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Automata-based Axiom PinpointingFranz Baader � Rafael Pe~naloza
the date of re
eipt and a

eptan
e should be inserted laterAbstra
t Axiom pinpointing has been introdu
ed in des
ription logi
s (DL) to helpthe user understand the reasons why 
onsequen
es hold by 
omputing minimal subsetsof the knowledge base that have the 
onsequen
e in question (MinA). Most of thepinpointing algorithms des
ribed in the DL literature are obtained as extensions oftableau-based reasoning algorithms for 
omputing 
onsequen
es from DL knowledgebases. In this paper, we show that automata-based algorithms for reasoning in DLsand other logi
s 
an also be extended to pinpointing algorithms. The idea is that thetree automaton 
onstru
ted by the automata-based approa
h 
an be transformed intoa weighted tree automaton whose so-
alled behaviour yields a pinpointing formula,i.e., a monotone Boolean formula whose minimal valuations 
orrespond to the MinAs.We also develop an approa
h for 
omputing the behaviour of a given weighted treeautomaton. We use the DL SI as well as Linear Temporal Logi
 (LTL) to illustrateour new pinpointing approa
h.1 Introdu
tionDes
ription logi
s (DLs) [2℄ are a family of logi
-based knowledge representation for-malisms, whi
h are employed in various appli
ation domains, su
h as natural languagepro
essing, 
on�guration, databases, and bio-medi
al ontologies, but their most no-table su

ess so far is the adoption of the DL-based language OWL [21℄ as standardontology language for the semanti
 web. As the size of DL-based ontologies grows,tools that support improving the quality of su
h ontologies be
ome more important.DL reasoners [20,19,38℄ 
an be used to dete
t in
onsisten
ies and to infer other impli
it
onsequen
es, su
h as subsumption relationships between 
on
epts or instan
e relation-ships between individuals and 
on
epts. However, for a developer or user of a DL-basedontology, it is often quite hard to understand why a 
ertain 
onsequen
e 
omputed bythe reasoner a
tually follows from the knowledge base. For example, in the 
urrentFirst author partially supported by NICTA, Canberra Resear
h Lab., and se
ond author fundedby the German Resear
h Foundation (DFG) under grant GRK 446.Theoreti
al Computer S
ien
e, TU Dresden, GermanyE-mail: fbaader,penalozag�t
s.inf.tu-dresden.de



2DL version of the medi
al ontology SNOMED CT,1 the 
on
ept Amputation-of-Fingeris 
lassi�ed as a sub
on
ept of Amputation-of-Arm. Finding the six axioms that areresponsible for this error [10℄ among the more than 350,000 terminologi
al axioms ofSNOMED without support by an automated reasoning tool is not easy.Axiom pinpointing [34℄ has been introdu
ed to help developers or users of DL-based ontologies understand the reasons why a 
ertain 
onsequen
e holds by 
omputingminimal subsets of the knowledge base that have the 
onsequen
e in question (MinA).There are two general approa
hes for 
omputing MinAs: the bla
k-box approa
h andthe glass-box approa
h. The most na��ve variant of the bla
k-box approa
h 
onsidersall subsets of the ontology, and 
omputes for ea
h of them whether it still has the
onsequen
e or not. More sophisti
ated versions [35,22℄ use a variant of Reiter's [32℄hitting set tree algorithm to 
ompute all MinAs. Instead of applying su
h a bla
k-boxapproa
h to a large ontology, one 
an also �rst try to �nd a small and easy to 
omputesubset of the ontology that 
ontains all MinAs, and then apply the bla
k-box approa
hto this subset [10℄. The main advantage of the bla
k-box approa
h is that it 
an useexisting highly-optimized DL reasoners un
hanged. However, it may be ne
essary to
all the reasoner an exponential number of times. In 
ontrast, the glass-box approa
htries to �nd all MinAs by a single run of a modi�ed reasoner.Most of the glass-box pinpointing algorithms des
ribed in the DL literature (e.g.,[4,34,33,27,25℄) are obtained as extensions of tableau-based reasoning algorithms [9℄for 
omputing 
onsequen
es from DL knowledge bases. The pinpointing algorithms andproofs of their 
orre
tness in these papers are given for a spe
i�
 DL and a spe
i�
type of knowledge base only, and it is not 
lear to whi
h of the known tableau-basedalgorithms for DLs the approa
hes really generalize. For example, the pinpointing ex-tension des
ribed in [25℄, whi
h 
an deal with general 
on
ept in
lusions (GCIs) inthe DL ALC, follows the approa
h introdu
ed in [4℄, but sin
e GCIs require the in-trodu
tion of so-
alled blo
king 
onditions into the tableau-based algorithm to ensuretermination [9℄, there are some new non-trivial problems to be solved.To over
ome the problem of having to design a new pinpointing extension for everytableau-based algorithm, we have introdu
ed in [5℄ a general approa
h for extendingtableau-based algorithms to pinpointing algorithms. This approa
h has, however, someannoying limitations. First, it only applies to tableau-based algorithms that terminatewithout requiring any 
y
le-
he
king me
hanism su
h as blo
king. Se
ond, terminationof the tableau-based algorithm one starts with does not ne
essarily transfer to its pin-pointing extension. Though these problems 
an, in prin
iple, be solved by restri
tingthe general framework to so-
alled forest tableaux [8,7℄, this solution makes the de�ni-tions and proofs quite 
ompli
ated and less intuitive. Also, the approa
h 
an still onlyhandle the most simple version of blo
king, usually 
alled subset blo
king in the DLliterature.In the present paper, we propose a di�erent general approa
h for obtaining glass-boxpinpointing algorithms, whi
h also applies to DLs for whi
h the termination of tableau-based algorithms requires the use of appropriate blo
king 
onditions. It is well-knownthat automata working on in�nite trees 
an often be used to 
onstru
t worst-
ase opti-mal de
ision pro
edures for su
h DLs [13,26,11,14,3℄. In this automata-based approa
h,the input inferen
e problem � is translated into a tree automaton A� , whi
h is thentested for emptiness. Basi
ally, our approa
h transforms the tree automaton A� intoa weighted tree automaton working on in�nite trees, whose so-
alled behaviour yields1 see http://www.ihtsdo.org/our-standards/



3a pinpointing formula, i.e., a monotone Boolean formula that en
odes all the MinAsof � . To obtain an a
tual pinpointing algorithm, we had to develop an algorithm for
omputing the behaviour of weighted tree automata working on in�nite trees. When westarted our work, we 
ould not �nd su
h an algorithm in the quite extensive literatureon weighted automata. In fa
t, although weighted automata working on �nite trees[37℄ and weighted automata working on in�nite words [16℄ have been 
onsidered forquite a while, the resear
h on weighted automata working on in�nite trees has startedonly re
ently [23,15℄. During the development of our work, an alternative algorithmfor 
omputing the behaviour of weighted tree automata working on in�nite trees hasindependently been developed in [15℄. It turns out, however, that using this algorithmin our pinpointing appli
ation basi
ally yields a bla
k-box approa
h for pinpointing,rather than a glass-box approa
h, as our algorithm does (see Se
tion 5.4).We will use the DL SI, whi
h extends the basi
 DL ALC [36℄ with transitiveand inverse roles, as well as Linear Temporal Logi
 (LTL) [28,17℄ to illustrate ournew pinpointing approa
h. The use of SI is, on the one hand, motivated by the fa
tthat the presen
e of inverses in SI requires tableau-based algorithms to use a blo
king
ondition that is more sophisti
ated than subset blo
king [9℄. Consequently, our generalresults on tableau-based approa
h for pinpointing [8,7℄ do not apply to this DL. On theother hand, the extension of their approa
h to SI is mentioned as an open problem in[25℄. The automata used to de
ide satis�ability in SI are so-
alled looping automata,whi
h do not use an a

eptan
e 
ondition. Our 
hoi
e of LTL as a se
ond exampleis, on the one hand, motivated by the fa
t that automata-based algorithms for LTLrequire the use of automata with a B�u
hi a

eptan
e 
ondition.2 One the other hand,we believe that pinpointing 
an also be a useful inferen
e servi
e in appli
ations ofLTL. In LTL model 
he
king [12℄, it does not make sense to 
he
k whether a systemdes
ription satis�es a given LTL formula if this formula or its negation is unsatis�able.Pinpointing 
ould help the user to �nd the reasons for the unsatis�ability and thus
orre
t the formula. In LTL synthesis [29,24℄ one tries to generate a rea
tive �nite-statesystem from a formal spe
i�
ation, whi
h is given as an LTL formula. If the formulais unsatis�able, then the spe
i�
ation is obviously faulty, and needs to be repaired.Pinpointing 
ould be used to support the repair pro
ess by 
larifying the reasons forunsatis�ability.In the next se
tion, we �rst introdu
e the DL SI and the temporal logi
 LTL, andthen re
all the relevant de�nitions regarding pinpointing. Se
tion 3 de�nes generalizedB�u
hi tree automata, their restri
tions to B�u
hi tree automata and looping tree au-tomata, and their generalization to the weighted 
ase. In Se
tion 4, we �rst presentour general approa
h for automata-based pinpointing, whi
h is based on the notion ofan axiomati
 automaton and its transformation into a pinpointing automaton. Then,we show that this approa
h 
an be applied to SI and LTL by introdu
ing axiomati
automata for these logi
s. The pinpointing automaton is a weighted automaton whosebehaviour is the pinpointing formula. Thus, to apply our approa
h in pra
ti
e, oneneeds to be able to 
ompute the behaviour of weighted generalized B�u
hi tree au-tomata. In Se
tion 5, we �rst show how to 
ompute the behaviour of weighted B�u
hitree automata. Se
ond, we explain how this 
omputation 
an be simpli�ed for the 
aseof weighted looping tree automata. For the DL SI, the pinpointing automaton 
on-2 We 
ould, of 
ourse, also have used a DL with transitive 
losure of roles [1℄ for this purpose.However, su
h DLs are until now not used in appli
ations, and we also wanted to make 
learthat our approa
h for automata-based pinpointing is not restri
ted to Des
ription Logi
s.



4stru
ted by our approa
h is su
h a weighted looping tree automaton. Third, we de�nea behaviour-preserving polynomial-time redu
tion of weighted generalized B�u
hi treeautomata to weighted B�u
hi tree automata, whi
h yields an approa
h for 
omput-ing the behaviour of weighted generalized B�u
hi tree automata. For the temporal logi
LTL, the pinpointing automaton 
onstru
ted by our approa
h is a weighted generalizedB�u
hi tree automaton. Fourth, we 
ompare our approa
h for 
omputing the behaviourof weighted B�u
hi tree automata with the one developed in [15℄. Se
tion 6 summarizesthe results of the paper and gives some perspe
tives on further resear
h.This work extends the results in [6℄ (the 
onferen
e version of this paper), whi
happly to looping automata only, to the 
ase of automata with B�u
hi a

eptan
e 
on-ditions.2 PreliminariesIn this se
tion, we �rst introdu
e the DL SI and the temporal logi
 LTL, and thenre
all the relevant de�nitions regarding pinpointing from [5℄.2.1 The Des
ription Logi
 SIAs mentioned above, SI extends the basi
 DL ALC with transitive and inverse roles.An example of a role that should be interpreted as transitive is has-des
endant, whilehas-an
estor should be interpreted as the inverse of has-des
endant. Instead of employingthe usual approa
h of \hard-
oding" inverse and transitive roles into the syntax andsemanti
s of 
on
ept des
riptions, we allow the use of inverse and transitivity axioms inthe knowledge base. This enables us to pinpoint also these kinds of axioms as reasonsfor 
ertain 
onsequen
es. Thus, the 
on
ept des
riptions that we 
onsider in this 
aseare simply ALC 
on
ept des
riptions.De�nition 1 (ALC 
on
ept des
riptions) Let NC be a set of 
on
ept names andNR a set of role names. The set of ALC 
on
ept des
riptions is the smallest set su
hthat{ all 
on
ept names are ALC 
on
ept des
riptions;{ if C and D are ALC 
on
ept des
riptions, then so are :C, C tD, and C uD;{ if C is an ALC 
on
ept des
ription and r 2 NR, then 9r:C and 8r:C are ALC
on
ept des
riptions.An interpretation is a pair I = (�I ; �I) where the domain �I is a non-empty set and�I is a fun
tion that assigns to every 
on
ept name A a set AI � �I and to every rolename r a binary relation rI � �I � �I . This fun
tion is extended to ALC 
on
eptdes
riptions as follows:{ (C uD)I = CI \DI ; (C tD)I = CI [DI ; (:C)I = �I n CI ;{ (9r:C)I = fx 2 �I j there is a y 2 �I with (x; y) 2 rI and y 2 CIg;{ (8r:C)I = fx 2 �I j for all y 2 �I , (x; y) 2 rI implies y 2 CIg.In this paper we restri
t our attention to terminologi
al knowledge, whi
h is givenby a so-
alled TBox.



