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Abstract

The class SLUR (Single Lookahead Unit Resolution) was introduced in
Schlipf, Annexstein, Franco, and Swaminathan [43] as an umbrella class
for efficient SAT solving, with in fact linear time SAT decision (while
the recognition problem was not considered). Čepek, Kučera, and Vlček
[12], Balyo, Štefan Gurský, Kučera, and Vlček [2] extended this class
in various ways to hierarchies covering all of CNF (all clause-sets). We
introduce a hierarchy SLURk which we argue is the natural “limit” of
such approaches.

The second source for our investigations is the class UC of unit-re-

futation complete clause-sets introduced in del Val [20]. Via the theory
of (tree-resolution based) “hardness” of clause-sets as developed in Kull-
mann [36, 37], Ansótegui, Bonet, Levy, and Manyà [1] we obtain a natural
generalisation UCk, containing those clause-sets which are “unit-refutation
complete of level k”, which is the same as having hardness at most k. Util-
ising the strong connections to (tree-)resolution complexity and (nested)
input resolution, we develop fundamental methods for the determination
of hardness (the level k in UCk).

A fundamental insight now is that SLURk = UCk holds for all k. We
can thus exploit both streams of intuitions and methods for the investiga-
tions of these hierarchies. As an application we can easily show that the
hierarchies from [12, 2] are strongly subsumed by SLURk.
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Finally we consider the problem of “irredundant” clause-sets in UCk.
For 2-CNF we show that strong minimisations are possible in polynomial
time, while already for (very special) Horn clause-sets minimisation is NP-
complete. We conclude with an extensive discussion of open problems and
future directions.
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1 Introduction

The boolean satisfiability problem, SAT for short, in its core version is the
problem of deciding satisfiability of a conjunctive normal form (clause-set) F ; see
the handbook Biere, Heule, van Maaren, and Walsh [6] for further information.
An important theme is the the search for relevant classes C of clause-sets F
for which one can (at least) decide satisfiability in polynomial time (that is,
deciding whether F logically implies the empty clause); see Section 1.19 in
Franco and Martin [23] for some basic information. For the task of knowledge
compilation one wants more from the target-class C, namely that the clausal
entailment problem (deciding whether F logically implies some given clause) can
be decided in polynomial time; see Darwiche and Marquis [17] for an overview.
In this report now we bring together two previously unconnected streams of
research from these two areas:

SLUR The SLUR algorithm is an incomplete linear-time SAT-decision algo-
rithm, based on look-ahead via unit-clause propagation.

UC The class UC of unit-refutation complete clause-sets enables clausal-entail-
ment decision in linear time via unit-clause propagation.

In Subsections 1.1, 1.2 we will discuss these two streams in turn, while their
unification is outlined in Subsection 1.3, and applications to “SAT knowledge
compilation” are discussed in Subsection 1.4. This is the underlying report of
the conference-version Gwynne and Kullmann [28], while the journal-version is
Gwynne and Kullmann [27].

1.1 The quest for SLUR hierarchies

In the year 1995 in Schlipf et al. [43] the SLUR algorithm was introduced, a
simple incomplete non-deterministic SAT-decision algorithm, which always suc-
ceeded on various classes with polynomial-time SAT decision where previously
only rather complicated algorithms were known. The computation is divided
into two phases for input-clause-set F : First we check via unit-clause propaga-
tion (UCP) for unsatisfiability. If this check fails, then we assume F is satisfiable,
and guess a satisfying assignment, using UCP-look-ahead for the guessed assign-
ments to avoid obviously false assignments. The class SLUR contains those F
where this algorithm always succeeds (i.e., always finds a satisfying assignment
in the second phase).
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So recognition of SLUR seems a non-trivial problem, while SAT decision for
F ∈ SLUR can be done in linear time. The natural question arises, whether
SLUR can be turned into a hierarchy, covering in the limit all clause-sets. A
generalisation of SLUR has been considered in Franco and Schlipf [24] under
the name “ISLUR” (improved SLUR), allowing a polynomial number p(ℓ(F ))
of backtracks (for a fixed polynomial p, in the input-size ℓ(F )), in the unsat-
isfiability as well as in the satisfiability phase of the SLUR algorithm, before
giving up. It is mentioned that ISLUR gives up on every large enough “sparse”
clause-set (which are “typical” as random k-CNF clause-sets), when no variable
occurs “too often”. This was considered to be “disappointing” — but from our
point of view the value of the class SLUR lies not in being a “big” class of
clause-sets with polynomial-time SAT solving, but in establishing a basic target
class for representations of boolean functions with very strong properties via
clause-sets; see Subsection 1.4 for further discussions. For all fixed k there ex-
ists a polynomial p such the k-th level of our hierarchy, SLURk, is contained in
the class ISLUR (those clause-sets where the ISLUR algorithm never gives up).
So all levels are negligible when considering the above sparse clause-sets, but as
we will argue in Subsection 1.4, nevertheless this hierarchy is proper regarding
good representations of boolean functions, and the parameter k is meaningful
and robust (not just a numerical parameter like the polynomial p).

In Čepek et al. [12], Balyo et al. [2] the authors finally proved that mem-
bership decision of SLUR is coNP-complete, and presented three hierarchies,
SLUR(k),SLUR∗(k) and CANON(k). It still seemed that none of these hier-
archies is the final answer, though they all introduce a certain natural intuition.
We now present what seems the natural “limit hierarchy”, which we call SLURk,
and which unifies the two basic intuitions embodied in SLUR(k),SLUR∗(k) on
the one hand and CANON(k) on the other hand.

In order to do so we need a precise analysis of the SLUR-class. We intro-

duce the SLUR transition relation F
SLUR
−−−−→ F ′ between clause-sets F, F ′, which

makes precise one non-deterministic step of the SLUR-algorithm. This transi-
tion from F to F ′ happens when assigning a (single) literal in such a way that
UCP does not create the empty clause. The core of the classes SLUR(k) and
SLUR∗(k) is to strengthen the transition relation by requesting that not just
one literal is choosable, but actually k literals can be chosen, while the difference
between them is that SLUR∗(k) performs UCP inbetween the choices, while
the weaker class SLUR(k) does not.

Before we can describe our solution, the SLURk-hierarchy, we need to dis-
cuss the second source of our approach, the class UC of “unit-refutation complete
clause-sets”, which is related to the stream embodied by CANON(k).

1.2 Unit-refutation completeness and “hardness”

In the year 1994 in del Val [20] the class UC was introduced, containing clause-
sets F such that clausal entailment, that is, whether F |= C holds (clause C
follows logically from F , i.e., C is an implicate of F ), can be decided by unit-
clause propagation. The motivation was knowledge compilation, that is, to have
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a more succinct alternative to the use of the set of all prime implicates of a given
clause-set F0 (clausal database), for which one seeks an equivalent F such that
clausal entailment can be decided quickly.

A second development is important here, namely the development of the
notion of “hardness” in Kullmann [36, 37], Ansótegui et al. [1]. The first source
[36] from 1999 introduced the notion of hardness as a measure hd0 : CLS → N0,
assigning natural numbers to clause-sets in the following way (using SAT ⊂
CLS for the satisfiable clause-sets, and USAT := CLS \ SAT ):

• hd0(F ) := 0 for the simplest clause-sets F ∈ CLS regarding SAT decision,
containing the empty clause (i.e., ⊥ ∈ F ) or being empty (i.e., F = ⊤).1)

• hd0(F ) = k ≥ 1 iff there is a literal x such that for F ′ := 〈x → 0〉 ∗ F
(setting x to 0) we have hd0(F

′) ≤ k − 1 and either F ′ ∈ USAT and
hd0(〈x→ 1〉 ∗ F ) ≤ k, or F ′ ∈ SAT .

The second source [37] from 2004 generalised this approach to constraint sat-
isfaction problems (and beyond). The third source [1] from 2008 considered
hd0(F ) on unsatisfiable clause-sets F ∈ USAT , relating it to backdoors, cycle-
cutsets and treewidth, and performing an experimental study on random in-
stances. Also in [1] we find a different extension of hd0 : USAT → N0 to a
measure hd : CLS → N0, using for satisfiable instances F ∈ SAT the maximi-
sation over all unsatisfiable sub-instances obtained by applying partial assign-
ments. This hardness notion is harder to measure: as we show in this report,
determining whether hd(F ) ≤ k holds for a fixed k ≥ 1 is coNP-complete, while
hd0(F ) ≤ k can be decided in polynomial time (for fixed k). Nevertheless it is
the central measure for this report, and we consider it as measuring “represen-
tation hardness”, while hd0 measures “solver hardness”.2)

As we show in Theorem 5.7, hd(F ) ≤ k is equivalent to the property of
F , that all implicates of F (i.e., all clauses C with F |= C) can be derived by
k-times nested input resolution from F , a generalisation of input resolution as
introduced and studied in [36, 37].3) So we obtain that UC is precisely the class of
clause-sets F with hd(F ) ≤ 1 ! It is then natural to define the hierarchy UCk via
the property hd(F ) ≤ k. The hierarchy CANON(k) is based on resolution trees
of height at most k, which is a special case of k-times nested input resolution,
and so we have CANON(k) ⊂ UCk.

1)Actually a two-dimensional family hdU,S of such measures was introduced, based on
oracles U ⊆ USAT , S ⊆ SAT for deciding unsatisfiability resp. satisfiability, and setting
hdU,S(F ) := 0 for F ∈ U ∪ S. In this report we consider only the simplest base case hd0 =
hdU0,S0

, where U0 := {F ∈ CLS : ⊥ ∈ F} and S := {⊤}. Oracle S does not play a role in
the setting of this report, which is fully unsatisfiability-based. See Subsection 6.3 for more
information on these hierarchies, and see Subsection 9.4 for an outlook on relativised hardness.

