Noname manuscript No.
(will be inserted by the editor)

Automata-based Axiom Pinpointing

Franz Baader - Rafael Penaloza

the date of receipt and acceptance should be inserted later

Abstract Axiom pinpointing has been introduced in description logics (DL) to help
the user understand the reasons why consequences hold by computing minimal subsets
of the knowledge base that have the consequence in question (MinA). Most of the
pinpointing algorithms described in the DL literature are obtained as extensions of
tableau-based reasoning algorithms for computing consequences from DL knowledge
bases. In this paper, we show that automata-based algorithms for reasoning in DLs
and other logics can also be extended to pinpointing algorithms. The idea is that the
tree automaton constructed by the automata-based approach can be transformed into
a weighted tree automaton whose so-called behaviour yields a pinpointing formula,
i.e., a monotone Boolean formula whose minimal valuations correspond to the MinAs.
We also develop an approach for computing the behaviour of a given weighted tree
automaton. We use the DL S7 as well as Linear Temporal Logic (LTL) to illustrate
our new pinpointing approach.

1 Introduction

Description logics (DLs) [2] are a family of logic-based knowledge representation for-
malisms, which are employed in various application domains, such as natural language
processing, configuration, databases, and bio-medical ontologies, but their most no-
table success so far is the adoption of the DL-based language OWL [21] as standard
ontology language for the semantic web. As the size of DL-based ontologies grows,
tools that support improving the quality of such ontologies become more important.
DL reasoners [20,19,38] can be used to detect inconsistencies and to infer other implicit
consequences, such as subsumption relationships between concepts or instance relation-
ships between individuals and concepts. However, for a developer or user of a DL-based
ontology, it is often quite hard to understand why a certain consequence computed by
the reasoner actually follows from the knowledge base. For example, in the current

First author partially supported by NICTA, Canberra Research Lab., and second author funded
by the German Research Foundation (DFG) under grant GRK 446.

Theoretical Computer Science, TU Dresden, Germany
E-mail: {baader,penaloza}@tcs.inf.tu-dresden.de

DL version of the medical ontology SNOMED CT,! the concept Amputation-of-Finger
is classified as a subconcept of Amputation-of-Arm. Finding the six axioms that are
responsible for this error [10] among the more than 350,000 terminological axioms of
SNOMED without support by an automated reasoning tool is not easy.

Axiom pinpointing [34] has been introduced to help developers or users of DL-
based ontologies understand the reasons why a certain consequence holds by computing
minimal subsets of the knowledge base that have the consequence in question (MinA).
There are two general approaches for computing MinAs: the black-boz approach and
the glass-bor approach. The most naive variant of the black-box approach considers
all subsets of the ontology, and computes for each of them whether it still has the
consequence or not. More sophisticated versions [35,22] use a variant of Reiter’s [32]
hitting set tree algorithm to compute all MinAs. Instead of applying such a black-box
approach to a large ontology, one can also first try to find a small and easy to compute
subset of the ontology that contains all MinAs, and then apply the black-box approach
to this subset [10]. The main advantage of the black-box approach is that it can use
existing highly-optimized DL reasoners unchanged. However, it may be necessary to
call the reasoner an exponential number of times. In contrast, the glass-box approach
tries to find all MinAs by a single run of a modified reasoner.

Most of the glass-box pinpointing algorithms described in the DL literature (e.g.,
[4,34,33,27,25]) are obtained as extensions of tableau-based reasoning algorithms [9]
for computing consequences from DL knowledge bases. The pinpointing algorithms and
proofs of their correctness in these papers are given for a specific DL and a specific
type of knowledge base only, and it is not clear to which of the known tableau-based
algorithms for DLs the approaches really generalize. For example, the pinpointing ex-
tension described in [25], which can deal with general concept inclusions (GCIs) in
the DL ALC, follows the approach introduced in [4], but since GCIs require the in-
troduction of so-called blocking conditions into the tableau-based algorithm to ensure
termination [9], there are some new non-trivial problems to be solved.

To overcome the problem of having to design a new pinpointing extension for every
tableau-based algorithm, we have introduced in [5] a general approach for extending
tableau-based algorithms to pinpointing algorithms. This approach has, however, some
annoying limitations. First, it only applies to tableau-based algorithms that terminate
without requiring any cycle-checking mechanism such as blocking. Second, termination
of the tableau-based algorithm one starts with does not necessarily transfer to its pin-
pointing extension. Though these problems can, in principle, be solved by restricting
the general framework to so-called forest tableaux [8,7], this solution makes the defini-
tions and proofs quite complicated and less intuitive. Also, the approach can still only
handle the most simple version of blocking, usually called subset blocking in the DL
literature.

In the present paper, we propose a different general approach for obtaining glass-box
pinpointing algorithms, which also applies to DLs for which the termination of tableau-
based algorithms requires the use of appropriate blocking conditions. It is well-known
that automata working on infinite trees can often be used to construct worst-case opti-
mal decision procedures for such DLs [13,26,11, 14, 3]. In this automata-based approach,
the input inference problem I is translated into a tree automaton Ap, which is then
tested for emptiness. Basically, our approach transforms the tree automaton Ap into
a weighted tree automaton working on infinite trees, whose so-called behaviour yields

! see http://www.ihtsdo.org/our-standards/

a pinpointing formula, i.e., a monotone Boolean formula that encodes all the MinAs
of I'. To obtain an actual pinpointing algorithm, we had to develop an algorithm for
computing the behaviour of weighted tree automata working on infinite trees. When we
started our work, we could not find such an algorithm in the quite extensive literature
on weighted automata. In fact, although weighted automata working on finite trees
[37] and weighted automata working on infinite words [16] have been considered for
quite a while, the research on weighted automata working on infinite trees has started
only recently [23,15]. During the development of our work, an alternative algorithm
for computing the behaviour of weighted tree automata working on infinite trees has
independently been developed in [15]. It turns out, however, that using this algorithm
in our pinpointing application basically yields a black-box approach for pinpointing,
rather than a glass-box approach, as our algorithm does (see Section 5.4).

We will use the DL SZ, which extends the basic DL ALC [36] with transitive
and inverse roles, as well as Linear Temporal Logic (LTL) [28,17] to illustrate our
new pinpointing approach. The use of S7 is, on the one hand, motivated by the fact
that the presence of inverses in S7 requires tableau-based algorithms to use a blocking
condition that is more sophisticated than subset blocking [9]. Consequently, our general
results on tableau-based approach for pinpointing [8,7] do not apply to this DL. On the
other hand, the extension of their approach to SZ is mentioned as an open problem in
[25]. The automata used to decide satisfiability in SZ are so-called looping automata,
which do not use an acceptance condition. Our choice of LTL as a second example
is, on the one hand, motivated by the fact that automata-based algorithms for LTL
require the use of automata with a Biichi acceptance condition.? One the other hand,
we believe that pinpointing can also be a useful inference service in applications of
LTL. In LTL model checking [12], it does not make sense to check whether a system
description satisfies a given LTL formula if this formula or its negation is unsatisfiable.
Pinpointing could help the user to find the reasons for the unsatisfiability and thus
correct the formula. In LTL synthesis [29,24] one tries to generate a reactive finite-state
system from a formal specification, which is given as an LTL formula. If the formula
is unsatisfiable, then the specification is obviously faulty, and needs to be repaired.
Pinpointing could be used to support the repair process by clarifying the reasons for
unsatisfiability.

In the next section, we first introduce the DL SZ and the temporal logic LTL, and
then recall the relevant definitions regarding pinpointing. Section 3 defines generalized
Biichi tree automata, their restrictions to Biichi tree automata and looping tree au-
tomata, and their generalization to the weighted case. In Section 4, we first present
our general approach for automata-based pinpointing, which is based on the notion of
an axiomatic automaton and its transformation into a pinpointing automaton. Then,
we show that this approach can be applied to S§Z and LTL by introducing axiomatic
automata for these logics. The pinpointing automaton is a weighted automaton whose
behaviour is the pinpointing formula. Thus, to apply our approach in practice, one
needs to be able to compute the behaviour of weighted generalized Biichi tree au-
tomata. In Section 5, we first show how to compute the behaviour of weighted Biichi
tree automata. Second, we explain how this computation can be simplified for the case
of weighted looping tree automata. For the DL SZ, the pinpointing automaton con-

2 'We could, of course, also have used a DL with transitive closure of roles [1] for this purpose.
However, such DLs are until now not used in applications, and we also wanted to make clear
that our approach for automata-based pinpointing is not restricted to Description Logics.

structed by our approach is such a weighted looping tree automaton. Third, we define
a behaviour-preserving polynomial-time reduction of weighted generalized Biichi tree
automata to weighted Biichi tree automata, which yields an approach for comput-
ing the behaviour of weighted generalized Biichi tree automata. For the temporal logic
LTL, the pinpointing automaton constructed by our approach is a weighted generalized
Biichi tree automaton. Fourth, we compare our approach for computing the behaviour
of weighted Biichi tree automata with the one developed in [15]. Section 6 summarizes
the results of the paper and gives some perspectives on further research.

This work extends the results in [6] (the conference version of this paper), which
apply to looping automata only, to the case of automata with Biichi acceptance con-
ditions.

2 Preliminaries

In this section, we first introduce the DL SZ and the temporal logic LTL, and then
recall the relevant definitions regarding pinpointing from [5].

2.1 The Description Logic ST

As mentioned above, §Z extends the basic DL ALC with transitive and inverse roles.
An example of a role that should be interpreted as transitive is has-descendant, while
has-ancestor should be interpreted as the inverse of has-descendant. Instead of employing
the usual approach of “hard-coding” inverse and transitive roles into the syntax and
semantics of concept descriptions, we allow the use of inverse and transitivity axioms in
the knowledge base. This enables us to pinpoint also these kinds of axioms as reasons
for certain consequences. Thus, the concept descriptions that we consider in this case
are simply ALC concept descriptions.

Definition 1 (ALC concept descriptions) Let N¢ be a set of concept names and
Np a set of role names. The set of ALC concept descriptions is the smallest set such
that

— all concept names are ALC concept descriptions;

— if C and D are ALC concept descriptions, then so are =C, C U D, and C N D;

— if C is an ALC concept description and r € Npg, then 3Ir.C and Vr.C' are ALC
concept descriptions.

An interpretation is a pair 7 = (AI, -I) where the domain AT is a non-empty set and
T is a function that assigns to every concept name A a set A C A7 and to every role
name r a binary relation rT € AT x AT, This function is extended to ALC concept
descriptions as follows:

- =ctnp?, (cubpyf=ctubp? (-c)f=a%\c"%
— (3r.0)" = {z € AT | there is a y € AT with (z,y) € r” and y € CT};
— (vr.C)t = {z € AT | for all y € AT, (x,y) € rT implies y € CT}.

In this paper we restrict our attention to terminological knowledge, which is given
by a so-called TBox.

Definition 2 (SZ TBoxes) An S7 TBoz is a finite set of axioms of the following
form:

(i) C C D where C and D are ALC concept descriptions (GCI);
(ii) trans(r) where r € Ng (transitivity axiom);
(iii) inv(r,s), where r # s € Ng (inverse axiom),

such that every r € Ng appears in at most one inverse axiom.
An interpretation Z is called a model of the ST TBox T if it satisfies all axioms in
T, ie., if

(i) CC D e T implies ¢T C DZ;
(ii) trans(r) € T implies that r” is transitive;
(i) inv(r,s) € T implies that (z,y) € r’ iff (y,z) € s”.

The main inference problems for terminological knowledge are satisfiability and
subsumption

Definition 3 (satisfiability, subsumption) Let C and D be ALC concept descrip-
tions and 7 an SZ TBox. We say that C is satisfiable w.r.t. T if there is a model Z
of T such that 7 # (. In this case, Z is also called a model of C w.r.t. T. We call
C unsatisfiable w.r.t. T if it does not have a model w.r.t. 7. Finally, we say that C is
subsumed by D w.r.t. T if CT C D” holds in every model Z of T.

We want to pinpoint reasons for unsatisfiability and for subsumption. Since C' is sub-
sumed by D w.r.t. 7 iff C M —D is unsatisfiable w.r.t. 7, it is obviously sufficient to
design a pinpointing algorithm for unsatisfiability.

The automata-based approach for deciding (un)satisfiability uses the fact that an
ALC concept description C' is satisfiable w.r.t. an SZ TBox 7 iff it has a certain tree-
shaped model, called Hintikka tree for C and 7. It constructs a looping tree automaton
working on infinite trees whose runs are exactly the Hintikka trees for C' and T (see
[3] and Section 4.2), and then tests this automaton for emptiness.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension of propositional logic that allows reason-
ing about temporal properties, where time is seen as discrete and linear. The semantics
of this logic use the notion of a computation, which intuitively correspond to interpre-
tations whose domain is fixed to be the set of natural numbers.

Definition 4 (LTL formulae) Let P be a set of propositional variables. The set of

LTL formulae is the smallest set such that

— all propositional variables are LTL formulae,
— if ¢ and ¢ are LTL formulae, then so are —=¢, ¢ A ¢, O¢, and pUY.

A computation is a function 7 : N —» Z?(P), where N represents the set of natural
numbers. This function is extended to LTL formulae as follows, for every i € N:

— =g en@@)iff ¢ ¢ w(i); dAYEn(i)iff {p, 9} C w(i);
— Open(i)iff € m(i+1); and

— ¢UY € w(i) iff there is a j > i such that ¢ € w(j) and for all k,7 < k < j, it holds
that ¢ € w(k).