5De�nition 2 (SI TBoxes) An SI TBox is a �nite set of axioms of the followingform:(i) C v D where C and D are ALC 
on
ept des
riptions (GCI);(ii) trans(r) where r 2 NR (transitivity axiom);(iii) inv(r; s), where r 6= s 2 NR (inverse axiom),su
h that every r 2 NR appears in at most one inverse axiom.An interpretation I is 
alled a model of the SI TBox T if it satis�es all axioms inT , i.e., if(i) C v D 2 T implies CI � DI ;(ii) trans(r) 2 T implies that rI is transitive;(iii) inv(r; s) 2 T implies that (x; y) 2 rI i� (y; x) 2 sI .The main inferen
e problems for terminologi
al knowledge are satis�ability andsubsumptionDe�nition 3 (satis�ability, subsumption) Let C and D be ALC 
on
ept des
rip-tions and T an SI TBox. We say that C is satis�able w.r.t. T if there is a model Iof T su
h that CI 6= ;. In this 
ase, I is also 
alled a model of C w.r.t. T . We 
allC unsatis�able w.r.t. T if it does not have a model w.r.t. T . Finally, we say that C issubsumed by D w.r.t. T if CI � DI holds in every model I of T .We want to pinpoint reasons for unsatis�ability and for subsumption. Sin
e C is sub-sumed by D w.r.t. T i� C u :D is unsatis�able w.r.t. T , it is obviously suÆ
ient todesign a pinpointing algorithm for unsatis�ability.The automata-based approa
h for de
iding (un)satis�ability uses the fa
t that anALC 
on
ept des
ription C is satis�able w.r.t. an SI TBox T i� it has a 
ertain tree-shaped model, 
alled Hintikka tree for C and T . It 
onstru
ts a looping tree automatonworking on in�nite trees whose runs are exa
tly the Hintikka trees for C and T (see[3℄ and Se
tion 4.2), and then tests this automaton for emptiness.2.2 Linear Temporal Logi
Linear Temporal Logi
 (LTL) is an extension of propositional logi
 that allows reason-ing about temporal properties, where time is seen as dis
rete and linear. The semanti
sof this logi
 use the notion of a 
omputation, whi
h intuitively 
orrespond to interpre-tations whose domain is �xed to be the set of natural numbers.De�nition 4 (LTL formulae) Let P be a set of propositional variables. The set ofLTL formulae is the smallest set su
h that{ all propositional variables are LTL formulae,{ if � and  are LTL formulae, then so are :�; � ^  ;
�, and �U .A 
omputation is a fun
tion � : N ! P(P), where N represents the set of naturalnumbers. This fun
tion is extended to LTL formulae as follows, for every i 2 N:{ :� 2 �(i) i� � =2 �(i); � ^  2 �(i) i� f�;  g � �(i);{ 
� 2 �(i) i� � 2 �(i+ 1); and



6{ �U 2 �(i) i� there is a j � i su
h that  2 �(j) and for all k; i � k < j, it holdsthat � 2 �(k).The LTL formula � is satis�able if there is a 
omputation � su
h that � 2 �(0).One is usually interested in de
iding whether a given LTL formula is satis�able ornot. Here, we will look at the satis�ability problem in a more �ne-grained manner. Weare interested in dete
ting whi
h parts of the formula a
tually 
ause the unsatis�ability.More pre
isely, we will assume that our formula is a 
onjun
tion of LTL formulae,and we want to �nd out whi
h 
onjun
ts are responsible for the unsatis�ability. Weadditionally allow some of these 
onjun
ts to be trusted in the sense that they willnever be 
onsidered as the 
auses for unsatis�ability. Thus, we 
onsider LTL formulaethat are 
onjun
tions of a stati
 formula �, whi
h must always be there, and a set ofrefutable formulae R, whi
h 
an be removed.De�nition 5 (axiomati
 satis�ability) Let � be an LTL formula and R a �nite setof LTL formulae. We say that � is a-satis�able w.r.t. R if � ^ V 2R  is satis�able,i.e., there is a 
omputation � su
h that R [ f�g � �(0). In this 
ase, � is 
alled a
omputation for (�;R).We will show in Se
tion 4.3 how one 
an 
onstru
t a B�u
hi tree automaton that hasas its su

essful runs all 
omputations for the input, thus allowing us to redu
e a-satis�ability to the emptiness problem for B�u
hi tree automata.2.3 Basi
 De�nitions for PinpointingFollowing [5℄, we de�ne pinpointing not for a spe
i�
 logi
 and inferen
e problem, butrather in a more general setting. The type of inferen
e problems that we will 
onsideris de
iding a so-
alled 
-property for a given set of axiomatized inputs. To obtain anintuitive understanding of the following de�nition, just assume that inputs are ALC
on
ept des
riptions, admissible sets of axioms are SI TBoxes, and the 
-property isunsatis�ablility.De�nition 6 (axiomatized input, 
-property) Let I and T be sets of inputs andaxioms, respe
tively, and let Padmis (T) � P�n (T) be a set of �nite subsets of T su
hthat T 2 Padmis(T) implies T 0 2 Padmis(T) for all T 0 � T . An axiomatized input forI and Padmis (T) is of the form (I; T ) where I 2 I and T 2 Padmis(T).A 
onsequen
e property (or 
-property for short) is a set P � I�Padmis (T) su
hthat (I; T ) 2 P implies (I; T 0) 2 P for every T 0 2 Padmis (T) with T 0 � T .The reason why we have introdu
ed the set Padmis(T) of admissible subsets ofT (rather than taking all �nite subsets of T ) is to allow us to impose additionalrestri
tions on the sets of axioms that must be 
onsidered. For instan
e, SI TBoxesare not arbitrary �nite sets of axioms of the form (i), (ii), and (iii) (see De�nition 2).In addition, we require that every role name appears in at most one inverse axiom.Clearly, this restri
tion satis�es our requirement for admissible sets of axioms.The problems of unsatis�ability of ALC 
on
ept des
riptions w.r.t. SI TBoxes anda-unsatis�ability of sets of LTL formulae are indeed 
-properties. More formally, let I



7
onsist of all ALC 
on
ept des
riptions, T of all GCIs, transitivity axioms, and inverseaxioms, and Padmis (T) of all SI TBoxes. The following is a 
-property:P = f(C; T ) j C is unsatis�able w.r.t. T g:Likewise, if I and T both 
onsist of all LTL formulae and Padmis(T) = P�n(T), thenP = f(�;R) j � is a-unsatis�able w.r.t. Rgis a 
-property.De�nition 7 Given an axiomatized input � = (I; T ) and a 
-property P, a set ofaxioms S � T is 
alled a minimal axiom set (MinA) for � w.r.t. P if (I;S) 2 Pand (I;S 0) =2 P for every S 0 � S. The set of all MinAs for � w.r.t. P is denoted byMINP(� ).Note that the notion of a MinA is only interesting if � 2 P; otherwise, the monotoni
ityrequirement for P entails that MINP(� ) = ;. Let us instantiate this de�nition for thetwo 
-properties we have introdu
ed above.In our SI example, 
onsider the axiomatized input � = (A u 8r:C;T ) where T
onsists ofax1: A v 9r:B; ax2: B v 8s::A; ax3: C v :B; ax4: inv(r; s) (1)It is easy to see that � 2 P, and that the set of all MinAs for � is MINP(� ) =ffax1; ax2; ax4g; fax1; ax3gg.For the logi
 LTL, 
onsider the axiomatized input � = (q;R) where R is given byax1: pU:q; ax2: 
:p; ax3: 
 q; ax4: :(
q ^ p): (2)The set of all MinAs for � is then MINP(� ) = ffax1; ax2; ax3g; fax1; ax3; ax4gg. Thus,in the LTL formula q ^ pU:q ^ 
:p ^ 
q ^ :(
q ^ p), the MinAs tell us whi
hminimal 
ombinations of the last four 
onjun
ts are responsible for unsati�ability inthe presen
e of q.One might think that pinpointing (i.e., the 
omputation of MinAs) 
an only beapplied in the LTL setting if the formula one is interested in is a large 
onjun
tion ofsmall formulae. At �rst sight, it is not 
lear how a subformula  that does not o

uras a top-level 
onjun
t 
ould be pinpointed as a 
ulprit for unsatis�ability. This is,however, possible by repla
ing su
h a subformula  by a new propositional variable p and adding the \de�nition" �(p ,  ) as a top-level 
onjun
t to the formula obtainedthis way.3Instead of 
omputing all MinAs, one 
an also 
ompute a pinpointing formula. Tode�ne this formula, we assume that every axiom t 2 T is labelled with a unique propo-sitional variable, lab(t). Let lab(T ) be the set of all propositional variables labelling anaxiom in T . A monotone Boolean formula over lab(T ) is a Boolean formula using vari-ables in lab(T ) and only the 
onne
tives 
onjun
tion and disjun
tion. In addition, the
onstants > and ?, whi
h always evaluate to true and false, respe
tively, are monotoneBoolean formulae. We identify a propositional valuation with the set of propositionalvariables that it makes true. For a valuation V � lab(T ), let TV = ft 2 T j lab(t) 2 Vg.Re
all that if T 2 Padmis(T) then for every T 0 � T it holds that T 0 2 Padmis(T). Inparti
ular this means that TV 2 Padmis (T) for every valuation V.3 Here, �� is an abbreviation for :(>U:�) and �1 , �2 is an abbreviation for :(�1^:�2)^:(:�1 ^ �2).



8De�nition 8 (pinpointing formula) Given a 
-property P and an axiomatized in-put � = (I; T ), the monotone Boolean formula � over lab(T ) is 
alled a pinpointingformula for � w.r.t. P if the following holds for every valuation V � lab(T ):(I; TV) 2 P i� V satis�es �:In our SI example, we 
an take lab(T ) = fax1; : : : ; ax4g as set of propositional vari-ables. It is easy to see that ax1 ^ ((ax2 ^ ax4) _ ax3) is a pinpointing formula. Inthe LTL example, we 
an take the same set of propositional variables. In this 
ase,ax1 ^ ax3 ^ (ax2 _ ax4) is a pinpointing formula.Valuations 
an be ordered by set in
lusion. The following is an immediate 
onse-quen
e of the de�nition of a pinpointing formula [4℄: if � a pinpointing formula for �w.r.t. P, then MINP(� ) = fTV j V is a minimal valuation satisfying �g:This shows that it is enough to design an algorithm for 
omputing a pinpointing for-mula to obtain all MinAs. However, the redu
tion suggested by the above identity isnot polynomial. One possible way to obtain MINP(� ) from � is to �rst transform �into disjun
tive normal form, and then remove super
uous disjun
ts. It is well-knownthat this 
an 
ause an exponential blow-up. This should, however, not be viewed asa disadvantage of approa
hes 
omputing the pinpointing formula rather than dire
tlyMINP(� ). If su
h a blow-up happens, then the pinpointing formula a
tually yields a
ompa
t representation of all MinAs.3 B�u
hi Tree AutomataIn this se
tion, we introdu
e both unweighted and weighted generalized B�u
hi treeautomata. These automata re
eive in�nite trees of a �xed arity k as inputs. For apositive integer k, we denote the set f1; : : : ; kg by K. The nodes of our trees 
an beidenti�ed by words in K� in the usual way: the root node is identi�ed by the emptyword ", and the i-th su

essor of the node u is identi�ed by ui for 1 � i � k. In the
ase of labelled trees, we will refer to the labelling of the node u 2 K� in the tree rby r(u). We will also use ��!r(u) to denote the tuple ��!r(u) = (r(u); r(u1); : : : ; r(uk)). Anin�nite tree r with labels from a set Q 
an be represented as a mapping r : K� ! Q.For our purpose, it is suÆ
ient to use unlabelled in�nite trees as inputs for ourtree automata. For a �xed arity k, there is exa
tly one su
h tree, whi
h we 
an identifywith the set of its nodes, i.e., with K�. We will also use the 
on
ept of a path in thistree. A path is a subset p � K� su
h that " 2 p and for every u 2 p there is exa
tlyone i; 1 � i � k with ui 2 p.De�nition 9 (B�u
hi tree automaton) A generalized B�u
hi tree automaton for arityk is a tuple (Q;�; I; F1; : : : ; Fn), where Q is a �nite set of states, � � Qk+1 is thetransition relation, I � Q is the set of initial states, and F1; : : : ; Fn � Q are sets of�nal states. A generalized B�u
hi tree automaton is 
alled B�u
hi automaton if it hasonly one set of �nal states; i.e., if n = 1. It is 
alled looping tree automaton if n = 0.A run of a generalized B�u
hi automaton on the unlabelled tree K� is a labelledk-ary tree r : K� ! Q su
h that ��!r(u) 2 � for all u 2 K�. This run is su

essful if for



9every path p and every i; 1 � i � n, there are in�nitely many nodes u 2 p su
h thatr(u) 2 Fi.The emptiness problem for generalized B�u
hi tree automata for arity k is the prob-lem of de
iding whether a given su
h automaton has a su

essful run r with r(") 2 Ior not.Let us illustrate the notions introdu
ed in this de�nition on a simple B�u
hi au-tomaton.Example 1 Consider the B�u
hi tree automaton Aex = (Q;�; I; F ) for arity 2, where{ Q = fq0; q1; q2; q3g, I = fq0g, and F = fq1; q3g:{ � = f(q0; q1; q1); (q0; q2; q2); (q1; q1; q1); (q2; q2; q2); (q2; q3; q3)g.This automaton has two runs that label the root with the initial state q0: r1, whi
hlabels all the non-root nodes with q1, and r2, whi
h labels all the non-root nodes withq2; the latter is not su

essful, but the former is. Thus, Aex has r1 as a su

essful runthat labels the root with an initial state. The binary tree r3 that labels the root withq0 and all the non-root nodes with q3 is not a run of Aex. Finally, the run r4, whi
hlabels all nodes with q1, is a su

essful run of Aex, but it does not label the root withan initial state.Although a dire
t algorithm for de
iding the emptiness problem for a generalizedB�u
hi automaton is sket
hed in [40℄, in the journal version of that paper [41℄, the idea issimpli�ed by presenting a redu
tion to the emptiness problem for B�u
hi automata. Ourtreatment of weighted automata will follow a similar approa
h. First, we will show howto 
ompute the behaviour of weighted B�u
hi automata by an approa
h that is inspiredby the emptiness test for B�u
hi automata.4 Then, we will introdu
e a redu
tion fromweighted generalized B�u
hi automata to weighted B�u
hi automata that preserves thebehaviour.We will later extend automata-based de
ision pro
edures into algorithms that 
om-pute pinpointing formulae by transforming B�u
hi automata into weighted B�u
hi au-tomata. The weights of su
h automata 
ome from a distributive latti
e [18℄.De�nition 10 (distributive latti
e) A distributive latti
e is a partially ordered set(S;�S) su
h that in�ma and suprema of arbitrary �nite subsets of S always exist anddistribute over ea
h other. The distributive latti
e (S;�S) is 
alled �nite if its 
arrierset S is �nite.Any weighted automaton uses as weights only �nitely many elements of the under-lying distributive latti
e. Sin
e �nitely generated distributive latti
es are �nite [18℄,the 
losure of this set under the latti
e operations in�mum and supremum yields a�nite distributive latti
e. For this reason, we will in the following assume without lossof generality that the weights of our weighted B�u
hi automaton 
ome from a �nitedistributive latti
e (S;�S).In the following, we will often simply use the 
arrier set S to denote the �nitedistributive latti
e (S;�S). The in�mum (supremum) of a subset T � S will be de-noted by Nt2T t (Lt2T t). We will often 
ompute the in�mum (supremum) Ni2I ti(Li2I ti) over an in�nite set of indi
es I. However, the �niteness of the latti
e and the4 This emptiness test is sket
hed in Se
tion 5.1.