2)hd(F ) actually captures tree-like resolution (in a sense). In Subsection 9.5 we discuss a
width-based measure of hardness, which captures dag-like resolution. We consider the tree-
hardness as the natural starting point.

3)Equivalently, as shown in [36, 37], one can say that all implicates C have a tree-resolution
proof using space at most k + 1.
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1.3 Bringing SLUR and UC together

In order to get back to SLUR, we need to emphasise the two-sided nature of
the hardness measure, as developed in [36, 37]. In Subsection 1.2 we discussed
the proof-theoretic side of it. The algorithmic side is given by the reductions
rk : CLS → CLS (introduced in [36]), which perform certain forced assignments:

1. r1 is UCP, assigning x→ 1 for unit-clauses {x} until all are eliminated.

2. r2 is (complete) failed-literal elimination, assigning, while possible, x→ 1
for literals x such that the assignment x → 0 yields a contradiction via
r1; see Section 5.2.1 in Heule and van Maaren [32] for the usage of failed
literals in SAT solvers (so-called “look-ahead solvers”), and see Section
7.2.2 in Kullmann [39] for the general explanation of r2 being the “look-
ahead version” of r1.

3. In general rk+1 is the “look-ahead version” of rk, assigning, while possible,
x→ 1 for literals x such that the assignment x→ 0 yields a contradiction
via rk.

For unsatisfiable F the hardness hd(F ) is equal to the minimal k such that
rk(F ) detects unsatisfiability of F , i.e., rk(F ) = {⊥}. This yields the basic
observation UC ⊆ SLUR — and actually we have UC = SLUR !

So by replacing the use of r1 in the SLUR algorithm by rk (using our analysis
via the transition relation) we obtain a natural hierarchy SLURk, which includes
the previous SLUR-hierarchies SLUR(k) and SLUR∗(k), and where we have
SLURk = UCk. This equality of these two hierarchies is our argument that we
have found the “limit hierarchy” for SLUR.

1.4 Outlook on good representations of boolean functions

The ideas presented in Subsections 1.1 to Subsection 1.3 are the main thrust
for the results of this paper (Sections 3 to 7), while in the final Section 8 (and
also in the outlook in Section 9) we touch upon what we consider as the main
application area and the main area for future developments of the theory, namely
a theory of good representations of boolean functions. More precisely, in Section
8 we consider the complexity of finding short equivalent clause-sets of bounded
hardness for the most basic CNF classes, 2-CNF and Horn clause-sets, and
we show feasibility for the former, NP-completeness for the latter. We roughly
outline now the basic ideas on “good representations” in general, while in Section
9 some more details are presented.

SAT algorithms have seen an astounding development in the last two decades.
Especially efficient algorithms, data structures and heuristics have been devel-
oped. The main bottleneck currently is that the underlying constraint problem
needs to be represented via boolean CNF, and it is not clear at all how to do
this so that SAT solving becomes as easy as possible. “SAT modulo Theories”
(SMT; see Barrett, Sebastiani, Seshia, and Tinelli [3]) boosts the representation
by extending the general method, however it does not yield insights into how to
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construct the basic representations by CNFs. What is needed is a systematic
investigation into “good representations” of boolean functions f by clause-sets
F , with the aim of “intelligent” SAT translations.

As a first answer, we consider the classes UCk as the most basic target classes,
that is, F ∈ UCk for k “as small as possible” is the (basic) fundamental guideline.
The motivation for UC was that of a “good representation”, while the motivation
for SLUR was “good SAT solving” — the hierarchies UCk = SLURk bring
these two aspects together, and this in a parameterised way, so that k can be
traded against the size of F . So the theory of good representations F of boolean
functions f can be considered as “SAT knowledge representation”, where the
“knowledge”, the boolean function f , must be represented by a clause-set F such
that all “aspects” of f (most fundamental the prime implicates) are represented
in such a way that a SAT solver can “understand” this representation.

What is now the precise relation between the boolean function f to be rep-
resented, and the representation F , a clause-set? The most basic idea is to
consider that F as a CNF is equivalent to f , which we write as F ∼= f (more
precisely, CNF(F ) ∼= f). Good representations in this (restricted) setting then
amount to consider subsets F ⊆ prc0(f) of the set of prime implicates of f ,
such that F ∼= f and such that hd(F ) and ℓ(F ) (the size of F ) are in a “reason-
able” relationship (the lower hd(F ) the higher ℓ(F ), and so a balance is to be
sought). The basic conjecture then states that allowing larger hardness yields
more possibilities for short representations:

Conjecture 1.1 For every k ∈ N0 there exists a sequence (fn)n∈N of boolean
functions, such that no polysize-sequence (Fn)n∈N (i.e., where (ℓ(Fn))n∈N is
polynomially bounded in n) exists with

• Fn
∼= fn

• hd(Fn) ≤ k

for all n, but where such a sequence (Fn)n∈N exists when allowing hd(Fn) ≤ k+1.

Conjecture 9.4 extends this conjecture to include the use of new variables, and
also refines it by introducing intermediate levels between the hardness-levels.4)

The algorithmic approach for such representations (not using new variables)
is to systematically search for small F with a given hardness upper-bound. In
Section 8 one finds the most basic considerations. In Gwynne and Kullmann
[26] we presented some initial experimental results on using this approach for
the (small) building-blocks like the S-boxes in block ciphers like AES and DES,
for their SAT-based cryptanalysis (see Subsection 9.3 for more information).

1.5 The Schaefer classes

We conclude by some remarks on the four main classes from Schaefer’s di-
chotomy result (see Section 12.2 in Dantsin and Hirsch [16] for an introduction,

4)In Gwynne and Kullmann [29] we have meanwhile established that Conjecture 1.1 is true.
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and see Creignou, Kolaitis, and Vollmer [15] for an in-depth overview on recent
developments). Our point of view here is that we consider a boolean function
f which is either Horn, dual Horn, bijunctive or affine, and we ask for a good
representation F ∈ CLS of f :

• If f is Horn or dual Horn, then there is a (dual) Horn clause-set F equiv-
alent to f , and by Part 4 of Lemma 6.5 we have hd(F ) ≤ 1. So obtaining
a representation F ∈ UC is trivial; however optimising the size of F is
NP-complete (see Theorem 8.4).

• If f is bijunctive, then there is a 2-CNF F equivalent to f , and by Part
3 of Lemma 6.5 we have hd(F ) ≤ 2. Moreover, by Theorem 8.3 we can
reduce the hardness to 0 or 1 (as we wish) in polynomial time, and that
by optimal (shortest) such F .

• If f is affine, that is, f is the conjunction of m linear equations x1 ⊕
· · · ⊕ xp = 0 over {0, 1} viewed as a 2-element field, with addition ⊕ as
exclusive-or, then the situation regarding the existence of a representation
of bounded hardness is not fully understood yet:

1. Ifm = 1, then there is precisely one CNF-representation of f without
new variables, containing 2p−1 clauses and being (trivially) of hard-
ness 0. So without new variables we have a polysize representation
of bounded hardness iff p is bounded.

2. While when allowing new variables, then for m = 1 there is a repre-
sentation F ∈ UC, as will be shown in Gwynne and Kullmann [29].

3. For arbitrary m there is definitely no small representation without
new variables when the clause-length p is unbounded. When bound-
ing p, or when allowing new variables, then the existence of a polysize
F ∈ UCk for some fixed k seems to be an interesting open problem;
for some partial results see Laitinen, Junttila, and Niemelä [40]. Per-
haps no polysize representations F ∈ UC exist, even for the “relative
condition”, where propagation-conditions are posed only for the vari-
ables in the XOR-clauses; see Bessiere, Katsirelos, Narodytska, and
Walsh [5] for general tools for such lower bounds, and see Subsections
9.2, 9.4 for more discussions.

1.6 Overview

After discussing basic terminology in Section 2, in Section 3 we discuss SLUR
and existing extensions. We give a precise (mathematical) definition of the class
SLUR, achieving a conceptually clear understanding, and based on these con-
cepts we give precise (mathematical) definitions of the various SLUR hierarchies
from the literature. In Section 4 we provide the background about generalised
unit-clause propagation, that is, the reductions rk : CLS → CLS, where CLS
is the set of all clause-sets and r1 is unit-clause propagation. Section 5 then
introduces the hardness hd : CLS → N0 and defines the classes UCk ⊂ CLS
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of “unit-refutation complete clause-sets of level k” as those F with hd(F ) ≤ k.
The first main result is Theorem 5.7, which states that the elements of UCk

are precisely the clause-sets F where every prime implicate of F can be derived
by k-times nested input resolution from F . In Section 6 we develop various tools
to determine hardness. First we consider various constructions in Subsection
6.1. Then in Subsection 6.2 we provide tools to show that classes of clause-sets
have bounded hardness, with applications to common classes and to stability
properties of the classes UCk. Alternative and generalised hardness-notions are
considered in Subsection 6.3. We conclude by considering algorithmic ways to
determine the hardness-measure in Subsection 6.4. Section 7 introduces the
SLURk hierarchy. Our second major result is Theorem 7.4, showing that
UCk = SLURk holds. From this characterisation we derive in Theorem 7.5
the coNP-completeness of membership decision for UCk when k ≥ 1. And in
Theorems 7.6, 7.7 we show that the previous hierarchies are (strictly) included
in the SLURk hierarchy, which we consider as a kind of “completion”, where
both approaches, based on SLUR and UC, meet. In Section 8 we turn towards
the problem of finding short equivalent clause-sets of low hardness for a given
clause-set F . In Theorem 8.3 we show that for F in 2-CNF we can compute
optimal equivalent clause-sets (of low hardness) in polynomial time. While in
Theorem 8.4 we show that already for Horn clause-sets F , even when all prime
implicates are given as part of the input, the decision whether there is an equiv-
alent clause-set (of low hardness) using at most a given number of clauses is
NP-complete. We conclude in Section 9 with the summary and an extensive
discussion of future directions.