The LTL formula ¢ is satisfiable if there is a computation w such that ¢ € =(0).

One is usually interested in deciding whether a given LTL formula is satisfiable or
not. Here, we will look at the satisfiability problem in a more fine-grained manner. We
are interested in detecting which parts of the formula actually cause the unsatisfiability.
More precisely, we will assume that our formula is a conjunction of LTL formulae,
and we want to find out which conjuncts are responsible for the unsatisfiability. We
additionally allow some of these conjuncts to be trusted in the sense that they will
never be considered as the causes for unsatisfiability. Thus, we consider LTL formulae
that are conjunctions of a static formula ¢, which must always be there, and a set of
refutable formulae R, which can be removed.

Definition 5 (axiomatic satisfiability) Let ¢ be an LTL formula and R a finite set
of LTL formulae. We say that ¢ is a-satisfiable w.r.t. R if ¢ A /\11;672‘/) is satisfiable,
i.e., there is a computation 7 such that R U {¢} C w(0). In this case, 7 is called a
computation for (¢, R).

We will show in Section 4.3 how one can construct a Biichi tree automaton that has
as its successful runs all computations for the input, thus allowing us to reduce a-
satisfiability to the emptiness problem for Biichi tree automata.

2.3 Basic Definitions for Pinpointing

Following [5], we define pinpointing not for a specific logic and inference problem, but
rather in a more general setting. The type of inference problems that we will consider
is deciding a so-called c-property for a given set of axiomatized inputs. To obtain an
intuitive understanding of the following definition, just assume that inputs are ALC
concept descriptions, admissible sets of axioms are SZ TBoxes, and the c-property is
unsatisfiablility.

Definition 6 (axiomatized input, c-property) Let J and ¥ be sets of inputs and
azioms, respectively, and let & ,qmis(T) € P (T) be a set of finite subsets of T such
that T € @ gmis(T) implies T' € Py ymis(T) for all T' C T. An aziomatized input for
J and L, 4mis (%) is of the form (Z,T) where Z € J and T € 2, 4mis(%).

A consequence property (or c-property for short) is a set P C T X L, 4mis(T) such
that (Z,7) € P implies (Z,T") € P for every T’ € P, 4mis(T) with T/ D T.

The reason why we have introduced the set &,4,,,is(%) of admissible subsets of
T (rather than taking all finite subsets of 7) is to allow us to impose additional
restrictions on the sets of axioms that must be considered. For instance, ST TBoxes
are not arbitrary finite sets of axioms of the form (i), (ii), and (iii) (see Definition 2).
In addition, we require that every role name appears in at most one inverse axiom.
Clearly, this restriction satisfies our requirement for admissible sets of axioms.

The problems of unsatisfiability of ALC concept descriptions w.r.t. SZ TBoxes and
a-unsatisfiability of sets of LTL formulae are indeed c-properties. More formally, let J

consist of all ALC concept descriptions, ¥ of all GCIs, transitivity axioms, and inverse
axioms, and L, ,is(%) of all SZ TBoxes. The following is a c-property:

P ={(C,T) | C is unsatisfiable w.r.t. T}.

Likewise, if J and T both consist of all LTL formulae and 2, 4,is(T) = Z5, (%), then
P = {(¢,R) | ¢ is a-unsatisfiable w.r.t. R}

is a c-property.

Definition 7 Given an axiomatized input I" = (Z,T) and a c-property P, a set of
axioms § C T is called a minimal aziom set (MinA) for I' wr.t. P if (Z,S) € P
and (Z,8’) ¢ P for every S’ C S. The set of all MinAs for I' w.r.t. P is denoted by
MINp -

Note that the notion of a MinA is only interesting if I" € P; otherwise, the monotonicity
requirement for P entails that MINp () = (. Let us instantiate this definition for the
two c-properties we have introduced above.

In our 8Z example, consider the axiomatized input I' = (AN Vr.C,T) where T
consists of

ax;: AC3Ir.B, axy: BLVs—A, axg: CLC-B, ax4: inv(r,s) (1)

It is easy to see that I' € P, and that the set of all MinAs for I' is MINP(F) =

{{axl, axg, aX4}, {ax1 s aX3}}.
For the logic LTL, consider the axiomatized input I' = (¢, R) where R is given by

axi: pU—q, axa: O -p, axz: Oy, axq: =(OgAp). (2)

The set of all MinAs for I" is then MINp () = {{ax1, ax2, ax3}, {ax1, ax3, ax4}}. Thus,
in the LTL formula g A pld=g A O-p A Og A =(Og A p), the MinAs tell us which
minimal combinations of the last four conjuncts are responsible for unsatifiability in
the presence of q.

One might think that pinpointing (i.e., the computation of MinAs) can only be
applied in the LTL setting if the formula one is interested in is a large conjunction of
small formulae. At first sight, it is not clear how a subformula 1) that does not occur
as a top-level conjunct could be pinpointed as a culprit for unsatisfiability. This is,
however, possible by replacing such a subformula i) by a new propositional variable p,;
and addigg the “definition” O(p,, < v) as a top-level conjunct to the formula obtained
this way.

Instead of computing all MinAs, one can also compute a pinpointing formula. To
define this formula, we assume that every axiom ¢ € ¥ is labelled with a unique propo-
sitional variable, lab(t). Let lab(7") be the set of all propositional variables labelling an
axiom in 7. A monotone Boolean formula over lab(7) is a Boolean formula using vari-
ables in lab(7") and only the connectives conjunction and disjunction. In addition, the
constants T and L, which always evaluate to true and false, respectively, are monotone
Boolean formulae. We identify a propositional valuation with the set of propositional
variables that it makes true. For a valuation V C lab(7), let Ty, = {¢t € T | lab(t) € V}.
Recall that if T € 2 ,4mis(T) then for every 7' C T it holds that 7' € L, 4mis(T). In
particular this means that Ty € P, gmis(T) for every valuation V.

3 Here, (0 is an abbreviation for =(T%/—0) and #; < 6> is an abbreviation for =(6; A —=f2) A
ﬁ(ﬁﬂl N 92).

Definition 8 (pinpointing formula) Given a c-property P and an axiomatized in-
put I' = (Z,T), the monotone Boolean formula ¢ over lab(7) is called a pinpointing
formula for I' w.r.t. P if the following holds for every valuation V C lab(7):

(Z,Ty) € P iff V satisfies ¢.

In our SZ example, we can take lab(7) = {axj,...,ax4} as set of propositional vari-
ables. It is easy to see that ax; A ((axa A axq) V ax3) is a pinpointing formula. In
the LTL example, we can take the same set of propositional variables. In this case,
ax1 A axg A (axa V axy4) is a pinpointing formula.

Valuations can be ordered by set inclusion. The following is an immediate conse-
quence of the definition of a pinpointing formula [4]: if ¢ a pinpointing formula for I’
w.r.t. P, then

MINp(py = {7y | V is a minimal valuation satisfying ¢}.

This shows that it is enough to design an algorithm for computing a pinpointing for-
mula to obtain all MinAs. However, the reduction suggested by the above identity is
not polynomial. One possible way to obtain MINp) from ¢ is to first transform ¢
into disjunctive normal form, and then remove superfluous disjuncts. It is well-known
that this can cause an exponential blow-up. This should, however, not be viewed as
a disadvantage of approaches computing the pinpointing formula rather than directly
MlN'P([‘). If such a blow-up happens, then the pinpointing formula actually yields a
compact representation of all MinAs.

3 Biichi Tree Automata

In this section, we introduce both unweighted and weighted generalized Biichi tree
automata. These automata receive infinite trees of a fixed arity k as inputs. For a
positive integer k, we denote the set {1,...,k} by K. The nodes of our trees can be
identified by words in K* in the usual way: the root node is identified by the empty
word g, and the i-th successor of the node u is identified by ui for 1 < ¢ < k. In the
case of labelled trees, we will refer to the labelling of the node u € K™ in the tree r
by r(u). We will also use 1"(75 to denote the tuple 1"(75 = (r(u),r(ul),...,r(uk)). An
infinite tree r with labels from a set) can be represented as a mapping r : K* — Q.

For our purpose, it is sufficient to use unlabelled infinite trees as inputs for our
tree automata. For a fixed arity k, there is exactly one such tree, which we can identify
with the set of its nodes, i.e., with K*. We will also use the concept of a path in this
tree. A path is a subset p C K™ such that € € p and for every u € p there is exactly
one i,1 <i <k with ui € p.

Definition 9 (Buchi tree automaton) A generalized Biichi tree automaton for arity
k is a tuple (Q, A, I, Fy,...,Fy), where @ is a finite set of states, A C Q1 is the
transition relation, I C @ is the set of initial states, and Fy,..., F, C @ are sets of
final states. A generalized Biichi tree automaton is called Biichi automaton if it has
only one set of final states; i.e., if n = 1. It is called looping tree automaton if n = 0.
A run of a generalized Biichi automaton on the unlabelled tree K* is a labelled
k-ary tree r : K* — @ such that 7"(75 € A for all w € K*. This run is successful if for

every path p and every i,1 < ¢ < n, there are infinitely many nodes u € p such that
r(u) € Fj.

The emptiness problem for generalized Biichi tree automata for arity k is the prob-
lem of deciding whether a given such automaton has a successful run r with r(¢) € I
or not.

Let us illustrate the notions introduced in this definition on a simple Biichi au-
tomaton.

Ezample 1 Consider the Biichi tree automaton A°* = (Q, A, I, F) for arity 2, where

- Q={aq,q1,92, 13}, I = {qo}, and F = {q1,q3}:
- A={(q0,q1,21),(q0,92,82),(q1,91,901),(92,92,92), (92, 93,93) }.

This automaton has two runs that label the root with the initial state qg: r1, which
labels all the non-root nodes with gq;, and ro, which labels all the non-root nodes with
q2; the latter is not successful, but the former is. Thus, A°* has r; as a successful run
that labels the root with an initial state. The binary tree r3 that labels the root with
qo and all the non-root nodes with g3 is not a run of A°". Finally, the run r4, which
labels all nodes with g1, is a successful run of A°*, but it does not label the root with
an initial state.

Although a direct algorithm for deciding the emptiness problem for a generalized
Biichi automaton is sketched in [40], in the journal version of that paper [41], the idea is
simplified by presenting a reduction to the emptiness problem for Biichi automata. Our
treatment of weighted automata will follow a similar approach. First, we will show how
to compute the behaviour of weighted Biichi automata by an approach that is inspired
by the emptiness test for Biichi automata.* Then, we will introduce a reduction from
weighted generalized Biichi automata to weighted Biichi automata that preserves the
behaviour.

We will later extend automata-based decision procedures into algorithms that com-
pute pinpointing formulae by transforming Biichi automata into weighted Biichi au-
tomata. The weights of such automata come from a distributive lattice [18].

Definition 10 (distributive lattice) A distributive lattice is a partially ordered set
(S, <g) such that infima and suprema of arbitrary finite subsets of S always exist and
distribute over each other. The distributive lattice (S, <g) is called finite if its carrier
set S is finite.

Any weighted automaton uses as weights only finitely many elements of the under-
lying distributive lattice. Since finitely generated distributive lattices are finite [18],
the closure of this set under the lattice operations infimum and supremum yields a
finite distributive lattice. For this reason, we will in the following assume without loss
of generality that the weights of our weighted Biichi automaton come from a finite
distributive lattice (S, <g).

In the following, we will often simply use the carrier set S to denote the finite
distributive lattice (S,<g). The infimum (supremum) of a subset T C S will be de-
noted by @;crt (Bicrt). We will often compute the infimum (supremum) @;¢; t;
(D;cyti) over an infinite set of indices I. However, the finiteness of the lattice and the

4 This emptiness test is sketched in Section 5.1.

10

idempotency of the operators infimum and supremum ensure that the sets over which
the operators are actually applied are finite, and hence infimum and supremum are
well-defined in this case. For the infimum (supremum) of two elements, we will also use
infix notation, i.e., write t1 ®ta (¢; ©t2) to denote the infimum (supremum) of the set
{t1,t2}. The least element of S (i.e., the infimum of the whole set S) will be denoted
by 0, and the greatest element (i.e., the supremum of the whole set S) by 1.

It should be noted that our assumption that the weights come from a finite distribu-
tive lattice is stronger than the one usually encountered in the literature on weighted
automata. In fact, for automata working on finite words or trees, it is sufficient to
assume that the weights come from a so-called semiring [37]. In order to have a well-
defined behaviour also for weighted automata working on infinite objects, the existence
of infinite products and sums is required [16,31]. As mentioned above, our finiteness
assumption ensures that such infinite products and sums are actually finite. The ad-
ditional properties imposed by our requirement to have a distributive lattice (in par-
ticular, distributivity and the idempotency of product and sum) are necessary for our
approach of computing the behaviour of weighted Biichi automata (see Section 5).
These stronger assumptions are not problematic in our pinpointing application: as we
will see later, the weights we will encounter in our computation of the pinpointing
formula actually come from a finitely generated free distributive lattice.

