincaré’s disc model) via the library of gcl

functions and, similarly, can provide support for other theories. In gcl, there are also

features that go beyond Euclidean and analytical geometry. For instance, in gclc

there is support for visualizing functions, graphs, trees, etc., so gclc can substitute a

wide range of tools for producing mathematical illustrations and can serve as a general

mathematical illustration tool.

Some tools, like GeoGebra, can deal with algebraic expressions and perform sym-

bolic computations, including finding derivatives and integrals of functions [15]. Some

tools, like C.a.R., can perform a range of numeric computations, including numeric

integration. gclc provides support for simple calculations (including, for example,

trigonometric functions). Symbolic algebraic computations (like computing Gröbner

bases) are used by the theorem provers, but are not accessible to the user.

Some geometry tools have multilingual support (e.g., Cabri, C.a.R, Cinderella,

Euklides, GeoGebra, Kig, KSEG31). There is only the English version of gclc/Win-

gclc.

Most (if not all) dynamic geometry tools provide support for various export formats,

and many of them have support for LATEX. In gclc, there is currently support for three

LATEX-based formats and the user can use the full power or LATEX in labelling objects

and printing text and, hence, have high-quality digital illustrations.

7 Conclusions and Future Work

We presented the Geometry Constructions Language (gcl), a language for explicit

describing constructions in Euclidean plane and their properties. The basic idea behind

the gcl language is that geometric constructions are formal procedures, rather than

drawings. Therefore, in gcl, one explicitly describes constructions and figures, rather

than draws figures.

After years of development, the gcl processor gclc is much more than a geometry

and visualization tool. There is support for symbolic expressions, for parametric curves

and surfaces, for flow control, etc. The built-in theorem provers can automatically

prove a number of complex geometry theorems. Wingclc is an interactive version

of gclc, a dynamic mathematical tool with a range of functionalities. These features

make the tools gclc and Wingclc powerful mechanized geometry systems, with the

main applications in producing digital mathematical illustrations, storing mathematical

contents, mathematical education, and in studies of automated reasoning in geometry.

The systems are publicly available and have thousands of users worldwide

30 http://mathsrv.ku-eichstaett.de/MGF/homes/grothman/java/zirkel/doc_en/
31 http://www.mit.edu/~ibaran/kseg.html
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Modern mathematical tools have to combine powerful support for visualization,

symbolic and numerical calculations, and for automated theorem proving. The tools

gclc and Wingclc aim at this direction. Possible directions for further development of

the language gcl and its processors are in: improving support for symbolic and numeric

calculations (e.g., adding support for symbolic derivations, numeric integration, etc.), in

developing new theorem provers, able to generate human-readable proofs (e.g., based

on coherent logic [2,13]), in developing tools for automated solving of construction

problems, and in developing support for automated discovery of geometry theorems.

Acknowledgements. I am grateful to the anonymous reviewers, to Pedro Quaresma,

and to Julien Narboux for comments made on earlier versions of this paper.

References

1. Yves Bertot, Frédérique Guilhot, and Loic Pottier. Visualizing geometrical statements
with geoview. Electr. Notes Theor. Comput. Sci., 103:49–65, 2004.

2. Marc Bezem and Thierry Coquand. Automating coherent logic. In Geoff Sutcliffe and An-
drei Voronkov, editors, 12th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning — LPAR 2005, volume 3835 of Lecture Notes in Computer
Science. Springer-Verlag, 2005.

3. Francisco Botana. A web-based intelligent system for geometric discovery. In International
Conference on Computational Science, volume 2657 of Lecture Notes in Computer Science,
pages 801–810. Springer, 2003.

4. Francisco Botana. Format exchange in dynamic geometry. In Workshop Intergeo-España,
2007.

5. Francisco Botana and Tomás Recio. Towards solving the dynamic geometry bottleneck
via a symbolic approach. In Automated Deduction in Geometry, volume 3763 of Lecture
Notes in Computer Science, pages 92–110. Springer, 2006.
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32. Pedro Quaresma and Predrag Janičić. Framework for the Constructive Geometry. Techni-
cal Report TR2006/001, Center for Informatics and Systems of the University of Coimbra,
2006.
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Tošić. XML-based Format for Geometry — XML-based Format for Descriptions of Ge-
ometrical Constructions and Geometrical Proofs. In J. M. Borwein, E. M. Rocha, and
J. F. Rodrigues, editors, Communicating Mathematics in Digital Era, pages 183–197. A
K Peters, Ltd. Wellesley, MA, USA, 2008.

34. Dongming Wang. Geother 1.1: Handling and proving geometric theorems automatically. In
Automated Deduction in Geometry, volume 2930 of Lecture Notes in Artificial Intelligence,
pages 194–215. Springer-Verlag, 2004.

35. Sean Wilson and Jacques Fleuriot. Combining dynamic geometry, automated geometry
theorem proving and diagrammatic proofs. In Workshop on User Interfaces for Theorem
Provers (UITP), 2005.

36. Zheng Ye, Shang-Ching Chou, and Xiao-Shan Gao. An Introduction to Java Geometry
Expert. In Automated Deduction in Geometry, 2008.