2 Preliminaries

We follow the general notions and notations as outlined in Kleine Büning and
Kullmann [35]. We use N = {1, . . .} and N0 = N ∪ {0}. Based on an infinite
set VA of variables, we form the set LIT := VA ·∪VA of positive and negative
literals, using complementation. A clause C ⊂ LIT is a finite set of literals
without clashes, i.e., C ∩ C = ∅, where for L ⊆ LIT we set L := {x : x ∈ L}.
The set of all clauses is denoted by CL. A clause-set F ⊂ CL is a finite set of
clauses, and the set of all clause-sets is denoted by CLS. For k ∈ N0 we use
k–CLS := {F ∈ CLS | ∀C ∈ F : |C| ≤ k} for the set of clause-sets where all
clauses have length at most k.

A special clause is the empty clause ⊥ := ∅ ∈ CL, and a special clause-set is
the empty clause-set ⊤ := ∅ ∈ CLS. By lit(F ) :=

⋃
F ∪

⋃
F we denote the set

of literals occurring at least in one polarity in F .
We use var : LIT → VA for the underlying variable of a literal, var(C) :=

{var(x) : x ∈ C} ⊂ VA for the set of variables in a clause, and var(F ) :=
⋃

C∈F var(C) for the set of variables in a clause-set. So lit(F ) = var(F )∪var(F ).
The number of variables in a clause-set is n(F ) := |var(F )| ∈ N0, the number
of clauses is c(F ) := |F | ∈ N0, and the number of literal occurrences is ℓ(F ) :=
∑

C∈F |C| ∈ N0.
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A full clause-set is a clause-set F such that each clause contains all variables,
that is, for all C ∈ F we have var(C) = var(F ). The set of Horn clause-sets
is HO ⊂ CLS, where every clause contains at most one positive literal, while
HO+ ⊂ HO is the set of pure Horn clause-sets, where every clause contains ex-
actly one positive literal. HO ⊂ RHO ⊂ CLS is the set of renamable (“hidden”)
Horn clause-sets, which by flipping signs can be turned into a Horn clause-set.

A partial assignment ϕ : V → {0, 1} maps a finite V ⊂ VA to truth-values,
the set of all partial assignments is PASS. A special partial assignment is the
empty partial assignment 〈〉 := ∅ ∈ PASS. We can construct partial assignments
via 〈v1 → ε1, . . . , vn → εn〉 ∈ PASS for vi ∈ VA and εi ∈ {0, 1} (which must be
consistent). We use var(ϕ) := V = dom(ϕ) for the variables in the domain of
ϕ, and by TASS(V ) we denote the set of all “total assignments” for V , that is,
the ϕ ∈ PASS with var(ϕ) = V . And n(ϕ) := |var(ϕ)| ∈ N0 is the number of
variables assigned by ϕ.

For a partial assignment ϕ ∈ PASS and a clause-set F ∈ CLS the application
of ϕ to F is denoted by ϕ ∗ F ∈ CLS, which results from F by removing
all satisfied clauses (containing at least one satisfied literal), and removing all
falsified literals from the remaining clauses. A class C ⊆ CLS of clause-sets is
stable under (application of) partial assignments if for all F ∈ C and ϕ ∈ PASS
holds ϕ ∗ F ∈ C.

A clause-set F is satisfiable (i.e., F ∈ SAT ⊂ CLS) if there exists a partial
assignment ϕ with ϕ ∗ F = ⊤, otherwise F is unsatisfiable (i.e., F ∈ USAT :=
CLS \ SAT ). For a clause C the partial assignment ϕC ∈ PASS is defined as
ϕC := 〈x→ 0 : x ∈ C〉, that is, it sets precisely the literals of C to 0 (and leaves
all other variables unassigned). For example ϕ⊥ = 〈〉 and ϕ{x} = 〈x→ 0〉.

Two clauses C,D ∈ CL are resolvable if they clash in exactly one literal
x, that is, C ∩ D = x, in which case their resolvent is (C ∪ D) \ {x, x} (with
resolution literal x). A resolution tree is a binary tree formed by the resolution
operation. We write T : F ⊢ C if T is a resolution tree with axioms (the clauses

at the leaves) all in F and with derived clause (at the root) C. By Comp*

R
(F )

for unsatisfiable F the minimum number of leaves in a tree-resolution-refutation
T : F ⊢ ⊥ is denoted.

A boolean function f is a map f : TASS(V ) → {0, 1} for some finite V =:
var(f); we can also use f(ϕ) ∈ {0, 1} for ϕ ∈ PASS with var(f) ⊆ var(ϕ),
in which case ϕ is restricted to var(f). Special boolean functions are 0V and
1V for the constant-0 resp. constant-1 functions with domain V . We write
f |= g for boolean functions f, g if for all partial assignments ϕ with var(ϕ) ⊇
var(f)∪var(g) we have f(ϕ) = 1 ⇒ g(ϕ) = 1. Equivalence of boolean functions
f, g means f |= g and g |= f (so all 0V are equivalent, and all 1V are equivalent).

The interpretation of clauses C and clause-sets F as boolean functions is
explicitly denoted by CNF(C) and CNF(F ), using the CNF-interpretation (a
clause as a disjunction of literals, a clause-set as a conjunction of clauses), and
happens in this report typically implicitly.

For a boolean function f the set of prime implicates is denoted by prc0(f),
the set of all clauses C with f |= C while for C′ ⊂ C holds f 6|= C′. (The “0” in
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prc0(f) resp. prc0(F ) in the set of prime implicates of a boolean function or a
clause-set (interpreted as CNF) shall remind at “false” or “unsatisfiable”, since
CNF have “falsity” at the core.) So a boolean function f is equivalent to prc0(f),
that is, more explicitly, to CNF(prc0(f)). As it is well-known, by considering
any clause-set F equivalent to f and computing the resolution-closure of F ,
followed by subsumption-elimination, we obtain precisely prc0(f).

We denote by CNF(f) the “distinguished canonical normal form”, or the set
of “minterms of f”, that is, the set of clauses C ∈ CL with var(C) = var(f)
and f |= C (that is, f |= CNF(C)). Dually, by DNF(f) we denote the set of
clauses C ∈ CL with var(C) = var(f) and DNF(C) |= f (the “maxterms of f”;
note that for us a clause is a combinatorial object, and the logical interpretation
has to be added). In the DNF-interpretation a clause is the conjunction of its
literals, and a clause-set is the disjunction of its clauses.

Finally, by r1 : CLS → CLS unit-clause propagation is denoted, that is
applying F ❀ 〈x → 1〉 ∗ F as long as there are unit-clauses {x} ∈ F , and
reducing F ❀ {⊥} in case of ⊥ ∈ F . In Definition 4.3 the general rk : CLS →
CLS is defined.

3 The SLUR class and extensions

The SLUR-algorithm and the class SLUR ⊂ CLS have been introduced in
Schlipf et al. [43]. The SLUR-algorithm for input F ∈ CLS is an incomplete
polynomial-time SAT algorithm, which either returns “SAT”, “UNSAT” (in
both cases correctly) or gives up. This algorithm is non-deterministic, and
SLUR is the class of clause-sets where it never gives up (and thus SAT-decision
for F ∈ SLUR can be done in polynomial time). Due to an observation at-
tributed to Truemper in Franco [21], the SLUR-algorithm can be implemented
such that it runs in linear time. Decision of membership, that is whether
F ∈ SLUR holds, by definition is in coNP, but only in Čepek et al. [12] it
was finally shown that this decision problem is coNP-complete.

The original motivation was that SLUR contains several other classes, in-
cluding renamable Horn, extended Horn, hidden extended Horn, simple ex-
tended Horn and CC-balanced clause-sets, where for each class it was known
that the SAT problem is solvable in polynomial time, but with in some cases
rather complicated proofs, while it is trivial to see that the SLUR-algorithm
runs in polynomial time. In Franco [21], Franco and Gelder [22] probabilistic
properties of SLUR have been investigated.5)

In this section we first give a semantic definition of SLUR in Subsection 3.1.
In a nutshell, SLUR is the class of clause-sets where either UCP (unit-clause
propagation aka r1) creates the empty clause, or where otherwise iteratively

5)At this point a popular misunderstanding should be avoided: The well-known dichotomy
result of Schaefer (see Subsection 1.5) states that under certain conditions there are precisely
six classes of problem instances with polytime SAT solving (unless P=NP). However this
has no bearing on the classes considered here, since they do not fall within the restricted
framework of Schaefer’s theorem.
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making assignments followed by UCP will always yield a satisfying assignment,
given that these transitions do not obviously create unsatisfiable results, i.e.,
do not create the empty clause. In order to understand this definition (and its
various extensions) clearly, we present a precise mathematical (non-algorithmic)

definition, based on the transition relation F
SLUR
−−−−→ F ′ (Definition 3.3), which

represents one non-deterministic step of the SLUR algorithm: If r1 on input F ∈
CLS does not determine unsatisfiability (in which case we have F ∈ SLUR),
then F ∈ SLUR iff⊤ can be reached by this transition relation, while everything
else reachable from F is not an end-point of this transition relation.

In Čepek et al. [12], Balyo et al. [2] recently three approaches towards gen-
eralising SLUR have been considered, and we discuss them in Subsection 3.2.
Our generalisation, called SLURk, which we see as the natural completion of
these approaches, will be presented in Section 7.