Definition 11 (weighted Biichi automaton) Let S be a finite distributive lattice.
A weighted generalized Biichi automaton (WGBA) over S for arity k is a tuple A =
(Q,in,wt, Fy, ..., Fyp) where @ is a finite set of states, in : Q@ — S is the initial
distribution, wt : Qk+] — S assigns weights to transitions, and Fy, ..., Fn C @Q are the
sets of final states. A WGBA is called weighted Biichi automaton (WBA) if n =1 and
weighted looping automaton (WLA) if n = 0.

A run of the WGBA A is a labelled tree r : K* — Q. The weight of this run
is wt(r) = Quek- wt(@). This run is successful if, for every path p and every
1,1 < i < m, there are infinitely many nodes u € p such that r(u) € F;. Let succy
denote the set of all successful runs of A. The behaviour of the automaton A is

A== @D in(r(e)) ® wt(r).

TESUCC 4

Let us illustrate this definition on the example of a WBA over the Boolean semiring
that simulates an (unweighted) Biichi tree automaton.

Ezample 2 The Boolean semiring B = ({0,1}, A, V,1,0) is a finite distributive lattice,
where the partial order is defined as 1 <g 0. Note that we have defined 1 to be smaller
than 0, and thus conjunction yields the supremum (i.e., is the “addition” &) and
disjunction yields the infimum (i.e., is the “multiplication” ®). Likewise, 1 is the least
element 0, and 0 is the greatest element 1. The reason for this unorthodox definition
is that this makes it easy to transform a given Biichi tree automaton A = (Q, A, I, F)
into a WBA A,, on B such that the behaviour of A is 0 iff A has a successful run
that labels the root with an initial state. In A,,, the initial distribution maps initial
states to 0 and all other states to 1; a tuple in Qk"'1 gets weight 0 if it belongs to A,
and weight 1 otherwise.

Consider the WBA A7 that is obtained by applying this construction to the Biichi
tree automaton A*® of Example 1. The run r; has weight 0 since all the transitions it
uses have weight 0, and these weights are multiplied with each other, i.e., connected by

11

disjunction. Since this run is successful, it contributes the summand in(go) @ wt(r1) =
0V 0 = 0 to the behaviour of A{’. Since addition is conjunction, this causes the
behaviour of A{’ to be 0. Let us nevertheless consider some other runs. The run ro
also has weight 0 and starts with the initial state qo. However, since this run is not
successful, in(gp) ® wt(rz) is not used as a summand when computing the behaviour
of AYY. The tree r3 is a successful run of A%, but it is not a run of A°”. Since it uses
the transition (g3, g3, q3), whose weight is 1, its overall weight is 1 as well. Thus, it
contributes the summand in(qg) ® wt(rg) = 0V 1 =1 to the behaviour of A§, but this
summand is “eaten up” by the summand 0 contributed to the sum (i.e., conjunction)
by the run r1. Finally, the run ry4, is a successful run of A%, which has weight 0. Since
q1 is not an initial state of A®®, it contributes the summand wt(q1) Qwt(rs) = 1V0 =1
to the behaviour of Aj; .

By generalzing the observations we have made for the runs ry,r9,r3, 74 of AL, it
is easy see that the following holds for any Biichi tree automaton A: the behaviour of
Aqw 1s 0 iff A has a successful run that labels the root with an initial state.

In Section 5, we will develop an approach for computing the behaviour of weighted
(generalized) Biichi tree automata that generalizes the emptiness test for (generalized)
Biichi tree automata. But first, we show how to reduce the problem of computing the
pinpointing formula to the problem of computing the behaviour of a WGBA.

4 Automata-based Pinpointing

In this section, we first introduce our general approach for automata-based pinpointing,
and then show how it can be applied to finding a pinpointing formula for unsatisfiability
in 7 and LTL.

4.1 The General Approach

Basically, the automata-based approach for deciding a c-property P takes axiomatized
inputs I' = (Z, T) and translates them into automata Ap such that I' € P iff Ap does
not have a successful run. For example, the automaton constructed from a concept
description C' and a TBox 7 has a successful run iff C is satisfiable w.r.t. 7, where the
c-property is unsatisfiability. If the translation from I" to Ap is an arbitrary function,
then we have no way of knowing how the axioms in 7 influence the behaviour of
the automaton, and thus it is not clear how to construct a corresponding pinpointing
automaton. For this reason, we will assume that the automaton Ap for I' = (Z,7) in a
certain sense also contains automata for all axiomatized inputs (Z,7') with 7' C T
which can be obtained by appropriately restricting the states and transitions of Ap.
To be more precise, let A = (Q,A, I, Fy,...,Fy) be a generalized Biichi automaton
for arity k and I’ = (Z,T) an axiomatized input. The functions Ares : 7 — 2(Q**!)
and Ires: T — Z(Q) are respectively called a transition restricting function and an
initial restricting function. The restricting functions Ares and Ires can be extended to
sets of axioms 7' C T as follows:

Ares(T") := ﬂ Ares(t) and Ires(T'):= ﬂ Tres(t).
teT’ teT’

5 Recall that every subset of an admissible set of axioms is also admissible.

12

For 7' C T, the T'-restricted subautomaton of A w.r.t. Ares and Ires is defined as
A= (Q, AN Ares(T"), I N Ires(T"), Fi,. .., Fn).

Definition 12 (axiomatic automaton) Let A = (Q, A, I, Fy,...,Fn) be a gener-
alized Biichi automaton for arity k, I’ = (Z,7T) an axiomatized input, and Ares :
T = 2(Q" ") and Ires : T — 2(Q) a transition and an initial restricting function,
respectively. Then we call (A, Ares, Ires) an aziomatic automaton for I.

Given a c-property P, we say that (A, Ares, Ires) is correct for I' w.r.t. P if the
following holds for every 7' C T: (Z,7') € P iff A7+ does not have a successful run r
with r(g) € TN Ires(T").

Given a correct axiomatic automaton for I' = (Z,T), we can decide (Z,T') € P
for 7' C T by applying the emptiness test for generalized Biichi automata to A\T’-

Ezample 3 Let I' = (Z,T) be an axiomatized input, where 7 = {ax;, axg, ax3}, and
assume that, for all 7' C T, the c-property P holds for (Z,7") iff {ax;,axo} NT’ # 0.
Thus, MINp () = {{ax1}, {ax2}}, and ax; V axs is a pinpointing formula.

Consider the axiomatic automaton (A", Ares, Ires), where

— A®* is the Biichi tree automaton introduced in Example 1;

— the transition restricting function is defined as Ares(ax;) = A\ {(¢1,91,91)},
Ares(axz) = A, and Ares(axs) = A\ {(a2,2,02)}:

— the initial restricting function is defined as Ires(ax;) = I, Tres(axs) = 0,
and Ires(axz) = I.

It is easy to see that (A°®, Ares, Ires) is correct for I' w.r.t. P. In fact, recall that
the only successful run of A®* is 7y, which labels the root with gg and all non-root
nodes with g;. Now, assume that 7' C 7. If ax; € 7', then the transition (q1,q1,q1),
which is used in the run rq, is no longer available, and thus r; is not a run of A\T" If
axs € 7', then A7+ does not have an initial state, and thus 71 no longer starts with
an initial state. Finally, having ax3 in 7' does not remove the run r; since this axiom
only removes the transition (g2, ¢2,q2), which is not used in r1, and it also does not
change the set of initial states. Consequently, we have seen that A\T’ does not have
a run that labels the root with an initial state iff {ax;,axs} N7’ # @, and thus iff P
holds for (Z,T").

Now, we show how to transform a correct axiomatic automaton into a weighted
generalized Biichi automaton whose behaviour is a pinpointing formula for the input.
This weighted automaton uses the 7-Boolean semiring, which is defined as B7 .=
(B(T),A,V, T, L), where B(T) is the quotient set of all monotone Boolean formulae
over lab(7) by the propositional equivalence relation, i.e., two propositionally equiv-
alent formulae correspond to the same element of B(T) It is easy to see that this
semiring is indeed a distributive lattice, where the partial order is defined as ¢ < ¢
iff ¢y — ¢ is valid. Furthermore, as 7 is finite, this lattice is also finite.% Note that,
similar to the case of the Boolean semiring B, conjunction is the semiring addition (i.e.,
yields the supremum &) and disjunction is the semiring multiplication (i.e., yields the
infimum ®). Likewise, T is the least element 0 and L is the greatest element 1.

6 More precisely, BT is the free distributive lattice over the generators lab(T).

13

Definition 13 (pinpointing automaton) Let (A, Ares, Ires) be an axiomatic au-
tomaton for I" = (Z,T), with A = (Q,A,I,Fy,...,Fn). The violating functions
Avio : Qk"'1 — B’ and Ivio : Q— B7 are given by

Avio(qo, q1, - .-, ak) = \ lab(t);
{teT(q0,q1,-,qr) ¢ Ares(t)}

Ivio(q) = \/ lab(t),

{teT |q¢ Tres(t)}

where the empty disjunction yields L.
The pinpointing automaton induced by (A, Ares, Ires) w.r.t. T is the WGBA over
B” (A, Ares, Ires)?" = (Q,in,wt, Fy, ..., Fy), where

Ivio(q) ifqel,
in(q) = {

T otherwise;

Avio(go, q1,---,qx) i (qo,q1,--.,qx) € 4,
wt(Q07q]7"'1Qk) =

otherwise.

It is easy to see that, if r : K* — Q is a run of A, then its weight is given by
wt(r) = Ve~ Avio(r(u)); otherwise, wt(r) = T. Intuitively, the violating function
Avio expresses which axioms are not “satisfied” by a given transition, and thus the
weight of a run accumulates all the axioms violated by any of the transitions appearing
as labels in it. Additionally, the function Ivio represents the axioms that are violated by
the initial state of this run. Removing all the axioms appearing in these two formulae
would yield a subset of axioms which actually allows for this run; and hence, if the
run is successful and the root is labelled with an initial state, due to correctness, the
property does not hold anymore. Conjoining this information for all possible successful
runs leads us to a pinpointing formula.

Before formulating and proving this fact more formally, let us illustrate the con-
struction of the pinpointing automaton on the axiomatic automaton introduced in
Example 3.

Ezample 4 Let (A", Ares, Ires) be the axiomatic automaton from Example 3. The
corresponding pinpointing automaton has the initial distribution in, where

in(qo) = axa and in(q1) =in(g2) =in(q3) =T,
and the weight function wt, where

wt(q1,q1,q1) = ax; and wt(ge, g2, q2) = axs,
wt(q,q',q") =L if (¢.4',4d") € A\ {(q1, 01, q1). (a2,92,92)},
wt(q,q',q") =T if (¢,4'.4") & A.

The behaviour of this WBA is [|(A®®, Ares, I'tes)P"|| = Nresuce gen in(r(€)) V wi(r).
Obviously, only successful runs that label the root with gy can contribute a conjunct
different from T to this conjunction. There is a single successful run of A®* that satisfies
this restriction: the run r{, which labels the root with gg and all other nodes with q;.
The weight of this run is wt(r1) = wt(qo,q1,91) vV wt(q1,q91,91) = L Vax; = ax;. Since
in(go) = axa, this shows that ||(A°®, Ares, Tres)P"|| = axy Vax;, which is a pinpointing
formula for I' w.r.t. P (see Example 3).

14

Theorem 1 Let P be a c-property, and I' = (Z,T) an aviomatized input. If the az-
iomatic automaton (A, Ares, Ires) is correct for I' w.r.t. P, then ||(A, Ares, Ires)?"|| is
a pinpointing formula for I' w.r.t. P.

Proof We need to show that, for every valuation V C lab(7), it holds that V satisfies
(A, Ares, Ires)P"|| iff (Z,Ty) € P. Let V C lab(T). Suppose first that (Z,7y) ¢ P.
Since (A, Ares, Ires) is correct for I' w.r.t. P, there must be a successful run r of A,
with r(¢) € I N Ires(Ty). Consequently, r(u) € Ares(Ty) holds for every u € K*,
and thus V cannot satisfy Avio(r(u)), for any v € K*. Since r is a successful run
of A7, it is also a successful run of A, which implies wt(r) = V¢ - Avio(@).
Thus, V does not satisfy wt(r). Since r(e) € I, we know that in(r(e)) = Ivio(r(e));
additionally, r(g) € Ires(Ty) implies that V does not satisfy Ivio(r(g)). Thus, V does
not satisfy in(r(e)) V wt(r). But then V also cannot satisfy A in(r(e)) Vwt(r) =
[|(A, Ares, Tres)PI"|.

Conversely, if V does not satisfy ||(A, Ares, Ires)P"|| = Nresuce, i(r(€)) V wt(r),
then there must exist a successful run r such that V does not satisfy in(r(g)) V wi(r).
This implies that r(e) € I N Ires(7y) and that 1"(73 € Ares(Ty) for all u € K*.
Consequently, r is a successful run of A7, with r(e) € I N Ires(7y), which shows
(Z,Ty) ¢ P, by the correctness of the axiomatic automaton. |

TESUCC 4

4.2 Constructing Axiomatic Automata for S7

If we want to apply Theorem 1 to obtain an automata-based approach for pinpointing
unsatisfiability in SZ, we must show how, given an ALC concept description C and an
SZ TBox T, we can construct an axiomatic automaton (Aq 7, Aresc 7, Iresc 7) that
is correct for (C,T) w.r.t. unsatisfiability. For this purpose, we must adapt the known
construction of a looping automaton for SZ from [3] such that it yields an axiomatic
automaton.”