10idempoten
y of the operators in�mum and supremum ensure that the sets over whi
hthe operators are a
tually applied are �nite, and hen
e in�mum and supremum arewell-de�ned in this 
ase. For the in�mum (supremum) of two elements, we will also usein�x notation, i.e., write t1
 t2 (t1� t2) to denote the in�mum (supremum) of the setft1; t2g. The least element of S (i.e., the in�mum of the whole set S) will be denotedby 0, and the greatest element (i.e., the supremum of the whole set S) by 1.It should be noted that our assumption that the weights 
ome from a �nite distribu-tive latti
e is stronger than the one usually en
ountered in the literature on weightedautomata. In fa
t, for automata working on �nite words or trees, it is suÆ
ient toassume that the weights 
ome from a so-
alled semiring [37℄. In order to have a well-de�ned behaviour also for weighted automata working on in�nite obje
ts, the existen
eof in�nite produ
ts and sums is required [16,31℄. As mentioned above, our �nitenessassumption ensures that su
h in�nite produ
ts and sums are a
tually �nite. The ad-ditional properties imposed by our requirement to have a distributive latti
e (in par-ti
ular, distributivity and the idempoten
y of produ
t and sum) are ne
essary for ourapproa
h of 
omputing the behaviour of weighted B�u
hi automata (see Se
tion 5).These stronger assumptions are not problemati
 in our pinpointing appli
ation: as wewill see later, the weights we will en
ounter in our 
omputation of the pinpointingformula a
tually 
ome from a �nitely generated free distributive latti
e.De�nition 11 (weighted B�u
hi automaton) Let S be a �nite distributive latti
e.A weighted generalized B�u
hi automaton (WGBA) over S for arity k is a tuple A =(Q; in; wt; F1; : : : ; Fn) where Q is a �nite set of states, in : Q ! S is the initialdistribution, wt : Qk+1 ! S assigns weights to transitions, and F1; : : : ; Fn � Q are thesets of �nal states. A WGBA is 
alled weighted B�u
hi automaton (WBA) if n = 1 andweighted looping automaton (WLA) if n = 0.A run of the WGBA A is a labelled tree r : K� ! Q. The weight of this runis wt(r) = Nu2K� wt(��!r(u)). This run is su

essful if, for every path p and everyi; 1 � i � n, there are in�nitely many nodes u 2 p su
h that r(u) 2 Fi. Let su

Adenote the set of all su

essful runs of A. The behaviour of the automaton A iskAk := Mr2su

A in(r("))
 wt(r):Let us illustrate this de�nition on the example of a WBA over the Boolean semiringthat simulates an (unweighted) B�u
hi tree automaton.Example 2 The Boolean semiring B = (f0; 1g;^;_; 1; 0) is a �nite distributive latti
e,where the partial order is de�ned as 1 �B 0. Note that we have de�ned 1 to be smallerthan 0, and thus 
onjun
tion yields the supremum (i.e., is the \addition" �) anddisjun
tion yields the in�mum (i.e., is the \multipli
ation" 
). Likewise, 1 is the leastelement 0, and 0 is the greatest element 1. The reason for this unorthodox de�nitionis that this makes it easy to transform a given B�u
hi tree automaton A = (Q;�; I; F )into a WBA Aw on B su
h that the behaviour of Aw is 0 i� A has a su

essful runthat labels the root with an initial state. In Aw, the initial distribution maps initialstates to 0 and all other states to 1; a tuple in Qk+1 gets weight 0 if it belongs to �,and weight 1 otherwise.Consider the WBA Aexw that is obtained by applying this 
onstru
tion to the B�u
hitree automaton Aex of Example 1. The run r1 has weight 0 sin
e all the transitions ituses have weight 0, and these weights are multiplied with ea
h other, i.e., 
onne
ted by



11disjun
tion. Sin
e this run is su

essful, it 
ontributes the summand in(q0)
wt(r1) =0 _ 0 = 0 to the behaviour of Aexw . Sin
e addition is 
onjun
tion, this 
auses thebehaviour of Aexw to be 0. Let us nevertheless 
onsider some other runs. The run r2also has weight 0 and starts with the initial state q0. However, sin
e this run is notsu

essful, in(q0)
 wt(r2) is not used as a summand when 
omputing the behaviourof Aexw . The tree r3 is a su

essful run of Aexw , but it is not a run of Aex. Sin
e it usesthe transition (q3; q3; q3), whose weight is 1, its overall weight is 1 as well. Thus, it
ontributes the summand in(q0)
wt(r3) = 0_1 = 1 to the behaviour of Aexw , but thissummand is \eaten up" by the summand 0 
ontributed to the sum (i.e., 
onjun
tion)by the run r1. Finally, the run r4, is a su

essful run of Aexw , whi
h has weight 0. Sin
eq1 is not an initial state of Aex, it 
ontributes the summand wt(q1)
wt(r4) = 1_0 = 1to the behaviour of Aexw .By generalzing the observations we have made for the runs r1; r2; r3; r4 of Aexw , itis easy see that the following holds for any B�u
hi tree automaton A: the behaviour ofAw is 0 i� A has a su

essful run that labels the root with an initial state.In Se
tion 5, we will develop an approa
h for 
omputing the behaviour of weighted(generalized) B�u
hi tree automata that generalizes the emptiness test for (generalized)B�u
hi tree automata. But �rst, we show how to redu
e the problem of 
omputing thepinpointing formula to the problem of 
omputing the behaviour of a WGBA.4 Automata-based PinpointingIn this se
tion, we �rst introdu
e our general approa
h for automata-based pinpointing,and then show how it 
an be applied to �nding a pinpointing formula for unsatis�abilityin SI and LTL.4.1 The General Approa
hBasi
ally, the automata-based approa
h for de
iding a 
-property P takes axiomatizedinputs � = (I; T ) and translates them into automata A� su
h that � 2 P i� A� doesnot have a su

essful run. For example, the automaton 
onstru
ted from a 
on
eptdes
ription C and a TBox T has a su

essful run i� C is satis�able w.r.t. T , where the
-property is unsatis�ability. If the translation from � to A� is an arbitrary fun
tion,then we have no way of knowing how the axioms in T in
uen
e the behaviour ofthe automaton, and thus it is not 
lear how to 
onstru
t a 
orresponding pinpointingautomaton. For this reason, we will assume that the automaton A� for � = (I; T ) in a
ertain sense also 
ontains automata for all axiomatized inputs (I; T 0) with T 0 � T ,5whi
h 
an be obtained by appropriately restri
ting the states and transitions of A� .To be more pre
ise, let A = (Q;�; I; F1; : : : ; Fn) be a generalized B�u
hi automatonfor arity k and � = (I; T ) an axiomatized input. The fun
tions �res : T ! P(Qk+1)and Ires : T ! P(Q) are respe
tively 
alled a transition restri
ting fun
tion and aninitial restri
ting fun
tion. The restri
ting fun
tions �res and Ires 
an be extended tosets of axioms T 0 � T as follows:�res(T 0) := \t2T 0�res(t) and Ires(T 0) := \t2T 0 Ires(t):5 Re
all that every subset of an admissible set of axioms is also admissible.



12For T 0 � T , the T 0-restri
ted subautomaton of A w.r.t. �res and Ires is de�ned asAjT 0 := (Q;� \�res(T 0); I \ Ires(T 0); F1; : : : ; Fn):De�nition 12 (axiomati
 automaton) Let A = (Q;�; I; F1; : : : ; Fn) be a gener-alized B�u
hi automaton for arity k, � = (I; T ) an axiomatized input, and �res :T ! P(Qk+1) and Ires : T ! P(Q) a transition and an initial restri
ting fun
tion,respe
tively. Then we 
all (A; �res; Ires) an axiomati
 automaton for � .Given a 
-property P, we say that (A; �res; Ires) is 
orre
t for � w.r.t. P if thefollowing holds for every T 0 � T : (I; T 0) 2 P i� AjT 0 does not have a su

essful run rwith r(") 2 I \ Ires(T 0).Given a 
orre
t axiomati
 automaton for � = (I; T ), we 
an de
ide (I; T 0) 2 Pfor T 0 � T by applying the emptiness test for generalized B�u
hi automata to AjT 0 .Example 3 Let � = (I; T ) be an axiomatized input, where T = fax1; ax2; ax3g, andassume that, for all T 0 � T , the 
-property P holds for (I; T 0) i� fax1; ax2g \ T 0 6= ;.Thus, MINP(� ) = ffax1g; fax2gg, and ax1 _ ax2 is a pinpointing formula.Consider the axiomati
 automaton (Aex; �res; Ires), where{ Aex is the B�u
hi tree automaton introdu
ed in Example 1;{ the transition restri
ting fun
tion is de�ned as �res(ax1) = � n f(q1; q1; q1)g,�res(ax2) = �, and �res(ax3) = � n f(q2; q2; q2)g;{ the initial restri
ting fun
tion is de�ned as Ires(ax1) = I, Ires(ax2) = ;,and Ires(ax3) = I.It is easy to see that (Aex; �res; Ires) is 
orre
t for � w.r.t. P. In fa
t, re
all thatthe only su

essful run of Aex is r1, whi
h labels the root with q0 and all non-rootnodes with q1. Now, assume that T 0 � T . If ax1 2 T 0, then the transition (q1; q1; q1),whi
h is used in the run r1, is no longer available, and thus r1 is not a run of AjT 0 . Ifax2 2 T 0, then AjT 0 does not have an initial state, and thus r1 no longer starts withan initial state. Finally, having ax3 in T 0 does not remove the run r1 sin
e this axiomonly removes the transition (q2; q2; q2), whi
h is not used in r1, and it also does not
hange the set of initial states. Consequently, we have seen that AjT 0 does not havea run that labels the root with an initial state i� fax1; ax2g \ T 0 6= ;, and thus i� Pholds for (I; T 0).Now, we show how to transform a 
orre
t axiomati
 automaton into a weightedgeneralized B�u
hi automaton whose behaviour is a pinpointing formula for the input.This weighted automaton uses the T -Boolean semiring, whi
h is de�ned as BT :=(B̂ (T );^;_;>;?), where B̂ (T ) is the quotient set of all monotone Boolean formulaeover lab(T ) by the propositional equivalen
e relation, i.e., two propositionally equiv-alent formulae 
orrespond to the same element of B̂ (T ). It is easy to see that thissemiring is indeed a distributive latti
e, where the partial order is de�ned as � �  i�  ! � is valid. Furthermore, as T is �nite, this latti
e is also �nite.6 Note that,similar to the 
ase of the Boolean semiring B , 
onjun
tion is the semiring addition (i.e.,yields the supremum �) and disjun
tion is the semiring multipli
ation (i.e., yields thein�mum 
). Likewise, > is the least element 0 and ? is the greatest element 1.6 More pre
isely, BT is the free distributive latti
e over the generators lab(T ).



13De�nition 13 (pinpointing automaton) Let (A; �res; Ires) be an axiomati
 au-tomaton for � = (I; T ), with A = (Q;�; I; F1; : : : ; Fn). The violating fun
tions�vio : Qk+1 ! BT and Ivio : Q! BT are given by�vio(q0; q1; : : : ; qk) := _ft2T j(q0;q1;:::;qk)=2�res(t)g lab(t);Ivio(q) := _ft2T jq=2Ires(t)g lab(t);where the empty disjun
tion yields ?.The pinpointing automaton indu
ed by (A; �res; Ires) w.r.t. T is the WGBA overBT (A; �res; Ires)pin = (Q; in; wt; F1; : : : ; Fn), wherein(q) := ( Ivio(q) if q 2 I,> otherwise;wt(q0; q1; : : : ; qk) := (�vio(q0; q1; : : : ; qk) if (q0; q1; : : : ; qk) 2 �,> otherwise.It is easy to see that, if r : K� ! Q is a run of A, then its weight is given bywt(r) = Wu2K� �vio(��!r(u)); otherwise, wt(r) = >. Intuitively, the violating fun
tion�vio expresses whi
h axioms are not \satis�ed" by a given transition, and thus theweight of a run a

umulates all the axioms violated by any of the transitions appearingas labels in it. Additionally, the fun
tion Ivio represents the axioms that are violated bythe initial state of this run. Removing all the axioms appearing in these two formulaewould yield a subset of axioms whi
h a
tually allows for this run; and hen
e, if therun is su

essful and the root is labelled with an initial state, due to 
orre
tness, theproperty does not hold anymore. Conjoining this information for all possible su

essfulruns leads us to a pinpointing formula.Before formulating and proving this fa
t more formally, let us illustrate the 
on-stru
tion of the pinpointing automaton on the axiomati
 automaton introdu
ed inExample 3.Example 4 Let (Aex; �res; Ires) be the axiomati
 automaton from Example 3. The
orresponding pinpointing automaton has the initial distribution in, wherein(q0) = ax2 and in(q1) = in(q2) = in(q3) = >;and the weight fun
tion wt, wherewt(q1; q1; q1) = ax1 and wt(q2; q2; q2) = ax3;wt(q; q0; q00) = ? if (q; q0; q00) 2 � n f(q1; q1; q1); (q2; q2; q2)g;wt(q; q0; q00) = > if (q; q0; q00) 62 �:The behaviour of this WBA is k(Aex; �res; Ires)pink = Vr2su

Aex in(r(")) _ wt(r).Obviously, only su

essful runs that label the root with q0 
an 
ontribute a 
onjun
tdi�erent from> to this 
onjun
tion. There is a single su

essful run of Aex that satis�esthis restri
tion: the run r1, whi
h labels the root with q0 and all other nodes with q1.The weight of this run is wt(r1) = wt(q0; q1; q1)_wt(q1; q1; q1) = ?_ ax1 = ax1. Sin
ein(q0) = ax2, this shows that k(Aex; �res; Ires)pink = ax2_ax1, whi
h is a pinpointingformula for � w.r.t. P (see Example 3).