3.1 SLUR

The SLUR-algorithm (“Single Lookahead Unit Resolution”) from Schlipf et al.
[43] is described for input F ∈ CLS as follows:

1. First run UCP, that is, reduce F ❀ r1(F ).

2. If now ⊥ ∈ F then we determined F unsatisfiable.

3. If not, then the algorithm guesses a satisfying assignment for F , by re-

peated transitions F
SLUR
−−−−→ F ′, where F ′ is obtained by assigning one

variable and then performing UCP, i.e., F ′ = r1(〈x → 1〉 ∗ F ) for some
literal x.

4. The “lookahead” means that a transition with F ′ = {⊥} is avoided.

5. The algorithm might find a satisfying assignment in this way, or it gets
stuck, that is, for the chosen literal both assignments x → 1 and x → 1
yield {⊥}, in which case it “gives up”.

The SLUR class is defined as the class of clause-sets where this algorithm never
gives up. The precise details are as follows. First we define the underlying
transition relation (one non-failing transition from F to F ′):

Definition 3.1 For clause-sets F, F ′ ∈ CLS the relation F
SLUR
−−−→ F ′ holds

if there is x ∈ lit(F ) such that F ′ = r1(〈x → 1〉 ∗ F ) and F ′ 6= {⊥}. The

transitive-reflexive closure is denoted by F
SLUR
−−−→∗ F ′.

Example 3.2 Considering when we have F
SLUR
−−−−→∗ F

′ and when not:

1. F
SLUR
−−−−→∗ ⊤ iff F ∈ SAT .

2. {C}
SLUR
−−−−→ ⊤ precisely for all clauses C 6= ⊥.

12



3. {{x, y}, {x, y}}
SLUR
−−−−→ ⊤.

4. {{x, y}, {y, z}}
SLUR
−−−−→ ⊤ (due to e.g. r1(〈x→ 1〉 ∗ {{x, y}, {y, z}}) = ⊤).

5. F
SLUR
−−−−→ F ′ does not hold if there is no literal to set, or if r1 detects

unsatisfiability of F ′. That is, there are no clause-sets F, F ′ such that
any of the following hold:

(a) ⊤
SLUR
−−−−→ F .

(b) {⊥}
SLUR
−−−−→ F .

(c) F
SLUR
−−−−→ F .

(d) F
SLUR
−−−−→ F ′ where r1(F

′) = {⊥}.

Via the transition-relation F
SLUR
−−−−→ F ′ we can now easily define the class

SLUR, which will find a natural generalisation in Definition 7.1 to SLURk for
k ∈ N0 (where SLUR = SLUR1):

Definition 3.3 The set of all fully reduced clause-sets reachable from F ∈ CLS
is denoted by

slur(F ) := {F ′ ∈ CLS | F
SLUR
−−−−→∗ F

′ ∧ ¬∃F ′′ ∈ CLS : F ′ SLUR
−−−−→ F ′′}.

Finally the class of all clause-sets which are either identified by UCP to be
unsatisfiable, or where by SLUR-reduction always a satisfying assignment is
found, is denoted by SLUR := {F ∈ CLS : r1(F ) 6= {⊥} ⇒ slur(F ) = {⊤}}.

We could define
SLUR
−−−−→ as F

SLUR
−−−−→ 〈x → 1〉 ∗ F iff r1(〈x → 1〉 ∗ F ) 6= ⊥, and

this would yield the same class SLUR but a different transition relation (one
would not be forced to immediately make forced assignments).

Example 3.4 Computing slur(F ) for clause-sets F :

1. slur(F ) 6= ∅ (in the “worst” case we have F ∈ slur(F )).

2. slur({⊥}) = {{⊥}}.

3. slur(⊤) = {⊤}.

4. slur({C}) = {⊤} iff C 6= ⊥.

5. If r1(F ) = ⊤ then slur(F ) = {⊤}.

6. slur({{x, y}, {x, y}}) = {⊤}.

7. slur({{x, y}, {y, z}}) = {⊤}.

8. For F := {{x, y}, {x, y}, {x, y}, {x, y}} we have slur(F ) = {F}.

9. For F ′ := {{z, x, y}, {z, x, y}, {z, x, y}, {z, x, y}} we have ⊤, F ∈ slur(F ′).
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3.2 Previous approaches for SLUR hierarchies

In Čepek et al. [12], Balyo et al. [2] three hierarchies SLUR(k),SLUR∗(k)
(k ∈ N) and CANON(k) (k ∈ N0) have been introduced. In Section 4 of [2]
it is shown that SLUR(k) ⊂ SLUR∗(k) for all k ∈ N and so we restrict our
attention to SLUR∗(k) and CANON(k).

CANON(k) is defined to be the set of clause-sets F such that every C ∈
prc0(F ) can be derived from F by a resolution tree of height at most k. Note
that basically by definition (using stability of resolution proofs under application
of partial assignments) we get that each CANON(k) is stable under application
of partial assignments and under variable-disjoint union.

The SLUR∗(k) hierarchy is derived in [2] from the SLUR class by extending
the reduction r1. We provide an alternative formalisation here, in the same
manner as in Section 3.1. The main question is the transition relation F ❀

F ′. The SLUR∗(k)-hierarchy provides stronger and stronger witnesses that F ′

might be satisfiable, by longer and longer assignments (making “k decisions”)
not yielding the empty clause:

Definition 3.5 That partial assignment ϕ ∈ PASS makes k decisions for
some k ∈ N0 w.r.t. F ∈ CLS is defined recursively as follows: For k = 0 this
relation holds if ϕ ∗F = r1(F ), while for k > 0 this relation holds if either there
is k′ < k such that ϕ makes k′ decision w.r.t. F and ϕ ∗ F = ⊤, or there exists
x ∈ lit(F ) and a partial assignment ϕ′ making k−1 decision for r1(〈x→ 1〉∗F ),
and where ϕ ∗ F = ϕ′ ∗ r1(〈x→ 1〉 ∗ F ).

Now F
SLUR∗k
−−−−−→ F ′ for k ≥ 1 by definition holds if there is a partial assign-

ment ϕ making k decision w.r.t. F with F ′ = ϕ ∗ F , where F ′ 6= {⊥}. The

reflexive-transitive closure is
SLUR∗k
−−−−−→∗.

Finally we can define the hierarchy:

slur∗(k)(F ) := {F ′ ∈ CLS | F
SLUR∗k
−−−−−→∗ F

′ ∧ ¬∃F ′′ : F ′ SLUR∗k
−−−−−→ F ′′}

SLUR∗(k) := {F ∈ CLS : slur∗(k)(F ) 6= {F} ⇒ slur∗(k)(F ) = {⊤}}.

The unsatisfiable elements of SLUR∗(k) are those F 6= ⊤ with slur∗(k)(F ) =
{F}. By definition each SLUR∗(k) is stable under application of partial as-
signments, but not stable under variable-disjoint union, since the number of
decision variables is bounded by k (in Lemma 6.7 we will see that our hierarchy
is stable under variable-disjoint union, which is natural since it strengthens the
CANON(k)-hierarchy).

Example 3.6 Some examples for CANON(k) and SLUR∗(k) (k ∈ N):

1. Consider the unsatisfiable clause-set F := {{x, y}, {x, y}, {x, y}, {x, y}}.

(a) F 6∈ SLUR because F is unsatisfiable but r1(F ) 6= {⊥}.

(b) F ∈ SLUR∗(1) because r1(〈x
′ → 1〉 ∗ F ) = {⊥} for all x′ ∈ lit(F )

and so slur∗(1)(F ) = {F}.
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(c) This establishes SLUR ⊂ SLUR∗(1).

(d) F ∈ CANON(2)\CANON(1) because actually all tree-resolution refu-
tations of F are full binary trees of height 2.

2. Consider the satisfiable clause-set F ′ := {{x1, . . . , xk} ∪ C | C ∈ F}.

(a) F ′ 6∈ SLUR∗(k) because F ′ SLUR∗k
−−−−−→∗ F , where F is unsatisfiable and

thus ¬(F
SLUR∗k
−−−−−→∗ ⊤), whence slur∗(k)(F ′) 6= {⊤}.

(b) F ′ ∈ SLUR∗(k + 1) because we have r1(ϕ ∗ F ′) ∈ {⊤, {⊥}} for
all partial assignments ϕ of length k + 1 on variables of F ′ hence
slur∗(k)(F1) = {⊤}.

(c) F ′ ∈ CANON(2) because the only prime implicate is {x1, . . . , xk} and
actually all its tree-resolution proofs are full binary trees of height 2.

4 Generalised unit-clause propagation

In this section we review the approximations of forced assignments as computed
by the hierarchy of reductions rk : CLS → CLS from [36, 37] for k ∈ N0. First
we introduce the semantical notion of forced literals/assignments in Subsection
4.1 together with the limit-reduction r∞ : CLS → CLS, which eliminates all
forced assignments. In Subsection 4.2 then the rk-reductions themselves (elimi-
nating some forced assignments) are defined and basic properties discussed. In
Subsection 4.3 finally we introduce generalised (nested) input resolution and
its main parameter, the “Horton-Strahler number” of the corresponding reso-
lution tree, generalising the well-known refutational equivalence between unit
resolution and input resolution, and providing the proof-theoretic background.

For further discussions of these reductions, in the context of SAT decision
and in their relations to various consistency and width-related notions, see
[36, 37] and Section 3 in [38]. It seems to us that the rk-reductions estab-
lish the SAT-counterpart to consistency-notions from the constraint literature
(see Bessiere [4] for an overview). We have the following basic distinction be-
tween SAT and CSP: SAT has the extremely “thin” clauses, enabling the global
point of view (“no (or flat) hierarchies”), while CSP has “fat” constraints, the
“lumping together” of clauses. In the SAT world, the rk-reductions approxi-
mate global consistency via approaching all assignments of r∞, while in the CSP
world, consistency means making the constraints stronger and stronger (lump-
ing more and more clauses together), until only one constraint is left. Thus
the (stronger) consistency-notions of CSP are more related to width-restricted
resolution, while, as shown in [36, 37], the rk-reductions are much weaker (each
only using linear space). Making a clause-set F “consistent” in the SAT world
thus means (to us) to find a “representation” F ′ of F (see Subsection 9.2 for
some discussion on “representations”), where via rk for some k ∈ N0 we can
derive “everything”, which is embodied in its most elementary form in the UCk-
hierarchy, that is, via the condition F ′ ∈ UCk (Definition 5.6).