As mentioned before, the automata-based approach for deciding (un)satisfiability
uses the fact that a concept is satisfiable iff it has a so-called Hintikka tree. The au-
tomaton to be constructed will have exactly these Hintikka trees as its runs. Intuitively,
Hintikka trees are obtained from tree-shaped models by labelling every node with the
“relevant” concept descriptions to which it belongs.

Following [3], we assume that all concept descriptions are in negation normal form
(NNF), i.e., negation appears only directly in front of concept names. Any ALC concept
description can be transformed into NNF in linear time using de Morgan, duality of
quantifiers, and elimination of double negations. We denote the NNF of C by nnf(C)
and nnf(=C) by «~C. Given an ALC concept description C and an §Z TBox T, the set
of relevant concept descriptions is the set of all subdescriptions of C' and of the concept
descriptions «D U E for D C E € T. We denote this set by sub(C, 7). The set of role
names occurring in C or 7 is denoted by rol(C, T). The states of our automaton are
so-called Hintikka sets, which in addition to subdescriptions also contain information
about which roles are supposed to be transitive.

7 On the one hand, the construction in [3] is more complex than the one given here since
the states of the automata in [3] contain additional information needed for detecting cycles
in a run as early as possible, which is not relevant for the present paper. On the other hand,
the states of the automata constructed here contain additional information about transitivity
needed for defining the restricting function.

15

Definition 14 (Hintikka set) A set H C sub(C,T) Urol(C,T) is called a Hintikka
set for (C,T) if the following three conditions are satisfied:

(i) if DNE € H, then {D, E} C H;
(i) if DUE € H, then {D, E} N H # 0; and
(iii) there is no concept name A such that {4, -A} C H.

The Hintikka set H is compatible with the GCI D C E € T if it is the empty set or
contains «~D U E. It is compatible with the transitivity aziom trans(r) € T if it is the
empty set or contains r. Finally, it is compatible with the inverse aziom inv(r,s) € T if
r € H implies s € H and vice versa.

The arity k of our automaton is determined by the number of existential restric-
tions, i.e., concept descriptions of the form 3r.D; contained in sub(C, T). Since we need
to know which successor in the tree corresponds to which existential restriction, we fix
an arbitrary bijection ¢ : {Ir.D | Ir.D € sub(C,T)} — K. To obtain full k-ary trees,
we will use nodes labelled with the empty set (which is a Hintikka set) as dummy
nodes. The following Hintikka conditions will be used to define the transitions of our
automaton.

Definition 15 (Hintikka condition) The tuple of Hintikka sets (Ho, Hy,..., Hy},)
for (C,T) satisfies the Hintikka condition if the following holds for every existential
restriction 3r.D € sub(C, T):

— If 3r.D € Hy, then H, (3, p) contains D as well as every E for which there is a
value restriction Vr.E' € Ho; if, in addition, r € Ho, then Vr.E belongs to H, (3, p)
for every value restriction Vr.E € Hy.

— If 3r.D ¢ Hy, then ng(Er.D) = 0.

This tuple is compatible with the GCI D & E € T (compatible with the transitivity
aziom trans(r) € T) if all its components are compatible with D T E (trans(r)). It is
compatible with the inverse aziom inv(r,s) € T if all its components are compatible
with inv(r, s), and the following holds for all ¢t € {r,s} and ¢t~ € {r, s} \ {¢t}: for every
Vt.F € H,(3t- p), the set Ho contains F', and additionally V¢ . F if t € Hyp.

We are now ready to define the axiomatic automaton for unsatisfiability in SZ.

Definition 16 (axiomatic automaton for S7) Let C' be an ALC concept descrip-
tion, 7 an SZ TBox, and k the number of existential restrictions in sub(C,T). The
axiomatic automaton (Ac 7, Aresc 1, Iresc) has as its first component the looping
automaton Ac 7 := (Q, A, T), where

— @ consists of all Hintikka sets for (C,T);
— A consists of all (Hy, Hy,...,Hy) € Q"' that satisfy the Hintikka condition;
- I:={HeQ|CeH}

The transition restricting function Aresc 7 maps each axiom t € T to the set of all
tuples in A that are compatible with ¢. The initial restricting function Iresc 7 maps
each axiom t € T to the set @, i.e., there is effectively no restriction on the initial
states imposed by the axioms.

Correctness of this automaton construction can be shown by an easy adaptation of
the arguments used in [3].

16

Theorem 2 Let C be an ALC concept description and T an ST TBoz. The ariomatic
automaton (Ac, T, Aresc 7, Iresc 1) is correct for (C,T) w.r.t. unsatisfiability.

Theorem 1 shows that it is enough to compute the behaviour of the pinpointing
automaton (Ac 1, Aresc 1, Iresch)pi" induced by (Ac, 1, Aresc 7, Iresc) in order
to obtain a pinpointing formula for (C, T) w.r.t. unsatisfiability. In Section 5, we will
show how this behaviour can be computed, but first we present an example of an
axiomatic automaton where the use of a Biichi acceptance condition is necessary.

4.3 Constructing Axiomatic Automata for LTL

The axiomatic automaton for LTL a-unsatisfiability will have as states sets of formulae
similar to the Hintikka sets introduced for SZ, but they will need to satisfy slightly
different conditions, due to the fact that we will not assume that the formulae used are
in negation normal form.® Given an LTL formula ¢ and a set of LTL formulae R, the
closure of (¢, R) is the set of all subformulae of ¢ and R, and their negations, where
double negations are cancelled. We denote this set as cl(¢, R).

Following [42], the states of our automaton are elementary sets of formulae, which
play the role of the Hintikka sets of the previous subsection. Elementary sets are max-
imal and consistent sets of subformulae in cl(¢, R).

Definition 17 (elementary set) The set H C cl(¢, R) is called an elementary set
for (¢, R) if it satisfies the following conditions:

— ¢pe HIiff p ¢ H, for all =¢ € cl(¢, R);

— oAy e HIiff {¢,v} C H, for all p Ay € cl(¢p,R);
— v € H implies U € H, for all pU € cl(p, R);
~if U € H and b ¢ H, then ¢ € H

The automaton constructed from a given input (¢, R) takes unary trees as input, i.e.,
its runs are infinite words over the set of states. The transition relation is thus binary.
It plays the role of the Hintikka condition, ensuring that temporal restrictions are
transfered to successor nodes when necessary.

Definition 18 (compatible) A tuple (H, H') of elementary sets is called compatible
if it satisfies the following conditions:

— for all Qy € cl(p,R), Oy € H iff y € H'; and
— for all 8U+p € cl(¢p, R), OUp € H iff either (i) o» € H or (ii) § € H and Uy € H'.

The runs of our automaton will be sequences of elementary sets where each two con-
secutive ones form a compatible tuple. In contrast to the case for SZ, the presence of
a run of this automaton does not imply the existence of a computation. The reason
is that one can delay the satisfaction of an wuntil formula indefinitely; that is, every
node in the run may contain the formula 61/1) while none contains v, violating this
way the last condition in the definition of a computation for the input. In order to rule
out these kinds of runs and make sure that each until formula is eventually satisfied,
we will impose a generalized Biichi condition, which introduces a set of final states for
each until formula in cl(¢, R).

8 Although it is possible to transform LTI, formulae into negation normal form, we decided
not to do this in order to stay as close as possible to the known automaton construction for
LTL [42]. This allows us to reuse the proof of correctness of this construction.

17

Definition 19 (axiomatic automaton for LTL) Let ¢ and R be an LTL formula
and a set of LTL formulae, respectively, and let 61U, ..., 0hltbn be all the until
formulae in cl(¢, R). The axiomatic automaton (Ag », Aresy », Iresy z) has as its first
component the generalized Biichi automaton Ay » := (Q, 4,1, Fy, ..., Fy),° where

— @ is the set of all elementary sets for (¢, R);

— A consists of all compatible pairs (H, H') € Q x Q;
- I:={HeQ|¢eH}

- Fi::{HEQ‘¢iEHOr9iu¢i¢H}.

For every ¢ € R, the transition restricting and initial restricting functions are given
by Aresy () := A and Iresy () := {H € Q | ¥ € H}, respectively.

Correctness of this automaton can be shown by a simple adaptation of the proof in [42].

Theorem 3 Let ¢ be an LTL formula and R a set of LTL formulae. The aziomatic
automaton (Ag g, Aresg 1, Iresy r) is correct for (¢, R) w.r.t. a-unsatisfiability.

From Theorem 1 we know that it suffices to compute the behaviour of the pin-
P induced by (A r, Aresy », Iresy)
in order to obtain a pinpointing formula for (¢, R) w.r.t. a-unsatisfiability. We will

pointing automaton (Ag , Aresy r, Iresy r)

show now how this behaviour can be computed.

5 Computing the Behaviour of Weighted Tree Automata

In this section, we first show how the behaviour of a weighted Biichi automaton (WBA)
on a finite distributive lattice can be computed by two nested iterations. Then, we
describe how this approach can be simplified to a single “bottom-up” iteration for the
special case of a weighted looping automaton (WLA). Next, we show that any weighted
generalized Biichi automaton (WGBA) can be reduced, in polynomial time, to a WBA
that has the same behaviour. This reduction follows the ideas that have previously been
used for the case of unweighted automata [41]. Finally, we compare our approach for
computing the behaviour of a weighted Biichi automaton with the one independently
developed in [15].

5.1 Computing the Behaviour of a WBA

Clearly, the naive approach that directly uses the definition of the behaviour by first
computing and then adding up the weights of all successful runs would not produce a
result in finite time since there are potentially infinitely many successful runs, which
are themselves infinite. Instead, we will use an iterative method for computing the
behaviour, which generalizes the emptiness test for Biichi automata

9 If n =0, i.e., ¢ and R do not contain until formulae, then this automaton is actually a
looping automaton.

18

The Emptiness Test for Biichi Automata

The emptiness problem for Biichi automata can be decided in time polynomial in the
size of the automaton [30,41]. The decision procedure constructs the set of all states
that cannot occur as labels in any successful run; we will call these states bad states.
We can try to disprove that a state is bad by trying to construct a finite partial run
where every path ends in a final state.!? Every state for which this construction fails
is clearly bad, but there may be bad states for which this construction succeeds. The
reason is that some of the final states reached by the finite run may themselves be
bad. Thus, in order to compute all bad states we must iterate this process, where in
the next iteration the partial run is required to reach final states that are not already
known to be bad. Notice, however, that the construction of a finite partial run ending in
non-bad final states can itself be realized by an iterative procedure. Hence, the decision
procedure for the emptiness problem uses two nested iterations. In the inner loop, we
try to construct a finite partial run finishing in (non-bad) final states for every state. In
the outer loop, we use the result of the inner iteration to update the set of (known) bad
states, and then re-start the inner iteration with this new information. Let us call the
states for which there is a finite partial run finishing in non-bad final states adequate.
First, any state ¢ € @ for which there is a transition leading to only non-bad final
states is clearly adequate. Then, every state for which there is a transition leading only
to states that are either (i) final and not bad or (ii) already known to be adequate
is also adequate. Obviously, during this iteration, the set of adequate states becomes
stable after at most |@| iterations. The outer loop then adds all the states that were
found not to be adequate to the set of bad states. The set of bad states maintained in
this outer iteration becomes stable after at most |@Q| steps. It can be shown that there
is a successful run that starts with an initial state iff not all initial states are contained
in the set of bad states computed this way. This yields an emptiness test that runs in
time polynomial in the number of states (see [41] for details).

Ezample 5 Let us illustrate this approach on the Biichi automaton A" of Example 1.
First, we try to construct, for every state, a finite partial run where every path ends in
a final state. This is possible for qg, q1, and g2, but not for g3. Thus, in this iteration,
qo, q1,q2 are the adequate states, and g3 is not adequate, which means that ¢3 is added
to the set of bad states. In the next iteration, g2 turns out to be no longer adequate
since it can only reach the bad final state g3. Thus, it is also put into the set of bad
states. After that, the process becomes stable, i.e., the set {g2,¢3} is the set of bad
states computed by the algorithm. Since the initial state go does not belong to this set,
we know that there is a successful run that starts with this initial state.

Emptiness Test by Behaviour Computation

Before treating the general case of a WBA, we consider the special case of a weighted
automaton over the Boolean semiring that simulates an unweighted one. In Example 2,
we have defined, for every Biichi tree automaton 4 a WBA A, such that the behaviour
of Aw is 0 iff A has a successful run that labels the root with an initial state. In this
case, the computation of the behaviour of A, basically coincides with the emptiness
test applied to A.