14Theorem 1 Let P be a 
-property, and � = (I; T ) an axiomatized input. If the ax-iomati
 automaton (A; �res; Ires) is 
orre
t for � w.r.t. P, then k(A; �res; Ires)pink isa pinpointing formula for � w.r.t. P.Proof We need to show that, for every valuation V � lab(T ), it holds that V satis�esk(A; �res; Ires)pink i� (I; TV) 2 P. Let V � lab(T ). Suppose �rst that (I; TV) =2 P.Sin
e (A; �res; Ires) is 
orre
t for � w.r.t. P, there must be a su

essful run r of AjTVwith r(") 2 I \ Ires(TV). Consequently, ��!r(u) 2 �res(TV) holds for every u 2 K�,and thus V 
annot satisfy �vio(��!r(u)), for any u 2 K�. Sin
e r is a su

essful runof AjTV , it is also a su

essful run of A, whi
h implies wt(r) = Wu2K� �vio(��!r(u)).Thus, V does not satisfy wt(r). Sin
e r(") 2 I, we know that in(r(")) = Ivio(r("));additionally, r(") 2 Ires(TV) implies that V does not satisfy Ivio(r(")). Thus, V doesnot satisfy in(r("))_wt(r). But then V also 
annot satisfy Vr2su

A in(r("))_wt(r) =k(A; �res; Ires)pink.Conversely, if V does not satisfy k(A; �res; Ires)pink = Vr2su

A in(r(")) _ wt(r),then there must exist a su

essful run r su
h that V does not satisfy in(r(")) _ wt(r).This implies that r(") 2 I \ Ires(TV) and that ��!r(u) 2 �res(TV) for all u 2 K�.Consequently, r is a su

essful run of AjTV with r(") 2 I \ Ires(TV ), whi
h shows(I; TV) =2 P, by the 
orre
tness of the axiomati
 automaton. ut4.2 Constru
ting Axiomati
 Automata for SIIf we want to apply Theorem 1 to obtain an automata-based approa
h for pinpointingunsatis�ability in SI, we must show how, given an ALC 
on
ept des
ription C and anSI TBox T , we 
an 
onstru
t an axiomati
 automaton (AC;T ; �resC;T ; IresC;T ) thatis 
orre
t for (C; T ) w.r.t. unsatis�ability. For this purpose, we must adapt the known
onstru
tion of a looping automaton for SI from [3℄ su
h that it yields an axiomati
automaton.7As mentioned before, the automata-based approa
h for de
iding (un)satis�abilityuses the fa
t that a 
on
ept is satis�able i� it has a so-
alled Hintikka tree. The au-tomaton to be 
onstru
ted will have exa
tly these Hintikka trees as its runs. Intuitively,Hintikka trees are obtained from tree-shaped models by labelling every node with the\relevant" 
on
ept des
riptions to whi
h it belongs.Following [3℄, we assume that all 
on
ept des
riptions are in negation normal form(NNF), i.e., negation appears only dire
tly in front of 
on
ept names. AnyALC 
on
eptdes
ription 
an be transformed into NNF in linear time using de Morgan, duality ofquanti�ers, and elimination of double negations. We denote the NNF of C by nnf(C)and nnf(:C) by vC. Given an ALC 
on
ept des
ription C and an SI TBox T , the setof relevant 
on
ept des
riptions is the set of all subdes
riptions of C and of the 
on
eptdes
riptions vD tE for D v E 2 T . We denote this set by sub(C; T ). The set of rolenames o

urring in C or T is denoted by rol(C; T ). The states of our automaton areso-
alled Hintikka sets, whi
h in addition to subdes
riptions also 
ontain informationabout whi
h roles are supposed to be transitive.7 On the one hand, the 
onstru
tion in [3℄ is more 
omplex than the one given here sin
ethe states of the automata in [3℄ 
ontain additional information needed for dete
ting 
y
lesin a run as early as possible, whi
h is not relevant for the present paper. On the other hand,the states of the automata 
onstru
ted here 
ontain additional information about transitivityneeded for de�ning the restri
ting fun
tion.



15De�nition 14 (Hintikka set) A set H � sub(C; T ) [ rol(C; T ) is 
alled a Hintikkaset for (C; T ) if the following three 
onditions are satis�ed:(i) if D uE 2 H, then fD;Eg � H;(ii) if D tE 2 H, then fD;Eg \H 6= ;; and(iii) there is no 
on
ept name A su
h that fA;:Ag � H.The Hintikka set H is 
ompatible with the GCI D v E 2 T if it is the empty set or
ontains vD t E. It is 
ompatible with the transitivity axiom trans(r) 2 T if it is theempty set or 
ontains r. Finally, it is 
ompatible with the inverse axiom inv(r; s) 2 T ifr 2 H implies s 2 H and vi
e versa.The arity k of our automaton is determined by the number of existential restri
-tions, i.e., 
on
ept des
riptions of the form 9r:D, 
ontained in sub(C;T ). Sin
e we needto know whi
h su

essor in the tree 
orresponds to whi
h existential restri
tion, we �xan arbitrary bije
tion ' : f9r:D j 9r:D 2 sub(C; T )g ! K. To obtain full k-ary trees,we will use nodes labelled with the empty set (whi
h is a Hintikka set) as dummynodes. The following Hintikka 
onditions will be used to de�ne the transitions of ourautomaton.De�nition 15 (Hintikka 
ondition) The tuple of Hintikka sets (H0; H1; : : : ; Hk)for (C;T ) satis�es the Hintikka 
ondition if the following holds for every existentialrestri
tion 9r:D 2 sub(C; T ):{ If 9r:D 2 H0, then H'(9r:D) 
ontains D as well as every E for whi
h there is avalue restri
tion 8r:E 2 H0; if, in addition, r 2 H0, then 8r:E belongs to H'(9r:D)for every value restri
tion 8r:E 2 H0.{ If 9r:D =2 H0, then H'(9r:D) = ;.This tuple is 
ompatible with the GCI D v E 2 T (
ompatible with the transitivityaxiom trans(r) 2 T ) if all its 
omponents are 
ompatible with D v E (trans(r)). It is
ompatible with the inverse axiom inv(r; s) 2 T if all its 
omponents are 
ompatiblewith inv(r; s), and the following holds for all t 2 fr; sg and t� 2 fr; sg n ftg: for every8t:F 2 H'(9t�:D), the set H0 
ontains F , and additionally 8t�:F if t 2 H0.We are now ready to de�ne the axiomati
 automaton for unsatis�ability in SI.De�nition 16 (axiomati
 automaton for SI) Let C be an ALC 
on
ept des
rip-tion, T an SI TBox, and k the number of existential restri
tions in sub(C; T ). Theaxiomati
 automaton (AC;T ; �resC;T ; IresC;T ) has as its �rst 
omponent the loopingautomaton AC;T := (Q;�; I), where{ Q 
onsists of all Hintikka sets for (C; T );{ � 
onsists of all (H0; H1; : : : ; Hk) 2 Qk+1 that satisfy the Hintikka 
ondition;{ I := fH 2 Q j C 2 Hg.The transition restri
ting fun
tion �resC;T maps ea
h axiom t 2 T to the set of alltuples in � that are 
ompatible with t. The initial restri
ting fun
tion IresC;T mapsea
h axiom t 2 T to the set Q, i.e., there is e�e
tively no restri
tion on the initialstates imposed by the axioms.Corre
tness of this automaton 
onstru
tion 
an be shown by an easy adaptation ofthe arguments used in [3℄.



16Theorem 2 Let C be an ALC 
on
ept des
ription and T an SI TBox. The axiomati
automaton (AC;T ; �resC;T ; IresC;T ) is 
orre
t for (C;T ) w.r.t. unsatis�ability.Theorem 1 shows that it is enough to 
ompute the behaviour of the pinpointingautomaton (AC;T ; �resC;T ; IresC;T )pin indu
ed by (AC;T ; �resC;T ; IresC;T ) in orderto obtain a pinpointing formula for (C; T ) w.r.t. unsatis�ability. In Se
tion 5, we willshow how this behaviour 
an be 
omputed, but �rst we present an example of anaxiomati
 automaton where the use of a B�u
hi a

eptan
e 
ondition is ne
essary.4.3 Constru
ting Axiomati
 Automata for LTLThe axiomati
 automaton for LTL a-unsatis�ability will have as states sets of formulaesimilar to the Hintikka sets introdu
ed for SI, but they will need to satisfy slightlydi�erent 
onditions, due to the fa
t that we will not assume that the formulae used arein negation normal form.8 Given an LTL formula � and a set of LTL formulae R, the
losure of (�;R) is the set of all subformulae of � and R, and their negations, wheredouble negations are 
an
elled. We denote this set as 
l(�;R).Following [42℄, the states of our automaton are elementary sets of formulae, whi
hplay the role of the Hintikka sets of the previous subse
tion. Elementary sets are max-imal and 
onsistent sets of subformulae in 
l(�;R).De�nition 17 (elementary set) The set H � 
l(�;R) is 
alled an elementary setfor (�;R) if it satis�es the following 
onditions:{ :� 2 H i� � =2 H, for all :� 2 
l(�;R);{ � ^  2 H i� f�;  g � H, for all � ^  2 
l(�;R);{  2 H implies �U 2 H, for all �U 2 
l(�;R);{ if �U 2 H and  =2 H, then � 2 HThe automaton 
onstru
ted from a given input (�;R) takes unary trees as input, i.e.,its runs are in�nite words over the set of states. The transition relation is thus binary.It plays the role of the Hintikka 
ondition, ensuring that temporal restri
tions aretransfered to su

essor nodes when ne
essary.De�nition 18 (
ompatible) A tuple (H;H 0) of elementary sets is 
alled 
ompatibleif it satis�es the following 
onditions:{ for all 
 2 
l(�;R), 
 2 H i�  2 H 0; and{ for all �U 2 
l(�;R), �U 2 H i� either (i)  2 H or (ii) � 2 H and �U 2 H 0.The runs of our automaton will be sequen
es of elementary sets where ea
h two 
on-se
utive ones form a 
ompatible tuple. In 
ontrast to the 
ase for SI, the presen
e ofa run of this automaton does not imply the existen
e of a 
omputation. The reasonis that one 
an delay the satisfa
tion of an until formula inde�nitely; that is, everynode in the run may 
ontain the formula �U while none 
ontains  , violating thisway the last 
ondition in the de�nition of a 
omputation for the input. In order to ruleout these kinds of runs and make sure that ea
h until formula is eventually satis�ed,we will impose a generalized B�u
hi 
ondition, whi
h introdu
es a set of �nal states forea
h until formula in 
l(�;R).8 Although it is possible to transform LTL formulae into negation normal form, we de
idednot to do this in order to stay as 
lose as possible to the known automaton 
onstru
tion forLTL [42℄. This allows us to reuse the proof of 
orre
tness of this 
onstru
tion.



17De�nition 19 (axiomati
 automaton for LTL) Let � and R be an LTL formulaand a set of LTL formulae, respe
tively, and let �1U 1; : : : ; �nU n be all the untilformulae in 
l(�;R). The axiomati
 automaton (A�;R; �res�;R; Ires�;R) has as its �rst
omponent the generalized B�u
hi automaton A�;R := (Q;�; I; F1; : : : ; Fn),9 where{ Q is the set of all elementary sets for (�;R);{ � 
onsists of all 
ompatible pairs (H;H 0) 2 Q�Q;{ I := fH 2 Q j � 2 Hg;{ Fi := fH 2 Q j  i 2 H or �iU i =2 Hg.For every  2 R, the transition restri
ting and initial restri
ting fun
tions are givenby �res�;R( ) := � and Ires�;R( ) := fH 2 Q j  2 Hg, respe
tively.Corre
tness of this automaton 
an be shown by a simple adaptation of the proof in [42℄.Theorem 3 Let � be an LTL formula and R a set of LTL formulae. The axiomati
automaton (A�;R; �res�;R; Ires�;R) is 
orre
t for (�;R) w.r.t. a-unsatis�ability.From Theorem 1 we know that it suÆ
es to 
ompute the behaviour of the pin-pointing automaton (A�;R; �res�;R; Ires�;R)pin indu
ed by (A�;R; �res�;R; Ires�;R)in order to obtain a pinpointing formula for (�;R) w.r.t. a-unsatis�ability. We willshow now how this behaviour 
an be 
omputed.5 Computing the Behaviour of Weighted Tree AutomataIn this se
tion, we �rst show how the behaviour of a weighted B�u
hi automaton (WBA)on a �nite distributive latti
e 
an be 
omputed by two nested iterations. Then, wedes
ribe how this approa
h 
an be simpli�ed to a single \bottom-up" iteration for thespe
ial 
ase of a weighted looping automaton (WLA). Next, we show that any weightedgeneralized B�u
hi automaton (WGBA) 
an be redu
ed, in polynomial time, to a WBAthat has the same behaviour. This redu
tion follows the ideas that have previously beenused for the 
ase of unweighted automata [41℄. Finally, we 
ompare our approa
h for
omputing the behaviour of a weighted B�u
hi automaton with the one independentlydeveloped in [15℄.5.1 Computing the Behaviour of a WBAClearly, the na��ve approa
h that dire
tly uses the de�nition of the behaviour by �rst
omputing and then adding up the weights of all su

essful runs would not produ
e aresult in �nite time sin
e there are potentially in�nitely many su

essful runs, whi
hare themselves in�nite. Instead, we will use an iterative method for 
omputing thebehaviour, whi
h generalizes the emptiness test for B�u
hi automata9 If n = 0, i.e., � and R do not 
ontain until formulae, then this automaton is a
tually alooping automaton.