15



4.1 Forced literals/assignments

Fundamental is the notion of a “forced literal” of a boolean function resp. a
clause-set6), which are literals which must be set to true in order to satisfy the
function resp. clause-set:

Definition 4.1 A literal x is forced for a boolean function f if f |= x, and the
set of forced literals for f is fl(f) ⊆ LIT . A literal is forced for a clause-set F
if it is forced for CNF(F ), and we set fl(F ) := fl(CNF(F )).

Every literal is forced for every 0V . In fact a boolean function f is constant
zero iff fl(f) = LIT iff there is a literal x with x, x ∈ fl(f). No literal is forced
for any 1V (i.e., fl(1V ) = ∅). We have for every boolean function f that

fl(f) =
⋂

LIT
DNF(f)

(the index “LIT ” in the intersection is the “universe” of the sets considered in
the intersection, which becomes the result if there are no sets to intersect, that
is, if f is unsatisfiable). More directly we can read off the forced literals from
the prime clauses, namely x is forced for f iff prc0(f) ∩ {⊥, {x}} 6= ∅.

Example 4.2 Here are some basic determinations of fl(F ):

1. fl({⊥}) = LIT .

2. fl(⊤) = ∅.

3. fl({{x1}, . . . , {xn}}) = {x1, . . . , xn}.

4. fl({{x, y}, {x, y}}) = ∅.

5. fl({{x, y}, {x, y}}) = {x}.

If x is a forced literal for F , then the forced assignment 〈x → 1〉 yields
the clause-set 〈x→ 1〉 ∗ F which is satisfiability-equivalent to F . We denote by
r∞(F ) ∈ CLS the result of applying all forced assignments to F . Note that F
is unsatisfiable iff r∞(F ) = {⊥} (while F is uniquely satisfiable after discarding
variables without influence iff r∞(F ) = ⊤).

4.2 A hierarchy of reductions

We now review the hierarchy rk : CLS → CLS, k ∈ N0, of reductions ([36]),
which achieves approximating r∞ by poly-time computable functions. The basic
idea is that unit-clause propagation in a sense computes the most direct forced
assignments (at “level k = 1”), and generalisations like failed-literal elimination
(level k = 2) find more forced assignments.

6)we prefer this logical (and common) terminology over “backbone literal”, which is only
used in a special context
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Definition 4.3 ([36]) The maps rk : CLS → CLS for k ∈ N0 are defined as
follows (for F ∈ CLS):

r0(F ) :=

{

{⊥} if ⊥ ∈ F

F otherwise

rk+1(F ) :=

{

rk+1(〈x→ 1〉 ∗ F ) if ∃x ∈ lit(F ) : rk(〈x→ 0〉 ∗ F ) = {⊥}

F otherwise
.

r1 is unit-clause propagation, r2 is (full) failed literal elimination. We call rk
generalised unit-clause-propagation of level k. In [36] one finds the fol-
lowing basic observations proven (for k ∈ N0, F ∈ CLS and ϕ ∈ PASS):

• The map rk : CLS → CLS is well-defined (does not depend on the choices).

• rk applies only forced assignments (and so rk(F ) is satisfiability-equivalent
to F ).

• rk(F ) is computable in time O(ℓ(F ) · n(F )2(k−1)) and linear space.

• rk(F ) = {⊥} implies rk(ϕ ∗ F ) = {⊥}.

• rk(ϕ ∗ rk(F )) = rk(ϕ ∗ F ).

Quasi-automatisation of tree-resolution is achieved for inputs F ∈ USAT by
applying r0(F ), r1(F ), . . . until unsatisfiability has been achieved ([36]). Also
satisfiable instances are handled in [36], however in this paper we do not consider
these algorithmical aspects.

Actually, a more general form was introduced in [36], namely rUk for some
oracle U deciding unsatisfiability at level 0. We believe that this generalisation
is important for further progress (see Subsection 9.4), however in this report we
only consider the trivial oracle U = {F ∈ CLS : ⊥ ∈ F}, which (only) recognises
unsatisfiability at level 0 iff the empty clause occurs. A further generalisation
to constraint-like systems (via an abstract, axiomatic approach) was achieved
in [37], however in this initial study we do only consider boolean values and
CNF-representations.

Example 4.4 Computing some rk(F ) (using literals x1, . . . , xn, x, y with pair-
wise different underlying variables):

1. rk({⊥}) = {⊥} for k ≥ 0.

2. rk(⊤) = ⊤ for k ≥ 0.

3. For F := {{x1}, . . . , {xn}}: r0(F ) = F , rk(F ) = ⊤ for k ≥ 1.

4. For F ′ := F ∪ {{x, y}}: r0(F
′) = F ′, rk(F

′) = {{x, y}} for k ≥ 1 (note
that {{x, y}} has no forced assignments).

5. For F := {{x, y}, {x, y}}: rk(F ) = F for k ≤ 1, rk(F ) = ⊤ for k ≥ 2.
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6. For F := {{x, y}, {x, y}, {x, y}, {x, y}}: rk(F ) = F for k ≤ 1, rk(F ) =
{⊥} for k ≥ 2.

Via the reductions rk we can approximate the implication relation F |= C as
follows:

Definition 4.5 ([36, 37]) For k ∈ N0, clause-sets F and clauses C the relation
F |=k C holds if rk(ϕC ∗ F ) = {⊥}.

As it is well-known, F |=1 C iff some subclause of C follows from F via input
resolution.

Example 4.6 Consider k ∈ N0 and literals x, y, w:

1. For all k ≥ 0 and all clauses C we have:

(a) F |=k C if there is D ∈ F with D ⊆ C (note ⊥ ∈ ϕC ∗ F ).

(b) {⊥} |=k C and ⊤ 6|=k C.

2. {{x, y}, {x, y}} |=k {x} iff k ≥ 1.

3. For F := {{x, y}, {y, z}} we have F |=k {x, z} iff k ≥ 1.

4. For F := {{x, y, w}, {y, z, w}, {x, y, w}, {y, z, w}} we have F |=k {x, z} iff
k ≥ 2 (note that 〈x→ 1, z → 0〉 ∗ F ∈ 2–CLS).

4.3 Generalised input resolution

In [36], Chapter 4, the levelled height “h(T )” of branching trees T has been
introduced, which was further generalised in [37], Chapter 3 (to a general form
of constraint satisfaction problems). It handles satisfiable as well as unsatisfiable
clause-sets. In this report we will only use the unsatisfiable case. In this case
the measure reduces to a well-known measure which only considers the structure
of the tree. As discussed in Subsections 4.2, 4.3 of [36], this case, the levelled
height of splitting trees for unsatisfiable clause-sets, appeared at many places
in the literature. Ansótegui et al. [1] used the term “Horton-Strahler number”
(sometimes also “Strahler number”): it seems the oldest source (from 1945),
however disconnected from its various (re-)inventions in computer science. As
in Ansótegui et al. [1], the Horton-Strahler number of the trivial tree is 0.

Definition 4.7 Consider a resolution tree T . The Horton-Strahler num-

ber hs(T ) ∈ N0 is defined as hs(T ) := 0, if T is trivial (consists only of
one node), while otherwise we have two subtrees T1, T2, and we set hs(T ) :=
max(hs(T1), hs(T2)) if hs(T1) 6= hs(T2), while in case of hs(T1) = hs(T2) we set
hs(T ) := max(hs(T1), hs(T2)) + 1.

See Sections 4.2, 4.3 in [36] for various characterisations of hs(T ).
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Example 4.8 Examples of trees with their Horton-Strahler numbers. We de-
note by T1 and T2 in each example the left and right sub-trees of the root.

Tree T hs(T ) Explanation

· 0 trivial tree
·

·
⑧⑧

·
❄❄ 1

hs(T1) = 0,
hs(T2) = 0.

·

·
⑧⑧

·
❄❄

·
⑧⑧

·
❄❄ 1

hs(T1) = 0,
hs(T2) = 1.

·

·
⑧⑧

·
❄❄

·
⑧⑧

·
❄❄

·
⑧⑧

·
❄❄

1
hs(T1) = 0,
hs(T2) = 1.

·

· ♦
♦♦
♦

·
⑧⑧

·
❄❄ ·

❖❖
❖❖

·
⑧⑧

·
❄❄ 2

hs(T1) = 1,
hs(T2) = 1.

·

· ♦
♦♦
♦

·
⑧⑧

·
❄❄ ·

❖❖
❖❖

· ♦
♦♦
♦

·
⑧⑧

·
❄❄ ·

❄❄

·
⑧⑧

·
❄❄

2
hs(T1) = 1,
hs(T2) = 2.

In [36], Section 7 (generalised in [37], Section 5), generalised input resolution
was introduced. We use the notation “⊢k” for it:

Definition 4.9 ([36, 37]) For a clause-set F ∈ CLS and a clause C ∈ CL the
relation F ⊢k C (C can be derived from F by k-times nested input resolu-

tion) holds if there exists a resolution tree T and C′ ⊆ C with T : F ⊢ C′ and
hs(T ) ≤ k.

By parts 1 and 2 of Theorem 7.5 in [36], generalised in Corollary 5.12 in [37]:

Lemma 4.10 ([36, 37]) For clause-sets F , clauses C and k ∈ N0 we have
F |=k C if and only if F ⊢k C.