10 See Definition 20 below for a formal definition of this notion.

19

In fact, the emptiness test for Biichi automata sketched above can be adapted such
that it computes the behaviour of A, as follows. We construct a function bad : Q —
{0,1} such that bad(q) = 1 iff ¢ is a bad state. The outer iteration of the algorithm
will update this function at every step. In the beginning, no state is known to be bad,
and thus we start the iteration with badg(g) = 0 for all ¢ € Q. Now assume that the
function bad; : @ — {0,1} for ¢ > 0 has already been computed. For the next step of
the iteration, we call the inner loop to update the set of adequate states. In this loop,
we are going to compute the function adg’: Q = {0, 1}. Here, adqi(q) = 1 means that
q is mot an adequate state, i.e., that it is not possible to construct a run starting with
this state where each path reaches at least one non-bad final state. At the beginning
we know nothing about the adequate states, so we set adq(i](q) =1 for all ¢ € Q.
Assume that we have already computed adqﬁl : @ — {0,1}. To know whether a state
should become adequate in the next step, we need to check for each transition starting
from this state whether the final states reached by the transition are non-bad and the
non-final states are already known to be adequate. Thus, we have

aday, 1 (q) = A wt(g,q1, . ar) vV \/ adqj(g;) v \/ badi(g;). (3)

(4,q1,--,q) EQF+1 q;¢F G EF

The function adq’ is the limit of this inner iteration, which is reached after at most Q|
steps. With this function, we define

bad; 1 (g) = bad;(q) V adq’ (q).

The function bad is the limit of this outer iteration, which is also reached after at most
|Q| steps. This computation of the function bad by two nested iterations basically sim-
ulates the computation of all bad states in the emptiness test for Biichi tree automata
sketched above. It is thus easy to show that bad(q) = 1 iff g is a bad state, i.e., cannot
occur as a label in a successful run of A.

Given the definition of Ay, it is easy to see that a run r : K* — @ of Ay has
weight 0 iff it is a run of A (see Example 2). Consequently, A has a successful run that
starts with an initial state iff || Aw| = /\resuccAw in(r(e)) V wt(r) = 0. Putting these
observations together, we thus have: the behaviour of A, is 0 iff A has a successful
run that starts with an initial state iff there is an initial state ¢ (i.e., in(q) = 0)
that is not bad (i.e., bad(q) = 0). This shows that the behaviour of A, is given by

Ngeq in(q) V bad(q).

Next, we show that the behaviour of a WBA can always be computed by such a
procedure with two nested iterations.

Computing the Behaviour in the General Case of an Arbitrary WBA

In the following, we assume that A = (Q,in,wt, F') is an arbitrary, but fixed, WBA
over the finite distributive lattice (S, <g). We will show that the WBA A induces a
monotone operator Q : sQ SQ, where S% is the set of all mappings from @ to S,
and that the behaviour of A can easily be obtained from the greatest fixpoint of this
operator. The partial order <g can be transferred to 5@ in the usual way, by applying
it component-wise: for o, ¢’ € S9, we define o <go d' iff a(q) <5 &'(q) for all ¢ € Q.
It is easy to see that (S?, <gq) is again a finite distributive lattice. We will use ® and
@ also to denote the infimum and supremum in S9. The least (greatest) element of
5@ is the function 0 (1) that maps every g € Q to 0 (1).

20

The definition of the operator Q will follow the idea of the iterative procedure we
sketched before for solving the emptiness problem. We focus first on the inner loop,
which is realized by another monotone operator O. Notice that the internal iteration of
the algorithm depends on the set of bad states computed so far. We will assume that
this information is given by a function f € 59, Thus, we actually define an operator
Oy for each such f. Following the idea of Equation (3), the operator Oy is defined as
follows for every o € S%:

k
Of(o)(a) = P wt(q, q1, -, ax) ® Q) steps (0)(g;), (4)
(¢,q1,--,qx) EQRFT j=1

where
fla) ifqgeF
o(q) otherwise

stepy(o)(q) = {

Lemma 1 For every f € S the operator Oy 1is monotone, i.e., 0 <ga o' implies

Oj(0) <ga Oy(a").

Proof Let o,0' € S9 be such that o <gq o'. This implies also stepy (o) <ge stepf(ol).
Thus, we have for every q € Q:

k
Op(o)(a) = %, wt(g,q1,- - ar) @ @) steps () (a5)
j=1

(¢,q1,--,qx) EQF+1

k
<s P wt(q,q1, -, qx) ® Q) steps(a')(g;) = Of(a").
(¢,01,---,98) EQF ! Jj=1

O

Since we know that S% is finite, this in particular means that the operator Oy is
continuous. By Tarski’s fixpoint theorem [39], this implies that Oy has @),,~ O?(ﬁ) as

its least fixpoint (1fp). Finiteness of S% yields that this Ifp is reached after finitely many
iterations: there exists a smallest m,0 < m < |S|'?l such that 0%'(0) = (’)?ZH (0),

and for this m we have 9, O?(ﬁ) = O?’(ﬁ) This yields a bound on the number
of iterations that is exponential in the size of the automaton. We will later show
(see Theorem 6) that it is possible to improve this bound to a polynomial number of
iterations, measured in the number of states.

Recall that the intuition of the internal iteration was to find out from which states
it is possible to build a finite partial run that finishes in final states. In the general
case, the operators O will help in computing the weights of all such partial runs. Next,
we give a formal definition of the notion of a finite partial run.

Definition 20 (finite run) A finite tree is a finite set ¢ C K* that is closed under
prefixes and such that, if ui € t for some v € K* and i € K, then uj € t for all
4,1 < j<k. A nodewu € tis called a leaf if there is no 5,1 < j < k, such that uj € t.
The set of all leaf nodes of a finite tree ¢ is denoted by Inode(t). The depth of a finite
tree t is the length of the largest word in ¢.

A finite run is a mapping r : t —), where ¢ is a finite tree. Given such a run,
leaf(r) denotes the set of all states appearing as labels of a leaf.

21

We denote by runs; the set of all finite runs r of depth at least 1 such that, for every
node u # ¢, r(u) € F if and only if » is a leaf. Additionally, for every n > 1, let runslgn
denote the set of all finite runs in runs; having depth at most n. For a state ¢ € Q,
runs; (¢) = {r € runs; | r(e) = ¢}; analogously, runs]S (9 ={r e runs] " r(e) = q}.
The weight of a finite run r : t = Q is wi(r) = ®u€t\|node() wt(r(u),r(ul), ..., r(uk)).

Looking again at the special case of a weighted automaton simulating an unweighted
one, we see that during the inner iteration we do not want to compute the weights of
all finite runs in runs; but only those that finish in states that are not bad. In other
words, we multiply the weight of the run, by the function bad computed so far applied
to each of its leafs. Given a function f: @ — S, we define the f-weight of a finite run
ras wty(r) = wt(r) ® ®q€|eaf(r) f(q). The lfp of the operator O; computes the sum
of the f-weights of all runs in runs;.

Lemma 2 For alln >0 and all g € Q, O?(a)(q) =6 < (g)wtf(r).

rerunsy

Proof The proof is by induction on n. For n = 0, the result follows from the fact that
runs1 =, and hence reruns<®(q) wty(r)=0=0(q) = (’)? (0)(g). Assume now that

the identity holds for n. Given a tuple (q1,...,qx) € QF, let i1, ..., be all the indices
such that g;, ¢ F for all j,1 <j <, and 4;41,...,1i those indices such that qi; € F

for all j,1+1 < j <k. Forl<j<I, wewill abbreviate runs]< "(9i;) as rn and leaf(r;)
as If;. In addition, F is an abbreviation for the product ®j:l+1 f(a;). Then7

k
ot = P wiaa,. . a) @ Qsteps(0F(0))(g)) (5)

(q15-,01) EQF j=1
1 _ k
= B wtaa, - a)0@O0F0))@ Q) fla,) (6)
(q1,..,qx) EQ* j=1 j=141
l
= D waa) @@ D) oF ™)
(q1,--qk) EQF j=1rjem?
l
= @ wt(q, q1, .-, qx) @ (EB ®wtf(rj))® F (8)
(q1,--q1)EQF riemy,..,rem? j=1
1
= P waaawe D Ruity)e @ I EF ©)
(q15--,q1) EQ* rLEMY .., rEm j=1 pelf;
= D . wt(g,q1, - q) ® Q) wi(r;) ® K) f(p) @ F (10)
(q1,---,qk) EQF T1EMY ..., 1 ENP a4; ¢F pEIf;
= EB un‘ ® f (11)
rGrunsS"Jr](q) pEleaf(r)
= EB wt (7).
rErunsS"Jr](q)

Identities (5) and (6) employ the definition of the operator Oy and stepy, respectively,

and (7) applies the induction hypothesis. Identity (8) uses the fact that S? is a dis-
tributive lattice, which allows us to move the addition out of the product, while (9)

22

uses the definition of the f-weight. Identity (10) uses again the distributivity to multi-
ply wt(q,q1,...,qx) in. Finally, Identity (11) simplifies the two sums by constructing a
run of larger depth. Instead of considering first the transition (q,qi,...,qx) and then
runs of depth up to n starting with each g;;, we simply take the corresponding run of
depth n+ 1 starting at g. This run labels the root with ¢ and the successor node i with
q;. If g; is a final state, then it remains as a leaf, otherwise, below the node i we have
the former run starting with g;. Thus, the set of leafs of this larger run is the union of
the sets of leafs of the runs r; and the set of those g;s that are final states. The last
identity merely applies the definition of f-weight again. O

Theorem 4 Let f € S and assume that o is the lfp of the operator O. Then, for
every q € Q, 00(q) = Dy cpuns, () Whr(T)-

Proof By Lemma 2, we have

Poro=p P wir)= P wtn).

n>0 nzoreruns?"(q) réerunsi(q)

Tarski’s fixpoint theorem says that the least fixpoint of O is @, 5¢ O?(a), which
completes the proof of the theorem. B O

Before turning our attention to the outer iteration of the method for computing the
behaviour, we will present a bound on the number of steps that are necessary before
reaching the fixpoint of the inner iteration.

Definition 21 A WBA is m-finalising if, for every f € 5@ and every partial run r in
runsy (¢), there is a partial run s, in runslgm(q) such that wt¢(r) <g wt¢(sr).

We will first show that every WBA is m-finalising for any m greater to the number
of states |@|. Afterwards we will show how this property yields a bound on the number
of iterations needed to reach the least fixpoint of Oy.

Theorem 5 Let A be a WBA with less than m states. Then A is m-finalising.

Proof Let f € S9 and consider a run r € runs; (q). If r € runslgm(q)7 then there is

nothing to prove. Otherwise, if r ¢ runslsm(q), then there must be a path in r of length
greater than m. Since there are less than m different states, there must be two non-root
nodes u, v in this path such that r(u) = r(v). Since these nodes are on the same path,
we can assume w.l.o.g. that v = uv' for some v’ € K* \ {}. We define a new run s as
follows: for every node w, if there is no w' for which w = uw’, then set s(w) := r(w);
otherwise (that is, if w = uw' for some w') set s(uw') := r(vw'). This construction
defines an injective function g from the nodes of s to the nodes of r such that, for every
node w of s, we have s(w) = r(g(w)). Notice that this function is not surjective, as
there is no w such that g(w) = u. Thus, s has less nodes than r. Furthermore, every
transition in s is also a transition in r, and for every w € leaf(s), g(w) € leaf(r). This
implies that wt(r) <g wtg(s). If s is still not in runsg"™, then we can repeat the same
process to produce a smaller run s’ with a smaller f-weight, until we find one that is
in runs]Sm. O

Theorem 6 If A is m-finalising, then O;”('ﬁ) is the Ifp of Oy.

23

Proof Let o¢ be the Ifp of Oy. We know that oq is the supremum of {(’)?(6) | n > 0};

thus, it is sufficient to show that O?’(ﬁ)(q) >s5 00(q) for all ¢ € Q. By Theorem 4, we
know that og(q) = P

r € runs; (q) by the corresponding s, € runslgm(q)7 thus obtaining a greater element in
the lattice. Hence,

oo(a) <s B wiplsr)<s P wis(s) = OF (0)(a),

reruns: (g) seruns="(q)

reruns: (q) wty(r). Since A is m-finalising, we can replace every

which completes the proof of the theorem. O

This theorem tells us that, in order to construct the Ifp of the operator Oy, it is enough
to apply this operator |@|+ 1 times. Since each of the iteration steps also requires only
polynomial time, as a function of the number of states @, we know that the computation
of the lfp needs overall polynomial time in the number of states, independently of the
lattice used. As mentioned before, this bound greatly improves on the trivial obtained
from the finiteness S since the trivial bound is exponential in the number of states
of the automaton and depends also on the size of the lattice S.

We focus now on the outer iteration of the algorithm. For the unweighted case, this
iteration mainly updates the set of bad states with the information obtained from the
internal iteration. To do this, we define the operator Q : S9 3 SS9 as follows: for all
o €S9

Q(o) := Ifp(Os),

where Ifp represents the least fixpoint.
We will show that, again, a repeated application of this operator leads to an ap-
propriate fixpoint, due to the fact that Q is monotone and 59 is finite.

Lemma 3 The operator Q is monotone.

Proof Let 0,0’ € S@ such that o <se o'. Notice first that, for every run = € runs,
this implies that wts(r) <g wt, (r). From this we obtain, for every q € Q,

Q(o)(q) = Ifp(Os)(q)
= P wt(n) (12)

rerunsy(q)

<s P wta(r)

réerunsy(q)
= 1Ifp(0y1)(q) (13)

= Q(c'(q),
where Identities (12) and (13) follow from Theorem 4 and the inequality is a conse-
quence of the remark at the beginning of this proof. O

Again, finiteness of s@ implies that the operator Q is actually continuous, and thus
Tarski’s fixpoint theorem says that Q has @),,~o Q" (1) as its greatest fixpoint (gfp). Tt
remains to show how this gfp can be used to compute the behaviour of a given WBA.
Let succ4(q) denote the set of all successful runs of A whose root is labelled with g.
Consider the function o/ € S9 where a”(q) = @resuccA
we can obtain the behaviour of the WBA A as follows:

(a) wt(r). Given this function,

24

Lemma 4 ||A| = @qEQ in(q) ® ‘TH(Q)-

It turns out that ¢! is in fact the greatest fixpoint of Q. Before proving this, we
will introduce some additional notation. We will use the expression runs, for n > 1 to
denote the set of all finite runs such that every path from the root to a leaf has ezactly
n non-root nodes labelled with a final state, the last of which is the leaf.