18The Emptiness Test for B�u
hi AutomataThe emptiness problem for B�u
hi automata 
an be de
ided in time polynomial in thesize of the automaton [30,41℄. The de
ision pro
edure 
onstru
ts the set of all statesthat 
annot o

ur as labels in any su

essful run; we will 
all these states bad states.We 
an try to disprove that a state is bad by trying to 
onstru
t a �nite partial runwhere every path ends in a �nal state.10 Every state for whi
h this 
onstru
tion failsis 
learly bad, but there may be bad states for whi
h this 
onstru
tion su

eeds. Thereason is that some of the �nal states rea
hed by the �nite run may themselves bebad. Thus, in order to 
ompute all bad states we must iterate this pro
ess, where inthe next iteration the partial run is required to rea
h �nal states that are not alreadyknown to be bad. Noti
e, however, that the 
onstru
tion of a �nite partial run ending innon-bad �nal states 
an itself be realized by an iterative pro
edure. Hen
e, the de
isionpro
edure for the emptiness problem uses two nested iterations. In the inner loop, wetry to 
onstru
t a �nite partial run �nishing in (non-bad) �nal states for every state. Inthe outer loop, we use the result of the inner iteration to update the set of (known) badstates, and then re-start the inner iteration with this new information. Let us 
all thestates for whi
h there is a �nite partial run �nishing in non-bad �nal states adequate.First, any state q 2 Q for whi
h there is a transition leading to only non-bad �nalstates is 
learly adequate. Then, every state for whi
h there is a transition leading onlyto states that are either (i) �nal and not bad or (ii) already known to be adequateis also adequate. Obviously, during this iteration, the set of adequate states be
omesstable after at most jQj iterations. The outer loop then adds all the states that werefound not to be adequate to the set of bad states. The set of bad states maintained inthis outer iteration be
omes stable after at most jQj steps. It 
an be shown that thereis a su

essful run that starts with an initial state i� not all initial states are 
ontainedin the set of bad states 
omputed this way. This yields an emptiness test that runs intime polynomial in the number of states (see [41℄ for details).Example 5 Let us illustrate this approa
h on the B�u
hi automaton Aex of Example 1.First, we try to 
onstru
t, for every state, a �nite partial run where every path ends ina �nal state. This is possible for q0, q1, and q2, but not for q3. Thus, in this iteration,q0; q1; q2 are the adequate states, and q3 is not adequate, whi
h means that q3 is addedto the set of bad states. In the next iteration, q2 turns out to be no longer adequatesin
e it 
an only rea
h the bad �nal state q3. Thus, it is also put into the set of badstates. After that, the pro
ess be
omes stable, i.e., the set fq2; q3g is the set of badstates 
omputed by the algorithm. Sin
e the initial state q0 does not belong to this set,we know that there is a su

essful run that starts with this initial state.Emptiness Test by Behaviour ComputationBefore treating the general 
ase of a WBA, we 
onsider the spe
ial 
ase of a weightedautomaton over the Boolean semiring that simulates an unweighted one. In Example 2,we have de�ned, for every B�u
hi tree automaton A a WBA Aw su
h that the behaviourof Aw is 0 i� A has a su

essful run that labels the root with an initial state. In this
ase, the 
omputation of the behaviour of Aw basi
ally 
oin
ides with the emptinesstest applied to A.10 See De�nition 20 below for a formal de�nition of this notion.



19In fa
t, the emptiness test for B�u
hi automata sket
hed above 
an be adapted su
hthat it 
omputes the behaviour of Aw as follows. We 
onstru
t a fun
tion bad : Q !f0; 1g su
h that bad(q) = 1 i� q is a bad state. The outer iteration of the algorithmwill update this fun
tion at every step. In the beginning, no state is known to be bad,and thus we start the iteration with bad0(q) = 0 for all q 2 Q. Now assume that thefun
tion badi : Q! f0; 1g for i � 0 has already been 
omputed. For the next step ofthe iteration, we 
all the inner loop to update the set of adequate states. In this loop,we are going to 
ompute the fun
tion adqi : Q! f0; 1g. Here, adqi(q) = 1 means thatq is not an adequate state, i.e., that it is not possible to 
onstru
t a run starting withthis state where ea
h path rea
hes at least one non-bad �nal state. At the beginningwe know nothing about the adequate states, so we set adqi0(q) = 1 for all q 2 Q.Assume that we have already 
omputed adqin : Q ! f0; 1g. To know whether a stateshould be
ome adequate in the next step, we need to 
he
k for ea
h transition startingfrom this state whether the �nal states rea
hed by the transition are non-bad and thenon-�nal states are already known to be adequate. Thus, we haveadqin+1(q) = ^(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk) _ _qj =2F adqij(qj) _ _qj2F badi(qj): (3)The fun
tion adqi is the limit of this inner iteration, whi
h is rea
hed after at most jQjsteps. With this fun
tion, we de�nebadi+1(q) = badi(q) _ adqi(q):The fun
tion bad is the limit of this outer iteration, whi
h is also rea
hed after at mostjQj steps. This 
omputation of the fun
tion bad by two nested iterations basi
ally sim-ulates the 
omputation of all bad states in the emptiness test for B�u
hi tree automatasket
hed above. It is thus easy to show that bad(q) = 1 i� q is a bad state, i.e., 
annoto

ur as a label in a su

essful run of A.Given the de�nition of Aw , it is easy to see that a run r : K� ! Q of Aw hasweight 0 i� it is a run of A (see Example 2). Consequently, A has a su

essful run thatstarts with an initial state i� kAwk = Vr2su

Aw in(r(")) _ wt(r) = 0. Putting theseobservations together, we thus have: the behaviour of Aw is 0 i� A has a su

essfulrun that starts with an initial state i� there is an initial state q (i.e., in(q) = 0)that is not bad (i.e., bad(q) = 0). This shows that the behaviour of Aw is given byVq2Q in(q) _ bad(q).Next, we show that the behaviour of a WBA 
an always be 
omputed by su
h apro
edure with two nested iterations.Computing the Behaviour in the General Case of an Arbitrary WBAIn the following, we assume that A = (Q; in; wt; F ) is an arbitrary, but �xed, WBAover the �nite distributive latti
e (S;�S). We will show that the WBA A indu
es amonotone operator Q : SQ ! SQ, where SQ is the set of all mappings from Q to S,and that the behaviour of A 
an easily be obtained from the greatest �xpoint of thisoperator. The partial order �S 
an be transferred to SQ in the usual way, by applyingit 
omponent-wise: for �; �0 2 SQ, we de�ne � �SQ �0 i� �(q) �S �0(q) for all q 2 Q.It is easy to see that (SQ;�SQ) is again a �nite distributive latti
e. We will use 
 and� also to denote the in�mum and supremum in SQ. The least (greatest) element ofSQ is the fun
tion e0 (e1) that maps every q 2 Q to 0 (1).



20 The de�nition of the operator Q will follow the idea of the iterative pro
edure wesket
hed before for solving the emptiness problem. We fo
us �rst on the inner loop,whi
h is realized by another monotone operator O. Noti
e that the internal iteration ofthe algorithm depends on the set of bad states 
omputed so far. We will assume thatthis information is given by a fun
tion f 2 SQ. Thus, we a
tually de�ne an operatorOf for ea
h su
h f . Following the idea of Equation (3), the operator Of is de�ned asfollows for every � 2 SQ:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj); (4)where stepf (�)(q) = (f(q) if q 2 F�(q) otherwiseLemma 1 For every f 2 SQ the operator Of is monotone, i.e., � �SQ �0 impliesOf (�) �SQ Of (�0).Proof Let �; �0 2 SQ be su
h that � �SQ �0. This implies also stepf (�) �SQ stepf (�0).Thus, we have for every q 2 Q:Of (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�)(qj)�S M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 stepf (�0)(qj) = Of (�0): utSin
e we know that SQ is �nite, this in parti
ular means that the operator Of is
ontinuous. By Tarski's �xpoint theorem [39℄, this implies that Of has Ln�0Onf (e0) asits least �xpoint (lfp). Finiteness of SQ yields that this lfp is rea
hed after �nitely manyiterations: there exists a smallest m; 0 � m � jSjjQj su
h that Omf (e0) = Om+1f (e0),and for this m we have Ln�0Onf (e0) = Omf (e0). This yields a bound on the numberof iterations that is exponential in the size of the automaton. We will later show(see Theorem 6) that it is possible to improve this bound to a polynomial number ofiterations, measured in the number of states.Re
all that the intuition of the internal iteration was to �nd out from whi
h statesit is possible to build a �nite partial run that �nishes in �nal states. In the general
ase, the operators O will help in 
omputing the weights of all su
h partial runs. Next,we give a formal de�nition of the notion of a �nite partial run.De�nition 20 (�nite run) A �nite tree is a �nite set t � K� that is 
losed underpre�xes and su
h that, if ui 2 t for some u 2 K� and i 2 K, then uj 2 t for allj; 1 � j � k. A node u 2 t is 
alled a leaf if there is no j; 1 � j � k, su
h that uj 2 t.The set of all leaf nodes of a �nite tree t is denoted by lnode(t). The depth of a �nitetree t is the length of the largest word in t.A �nite run is a mapping r : t ! Q, where t is a �nite tree. Given su
h a run,leaf(r) denotes the set of all states appearing as labels of a leaf.



21We denote by runs1 the set of all �nite runs r of depth at least 1 su
h that, for everynode u 6= ", r(u) 2 F if and only if u is a leaf. Additionally, for every n � 1, let runs�n1denote the set of all �nite runs in runs1 having depth at most n. For a state q 2 Q,runs1(q) = fr 2 runs1 j r(") = qg; analogously, runs�n1 (q) = fr 2 runs�n1 j r(") = qg.The weight of a �nite run r : t! Q is wt(r) = Nu2tnlnode(t) wt(r(u); r(u1); : : : ; r(uk)).Looking again at the spe
ial 
ase of a weighted automaton simulating an unweightedone, we see that during the inner iteration we do not want to 
ompute the weights ofall �nite runs in runs1 but only those that �nish in states that are not bad. In otherwords, we multiply the weight of the run, by the fun
tion bad 
omputed so far appliedto ea
h of its leafs. Given a fun
tion f : Q! S, we de�ne the f -weight of a �nite runr as wtf (r) = wt(r)
 Nq2leaf(r) f(q). The lfp of the operator Of 
omputes the sumof the f -weights of all runs in runs1.Lemma 2 For all n � 0 and all q 2 Q, Onf (e0)(q) = Lr2runs�n1 (q) wtf (r).Proof The proof is by indu
tion on n. For n = 0, the result follows from the fa
t thatruns�01 = ;, and hen
e Lr2runs�01 (q) wtf (r) = 0 = e0(q) = O0f (e0)(q). Assume now thatthe identity holds for n. Given a tuple (q1; : : : ; qk) 2 Qk, let i1; : : : ; il be all the indi
essu
h that qij =2 F for all j; 1 � j � l, and il+1; : : : ; ik those indi
es su
h that qij 2 Ffor all j; l+1 � j � k. For 1 � j � l, we will abbreviate runs�n1 (qij ) as rnnj and leaf(rj)as lfj . In addition, F is an abbreviation for the produ
t Nkj=l+1 f(qij ). Then,On+1f (e0)(q) = M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 kOj=1 stepf (Onf (e0))(qj) (5)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 lOj=1Onf (e0)(qij )
 kOj=l+1 f(qij ) (6)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( lOj=1 Mrj2rnnj wtf (rj))
 F (7)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( Mr12rnn1 ;:::;rl2rnnl lOj=1wtf (rj))
 F (8)= M(q1;:::;qk)2Qk wt(q; q1; : : : ; qk)
 ( Mr12rnn1 ;:::;rl2rnnl lOj=1wt(rj)
 Op2lfj f(p))
 F (9)= M(q1;:::;qk)2Qk Mr12rnn1 ;:::;rl2rnnl wt(q; q1; : : : ; qk)
 Oqj =2F wt(rj)
 Op2lfj f(p)
 F (10)= Mr2runs�n+11 (q)wt(r)
 Op2leaf(r) f(p) (11)= Mr2runs�n+11 (q)wtf (r):Identities (5) and (6) employ the de�nition of the operator Of and stepf , respe
tively,and (7) applies the indu
tion hypothesis. Identity (8) uses the fa
t that SQ is a dis-tributive latti
e, whi
h allows us to move the addition out of the produ
t, while (9)