5 Hardness

This section is devoted to the discussion of hd : CLS → N0. It is the central
concept of the paper, from which the hierarchy UCk is derived (Definition 5.6).
The basic idea is to start with some measurement h : USAT → N0 of “the
complexity” of unsatisfiable F . This measure is extended to arbitrary F ∈ CLS
by maximising over all “sub-instances” of F , that is, over all unsatisfiable ϕ ∗F
for (arbitrary) partial assignments ϕ. A first guess for h : USAT → N0 is to take
something like the logarithm of the tree-resolution complexity of F . However
this measure is too fine-grained, and doesn’t yield a hierarchy like UCk, where
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each level brings a qualitative enhancement. Another approach is algorithmical,
measuring how far F is from being refutable by unit-clause propagation. As
shown in [36, 37], actually these two lines of thought can be brought together
by the hardness measure hd : USAT → N0. Why only tree-resolution, and not
dag-resolution (i.e., full resolution)? The tree-resolution approach is the natural
starting point, and what is easy for tree-resolution is also easy for dag-resolution.
Our basic approach towards the more complicated handling of dag-resolution is
shown in Subsection 9.5.

The outline of this section is as follows. hd(F ) is defined and discussed for
unsatisfiable F in Subsection 5.1. The general case (arbitrary F ) is handled in
Subsection 5.2 by reduction to the unsatisfiable cases within F (as produced by
applying partial assignments). The central result of this section can be seen in
Theorem 5.7, which shows that F ∈ UCk (i.e., hd(F ) ≤ k) is equivalent to the
condition that all prime implicates of F can be derived by some resolution tree
with a Horton-Strahler number at most k. In this way some form of geometric
intuition is gained, and a machinery becomes available. The first applications
are given by the various lemmas in Section 6 for determining hardness under
various circumstances.

We remark that, when considering only unsatisfiable clause-sets F , in [36, 37]
actually a general concept of “hardness” was introduced, parameterised by an
oracle U ⊆ USAT for (“easy”) detection of special cases of unsatisfiability. In
this report only U = {F ∈ CLS : ⊥ ∈ F} is used, but we expect the general
theory to become important in the future. See Subsection 9.4 for some further
discussions.

5.1 Hardness of unsatisfiable clause-sets

In [36] the following hardness parameter was introduced and investigated (fur-
ther generalised in [37]):

Definition 5.1 ([36, 37]) The hardness hd(F ) of an unsatisfiable F ∈ CLS
is the minimal k ∈ N0 such that rk(F ) = {⊥}.

As shown in [36], hd(F )+1 is precisely the clause-space complexity of F regard-
ing tree-resolution (see Nordström [41] for a recent overview on space complexity
of resolution). In [36, 37] the notation “h(F )” was used (resp., more generally,
“hU ,S(F )”, using oracles for unsatisfiability and satisfiability detection), which
seems now to us too unspecific. From Henschen and Wos [31] we gain the insight
that for F ∈ USAT holds hd(F ) ≤ 1 iff there exists F ′ ⊆ F which is an unsat-
isfiable renamable Horn clause-set (i.e., F ′ ∈ RHO ∩USAT ). By Theorem 7.8
(and Corollary 7.9) in [36] (or, more generally, Theorem 5.14 in [37]) we have
for F ∈ USAT :

2hd(F ) ≤ Comp*R(F ) ≤ (n(F ) + 1)hd(F ).

Example 5.2 Some basic determinations of hd(F ) for unsatisfiable F :
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1. hd(F ) = 0 iff ⊥ ∈ F .

2. hd({{x}, {x}}) = 1.

3. hd({{x}, {x, y}, {y, z}, {z}}) = 1.

4. hd({{x, y}, {x, y}, {x, y}, {x, y}}) = 2.

5. hd({{x, y}, {x, y}, {y, z}, {y, z}, {x, y, z}, {x, y, z}}) = 2.

By Lemma 4.10 we get:

Lemma 5.3 ([36, 37]) For an unsatisfiable clause-set F and k ∈ N0 we have
hd(F ) ≤ k iff F |=k ⊥ iff F ⊢k ⊥.

By applying partial assignments we can reach all hardness-levels in a clause-set,
as the following lemma shows.

Lemma 5.4 For an unsatisfiable clause-set F and every 0 ≤ k ≤ hd(F ) there
exists a partial assignment ϕ with n(ϕ) = k and hd(ϕ ∗ F ) = hd(F )− k.

Proof: We proceed by induction on n(F ). As k ≤ hd(F ) ≤ n(F ), for the
base case we consider n(F ) = k. If n(F ) = k then all ϕ with n(ϕ) = k have
hd(ϕ∗F ) = hd({⊥}) = 0 = hd(F )−k. For n(F ) > k, we make a case distinction
on the value of k. If k = 0 then choose ϕ = 〈〉. If k = 1 then:

1. Assume for the sake of contradiction that there is no x ∈ lit(F ) such that
hd(〈x→ 1〉 ∗ F ) = hd(F )− 1; otherwise we are done.

2. If for all x ∈ lit(F ) we had hd(〈x→ 1〉∗F ) ≤ hd(F )−2 then by Definition
5.1 we would have hd(F ) ≤ k − 1, a contradiction.

3. Therefore there must exist an x ∈ lit(F ) such that

hd(F ) = hd(〈x→ 1〉 ∗ F ) > hd(〈x → 0〉 ∗ F ) + 1.

4. By induction hypothesis we have a partial assignment ϕ with n(ϕ) = 1
such that hd(ϕ ∗ (〈x→ 1〉 ∗ F )) = hd(F )− 1.

5. Application of partial assignments doesn’t increase hardness (Lemma 3.11
of [36]) and so we have

hd(ϕ ∗ F ) ≥ hd(〈x→ 1〉 ∗ (ϕ ∗ F )) = hd(F )− 1.

6. By our choice of x we have

hd(〈x→ 1〉 ∗ (ϕ ∗ F )) = hd(F )− 1

hd(〈x→ 0〉 ∗ (ϕ ∗ F )) ≤ hd(F )− 2,

therefore by Definition 5.1 we have hd(ϕ ∗ F ) ≤ hd(F )− 1.

7. Thus we have that hd(ϕ ∗ F ) = hd(F )− 1.

Finally, for k > 1, we apply induction using the k = 1 case; once we can reduce
by 1 we can reduce by k. �
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5.2 Hardness of arbitrary clause-sets

The hardness hd(F ) of arbitrary clause-sets can now be defined as the maximum
hardness over all unsatisfiable instances obtained by partial assignments.

Definition 5.5 The hardness hd(F ) ∈ N0 for F ∈ CLS is the minimal k ∈
N0 such that for all clauses C with F |= C we have F |=k C (recall Definition
4.5; by Lemma 4.10 this is equivalent to F ⊢k C).

In other words, if F 6= ⊤ then hd(F ) is the maximum of hd(ϕ ∗ F ) for partial
assignments ϕ such that ϕ ∗F ∈ USAT . To our knowledge, the measure hd(F )
for satisfiable F was mentioned the first time in the literature in Ansótegui
et al. [1], Definition 8 (the only result there concerning this measure is Lemma
9, relating it to another hardness-alternative for satisfiable F ). Note that one
can restrict attention in Definition 5.5 to C ∈ prc0(F ). Hardness 0 means
that all prime clauses are there, i.e., hd(F ) = 0 iff prc0(F ) ⊆ F . Especially
hd(⊤) = 0.

Lemma 5.4, stating that hd(ϕ∗F ) takes exactly the values from 0 to hd(F ),
extends by definition to satisfiable F ∈ CLS, when adding to the size of the
partial assignment ϕ the minimum size of a partial assignment ψ with ψ ∗ F ∈
USAT and hd(ψ ∗ F ) = hd(F ).

Definition 5.6 For k ∈ N0 let UCk := {F ∈ CLS : hd(F ) ≤ k} (the class of
unit-refutation complete clause-sets of level k).

The class UC1 has been introduced in del Val [20] for knowledge compilation.
Various (resolution-based) algorithms computing for clause-sets F some equiv-
alent set F ′ ∈ UC1 of prime implicates are discussed there. Based on the results
from [36, 37], we can now give a powerful proof-theoretic characterisation for
all classes UCk:

Theorem 5.7 For k ∈ N0 and F ∈ CLS we have

F ∈ UCk ⇐⇒ ∀C ∈ prc0(F ) : F ⊢k C.

Thus if every C ∈ prc0(F ) has a tree-resolution refutation using at most 2k+1−1

leaves (i.e., Comp*R(ϕC ∗ F ) < 2k+1), then hd(F ) ≤ k.

Proof: The equivalence F ∈ UCk ⇔ ∀C ∈ prc0(F ) : F ⊢k C follows from
Lemma 4.10. And if hd(F ) > k, then there is C ∈ prc0(F ) with F 6⊢k C, and
then every tree-resolution derivation of C from F needs at least 2k+1 leaves due
to 2hd(ϕC∗F ) ≤ Comp*R(ϕC ∗ F ) (as stated before). �

Example 5.8 Here are some basic calculations of hardness for satisfiable clause-
sets (for unsatisfiable F see Example 5.2), using Theorem 5.7:

1. hd(⊤) = 0.

2. hd({{x}}) = 0.
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3. For F := {{x, y}, {x, y}} we have hd(F ) = 1:

(a) prc0(F ) = {{x}}.

(b) hd(〈x→ 0〉 ∗ F ) = hd({{y}, {y}}) = 1.

4. For F := {{x, y}, {y, z}} we have hd(F ) = 1:

(a) prc0(F ) = {{{x, y}, {y, z}, {x, z}}}.

(b) hd(〈x→ 1, y → 0〉 ∗ F ) = hd({⊥}) = 0.

(c) hd(〈y → 1, z → 0〉 ∗ F ) = hd({⊥}) = 0.