Given a run r € runsy, its preamble is the unique finite run s € runs; such that, for
every node u, if s(u) is defined, then s(u) = r(u). We will denote the preamble of r by
pre(r). Notice that, if » € runs,, for n > 1, then its preamble always exists, and can be
constructed as follows: first set pre(r)(e) = r(e) and pre(r)(i) = r(i) for all 4,1 < i < k.
Then, for every node u for which pre(r)(u) is defined, if r(u) € F, then u is a leaf of
pre(r); otherwise, set pre(r)(ui) = r(ui) for all i,1 <4 < k. This construction finishes
since, in every path, we must find at least one final state, which will be a leaf in pre(r),
and thus also pre(r) € runs;.

Given a (finite) run r and a node u in r, we will denote the subrun of r starting at
u as ry,. More formally, T|y is the run such that, for every v € K*, if r(uv) is defined,
then r, (v) = r(uv).

The next lemma relates the number n of times the operator Q has been applied to
the greatest element 1 of S9 to the weights of the runs in runs,.

Lemma 5 For alln >0 and g € Q it holds that

Q"Ma)= P wilr).

reruns, (q)

Proof We prove this fact also by induction on n. For n = 1, the result follows directly
from Theorem 4. Assume now that it holds for n.

Q" (1)(q)

|fP(OQn (1))(a)
= @ th"(I) (T‘) (14)

rerunsy (q)

- B wine Q "MK (15)

rerunsy (q) p€Eleaf(r)

= P uwvine K P wts) (16)
rérunsy (q) pEleaf(r) s€runs, (p)

= P wine & P wis) (17)
réerunsy (q) u€lnode(r) s€runs, (r(u))

= @ wt(r) ® @ ® wit(t,) (18)
réerunsy (q) {t€runs,+1(q)|pre(t)=r} u€lnode(r)

= P P wt(r)®@ Q) wt(ty,) (19)
réerunsy (q) {tEruns, 41(q)|pre(t)=r} u€lnode(r)

= P P wt(t) (20)

rérunsy (q) {tEruns, 41(q)|pre(t)=r}

= P wts). (21)

s€runs, 4+1(q)

25

The first identity employs only the definition of Q. Theorem 4 yields Identity (14).
Identities (15) and (16) follow from the definition of f-weights and the induction hy-
pothesis, respectively. Identity (17) changes the indices to run over the set of leaf nodes,
rather than by the states that label them; the idempotency of the operators & and ®
implies that this change does not alter the result. For Identity (18) we use the distribu-
tivity of the lattice. The definition of distributivity says that, in order to exchange the
operators @ and ®, the now external addition needs to range over all functions map-
ping nodes u € Inode(r) to runs s € runs,(r(u)). We notice that each function of this
kind, together with the run r € runs; (g), defines exactly one finite run ¢ € runs,41(q).
We thus use this ¢ to represent the function. Identity (19) is an easy consequence of
distributivity. For Identity (20), we then use the fact that a run in runs,4; can be seen
as its preamble (in runs;) concatenated at each of its leafs with a run in runs,. Finally,
for Identity (21) we notice that the set of all runs in runs,41 can be partitioned by
means of their preambles, which means that both sides of the identity range over the
Same runs. O

As it was the case for the operator O in the internal iteration, we can bound the
number of iterations that Q needs before reaching a fixpoint by the number of states
of the automaton.

Definition 22 (m-complete) A WBA A is m-complete if, for every partial run r €
runs,, (q), there is a successful run s, € succ4(q) such that wt(r) <g wt(sr).

Using the fact that ® is idempotent, it is easy to see that every WBA is m-complete
for any m greater than the number of final states |F'|. The proof is similar to the one
given in [3] for the fact that a looping automaton has a run iff it has a partial run of
depth greater than |Q|. However, we now also need to take into account which are the
states that are final, and which are not.

Theorem 7 If A is a WBA with less than m final states, then A is m-complete.

Proof Suppose that we have a partial run r : ¢ — @ in runs;; (q). We use r to construct
a function 8 : K* — ¢ by induction. With this function, we then construct a successful
run s by setting sr(u) := 7(8(u)). The intuitive meaning of 8(v) = w is that, in the
run s;, the node v will have the same label as the node w in r. We define 3 as follows:

- 18(5) =6,
— for a node v -1, if there is a predecessor w of 3(v) -4 such that (i) r(8(v)-i) = r(w),
and (ii) r(w) € F, then set S(v - i) := w; otherwise, set B(v - 1) := B(v) - i.

Notice that the function § is well-defined since, for every v € K*, we have that 8(v) is
not a leaf node of . In fact, whenever we find a final state several times in the same
path, the mapping § always leads to the earliest one. Thus, reaching a leaf would mean
that we have a path reaching m final states, where none of them repeats, contradicting
the fact that the automaton has less than m final states in total.

We now show that it is possible to construct a successful run s; from r by defining
sr(v) =r(B(v)) for all v € K*, and that wt(r) <g wt(s;). Our definition of 8 ensures
that, for every v € K* and i € K, it holds that s, (v - %) = r(3(v) - 7). Thus, for every
v € K*, we have (s,(v), sr(vl),...,sr(vk)) = (r(B(v)),r(B(v) 1),...,7(B(v) - k)), and
hence,

wi(sr(v), sr(v1),..., s (vk)) = wi(r(B(v)), r(B(v) - 1),...,7(B(v) - k).

26

This implies that every factor in the product wt(sr) is also a factor in the product
wt(r). Since the product computes the infimum, we thus have wit(r) <g wt(s:).

It remains only to show that s, is successful. Suppose to the contrary that s, is
not successful. Then, there must exist a path p and a node v € p such that all its
successors in p are labelled with non-final states. In other words, for every w € K*, if
v-w € p, then sp(v-w) ¢ F. This implies, by our definition of 3, that 8(v-w) = 8(v)-w,
for all v - w € p. Thus, r has an infinite path, which contradicts the assumption that
T € runsy,. O

The following theorem states that it is possible to compute the mapping ol for an
m-complete automaton by applying the Q operator to the greatest element of 59 at
most m times.

Theorem 8 If A is an m-complete WBA, then Q™ (1) = ol

Proof Notice first that, by Lemma 5, we know that Q" (1)(q) = @T,Emnsm(q) wt(r).
Since A is m-complete, we can replace each of these partial runs by a successful run,
which yields

Q™ (1)(q) <s EB wt(sr) <g EB wt(s) = UH(q).

TErUNS,, (q) sesucc(q)

To prove the inequality in the other direction, notice that, given a successful run r,
we can truncate it at every path when m final states have been found. The result of
this is a finite run since otherwise, as the tree is finitely branching, Konig’'s Lemma
would imply the existence of an infinite path in this tree. Since we truncate each branch
whenever we have found m final states, an infinite path would be one on which less
than m final states occur, contradicting the fact that r is a successful run. Thus, the
partial run ry, constructed this way belongs to runs,,. Notice that, for every node u of
rm, it holds that ry,(u) = r(u). Hence, we have wt(r) <g wt(ry). This yields

a”(q): @ wt(r) <g @ wt(rm)

resucc(q) resucc(q)

s @D wil) =" D).

sE€runs,, (q)

Putting the two inequalities together proves the theorem. O
In particular, this theorem shows that the mapping ol is indeed the gfp of Q.
Corollary 1 The mapping ol is the greatest firpoint of Q.

Proof Since 59 s finite, the gfp of Q is reached after finitely many iterations; more
precisely, if ng > |S|‘Q‘, then this gfp is @),,~¢ Q" (1) = Q™ (1). Obviously, we can
choose ng such that ng > |F|. Theorem 7 then says that the automaton is ng-complete.
Thus, by Theorem 8, it follows that Q™ (1) = oll. O

Overall, we have thus shown how to compute the behaviour of a WBA. By Lemma 4,
Al = Dyeq inla) ®all(g). The above corollary says that o is the greatest fixpoint of
Q. Let us illustrate this process by using it to compute the behaviour of the pinpointing
automaton of Example 4.

27

Ezample 6 To compute the behaviour of the pinpointing automaton introduced in
Example 4, we need to find the greatest fixpoint of 9, found after repeated applications
of Q to 1. By definition, Q(1) = Ifp(O7); hence, we repeatedly apply O7 to 0 to find
this least fixpoint. This operator is defined as

O;())=\ wt(p.p1,p2) Vstepi(a)(p1) V step; (o) (p2),
(P;P1 ,P2)€Q3

where stepj(o)(p) = L if p € {q1,¢3} and o(p) otherwise. The first iteration of the

fixpoint computation looks as follows:'!

07(0)(q0) = (wt(go,q1,@1) V LV L) A (wt(qo,q2,q2) VTV T)

(LVLVL)A(LVTVT)=1,

01(6)(q1) =wt(q1,q1,¢1) VLIV LI=ax;V1lVv.Ll=ax,

07(0)(q2) = (wt(g2,q2,a2) VTV T) A (wt(ge,q3,q3) VLV 1)
=(axgVTVT)A(LVvLVL1)=1,

05(0)(g3) = T.

Analogously, we can compute (9%(6) = 01(6) = (L1,axy, L, T), which means that we
have found the least fixpoint; hence Q(i) =(L,ax;, L, T).

For the second iteration, we get that OQQ(i) (0) = OQ(I) (0) = (axq,axy, T,T),
and thus Q%(1) = (ax;, ax;, T, T). A further iteration of this operator yields (1) =
QQ(I) and hence we have found the greatest fixpoint ol of Q.

Knowing this fixpoint, we can now compute the behaviour of (A®”, Ares, I'res)PI":

I(A°*, Ares, Tres)?"|| = A in(g;) v o!l(a:)
=0
(axs Vax)) A (T Vax)) A(TVT)A(TVT)

axg V axi,

which is identical to the behaviour that we have computed in an ad hoc manner in
Example 4.

In general, the fixpoint o/ can be computed in m, = |F| + 1 iteration steps
since m, is larger than the number of final states of the input WBA (Theorems 7
and 8). Each step of this outer iteration consists of computing the least fixpoint of the
operator Oy, where o is the result of the previous step. This fixpoint can be computed
in m; = |Q|+ 1 iteration steps since m; is larger that the number of states of the input
WBA (Theorems 5 and 6). Such an inner iteration step requires a polynomial number
of lattice operations (in the cardinality |@Q| of Q).

Thus, to analyze the complezity of our algorithm for computing the behaviour of a
WBA, we need to know the complexity of applying the lattice operations. If we assume
that this complexity is constant (i.e., the lattice S is assumed to be fixed), then we end
up with an overall polynomial time complexity. However, this is not always a reasonable
assumption. In fact, we were able to restrict our attention to finite distributive lattices
by taking, for a given WBA| the distributive lattice generated by the weights occurring

' For brevity, we consider only those transitions that have a weight different from T.

28

in it (where these weights may come from an underlying infinite distributive lattice).
Thus, the actual finite distributive lattice used may depend on the automaton. Let
us assume that the lattice operations can be performed using time polynomial in the
size of any generating set. Since the size of this generating set is itself polynomial in
the number of states of the input WBA A, this assumption implies that the lattice
operations can be performed in time polynomial in the size of the automaton. Thus,
under this assumption, we have an overall polynomial bound (measured in the number
of states) for the computation of the behaviour of a WBA.

In the case of pinpointing, we use the 7-Boolean semiring]BT, which is the free
distributive lattice generated by the set lab(7). The lattice operations are conjunction
and disjunction of monotone Boolean formulae. Note that, strictly speaking, the lattice
elements are monotone Boolean formulae modulo equivalence, i.e., equivalence classes
of monotone Boolean formulae. However, since equivalence of monotone Boolean for-
mulae is known to be an NP-complete problem, we do not try to compute unique
representatives of the equivalence classes. We just leave the formulae as they are. Nev-
ertheless, if we are not careful, then the computed pinpointing formula may still be
exponential in the size of the automaton, though we apply only a polynomial number
of conjunction and disjunction operations. The reason is that we may have to create
copies of subformulae. However, this problem can easily be avoided by employing struc-
ture sharing, i.e., using directed acyclic graphs (DAGs) as data structure for monotone
Boolean formulae.

Corollary 2 Let I' be an aziomatized input and (A, Ares, Ires) an aziomatic automa-
ton for I' w.r.t. the c-property P such that A is a« WBA. Then a DAG representation
of a pinpointing formula for I' w.r.t. P can be computed in time polynomial in the size

of A.

We will show in Section 5.3 below that there is a behaviour-preserving polynomial-
time reduction of WGBA to WBA. This implies that the above Corollary 2 also holds
for the case where A is a generalized WBA. Note, however, that the size of the automata
we have constructed for SZ and LTL is already exponential in the size of the input.
Thus, the (DAG representation of the) pinpointing formula may still be exponential
in the size of the input, and computing it may take exponential time in the size of the
input.