22uses the de�nition of the f -weight. Identity (10) uses again the distributivity to multi-ply wt(q; q1; : : : ; qk) in. Finally, Identity (11) simpli�es the two sums by 
onstru
ting arun of larger depth. Instead of 
onsidering �rst the transition (q; q1; : : : ; qk) and thenruns of depth up to n starting with ea
h qij , we simply take the 
orresponding run ofdepth n+1 starting at q. This run labels the root with q and the su

essor node i withqi. If qi is a �nal state, then it remains as a leaf, otherwise, below the node i we havethe former run starting with qi. Thus, the set of leafs of this larger run is the union ofthe sets of leafs of the runs rj and the set of those qis that are �nal states. The lastidentity merely applies the de�nition of f -weight again. utTheorem 4 Let f 2 SQ and assume that �0 is the lfp of the operator Of . Then, forevery q 2 Q, �0(q) = Lr2runs1(q) wtf (r).Proof By Lemma 2, we have
Mn�0Onf (e0)(q) = Mn�0 Mr2runs�n1 (q)wtf (r) = Mr2runs1(q)wtf (r):Tarski's �xpoint theorem says that the least �xpoint of Of is Ln�0Onf (e0), whi
h
ompletes the proof of the theorem. utBefore turning our attention to the outer iteration of the method for 
omputing thebehaviour, we will present a bound on the number of steps that are ne
essary beforerea
hing the �xpoint of the inner iteration.De�nition 21 A WBA is m-�nalising if, for every f 2 SQ and every partial run r inruns1(q), there is a partial run sr in runs�m1 (q) su
h that wtf (r) �S wtf (sr).We will �rst show that every WBA is m-�nalising for any m greater to the numberof states jQj. Afterwards we will show how this property yields a bound on the numberof iterations needed to rea
h the least �xpoint of Of .Theorem 5 Let A be a WBA with less than m states. Then A is m-�nalising.Proof Let f 2 SQ and 
onsider a run r 2 runs1(q). If r 2 runs�m1 (q), then there isnothing to prove. Otherwise, if r =2 runs�m1 (q), then there must be a path in r of lengthgreater thanm. Sin
e there are less thanm di�erent states, there must be two non-rootnodes u; v in this path su
h that r(u) = r(v). Sin
e these nodes are on the same path,we 
an assume w.l.o.g. that v = uv0 for some v0 2 K� n f"g. We de�ne a new run s asfollows: for every node w, if there is no w0 for whi
h w = uw0, then set s(w) := r(w);otherwise (that is, if w = uw0 for some w0) set s(uw0) := r(vw0). This 
onstru
tionde�nes an inje
tive fun
tion g from the nodes of s to the nodes of r su
h that, for everynode w of s, we have s(w) = r(g(w)). Noti
e that this fun
tion is not surje
tive, asthere is no w su
h that g(w) = u. Thus, s has less nodes than r. Furthermore, everytransition in s is also a transition in r, and for every w 2 leaf(s), g(w) 2 leaf(r). Thisimplies that wtf (r) �S wtf (s). If s is still not in runs�m1 , then we 
an repeat the samepro
ess to produ
e a smaller run s0 with a smaller f -weight, until we �nd one that isin runs�m1 . utTheorem 6 If A is m-�nalising, then Omf (e0) is the lfp of Of .



23Proof Let �0 be the lfp of Of . We know that �0 is the supremum of fOnf (e0) j n � 0g;thus, it is suÆ
ient to show that Omf (e0)(q) �S �0(q) for all q 2 Q. By Theorem 4, weknow that �0(q) = Lr2runs1(q) wtf (r). Sin
e A is m-�nalising, we 
an repla
e everyr 2 runs1(q) by the 
orresponding sr 2 runs�m1 (q), thus obtaining a greater element inthe latti
e. Hen
e,�0(q) �S Mr2runs1(q)wtf (sr) �S Ms2runs�m1 (q)wtf (s) = Omf (e0)(q);whi
h 
ompletes the proof of the theorem. utThis theorem tells us that, in order to 
onstru
t the lfp of the operator Of , it is enoughto apply this operator jQj+1 times. Sin
e ea
h of the iteration steps also requires onlypolynomial time, as a fun
tion of the number of statesQ, we know that the 
omputationof the lfp needs overall polynomial time in the number of states, independently of thelatti
e used. As mentioned before, this bound greatly improves on the trivial obtainedfrom the �niteness SQ sin
e the trivial bound is exponential in the number of statesof the automaton and depends also on the size of the latti
e S.We fo
us now on the outer iteration of the algorithm. For the unweighted 
ase, thisiteration mainly updates the set of bad states with the information obtained from theinternal iteration. To do this, we de�ne the operator Q : SQ ! SQ as follows: for all� 2 SQ Q(�) := lfp(O�);where lfp represents the least �xpoint.We will show that, again, a repeated appli
ation of this operator leads to an ap-propriate �xpoint, due to the fa
t that Q is monotone and SQ is �nite.Lemma 3 The operator Q is monotone.Proof Let �; �0 2 SQ su
h that � �SQ �0. Noti
e �rst that, for every run r 2 runs1,this implies that wt�(r) �S wt�0(r). From this we obtain, for every q 2 Q,Q(�)(q) = lfp(O�)(q)= Mr2runs1(q)wt�(r) (12)�S Mr2runs1(q)wt�0(r)= lfp(O�0)(q) (13)= Q(�0(q);where Identities (12) and (13) follow from Theorem 4 and the inequality is a 
onse-quen
e of the remark at the beginning of this proof. utAgain, �niteness of SQ implies that the operator Q is a
tually 
ontinuous, and thusTarski's �xpoint theorem says that Q has Nn�0Qn(e1) as its greatest �xpoint (gfp). Itremains to show how this gfp 
an be used to 
ompute the behaviour of a given WBA.Let su

A(q) denote the set of all su

essful runs of A whose root is labelled with q.Consider the fun
tion �k 2 SQ where �k(q) := Lr2su

A(q) wt(r). Given this fun
tion,we 
an obtain the behaviour of the WBA A as follows:
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 �k(q).It turns out that �k is in fa
t the greatest �xpoint of Q. Before proving this, wewill introdu
e some additional notation. We will use the expression runsn for n � 1 todenote the set of all �nite runs su
h that every path from the root to a leaf has exa
tlyn non-root nodes labelled with a �nal state, the last of whi
h is the leaf.Given a run r 2 runsn, its preamble is the unique �nite run s 2 runs1 su
h that, forevery node u, if s(u) is de�ned, then s(u) = r(u). We will denote the preamble of r bypre(r). Noti
e that, if r 2 runsn for n � 1, then its preamble always exists, and 
an be
onstru
ted as follows: �rst set pre(r)(") = r(") and pre(r)(i) = r(i) for all i; 1 � i � k.Then, for every node u for whi
h pre(r)(u) is de�ned, if r(u) 2 F , then u is a leaf ofpre(r); otherwise, set pre(r)(ui) = r(ui) for all i; 1 � i � k. This 
onstru
tion �nishessin
e, in every path, we must �nd at least one �nal state, whi
h will be a leaf in pre(r),and thus also pre(r) 2 runs1.Given a (�nite) run r and a node u in r, we will denote the subrun of r starting atu as rju. More formally, rju is the run su
h that, for every v 2 K�, if r(uv) is de�ned,then rju(v) = r(uv).The next lemma relates the number n of times the operator Q has been applied tothe greatest element e1 of SQ to the weights of the runs in runsn.Lemma 5 For all n > 0 and q 2 Q it holds thatQn(e1)(q) = Mr2runsn(q)wt(r):Proof We prove this fa
t also by indu
tion on n. For n = 1, the result follows dire
tlyfrom Theorem 4. Assume now that it holds for n.Qn+1(e1)(q) = lfp(OQn(e1))(q)= Mr2runs1(q)wtQn(e1)(r) (14)= Mr2runs1(q)wt(r)
 Op2leaf(r)Qn(e1)(p) (15)= Mr2runs1(q)wt(r)
 Op2leaf(r) Ms2runsn(p)wt(s) (16)= Mr2runs1(q)wt(r)
 Ou2lnode(r) Ms2runsn(r(u))wt(s) (17)= Mr2runs1(q)wt(r)
 Mft2runsn+1(q)jpre(t)=rg Ou2lnode(r)wt(tju) (18)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(r)
 Ou2lnode(r)wt(tju) (19)= Mr2runs1(q) Mft2runsn+1(q)jpre(t)=rgwt(t) (20)= Ms2runsn+1(q)wt(s): (21)



25The �rst identity employs only the de�nition of Q. Theorem 4 yields Identity (14).Identities (15) and (16) follow from the de�nition of f -weights and the indu
tion hy-pothesis, respe
tively. Identity (17) 
hanges the indi
es to run over the set of leaf nodes,rather than by the states that label them; the idempoten
y of the operators � and 
implies that this 
hange does not alter the result. For Identity (18) we use the distribu-tivity of the latti
e. The de�nition of distributivity says that, in order to ex
hange theoperators � and 
, the now external addition needs to range over all fun
tions map-ping nodes u 2 lnode(r) to runs s 2 runsn(r(u)). We noti
e that ea
h fun
tion of thiskind, together with the run r 2 runs1(q), de�nes exa
tly one �nite run t 2 runsn+1(q).We thus use this t to represent the fun
tion. Identity (19) is an easy 
onsequen
e ofdistributivity. For Identity (20), we then use the fa
t that a run in runsn+1 
an be seenas its preamble (in runs1) 
on
atenated at ea
h of its leafs with a run in runsn. Finally,for Identity (21) we noti
e that the set of all runs in runsn+1 
an be partitioned bymeans of their preambles, whi
h means that both sides of the identity range over thesame runs. utAs it was the 
ase for the operator O in the internal iteration, we 
an bound thenumber of iterations that Q needs before rea
hing a �xpoint by the number of statesof the automaton.De�nition 22 (m-
omplete) A WBA A is m-
omplete if, for every partial run r 2runsm(q), there is a su

essful run sr 2 su

A(q) su
h that wt(r) �S wt(sr).Using the fa
t that 
 is idempotent, it is easy to see that every WBA ism-
ompletefor any m greater than the number of �nal states jF j. The proof is similar to the onegiven in [3℄ for the fa
t that a looping automaton has a run i� it has a partial run ofdepth greater than jQj. However, we now also need to take into a

ount whi
h are thestates that are �nal, and whi
h are not.Theorem 7 If A is a WBA with less than m �nal states, then A is m-
omplete.Proof Suppose that we have a partial run r : t! Q in runsm(q). We use r to 
onstru
ta fun
tion � : K� ! t by indu
tion. With this fun
tion, we then 
onstru
t a su

essfulrun sr by setting sr(u) := r(�(u)). The intuitive meaning of �(v) = w is that, in therun sr, the node v will have the same label as the node w in r. We de�ne � as follows:{ �(") := ",{ for a node v � i, if there is a prede
essor w of �(v) � i su
h that (i) r(�(v) � i) = r(w),and (ii) r(w) 2 F , then set �(v � i) := w; otherwise, set �(v � i) := �(v) � i.Noti
e that the fun
tion � is well-de�ned sin
e, for every v 2 K�, we have that �(v) isnot a leaf node of t. In fa
t, whenever we �nd a �nal state several times in the samepath, the mapping � always leads to the earliest one. Thus, rea
hing a leaf would meanthat we have a path rea
hing m �nal states, where none of them repeats, 
ontradi
tingthe fa
t that the automaton has less than m �nal states in total.We now show that it is possible to 
onstru
t a su

essful run sr from r by de�ningsr(v) = r(�(v)) for all v 2 K�, and that wt(r) �S wt(sr). Our de�nition of � ensuresthat, for every v 2 K� and i 2 K, it holds that sr(v � i) = r(�(v) � i). Thus, for everyv 2 K�, we have (sr(v); sr(v1); : : : ; sr(vk)) = (r(�(v)); r(�(v) � 1); : : : ; r(�(v) � k)), andhen
e, wt(sr(v); sr(v1); : : : ; sr(vk)) = wt(r(�(v)); r(�(v) � 1); : : : ; r(�(v) � k)):



26This implies that every fa
tor in the produ
t wt(sr) is also a fa
tor in the produ
twt(r). Sin
e the produ
t 
omputes the in�mum, we thus have wt(r) �S wt(sr).It remains only to show that sr is su

essful. Suppose to the 
ontrary that sr isnot su

essful. Then, there must exist a path p and a node v 2 p su
h that all itssu

essors in p are labelled with non-�nal states. In other words, for every w 2 K�, ifv �w 2 p, then sr(v �w) =2 F . This implies, by our de�nition of �, that �(v �w) = �(v)�w,for all v � w 2 p. Thus, r has an in�nite path, whi
h 
ontradi
ts the assumption thatr 2 runsm. utThe following theorem states that it is possible to 
ompute the mapping �k for anm-
omplete automaton by applying the Q operator to the greatest element of SQ atmost m times.Theorem 8 If A is an m-
omplete WBA, then Qm(e1) = �k.Proof Noti
e �rst that, by Lemma 5, we know that Qm(1)(q) = Lr2runsm(q) wt(r).Sin
e A is m-
omplete, we 
an repla
e ea
h of these partial runs by a su

essful run,whi
h yields Qm(e1)(q) �S Mr2runsm(q)wt(sr) �S Ms2su

(q)wt(s) = �k(q):To prove the inequality in the other dire
tion, noti
e that, given a su

essful run r,we 
an trun
ate it at every path when m �nal states have been found. The result ofthis is a �nite run sin
e otherwise, as the tree is �nitely bran
hing, K�onig's Lemmawould imply the existen
e of an in�nite path in this tree. Sin
e we trun
ate ea
h bran
hwhenever we have found m �nal states, an in�nite path would be one on whi
h lessthan m �nal states o

ur, 
ontradi
ting the fa
t that r is a su

essful run. Thus, thepartial run rm 
onstru
ted this way belongs to runsm. Noti
e that, for every node u ofrm, it holds that rm(u) = r(u). Hen
e, we have wt(r) �S wt(rm). This yields�k(q) = Mr2su

(q)wt(r) �S Mr2su

(q)wt(rm)�S Ms2runsm(q)wt(s) = Qm(e1)(q):Putting the two inequalities together proves the theorem. utIn parti
ular, this theorem shows that the mapping �k is indeed the gfp of Q.Corollary 1 The mapping �k is the greatest �xpoint of Q.Proof Sin
e SQ is �nite, the gfp of Q is rea
hed after �nitely many iterations; morepre
isely, if n0 > jSjjQj, then this gfp is Nn�0Qn(e1) = Qn0(e1). Obviously, we 
an
hoose n0 su
h that n0 > jF j. Theorem 7 then says that the automaton is n0-
omplete.Thus, by Theorem 8, it follows that Qn0(e1) = �k. utOverall, we have thus shown how to 
ompute the behaviour of a WBA. By Lemma 4,kAk = Lq2Q in(q)
�k(q). The above 
orollary says that �k is the greatest �xpoint ofQ. Let us illustrate this pro
ess by using it to 
ompute the behaviour of the pinpointingautomaton of Example 4.