(d) hd(〈x→ 1, z → 0〉 ∗ F ) = hd({{y}, {y}}) = 1.

5. For F := {{z, x, y}, {z, x, y}, {z, x, y}, {z, x, y}} we have hd(F ) = 2:

(a) prc0(F ) = {{z}}.

(b) hd(〈z → 0〉 ∗ F ) = hd({{x, y}, {x, y}, {x, y}, {x, y}} = 2.

6 Fundamental properties of UCk

In Subsection 6.1 we determine hardness for various constructions. In Sub-
section 6.2 we consider various classes contained in some UCk together with
stability properties of UCk. Relations to alternative hierarchies from the lit-
erature are discussed in Subsection 6.3. We conclude our discussion of basic
properties of hardness in Subsection 6.4, considering the most basic cases of
precise hardness-computations. We stress that (algorithmic) computation of
hardness for arbitrary instances is less important here7), since we aim more at
constructing “soft” (low hardness) representations than measuring hardness of
given instances. What is needed is a theory to identify general constructions.

6.1 Some basic hardness determinations

The following basic lemma follows directly by definition:

Lemma 6.1 If two clause-sets F and F ′ are variable-disjoint, then we have:

1. If F, F ′ ∈ SAT , then hd(F ∪ F ′) = max(hd(F ), hd(F ′)).

2. If F ∈ SAT and F ′ ∈ USAT , then hd(F ∪ F ′) = hd(F ′).

3. If F, F ′ ∈ USAT , then hd(F ∪ F ′) = min(hd(F ), hd(F ′)).

Via full clause-sets An with n variables and 2n clauses we obtain (unsatis-
fiable, simplest) examples with hd(An) = n, and when removing one clause for
n ≥ 1, then we obtain satisfiable examples A′

n with hd(A′
n) = n− 1:

7)decision of membership in UCk for k ≥ 1 is coNP-complete, as shown in Theorem 7.5,
which seems natural for classes with strong expressive power
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Lemma 6.2 Consider a full clause-set F ∈ CLS (i.e., each clause contains all
variables).

1. hd(⊤) = 0.

2. If F is unsatisfiable then hd(F ) = n(F ).

3. If F 6= ⊤, then hd(F ) = n(F )−minC∈prc
0
(F )|C|.

4. If for F no two clauses are resolvable, then hd(F ) = 0.

Proof: Part 1 follows by Definition, Part 2 is Lemma 3.18 in [36], while Part
4 follows from Part 3. It remains to show Part 3. If F is unsatisfiable, then we
get Part 2. For satisfiable F and a partial assignment ϕ with var(ϕ) ⊆ var(F )
it is ϕ ∗ F a full clause-set with n(ϕ ∗ F ) = n(F ) − n(ϕ), and so the assertion
follows by reduction to the unsatisfiable case. �

The following lemma yields a way of pumping up hardness:

Lemma 6.3 Consider F ∈ CLS and v ∈ VA \ var(F ). Let F ′ := {C ∪ {v} :
C ∈ F} ∪ {C ∪ {v} : C ∈ F}. Then we have hd(F ′) = hd(F ) + 1.

Proof: We have hd(F ′) ≤ hd(F ) + 1 by definition (if v is not set by the test-
assignment, then it can be set to an arbitrary value, yielding a forced assignment
at level hd(F )). Now consider a partial assignment ϕ with var(ϕ) ⊆ var(F ),
ϕ ∗F ∈ USAT and hd(ϕ ∗F ) = hd(F ). Now also ϕ ∗F ′ ∈ USAT holds, where
ϕ ∗ F ′ = {C ∪ {v} : C ∈ ϕ ∗ F} ∪ {C ∪ {v} : C ∈ ϕ ∗ F}. Thus we have reduced
the assertion of the lemma to the special case where F ∈ USAT , and where
hd(F ′) ≥ hd(F ) + 1 is left to be shown. This now follows easily by induction
on the number of variables. �

6.2 Containment and stability properties

The following fundamental lemma is obvious from the definition:

Lemma 6.4 Consider C ⊆ CLS stable under application of partial assignments
and k ∈ N0. If C ∩ USAT ⊆ UCk then C ⊆ UCk.

We apply Lemma 6.4 to various well-known classes C (stating in brackets
the source for the bound on the unsatisfiable cases).

Lemma 6.5 Consider F ∈ CLS.

1. For ϕ ∈ PASS we have hd(ϕ ∗ F ) ≤ hd(F ) (by Lemma 3.11 in [36]).

2. hd(F ) ≤ n(F ) (by Lemma 3.18 in [36]).

3. If F ∈ 2–CLS = {F ∈ CLS | ∀C ∈ F : |C| ≤ 2}, then hd(F ) ≤ 2 (by
Lemma 5.6 in [36]).
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4. If F ∈ HO = {F ∈ CLS | ∀C ∈ F : |C ∩ VA| ≤ 1} (Horn clause-sets),
then hd(F ) ≤ 1 by (Lemma 5.8 in [36]).

5. More generally, if F ∈ QHO, the set of q-Horn clause-sets (see Section
6.10.2 in Crama and Hammer [14], and van Maaren [44]), then hd(F ) ≤ 2
(by Lemma 5.12 in [36]).

6. Generalising Horn clause-sets to the hierarchy HOk from Kleine Büning
[34] (with HO1 = HO): if F ∈ HOk for k ∈ N, then hd(F ) ≤ k (by
Lemma 5.10 in [36]).

Obviously Part 4 of Lemma 6.5 can be generalised to F ∈ RHO (see Lemma 6.7,
Part 3). And considering Part 3, by a standard autarky-argument for 2–CLS
(see [35]) we can sharpen the hardness-upper-bound 2 for satisfiable clause-sets:

Lemma 6.6 For F ∈ 2–CLS ∩ SAT we have hd(F ) ≤ 1.

Proof: Consider a partial assignment ϕ with unsatisfiable ϕ∗F . Now we have
r1(ϕ ∗ F ) = {⊥}, since otherwise r1(ϕ ∗ F ) ⊆ F , and thus r1(ϕ ∗ F ) would be
satisfiable. �

We have the following stability properties:

Lemma 6.7 Consider k ∈ N0.

1. UCk is stable under application of partial assignments (with Lemma 6.5,
Part 1; this might reduce hardness).

2. UCk is stable under variable-disjoint union (with Lemma 6.1).

3. UCk is stable under renaming variables and switching polarities (by defi-
nition).

4. UCk is stable under subsumption-elimination (by basic properties of reso-
lution).

5. UCk is stable under addition of inferred clauses (by definition; this might
reduce hardness).

Example 6.8 Examples for non-stability:

1. UC0 is obviously not stable under removal of clauses.

2. UC0 is not stable under removal of literal occurrences, for example
{{x, y}, {x, y}} ∈ UC0, but {{x}, {x, y}} /∈ UC0.

3. UC0 is not stable under crossing out of variables, e.g. {{x, y}, {x, y}} ∈
UC0, but when crossing out variable x we obtain {{y}, {y}} /∈ UC0.

4. UC0 is not stable under addition of clauses, for example {{x}} ∈ UC0, but
{{x}, {x}} /∈ UC0.

5. UC0 is not stable under addition of literal occurrences, e.g. {{x}, {y}} ∈
UC0, but {{x, y}, {y}} /∈ UC0.
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6.3 Alternative hierarchies

No class UCk is stable under removal of clauses. We will see in this subsec-
tion that this boils down to the class U0 of clause-sets containing the empty
clauses not being stable under removal of clauses. Some classes contained in
UC1 however are stable under removal of clauses, for examples renamble Horn
clause-sets (RHO), and in Čepek and Kučera [11] hierarchies based on this
more restricted class have been considered. To understand the connection to
our approach, some comments on the use of “oracles” in this setting are needed
(see Subsection 9.4 for future developments).

In [36, 37] the hierarchy Gk(U ,S) ⊆ CLS (k ∈ N0) has been introduced,
using oracles U ⊆ USAT for unsatisfiability detection and S ⊆ SAT for satis-
fiability detection:

1. The minimal oracles considered there are U0 := {F ∈ CLS : ⊥ ∈ F} and
S0 := {⊤}.

2. One usesG0
k(U ,S) := Gk(U ,S)∩USAT and G1

k(U ,S) := Gk(U ,S)∩SAT .
Since G0

k(U ,S) does not depend on S, one writes G0
k(U) := G0

k(U ,S).

3. For all k ∈ N0 holds G0
k(U0) = UCk ∩ USAT . On satisfiable instances in

general the hierarchies are incomparable.

4. If C ⊆ CLS is stable under application of partial assignments, then each
class Gk(C) := Gk(C ∩ USAT , C ∩ SAT ) (for k ∈ N0) is also stable under
partial assignments (Lemma 4.2 in [37]). So if C ∩USAT ⊆ UCk′ for some
k′ ∈ N0, then we have Gk(C) ⊆ UCk+k′ (using Lemma 6.4). This is the
basis of all inclusion-relations of Section 6.

5. In [36, 37] it is assumed that U0 ⊆ U holds. This ensures that UCk ∩
USAT ⊆ G0

k(C) always holds, but in most cases makes classes Gk(U ,S)
unstable under elimination of clauses.

In Čepek and Kučera [11] two hierarchies (Πk)k∈N0
, (Υk)k∈N0

have been
introduced; the basic motivations and the relations to our hierarchies are as
follows:

1. We have Πk ∩ USAT = G0
k(RHO) and Πk ∩ SAT ⊆ G1

k(RHO) (with
Π0 = RHO). Note that we do not have U0 ⊆ RHO here.

2. It is RHO ∩ USAT ⊂ G0
1(U0) (Lemma 6.5, Part 4), while RHO ∩ SAT

is not included in any G1
k(U ,S0). More generally we have Πk ∩ USAT ⊂

G0
k+1(U0) for all k ≥ 0.