We proceed now to show how the method for computing the behaviour of a WBA
introduced above can be used for computing the behaviour of the other two kinds of
weighted automata we have defined, namely, WLA and WGBA.

5.2 Computing the Behaviour of a WLA

A WLA is a WGBA that has no set of final states. In this case, the condition for a
run to be successful—that is, that every path must have infinitely many states labelled
with elements of Fj for each set of final states F;—is trivially satisfied. Thus, every run
of a weighted looping automaton is successful. Alternatively, we can view the WLA
(Q,in,wt) as the WBA (Q,in,wt, Q) since every state being a final state also means
that every run is successful. Thus, WLAs are special kinds of WBAs, which shows that
our approach for computing the behaviour of WBAs can directly be applied to WLAs.

29

However, the fact that every run is successful can be used to simplify the procedure
into one that uses only a single iteration.

Notice first that the operator Oy depends on the set of final states. More precisely,
the set of final states is used in the definition of the auxiliary function step:

fla) ifqgeF
o(q) otherwise

stepy(o)(q) = {

If all states are final, then no case analysis is necessary in step ¢, and hence step;(o)(q) =
f(g) for all o € S and all ¢ € Q. This collapses the definition of the operator Oy to

k
O(o)(q) = b wi(g, q1, - 1) @ Q) £g;)-

(¢,01,---,qx) EQFH! J=1

Notice that in this case O does not depend on the input o, and hence its only fixpoint
is reached after exactly one iteration. This allows us to simplify the definition of the
operator Q in the following way:

Q(0)(q) = fp(O0)(q)

= 0,(0)(q)
k
=) wt(g, q1, -) ® @) olg;)
(0,91,---,q) EQF+1L j=1

The behaviour of a WLA is then the gfp of this operator O, which can be computed
by a single iteration. The inner iteration of the general procedure is replaced by a
direct application of the simplified definition of Q. Note that this simplified definition
of @ coincides with the one introduced in [6] specifically for WLAs. Thus, the “nested
iteration approach” for WBAs developed in the present paper can be seen as a direct
generalization of the “bottom-up approach” introduced in [6] for the case of WLAs.
Let us apply this insight to the pinpointing automaton for SZ constructed in Sec-
tion 4.2. This automaton has exponentially many states in the size n of the input
(C,T). Thus, we need exponentially many applications of the operator Q, when mea-
sured on n. It is also easy to see that the time required by each application of Q is
polynomial in the size of the automaton, and thus exponential in n. Hence, this leads
to an algorithm with a total running time that is exponential in the size of the input.

Corollary 3 Let C be an ALC concept description and T an ST TBoz. A pinpointing
formula for (C,T) w.r.t. unsatisfiability can be computed in time erponential in the

size of (C,T).

Since even deciding satisfiability of ALC concept descriptions w.r.t. ST TBoxes is
known to be ExpTiME-hard, this bound is optimal.

5.3 Computing the Behaviour of a Generalized WBA

We have shown how to compute the behaviour of a WBA in time polynomial in the
number of states. We will now give a polynomial reduction in which, for every WGBA,
we construct a WBA that has the same behaviour, transferring this way the problem of

30

computing the behaviour of WGBAS to the special case of WBAs that we have already
solved. The idea of the reduction is to make several copies of the set of states and
use each copy to test the Biichi condition for a specific set of final states, moving to
the next copy once we have found a final state of the set we are currently looking at.
This is the same idea as the one used in the unweighted case to reduce the emptiness
problem for GBAs to the one for BAs [41].

Let A = (Q,in,wt, Fy,...,F,_1) be a WGBA. We construct the WBA A’ =
(Q',in',wt', F") as follows:

- Q' ={(g;9)|q€Q,0<i<n~—1}

in, if i =0,

~inl(g,i) = 9 =0
0 otherwise

wt(qo,q1,-.-,qr) ifqo € F;, j=1i+1 mod n,

- “)tl((qﬂai)a(Q1aj)7"'ﬂ(Qk7j))_ “)t(QO7Q17"'an) lfqo¢FlaZ:J
0 otherwise
- F'={(gn—1) g€ Fp1}.

Notice that the automaton A’ has n - |Q| states, where n is the number of sets of
final states. Since there can potentially be 2@l sets of final states, this reduction is not
polynomial when measured only in the number of states of A, but it is polynomial in
the total size of the automaton A.

Theorem 9 If A is a WGBA and A’ is constructed as above, then ||A]| = ||A'||.

Proof Recall first that the behaviour of an automaton is the addition of the weights
of all successful runs multiplied with the initial distribution of their root labels. If a
run r is such that in(r(e)) ® wt(r) = 0, then it will not be of interest, since it will not
influence the computation of the behaviour. Given a WGBA or WBA B, let supp(B) be
the set of all runs r such that in(r(¢)) ® wit(r) # 0. We introduce a bijective function
f : supp(A) = supp(A’) such that, for every run r € supp(A), wt(r) = wt'(f(r)) and r
is successful (w.r.t. A) iff f(r) is successful (w.r.t. A").
Let 7 be a run in supp(A). We define the run f(r) of A’ inductively as follows:

= f(r)(e) = (r(e),0);
— let w € K* and f(r)(u) = (g,). Then, for all 1 < j <k,
o itq ¢ P,
fr)u-3) = {(r(u-j),i-{—l mod n) if g € F;.

Let u € K* and f(r)(u) = (q,7). Then r(u) = ¢. Furthermore, for all 1 < j < k,
fr)(uj) = (r(uj),i+1 mod n) if g € F; and f(r)(uj) = (r(uj), i) otherwise. Together
with the definition of wt’, this implies

wt' (F(r)(w), F(r)(ul), ..., f(r)(uk)) = wt(r(w), r(ul),. .. r(uk)).

This yields wt(r) = wt'(f(r)). Since we also have in'(f(r)(g)) = in(r(g)), the fact that
in(r(e)) ® wt(r) # 0 also implies that in’ (f(r)(¢)) ® wt'(f(r)) # 0. Thus, f is indeed
a function from supp(A) to supp(A’).

It is easy to see that f is injective. We show now that it is also surjective. Let s €
supp(A’'). We construct a run r € supp(A) as follows: for every u € K*, if s(u) = (¢, 1),
then r(u) = q. We show that s = f(r). First, since in'(s(¢)) ® wt'(s) # 0, it must be

31

the case that in'(s(¢)) # 0, and thus s(¢) = (g,0) for some g € Q. Consider now some
u € K* and let s(u) = (q,4). Hence, also r(u) = q. Since wt'(s(u), s(ul), ..., s(uk)) # 0,
it must be the case that, if ¢ € F}, then for all 1 < j < k it holds that s(uj) = (g;,i+1
mod n) for some g; € Q, and if ¢ ¢ F;, then s(uj) = (g;,4). Thus, s satisfies the
definition of f(r).

It remains only to show that r is successful (w.r.t. A) iff f(r) is successful (w.r.t.
A"). Suppose first that f(r) is successful. Then for every path there are infinitely many
nodes labelled with elements of F' = {(¢,n—1) | ¢ € F,,_1}. But notice that, according
to the way f was defined, if f(r)(u) € F', then f(r)(uj) is of the form (g;,0) for all
1 < j < k. All the following nodes in the path will have labels of the form (-,0) until a
state from Fj is found, in which case the next labels are of the form (-, 1), etc. Thus, to
get to another node with label (¢, n—1) € F' on the path, one must first have reached
nodes with labels (go,0), (q1,1),...,(gn—2,n — 2) where q; € F; for i =0,...,n — 2.
This implies that r is successful.

Conversely, assume that f(r) is not successful. Then there is a path in f(r) on
which, from some node on, no element of F' occurs as a label on the path. Since the
second component of the node labels can only switch back to 0 when an element of F'
is reached, this means that there is an ig,0 < ¢g < n — 1, such that, from some node
on, all the labels on the path have ig as their second component. This means, however,
that from this node on no element of F;; occurs in the first component. Consequently,
r cannot be successful.

As a consequence of the properties of the function f that we have shown so far, we
obtain

[IAll

EB in(r(e)) ® wt(r)

r successful run of A

D in(r(e)) @ wt(f(r))

r successful run of A

) in(f(r)(e)) @ wi(f(r))

f(r) successful run of A’

- a5 in(r(e)) ® wt(r) = ||A|.

r successful run of A’

O

Given a WGBA with m states and n sets of final states, this reduction yields a WBA
with n - m states. As described before, computing the behaviour of a WBA requires
time polynomial in the size of its state set; in this case, polynomial in n - m. Thus,
our method computes the behaviour of a WGBA in time polynomial in its number of
states and sets of final states.

Let us apply this approach for computing the behaviour of a WGBA to the pinpoint-
ing automaton for LTL constructed in Section 4.3. This automaton has exponentially
many states in the size n of the input (¢, R) and linearly many sets of final states in n.
Thus, the WBA constructed from the WGBA is of size exponential in n. Overall, the
two nested iterations perform exponentially many steps, which leads to an algorithm
with a total running time that is exponential in the size of the input.

Corollary 4 Let ¢ be an LTL formula and R a set of LTL formulae. A pinpointing
formula for (¢, R) w.r.t. a-unsatisfiability can be computed in time exponential in the

size of (¢, R).

32

5.4 An Alternative Approach for Computing the Behaviour

Independently from us, a different algorithm for computing the behaviour of WBAs
over distributive lattices was developed by Droste et.al. [15]. We will first sketch
this alternative approach and then compare it to ours, with special attention to the
application in the pinpointing scenario.'? In the following, we will call our method the
iterative method and the one from [15] the prime method.

The prime method is based on the following property of distributive lattices. Let
(S,<g) be a distributive lattice. An element p € S is called meet prime if, for every
t1,ta € S, t1 ®to <g p implies that either ¢; <g p or t3 <g p. It is known that any
element t of S equals the infimum of all the meet prime elements greater than or equal
to t [18]. If one could decide, for a given meet prime element p, whether p is greater
than or equal to the behaviour of a weighted automaton, then this behaviour could be
readily computed from the outputs of such decisions, as we will show next.

The prime method performs this decision as follows. Let A = (Q, in, wt, F') be the
WBA over the distributive lattice (S, <g) for which we want to compute the behaviour,
and let prime(S) denote the set of all meet prime elements of S. For every meet prime
element p € prime(S), construct the (unweighted) automaton Ay, = (@, A, I, F') where:

—A={(g,q1,- - q) € Q" wi(a, qu, . k) £s P}

- I'={qeQ|in(q) £s p}
It is easy to see that Ap accepts a non-empty language (i.e., there exists a successful
run of Ay, that starts with an initial state) iff there is a successful run r of A such
that in(r(e)) ® wt(r) £s p. Equivalently, the language accepted by Ay is empty iff, for
every successful run r of A, it holds that in(r(e)) ® wt(r) <g p. But this means that
[lA|l <s p. Thus, if we denote by L(Ajp) the language accepted by the automaton Ay,

1Al = %) p.

{peprime(S)|L(Ap)=0}

we have

In the pinpointing application, we use the lattice]BT, where the meet prime ele-
ments are exactly all conjunctions of propositional variables in Iab(’T).]3 There is then
a one-to-one correspondence between the meet prime elements of B” and all subsets
of axioms appearing in the axiomatic input for which the pinpointing formula is being
computed. Take an arbitrary meet prime element p and assume that it corresponds to
the set of axioms 7' C T, i.e., p = Atc7 1ab(t). The automaton Ap has a transition
(g,a1,...,q) iff

Avio(q,q1,- -, qx) = wt(a,q1, - - ax) Zgr p= [\ lab(t).
teT!

Since Avio(q,q1,...,q) = v{tET\(q7q17...,qk)¢Ares(t)} lab(#), this means that for every
te T (q,q1,...,qs) € Ares(t). But this holds iff (g, q1,...,qy) is a transition of Aj.

12 We present only a special case of the algorithm in [15], where we allow only unlabelled
trees as inputs. Furthermore, we have exchanged the use of join prime elements in [15] with
the use of their meet prime counterparts. This is justified by duality, and allows for an easier
understanding of how this method works in the pinpointing application, and makes it easier
to compare it with our approach in this setting.

13 Recall that the lattice B7 uses disjunction as its infimum operator, and conjunction as the
supremum. Thus, conjunctions of variables are the only elements of the lattice that cannot be
written as the infimum (disjunction) of other elements.

33

Analogously, it is easy to see that a state ¢ is an initial state of Ay iff it is an initial state
of Aj1. Thus, the automaton A, is identical to the T'-restricted subautomaton A
Consequently, testing the automaton A4, for emptiness is the same as testing A\T'
for emptiness, which in turn is just an application of the automata-based decision
procedure as a black-box procedure for testing the c-property. One could, of course,
also use any other decision procedure for the c-property instead. This shows that the
prime method actually corresponds to the naive black-box approach of testing the c-
property for all possible subsets of axioms. Unoptimized, this process will thus always
need an exponential number of tests for computing the pinpointing formula. However,
this process allows the use of all the optimizations applicable to black-box pinpointing
algorithms.