27Example 6 To 
ompute the behaviour of the pinpointing automaton introdu
ed inExample 4, we need to �nd the greatest �xpoint of Q, found after repeated appli
ationsof Q to e1. By de�nition, Q(e1) = lfp(Oe1); hen
e, we repeatedly apply Oe1 to e0 to �ndthis least �xpoint. This operator is de�ned asOe1(�)(p) = ^(p;p1;p2)2Q3 wt(p; p1; p2) _ stepe1(�)(p1) _ stepe1(�)(p2);where stepe1(�)(p) = ? if p 2 fq1; q3g and �(p) otherwise. The �rst iteration of the�xpoint 
omputation looks as follows:11Oe1(e0)(q0) = (wt(q0; q1; q1) _ ?_?) ^ (wt(q0; q2; q2) _ >_ >)= (?_?_?) ^ (?_>_>) = ?;Oe1(e0)(q1) = wt(q1; q1; q1) _ ?_? = ax1 _ ?_ ? = ax1;Oe1(e0)(q2) = (wt(q2; q2; q2) _ >_>) ^ (wt(q2; q3; q3) _ ?_ ?)= (ax3 _ >_ >)^ (?_ ?_ ?) = ?;Oe1(e0)(q3) = >:Analogously, we 
an 
ompute O2
e1(e0) = Oe1(e0) = (?;ax1;?;>), whi
h means that wehave found the least �xpoint; hen
e Q(e1) = (?; ax1;?;>).For the se
ond iteration, we get that O2Q(e1)(e0) = OQ(e1)(e0) = (ax1; ax1;>;>),and thus Q2(e1) = (ax1; ax1;>;>). A further iteration of this operator yields Q3(e1) =Q2(e1) and hen
e we have found the greatest �xpoint �k of Q.Knowing this �xpoint, we 
an now 
ompute the behaviour of (Aex; �res; Ires)pin:k(Aex; �res; Ires)pink = 3̂i=0 in(qi) _ �k(qi)= (ax2 _ ax1) ^ (>_ ax1) ^ (>_>) ^ (>_>)= ax2 _ ax1;whi
h is identi
al to the behaviour that we have 
omputed in an ad ho
 manner inExample 4.In general, the �xpoint �k 
an be 
omputed in mo := jF j + 1 iteration stepssin
e mo is larger than the number of �nal states of the input WBA (Theorems 7and 8). Ea
h step of this outer iteration 
onsists of 
omputing the least �xpoint of theoperator O� , where � is the result of the previous step. This �xpoint 
an be 
omputedin mi = jQj+1 iteration steps sin
e mi is larger that the number of states of the inputWBA (Theorems 5 and 6). Su
h an inner iteration step requires a polynomial numberof latti
e operations (in the 
ardinality jQj of Q).Thus, to analyze the 
omplexity of our algorithm for 
omputing the behaviour of aWBA, we need to know the 
omplexity of applying the latti
e operations. If we assumethat this 
omplexity is 
onstant (i.e., the latti
e S is assumed to be �xed), then we endup with an overall polynomial time 
omplexity. However, this is not always a reasonableassumption. In fa
t, we were able to restri
t our attention to �nite distributive latti
esby taking, for a given WBA, the distributive latti
e generated by the weights o

urring11 For brevity, we 
onsider only those transitions that have a weight di�erent from >.



28in it (where these weights may 
ome from an underlying in�nite distributive latti
e).Thus, the a
tual �nite distributive latti
e used may depend on the automaton. Letus assume that the latti
e operations 
an be performed using time polynomial in thesize of any generating set. Sin
e the size of this generating set is itself polynomial inthe number of states of the input WBA A, this assumption implies that the latti
eoperations 
an be performed in time polynomial in the size of the automaton. Thus,under this assumption, we have an overall polynomial bound (measured in the numberof states) for the 
omputation of the behaviour of a WBA.In the 
ase of pinpointing, we use the T -Boolean semiring BT , whi
h is the freedistributive latti
e generated by the set lab(T ). The latti
e operations are 
onjun
tionand disjun
tion of monotone Boolean formulae. Note that, stri
tly speaking, the latti
eelements are monotone Boolean formulae modulo equivalen
e, i.e., equivalen
e 
lassesof monotone Boolean formulae. However, sin
e equivalen
e of monotone Boolean for-mulae is known to be an NP-
omplete problem, we do not try to 
ompute uniquerepresentatives of the equivalen
e 
lasses. We just leave the formulae as they are. Nev-ertheless, if we are not 
areful, then the 
omputed pinpointing formula may still beexponential in the size of the automaton, though we apply only a polynomial numberof 
onjun
tion and disjun
tion operations. The reason is that we may have to 
reate
opies of subformulae. However, this problem 
an easily be avoided by employing stru
-ture sharing, i.e., using dire
ted a
y
li
 graphs (DAGs) as data stru
ture for monotoneBoolean formulae.Corollary 2 Let � be an axiomatized input and (A; �res; Ires) an axiomati
 automa-ton for � w.r.t. the 
-property P su
h that A is a WBA. Then a DAG representationof a pinpointing formula for � w.r.t. P 
an be 
omputed in time polynomial in the sizeof A.We will show in Se
tion 5.3 below that there is a behaviour-preserving polynomial-time redu
tion of WGBA to WBA. This implies that the above Corollary 2 also holdsfor the 
ase whereA is a generalized WBA. Note, however, that the size of the automatawe have 
onstru
ted for SI and LTL is already exponential in the size of the input.Thus, the (DAG representation of the) pinpointing formula may still be exponentialin the size of the input, and 
omputing it may take exponential time in the size of theinput.We pro
eed now to show how the method for 
omputing the behaviour of a WBAintrodu
ed above 
an be used for 
omputing the behaviour of the other two kinds ofweighted automata we have de�ned, namely, WLA and WGBA.5.2 Computing the Behaviour of a WLAA WLA is a WGBA that has no set of �nal states. In this 
ase, the 
ondition for arun to be su

essful|that is, that every path must have in�nitely many states labelledwith elements of Fi for ea
h set of �nal states Fi|is trivially satis�ed. Thus, every runof a weighted looping automaton is su

essful. Alternatively, we 
an view the WLA(Q; in; wt) as the WBA (Q; in; wt;Q) sin
e every state being a �nal state also meansthat every run is su

essful. Thus, WLAs are spe
ial kinds of WBAs, whi
h shows thatour approa
h for 
omputing the behaviour of WBAs 
an dire
tly be applied to WLAs.



29However, the fa
t that every run is su

essful 
an be used to simplify the pro
edureinto one that uses only a single iteration.Noti
e �rst that the operator Of depends on the set of �nal states. More pre
isely,the set of �nal states is used in the de�nition of the auxiliary fun
tion stepf :stepf (�)(q) = (f(q) if q 2 F�(q) otherwiseIf all states are �nal, then no 
ase analysis is ne
essary in stepf , and hen
e stepf (�)(q) =f(q) for all � 2 SQ and all q 2 Q. This 
ollapses the de�nition of the operator Of toOf (�)(q) = M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 f(qj):Noti
e that in this 
ase Of does not depend on the input �, and hen
e its only �xpointis rea
hed after exa
tly one iteration. This allows us to simplify the de�nition of theoperator Q in the following way:Q(�)(q) = lfp(O�)(q)= O�(e0)(q)= M(q;q1;:::;qk)2Qk+1 wt(q; q1; : : : ; qk)
 kOj=1 �(qj)The behaviour of a WLA is then the gfp of this operator Q, whi
h 
an be 
omputedby a single iteration. The inner iteration of the general pro
edure is repla
ed by adire
t appli
ation of the simpli�ed de�nition of Q. Note that this simpli�ed de�nitionof Q 
oin
ides with the one introdu
ed in [6℄ spe
i�
ally for WLAs. Thus, the \nestediteration approa
h" for WBAs developed in the present paper 
an be seen as a dire
tgeneralization of the \bottom-up approa
h" introdu
ed in [6℄ for the 
ase of WLAs.Let us apply this insight to the pinpointing automaton for SI 
onstru
ted in Se
-tion 4.2. This automaton has exponentially many states in the size n of the input(C; T ). Thus, we need exponentially many appli
ations of the operator Q, when mea-sured on n. It is also easy to see that the time required by ea
h appli
ation of Q ispolynomial in the size of the automaton, and thus exponential in n. Hen
e, this leadsto an algorithm with a total running time that is exponential in the size of the input.Corollary 3 Let C be an ALC 
on
ept des
ription and T an SI TBox. A pinpointingformula for (C; T ) w.r.t. unsatis�ability 
an be 
omputed in time exponential in thesize of (C; T ).Sin
e even de
iding satis�ability of ALC 
on
ept des
riptions w.r.t. SI TBoxes isknown to be ExpTime-hard, this bound is optimal.5.3 Computing the Behaviour of a Generalized WBAWe have shown how to 
ompute the behaviour of a WBA in time polynomial in thenumber of states. We will now give a polynomial redu
tion in whi
h, for every WGBA,we 
onstru
t a WBA that has the same behaviour, transferring this way the problem of



30
omputing the behaviour of WGBAs to the spe
ial 
ase of WBAs that we have alreadysolved. The idea of the redu
tion is to make several 
opies of the set of states anduse ea
h 
opy to test the B�u
hi 
ondition for a spe
i�
 set of �nal states, moving tothe next 
opy on
e we have found a �nal state of the set we are 
urrently looking at.This is the same idea as the one used in the unweighted 
ase to redu
e the emptinessproblem for GBAs to the one for BAs [41℄.Let A = (Q; in; wt; F0; : : : ; Fn�1) be a WGBA. We 
onstru
t the WBA A0 =(Q0; in0; wt0; F 0) as follows:{ Q0 = f(q; i) j q 2 Q; 0 � i � n� 1g,{ in0(q; i) = (in(q) if i = 0,0 otherwise{ wt0((q0; i); (q1; j); : : : ; (qk; j)) = 8
><
>:

wt(q0; q1; : : : ; qk) if q0 2 Fi, j = i+ 1 mod n,wt(q0; q1; : : : ; qk) if q0 =2 Fi, i = j0 otherwise{ F 0 = f(q; n� 1) j q 2 Fn�1g.Noti
e that the automaton A0 has n � jQj states, where n is the number of sets of�nal states. Sin
e there 
an potentially be 2jQj sets of �nal states, this redu
tion is notpolynomial when measured only in the number of states of A, but it is polynomial inthe total size of the automaton A.Theorem 9 If A is a WGBA and A0 is 
onstru
ted as above, then kAk = kA0k.Proof Re
all �rst that the behaviour of an automaton is the addition of the weightsof all su

essful runs multiplied with the initial distribution of their root labels. If arun r is su
h that in(r("))
wt(r) = 0, then it will not be of interest, sin
e it will notin
uen
e the 
omputation of the behaviour. Given a WGBA or WBA B, let supp(B) bethe set of all runs r su
h that in(r("))
 wt(r) 6= 0. We introdu
e a bije
tive fun
tionf : supp(A)! supp(A0) su
h that, for every run r 2 supp(A), wt(r) = wt0(f(r)) and ris su

essful (w.r.t. A) i� f(r) is su

essful (w.r.t. A0).Let r be a run in supp(A). We de�ne the run f(r) of A0 indu
tively as follows:{ f(r)(") = (r("); 0);{ let u 2 K� and f(r)(u) = (q; i). Then, for all 1 � j � k,f(r)(u � j) = ((r(u � j); i) if q =2 Fi;(r(u � j); i+ 1 mod n) if q 2 Fi:Let u 2 K� and f(r)(u) = (q; i). Then r(u) = q. Furthermore, for all 1 � j � k,f(r)(uj) = (r(uj); i+1 mod n) if q 2 Fi and f(r)(uj) = (r(uj); i) otherwise. Togetherwith the de�nition of wt0, this implieswt0(f(r)(u); f(r)(u1); : : : ; f(r)(uk)) = wt(r(u); r(u1); : : : ; r(uk)):This yields wt(r) = wt0(f(r)). Sin
e we also have in0(f(r)(")) = in(r(")), the fa
t thatin(r("))
 wt(r) 6= 0 also implies that in0(f(r)("))
 wt0(f(r)) 6= 0. Thus, f is indeeda fun
tion from supp(A) to supp(A0).It is easy to see that f is inje
tive. We show now that it is also surje
tive. Let s 2supp(A0). We 
onstru
t a run r 2 supp(A) as follows: for every u 2 K�, if s(u) = (q; i),then r(u) = q. We show that s = f(r). First, sin
e in0(s("))
 wt0(s) 6= 0, it must be



31the 
ase that in0(s(")) 6= 0, and thus s(") = (q; 0) for some q 2 Q. Consider now someu 2 K� and let s(u) = (q; i). Hen
e, also r(u) = q. Sin
e wt0(s(u); s(u1); : : : ; s(uk)) 6= 0,it must be the 
ase that, if q 2 Fi, then for all 1 � j � k it holds that s(uj) = (qj ; i+1mod n) for some qj 2 Q, and if q =2 Fi, then s(uj) = (qj ; i). Thus, s satis�es thede�nition of f(r).It remains only to show that r is su

essful (w.r.t. A) i� f(r) is su

essful (w.r.t.A0). Suppose �rst that f(r) is su

essful. Then for every path there are in�nitely manynodes labelled with elements of F 0 = f(q; n�1) j q 2 Fn�1g. But noti
e that, a

ordingto the way f was de�ned, if f(r)(u) 2 F 0, then f(r)(uj) is of the form (qj ; 0) for all1 � j � k. All the following nodes in the path will have labels of the form (�; 0) until astate from F0 is found, in whi
h 
ase the next labels are of the form (�; 1), et
. Thus, toget to another node with label (q0; n�1) 2 F 0 on the path, one must �rst have rea
hednodes with labels (q0; 0); (q1; 1); : : : ; (qn�2; n � 2) where qi 2 Fi for i = 0; : : : ; n � 2.This implies that r is su

essful.Conversely, assume that f(r) is not su

essful. Then there is a path in f(r) onwhi
h, from some node on, no element of F 0 o

urs as a label on the path. Sin
e these
ond 
omponent of the node labels 
an only swit
h ba
k to 0 when an element of F 0is rea
hed, this means that there is an i0; 0 � i0 � n� 1, su
h that, from some nodeon, all the labels on the path have i0 as their se
ond 
omponent. This means, however,that from this node on no element of Fi0 o

urs in the �rst 
omponent. Consequently,r 
annot be su

essful.As a 
onsequen
e of the properties of the fun
tion f that we have shown so far, weobtain kAk = Mr su

essful run of A in(r("))
 wt(r)= Mr su

essful run of A in(r("))
 wt(f(r))= Mf(r) su

essful run of A' in(f(r)("))
 wt(f(r))= Mr su

essful run of A' in(r("))
wt(r) = kA0k: utGiven a WGBA with m states and n sets of �nal states, this redu
tion yields a WBAwith n �m states. As des
ribed before, 
omputing the behaviour of a WBA requirestime polynomial in the size of its state set; in this 
ase, polynomial in n � m. Thus,our method 
omputes the behaviour of a WGBA in time polynomial in its number ofstates and sets of �nal states.Let us apply this approa
h for 
omputing the behaviour of a WGBA to the pinpoint-ing automaton for LTL 
onstru
ted in Se
tion 4.3. This automaton has exponentiallymany states in the size n of the input (�;R) and linearly many sets of �nal states in n.Thus, the WBA 
onstru
ted from the WGBA is of size exponential in n. Overall, thetwo nested iterations perform exponentially many steps, whi
h leads to an algorithmwith a total running time that is exponential in the size of the input.Corollary 4 Let � be an LTL formula and R a set of LTL formulae. A pinpointingformula for (�;R) w.r.t. a-unsatis�ability 
an be 
omputed in time exponential in thesize of (�;R).



325.4 An Alternative Approa
h for Computing the BehaviourIndependently from us, a di�erent algorithm for 
omputing the behaviour of WBAsover distributive latti
es was developed by Droste et.al. [15℄. We will �rst sket
hthis alternative approa
h and then 
ompare it to ours, with spe
ial attention to theappli
ation in the pinpointing s
enario.12 In the following, we will 
all our method theiterative method and the one from [15℄ the prime method.The prime method is based on the following property of distributive latti
es. Let(S;�S) be a distributive latti
e. An element p 2 S is 
alled meet prime if, for everyt1; t2 2 S, t1 
 t2 �S p implies that either t1 �S p or t2 �S p. It is known that anyelement t of S equals the in�mum of all the meet prime elements greater than or equalto t [18℄. If one 
ould de
ide, for a given meet prime element p, whether p is greaterthan or equal to the behaviour of a weighted automaton, then this behaviour 
ould bereadily 
omputed from the outputs of su
h de
isions, as we will show next.The prime method performs this de
ision as follows. Let A = (Q; in; wt; F ) be theWBA over the distributive latti
e (S;�S) for whi
h we want to 
ompute the behaviour,and let prime(S) denote the set of all meet prime elements of S. For every meet primeelement p 2 prime(S), 
onstru
t the (unweighted) automaton Ap = (Q;�; I; F ) where:{ � := f(q; q1; : : : ; qk) 2 Qk+1 j wt(q; q1; : : : ; qk) 6�S pg;{ I := fq 2 Q j in(q) 6�S pg.It is easy to see that Ap a

epts a non-empty language (i.e., there exists a su

essfulrun of Ap that starts with an initial state) i� there is a su

essful run r of A su
hthat in(r("))
wt(r) 6�S p. Equivalently, the language a

epted by Ap is empty i�, forevery su

essful run r of A, it holds that in(r("))
 wt(r) �S p. But this means thatkAk �S p. Thus, if we denote by L(Ap) the language a

epted by the automaton Ap,we have kAk = Ofp2prime(S)jL(Ap)=;g p:In the pinpointing appli
ation, we use the latti
e BT , where the meet prime ele-ments are exa
tly all 
onjun
tions of propositional variables in lab(T ).13 There is thena one-to-one 
orresponden
e between the meet prime elements of BT and all subsetsof axioms appearing in the axiomati
 input for whi
h the pinpointing formula is being
omputed. Take an arbitrary meet prime element p and assume that it 
orresponds tothe set of axioms T 0 � T , i.e., p = Vt2T 0 lab(t). The automaton Ap has a transition(q; q1; : : : ; qk) i��vio(q; q1; : : : ; qk) = wt(q; q1; : : : ; qk) 6�BT p = ^t2T 0 lab(t):Sin
e �vio(q; q1; : : : ; qk) = Wft2T j(q;q1;:::;qk)=2�res(t)g lab(t), this means that for everyt 2 T 0, (q; q1; : : : ; qk) 2 �res(t). But this holds i� (q; q1; : : : ; qk) is a transition of AjT 0 .12 We present only a spe
ial 
ase of the algorithm in [15℄, where we allow only unlabelledtrees as inputs. Furthermore, we have ex
hanged the use of join prime elements in [15℄ withthe use of their meet prime 
ounterparts. This is justi�ed by duality, and allows for an easierunderstanding of how this method works in the pinpointing appli
ation, and makes it easierto 
ompare it with our approa
h in this setting.13 Re
all that the latti
e BT uses disjun
tion as its in�mum operator, and 
onjun
tion as thesupremum. Thus, 
onjun
tions of variables are the only elements of the latti
e that 
annot bewritten as the in�mum (disjun
tion) of other elements.



33Analogously, it is easy to see that a state q is an initial state of Ap i� it is an initial stateof AjT 0 . Thus, the automaton Ap is identi
al to the T 0-restri
ted subautomaton AjT 0 .Consequently, testing the automaton Ap for emptiness is the same as testing AjT 0for emptiness, whi
h in turn is just an appli
ation of the automata-based de
isionpro
edure as a bla
k-box pro
edure for testing the 
-property. One 
ould, of 
ourse,also use any other de
ision pro
edure for the 
-property instead. This shows that theprime method a
tually 
orresponds to the na��ve bla
k-box approa
h of testing the 
-property for all possible subsets of axioms. Unoptimized, this pro
ess will thus alwaysneed an exponential number of tests for 
omputing the pinpointing formula. However,this pro
ess allows the use of all the optimizations appli
able to bla
k-box pinpointingalgorithms.Noti
e that, in the examples we have presented in this paper (i.e., pinpointingunsatis�ability in SI and LTL), both the iterative and the prime method have anexponential run time. For the iterative method, we have a bound that is polynomial inthe number of states of the 
onstru
ted automata, but this number is itself exponentialin the size of the input. The prime method performs exponentially many emptinesstests, ea
h of whi
h requires exponential time (sin
e it is performed on an exponentiallylarge automaton). Although both approa
hes result in an exponential-time algorithmin these 
ases, the bound on the iterative method has the advantage of not dependingon the number of meet prime elements of the latti
e, as opposed to the prime method.In the 
ase of pinpointing, the latti
e has always 2n meet prime elements, where n isthe number of input axioms. If the axiomati
 automaton de
iding the property has anumber of states polynomial in the size of the input, then this exponential number oftests will yield a suboptimal pro
edure, as demonstrated by the following examples.Example 7 Assume that we have an input I and a set of axioms T = ft0; : : : ; tn�1g,and that the 
-property is de�ned as follows: P1 := f(I; T 0) j T 0 � T ; jT 0j > 0g.Let ea
h axiom ti be labelled with the propositional variable pi. Then a pinpointingformula for P1 is given by W0�i<n pi.We 
an 
onstru
t an axiomati
 automaton (An; �res; Ires) for the axiomatizedinput (I; T ) as follows:{ An is the looping automaton An := (fq0; : : : ; qn�1g; �; fq0g);{ � = f(qi; q(i+1)mod n) j 0 � i < ng;{ for every 0 � j � n� 1; �res(tj) = � n f(qj ; q(j+1)mod ng;{ for every t 2 T ; Ires(t) = fq0g.It is easy to see that this axiomati
 automaton is 
orre
t for the property P1. Sin
e Anhas n states and n transitions, the iterative method needs polynomial time to 
omputethe behaviour of the pinpointing automaton indu
ed by (An; �res; Ires), measured inthe number of axioms n := jT j. On the other hand, the unoptimized prime methodrequires 2n emptiness tests.In order to illustrate the working of the iterative methods, we show how it 
omputesthe pinpointing formula in this example. The axiomati
 automaton (An; �res; Ires)indu
es the pinpointing automaton (A; �res; Ires)pin = (fq0; : : : ; qn�1g; in; wt), where{ in(q0) = ? and in(qi) = > for all 0 < i < n; and{ wt(qi; qj) equals pi if j = (i+ 1) mod n, and > otherwise.As this is a weighted looping automaton, the iterative method redu
es to an iteratedappli
ation of the simpli�ed operator Q des
ribed in Se
tion 5.2. Noti
e that, for ev-ery state qi, there is exa
tly one transition, namely (qi; q(i+1)mod n), having a weight



34distin
t from >. Hen
e, for every fun
tion � : Q! BT we have:Q(�)(qi) = ^0�j<nwt(qi; qj) _ �(qj)= wt(qi; q(i+1)mod n) _ �(q(i+1)mod n) = pi _ �(q(i+1)mod n):The pro
ess starts with the fun
tion e1 : Q ! BT that maps every state to ?; thatis, e1(qi) = ? for all 0 � i < n. After the �rst appli
ation of the operator Q, we haveQ(e1)(qi) = pi for all 0 � i < n sin
e pi _ ? is equivalent to pi. Analogously, after miterations we have, for all 0 � i < n, thatQm(e1)(qi) = _0�j<m p(i+j)mod n:This pro
ess rea
hes a �xpoint when m = n, in whi
h 
ase every state qi is mapped tothe formula W0�j<n pj . Thus, the behaviour of (A; �res; Ires)pin isk(A; �res; Ires)pink = V0�i<n in(qi) _Qn(e1)(qi)= in(q0) _ Qn(e1)(q0)= Qm(e1)(q0) = W0�j<n pj ;whi
h is a pinpointing formula.Our se
ond example shows that this di�eren
e in the exe
ution times of the twomethods o

urs also for more elaborate properties whose automata de
ision pro
edureuses a B�u
hi a

eptan
e 
ondition.Example 8 Let Q be an in�nite set of states and let the set of inputs I be the set of allgeneralized B�u
hi automata using states from Q, and the set of axioms be T := Qk+1.That is, we use the transitions in A as axioms of our property. We de�ne the 
-propertyP2 as the set of all tuples (A; �) where A = (Q;�; I; F1; : : : ; Fn) is a generalized B�u
hiautomaton in I, and � � T is su
h that (Q;�n�; I; F1; : : : ; Fn) has no su

essful run rwith r(") 2 I. Intuitively, the axioms tell whi
h transitions are disallowed in the inputautomaton A. The 
-property is satis�ed whenever we remove enough transitions (byadding them to the axiom set) to avoid any su

essful run whose root is labelled withan initial state. It is easy to see that the axiomati
 automaton (A; �res; Ires) where�res(t) = � n ftg and Ires(t) = Q for all t 2 � is 
orre
t for the property P andthe axiomatized input (A; �). As we have seen, the iterative method requires timepolynomial in the number of states jQj of this axiomati
 automaton to 
ompute thepinpointing formula for this property. On the other hand, the prime method needs2j�j emptiness tests, ea
h polynomial on jQj. We thus have an exponential in
rease inexe
ution time, when 
ompared to the iterative method.One advantage of the prime method is that it 
an easily be generalized to more
omplex automata models. For instan
e, it is shown in [15℄ how the same idea works inthe presen
e of a more 
omplex a

eptan
e 
ondition, known as the Muller 
ondition.Also note that the prime method 
an possibly be optimized using the ideas underlyingthe known optimizations of bla
k-box pinpointing pro
edures, not just in the 
ase ofapplying it to pinpointing, but also in a more general setting.



356 Con
lusionsWe have introdu
ed a general framework for extending de
ision pro
edures based onthe 
onstru
tion of generalized B�u
hi automata to pinpointing algorithms. This frame-work 
an elegantly deal with DLs for whi
h tableau-based de
ision pro
edures requiresophisti
ated blo
king 
onditions, and to whi
h 
onsequently the general approa
h forextending tableau-based de
ision pro
edures to pinpointing algorithms introdu
ed in[5℄ does not apply. Our framework assumes that one 
an des
ribe the in
uen
e of axiomsin a 
-property by restri
ting the sets of transitions and initial states of the automaton.One 
ould imagine that in some 
ases the axioms might also have an in
uen
e on the�nal states. While it should not be hard to integrate this into our framework, we havenot investigated this sin
e none of the 
-properties we have 
onsidered required su
h amodi�
ation of the sets of �nal states.Our framework is based on the use of weighted automata working on in�nite trees,whose study has only re
ently begun. One of the main 
ontributions of this paper isan approa
h for 
omputing the behaviour of su
h automata with a run time that ispolynomial in the size of the automaton and independent of the size of the underly-ing distributive latti
e. An interesting topi
 for future work is to 
he
k whether ouriterative approa
h 
an be adapted su
h that it also works in 
ases where the weightedautomaton is not expli
itly given, but rather 
omputed on-the-
y. Finally, it would alsobe interesting to know how to adapt our iterative method su
h that it 
an 
omputethe behaviour of weighted automata working on in�nite trees that use more 
omplexa

eptan
e 
onditions for runs, su
h as the Muller or the Rabin 
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