Notice that, in the examples we have presented in this paper (i.e., pinpointing
unsatisfiability in §Z and LTL), both the iterative and the prime method have an
exponential run time. For the iterative method, we have a bound that is polynomial in
the number of states of the constructed automata, but this number is itself exponential
in the size of the input. The prime method performs exponentially many emptiness
tests, each of which requires exponential time (since it is performed on an exponentially
large automaton). Although both approaches result in an exponential-time algorithm
in these cases, the bound on the iterative method has the advantage of not depending
on the number of meet prime elements of the lattice, as opposed to the prime method.
In the case of pinpointing, the lattice has always 2" meet prime elements, where n is
the number of input axioms. If the axiomatic automaton deciding the property has a
number of states polynomial in the size of the input, then this exponential number of
tests will yield a suboptimal procedure, as demonstrated by the following examples.

Ezample 7 Assume that we have an input Z and a set of axioms 7 = {to,...,tn_1},
and that the c-property is defined as follows: Py := {(Z,7') | T' C T,|T'| > 0}.
Let each axiom #; be labelled with the propositional variable p;. Then a pinpointing
formula for Py is given by V<, ., pi-

We can construct an axiomatic automaton (Agp, Ares, Ires) for the axiomatized
input (Z,7T) as follows:

— Ay, is the looping automaton Ay, := ({qo,---,9n-1},4,{q0});

- A= {(Qi7Q(i+1)mod n) 10 <4< n}

~ for every 0 < j < n —1, Ares(t;) = A\ {(4j,(j41)mod n}:

— for every t € T, Ires(t) = {qo}-
It is easy to see that this axiomatic automaton is correct for the property P;. Since Ap,
has n states and n transitions, the iterative method needs polynomial time to compute
the behaviour of the pinpointing automaton induced by (An, Ares, Ires), measured in
the number of axioms n := |T|. On the other hand, the unoptimized prime method
requires 2" emptiness tests.

In order to illustrate the working of the iterative methods, we show how it computes

the pinpointing formula in this example. The axiomatic automaton (A, Ares, Ires)
induces the pinpointing automaton (A, Ares, I'res)’™ = ({qo,...,qn_1},in, wt), where

— in(qo) = L and in(g;) = T for all 0 < i < n; and
— wt(g;,qj) equals p; if j = (i + 1) mod n, and T otherwise.

As this is a weighted looping automaton, the iterative method reduces to an iterated
application of the simplified operator @ described in Section 5.2. Notice that, for ev-
ery state g;, there is exactly one transition, namely (gi, ¢(i+1)mod n), having a weight

34

distinct from T. Hence, for every function o : Q — B”7 we have:

/\ wt(g;,q5) V o(q;)

0<j<n

Q()(4:)

- wt(Qiyq(i+l)mod n) \4 U(Q(H»])mod n) =piV U(Q(H»])mod n)

The process starts with the function 1: Q — B” that maps every state to L; that
is, 1(g;) = L for all 0 < i < n. After the first application of the operator Q, we have

Q(1)(q;) = p; for all 0 < i < n since p; V L is equivalent to p;. Analogously, after m
iterations we have, for all 0 < i < n, that

Qm(l)(Qi) = \/ P(i+j)mod n-

0<j<m

This process reaches a fixpoint when m = n, in which case every state g; is mapped to
the formula \/q<; ., pj. Thus, the behaviour of (A, Ares, Ires)"" is

l|(A, Ares, Ires)Pi"||

/\0§i<n in(qi) V Qn(I)(Qz)
in(go) vV Q"(1)(q0)
Qm(I)(QO) = V0§_7‘<n pj;

which is a pinpointing formula.

Our second example shows that this difference in the execution times of the two
methods occurs also for more elaborate properties whose automata decision procedure
uses a Biichi acceptance condition.

Ezample 8 Let Q be an infinite set of states and let the set of inputs J be the set of all
generalized Biichi automata using states from Q, and the set of axioms be ¥ := QR
That is, we use the transitions in A as axioms of our property. We define the c-property
Pa as the set of all tuples (A, @) where A = (Q, A, I, FY, ..., Fy) is a generalized Biichi
automaton in J, and © C T is such that (Q, A\O, I, F1, ..., Fy) has no successful run r
with r(e) € I. Intuitively, the axioms tell which transitions are disallowed in the input
automaton A. The c-property is satisfied whenever we remove enough transitions (by
adding them to the axiom set) to avoid any successful run whose root is labelled with
an initial state. It is easy to see that the axiomatic automaton (A, Ares, Ires) where
Ares(t) = A\ {t} and Ires(t) = @ for all £ € @ is correct for the property P and
the axiomatized input (A, ©). As we have seen, the iterative method requires time
polynomial in the number of states |@Q| of this axiomatic automaton to compute the
pinpointing formula for this property. On the other hand, the prime method needs
210! emptiness tests, each polynomial on |@|. We thus have an exponential increase in
execution time, when compared to the iterative method.

One advantage of the prime method is that it can easily be generalized to more
complex automata models. For instance, it is shown in [15] how the same idea works in
the presence of a more complex acceptance condition, known as the Muller condition.
Also note that the prime method can possibly be optimized using the ideas underlying
the known optimizations of black-box pinpointing procedures, not just in the case of
applying it to pinpointing, but also in a more general setting.

35

6 Conclusions

We have introduced a general framework for extending decision procedures based on
the construction of generalized Biichi automata to pinpointing algorithms. This frame-
work can elegantly deal with DLs for which tableau-based decision procedures require
sophisticated blocking conditions, and to which consequently the general approach for
extending tableau-based decision procedures to pinpointing algorithms introduced in
[5] does not apply. Our framework assumes that one can describe the influence of axioms
in a c-property by restricting the sets of transitions and initial states of the automaton.
One could imagine that in some cases the axioms might also have an influence on the
final states. While it should not be hard to integrate this into our framework, we have
not investigated this since none of the c-properties we have considered required such a
modification of the sets of final states.

Our framework is based on the use of weighted automata working on infinite trees,
whose study has only recently begun. One of the main contributions of this paper is
an approach for computing the behaviour of such automata with a run time that is
polynomial in the size of the automaton and independent of the size of the underly-
ing distributive lattice. An interesting topic for future work is to check whether our
iterative approach can be adapted such that it also works in cases where the weighted
automaton is not explicitly given, but rather computed on-the-fly. Finally, it would also
be interesting to know how to adapt our iterative method such that it can compute
the behaviour of weighted automata working on infinite trees that use more complex
acceptance conditions for runs, such as the Muller or the Rabin condition.

References

1. Franz Baader. Augmenting concept languages by transitive closure of roles: An alternative
to terminological cycles. In Proc. of the 12th Int. Joint Conf. on Artificial Intelligence
(IJCAT’91), 1991.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Ap-
plications. Cambridge University Press, 2003.

3. Franz Baader, Jan Hladik, and Rafael Penaloza. Automata can show PSPACE results for
description logics. Information and Computation, 206(9 10):1045 1056, 2008.

4. Franz Baader and Bernhard Hollunder. Embedding defaults into terminological knowledge
representation formalisms. J. of Automated Reasoning, 14:149 180, 1995.

5. Franz Baader and Rafael Penaloza. Axiom pinpointing in general tableaux. In Proc. of
the Int. Conf. on Analytic Tableauz and Related Methods (TABLEAUX 2007), volume
4548 of Lecture Notes in Artificial Intelligence, pages 11 27. Springer-Verlag, 2007.

6. Franz Baader and Rafael Penaloza. Automata-based axiom pinpointing. In Alessandro
Armando, Peter Baumgartner, and Gilles Dowek, editors, Proc. of the Int. Joint Conf. on
Automated Reasoning (IJCAR 2008), volume 5195 of Lecture Notes in Artificial Intelli-
gence, pages 226 241. Springer-Verlag, 2008.

7. Franz Baader and Rafael Penaloza. Blocking and pinpointing in forest tableaux.
LTCS-Report LTCS-08-02, Chair for Automata Theory, Institute for Theoretical Com-
puter Science, Dresden University of Technology, Germany, 2008. See http://lat.inf.tu-
dresden.de/research/reports.html.

8. Franz Baader and Rafael Penaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 2009. To appear.

9. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69:5-40, 2001.

10. Franz Baader and Boontawee Suntisrivaraporn. Debugging SNOMED CT using axiom
pinpointing in the description logic ££%. Tn Proc. of the International Conference on

36

12.

13.

14.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Representing and Sharing Knowledge Using SNOMED (KR-MED’08), Phoenix, Arizona,
2008.

. Franz Baader and Stephan Tobies. The inverse method implements the automata ap-

proach for modal satisfiability. In Proc. of the Int. Joint Conf. on Automated Reasoning
(IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intelligence, pages 92-106.
Springer-Verlag, 2001.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
Cambridge, Massachusetts, 2008.

Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages 84 89, 1999.

Diego Calvanese, Giuseppe DeGiacomo, and Maurizio Lenzerini. 2ATAs make DLs easy.
In Proc. of the 2002 Description Logic Workshop (DL 2002), pages 107-118. CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/Vol-53/, 2002.

. Manfred Droste, Werner Kuich, and George Rahonis. Multi-valued MSO logics over words

and trees. Fundamenta Informaticae, 84(3,4):305 327, 2008.

Manfred Droste and George Rahonis. Weighted automata and weighted logics on infinite
words. In Oscar H. Ibarra and Zhe Dang, editors, Developments in Language Theory,
volume 4036 of Lecture Notes in Computer Science, pages 49 58. Springer-Verlag, 2006.

D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In Proc.
of the 7th ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages
(POPL’80), pages 163-173, 1980.

G. Gritzer. General Lattice Theory. Birkhduser, second edition edition, 1998.

Volker Haarslev and Ralf Mdéller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial
Intelligence, pages 701-705. Springer-Verlag, 2001.

Tan Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of the
6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR’98), pages
636 647, 1998.

Tan Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7-26,
2003.

Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all justifica-
tions of OWL DL entailments. In Proc. of the 6th International Semantic Web Conference
and 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, volume 4825 of
Lecture Notes in Computer Science, pages 267 280, Busan, Korea, 2007. Springer-Verlag.
Orna Kupferman and Yoad Lustig. Lattice automata. In Byron Cook and Andreas Podel-
ski, editors, 8th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI'07), volume 4349 of Lecture Notes in Computer Science, pages
199-213. Springer-Verlag, 2007.

Orna Kupferman and Moshe Vardi. Safraless decision procedures. In Proc. of the /6th
Annual IEEE Symposium on Foundations of Computer Science (FOCS05), pages 531-
542. IEEE Computer Society, 2005.

Kevin Lee, Thomas Meyer, and Jeff Z. Pan. Computing maximally satisfiable terminologies
for the description logic ALC with GCIs. In Proc. of the 2006 Description Logic Workshop
(DL 2006), volume 189 of CEUR Electronic Workshop Proceedings, 2006.

Carsten Lutz and Ulrike Sattler. The complexity of reasoning with Boolean modal logic.
In Frank Wolter, Heinrich Wansing, Maarten de Rijke and Michael Zakharyaschev, editors,
Advances in Modal Logic, Volume 3, pages 329-348. CSLI Publications, 2001.

Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies. In Allan
Ellis and Tatsuya Hagino, editors, Proc. of the 14th International Conference on World
Wide Web (WWW?05), pages 633—-640. ACM, 2005.

Amir Pnueli. The temporal logic of programs. In Proc. of the 18th Annual Symp. on the
Foundations of Computer Science (FOCS’77), pages 46-57, 1977.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of the 16th
Annual ACM Symp. on Principles of Programming Languages (POPL89), pages 319 327.
ACM, 1989.

M. O. Rabin. Weakly definable relations and special automata. In Y. Bar-Hillel, editor,
Proc. of Symp. on Mathematical Logic and Foundations of Set Theory, pages 1 23. North-
Holland Publ. Co., Amsterdam, 1970.

37

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

George Rahonis. Weighted Muller tree automata and weighted logics. Journal of Au-
tomata, Languages and Combinatorics, 12(4):455-483, 2007.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57 95,
1987.

Stefan Schlobach. Diagnosing terminologies. In Manuela M. Veloso and Subbarao Kamb-
hampati, editors, Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005),
pages 670-675. AAAT Press/The MIT Press, 2005.

Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In Georg Gottlob and Toby Walsh, editors, Proc. of the
18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003), pages 355 362, Acapulco,
Mexico, 2003. Morgan Kaufmann, Los Altos.

Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank Harmelen. Debugging
incoherent terminologies. Journal of Automated Reasoning, 39(3):317 349, 2007.
Manfred Schmidt-Schaufl and Gert Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1 26, 1991.

Helmut Seidl. Finite tree automata with cost functions. Theor. Comput. Sci., 126(1):113
142, 1994.

Evren Sirin and Bijan Parsia. Pellet: An OWL DL reasoner. In Proc. of the 200} De-
scription Logic Workshop (DL 2004), pages 212-213, 2004.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285 309, 1955.

Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of
programs. In Proc. of the 16th ACM SIGACT Symp. on Theory of Computing (STOC’84),
pages 446-455, 1984.

Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for modal logics of
programs. J. of Computer and System Sciences, 32:183 221, 1986. A preliminary version
appeared in Proc. of the 16th ACM SIGACT Symp. on Theory of Computing (STOC’84).
Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite computa-
tion paths. In Proc. of the 24th Annual Symposium of Foundations of Computer Science
(SFCS’83), pages 185 194, Washington, DC, USA, 1983. IEEE Computer Society.