3. So the choice of the oracle RHO is less powerful on unsatisfiable instances
than the choice of U0 (when going up one level in the hierarchy), while the
special recognition of satisfiability for RHO is (naturally) not captured
by any level of the Gk-hierarchy, when using only the trivial satisfiability-
oracle S0 (even using U = USAT does not change this, since this only
yields full handling of all forced assignments, while a satisfiable instance
in RHO might not have any forced assignment).
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4. For k ≥ 1 we have Πk ∩ SAT ⊂ G1
k(RHO), where an example for F ∈

G1
k(RHO)\Πk is given by F := {{v}∪C : C ∈ F ′} for some F ′ ∈ CLS\Πk

and v ∈ VA \ var(F ′). The point is that recognition for the Gk(U ,S)-
hierarchy already includes satisfiability-decision (at lower levels), and if
one branch, here 〈v → 1〉, yields a satisfiable instance, then the other
branch (〈v → 0〉) is not inspected — which however is the case for Πk.

5. RHO is stable under application of partial assignments, and, that is its
main feature, stable under removal of clauses. This yields that all Πk

are stable under removal of clauses, which is the main motivation for this
choice of the base oracle.

6. U0 is not contained in any Πk, and thus there are unsatisfiable clause-sets
of hardness 0 not contained in any given Πk.

7. Čepek and Kučera [11] considered also (shortly) the hierarchy Υk ⊂ CLS
(k ∈ N0), with Υk ∩ USAT = G0

k(QHO) and Υk ∩ SAT ⊆ G1
k(QHO),

based on the stronger oracle QHO ⊃ RHO of q-Horn clause-sets (again
stable under application of partial assignments and removal of clauses).
We have Υk ∩ USAT ⊂ G0

k+2(U0) for all k ≥ 0 (Lemma 6.5, Part 5).

By Lemma 6.4 we get:

Lemma 6.9 For all k ∈ N0 we have Πk ⊂ UCk+1 and Υk ⊂ UCk+2 for the
hierarchies Πk,Υk introduced in Čepek and Kučera [11].

6.4 Determining hardness computationally

By the well-known computation of prc0(F ) via resolution-closure we obtain:

Lemma 6.10 Whether for F ∈ CLS we have hd(F ) = 0 or not can be decided
in polynomial time, namely hd(F ) = 0 holds if and only if F is stable under
resolution modulo subsumption (which means that for all resolvable C,D ∈ F
with resolvent R there exists E ∈ F with E ⊆ R).

Thus if the hardness is known to be at most 1, we can compute it efficiently:

Corollary 6.11 Consider a class C ⊆ CLS of clause-sets where C ⊆ UC1 is
known. Then for F ∈ C one can compute hd(F ) ∈ {0, 1} in polynomial time.

Examples for C are given by HO ⊂ UC1 (Lemma 6.5) and in Subsection 3.1.
Another example class with known hardness is given by 2–CLS ⊂ UC2 (Lemma
6.5), and also here we can compute the hardness efficiently:

Lemma 6.12 For F ∈ 2–CLS one can compute hd(F ) ∈ {0, 1, 2} in polynomial
time.
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Proof: One method is to observe that for elements of 2–CLS the set of prime-
implicates can be determined in polynomial time, while SAT-decision can be
done in linear time. More efficient is the following:

1. Determine first whether F is satisfiable or not.

2. If F is satisfiable, then hd(F ) ∈ {0, 1} by Lemma 6.6, and whether
hd(F ) = 0 or not can be determined by Lemma 6.10.

3. If F is unsatisfiable, then it suffices to compute r0(F ) and r1(F ). �

See Theorem 7.5 for coNP-completeness of determining an upper bound on
hardness.

7 The SLUR hierarchy

We now define the SLURk hierarchy, generalising SLUR (recall Subsection
3.1) in a natural way, by replacing r1 with rk. In Subsection 7.1 we show
SLURk = UCk, and as application obtain coNP-completeness of membership
decision for UCk for k ≥ 1. In Section 7.2 we determine the relations to the
previous hierarchies SLUR∗(k) and CANON(k) as discussed in Subsection 3.2.

Definition 7.1 Consider k ∈ N0. For clause-sets F, F ′ ∈ CLS the relation

F
SLURk

−−−−→ F ′ holds if there is x ∈ lit(F ) such that F ′ = rk(〈x → 1〉 ∗ F ) and

F ′ 6= {⊥}. The transitive-reflexive closure is denoted by F
SLURk

−−−−→∗ F ′. The
set of all fully reduced clause-sets reachable from F is denoted by

slurk(F ) := {F ′ ∈ CLS | F
SLURk−−−−−→∗ F

′ ∧ ¬∃F ′′ ∈ CLS : F ′ SLURk−−−−−→ F ′′}.

Finally the class of all clause-sets which are either identified by rk to be unsat-
isfiable, or where by k-SLUR-reduction always a satisfying assignment is found,
is denoted by SLURk := {F ∈ CLS : rk(F ) 6= {⊥} ⇒ slurk(F ) = {⊤}}.

We have SLUR1 = SLUR (recall Definition 3.3). Note also the following simple
properties for F ∈ CLS:

1. ⊤ ∈ slurk(F ) ⇔ F ∈ SAT .

2. For F ′ ∈ slurk(F ) \ {⊤} we have F ′ ∈ USAT , and if F ∈ SAT , then
rk(F

′) 6= {⊥}.

3. If F ∈ SLURk, then F ∈ SAT and F
SLURk−−−−→∗ F

′ implies F ′ ∈ SAT .

Again we could define the transition relation in a less restricted way, as F
SLURk−−−−→

〈x→ 1〉∗F iff rk(〈x→ 1〉∗F ) 6= ⊥, and this would yield the same class SLURk.

Example 7.2 Some examples for SLUR2 \ SLUR1:
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1. Consider the unsatisfiable clause-set F := {{x, y}, {x, y}, {x, y}, {x, y}}.

(a) F 6∈ SLUR1 because F is unsatisfiable but r1(F ) 6= {⊥}.

(b) F ∈ SLUR2 because r2(F ) = {⊥}.

2. Consider the satisfiable clause-set F ′ := {{x1, x2} ∪ C | C ∈ F}.

(a) F ′ 6∈ SLUR1 = SLUR because F ′ SLUR
−−−−→∗ F = 〈x1, x2 → 0〉 ∗ F ′,

where slur(F ) = {F} and so F ∈ slur(F ′).

(b) F ′ ∈ SLUR2 because for any ϕ such that F ′ SLUR2−−−−→∗ ϕ ∗ F ′ and
F ′ 6= ⊤ we have one of the following two cases:

i. ϕ ∗ F ′ is satisfiable, and so ϕ ∗ F ′ 6∈ slur2(F ).

ii. ϕ ∗ F ′ is unsatisfiable and so 〈x1 → 0, x2 → 0〉 ⊆ ϕ, but this

contradicts the fact that F ′ SLUR2−−−−→∗ ϕ∗F ′. That is, after setting
either x1 or x2 to 0, lookahead with r2 detects unsatisfiability of
ϕ ∗ F ′ and so one can never transition to ϕ ∗ F ′ from F ′.

Therefore slur2(F
′) = {⊤}.

More generally we have {{x1, . . . , xk}∪C | C ∈ F} ∈ SLUR2 \SLUR∗(k)
(recall Example 3.6).

Lemma 7.3 We have for F ∈ CLS, k ∈ N0 and a partial assignment ϕ with

rk(ϕ ∗ F ) 6= {⊥} that F
SLURk−−−−−→∗ rk(ϕ ∗ F ) holds.

Proof: The assignments of ϕ can be performed via SLUR-k-transitions. �

7.1 SLUR = UC

For F ∈ UCk there is the following polynomial-time SAT decision: F is unsatis-
fiable iff rk(F ) = {⊥}. And a satisfying assignment can be found for satisfiable
F via self-reduction, that is, probing variables, where unsatisfiability again is
checked for by means of rk. For k = 1 this means exactly that the nondetermin-
istic “SLUR”-algorithm will not fail. And that implies that F ∈ SLUR holds,
where SLUR is the class of clause-sets where that algorithm never fails. So
UC1 ⊆ SLUR. Now it turns out, that actually this property characterises UC1,
that is, UC1 = SLUR holds, which makes available the results on SLUR.

We now show that this equality between UC and SLUR holds in full gener-
ality for the UCk and SLURk hierarchies.

Theorem 7.4 For all k ∈ N0 holds SLURk = UCk.

Proof: Consider F ∈ CLS. We have to show F ∈ SLURk ⇔ hd(F ) ≤ k. For
F ∈ USAT this follows from the definitions, and thus we assume F ∈ SAT .

First consider F ∈ SLURk. Consider a partial assignment ϕ such that
ϕ ∗ F ∈ USAT . We have to show rk(ϕ ∗ F ) = {⊥}, and so assume rk(ϕ ∗ F ) 6=

29



{⊥}. It follows F
SLURk−−−−→∗ rk(ϕ ∗ F ) by Lemma 7.3, whence rk(ϕ ∗ F ) ∈ SAT

contradicting ϕ ∗ F ∈ USAT .
Now assume hd(F ) ≤ k, and we show F ∈ SLURk, i.e., slurk(F ) = ⊤.

Assume there is F ′ ∈ slurk(F ) \ {⊤}. By Property 2 for Definition 7.1 we
get F ′ ∈ USAT and rk(F

′) 6= {⊥}. However by Lemma 6.5, Part 1 we get
hd(F ′) ≤ k, and thus rk(F

′) = {⊥}. �

It seemed an essential feature of the class SLUR, that its most natural
definition is by the SLUR-algorithm; for example in Franco and Schlipf [24] we
find the quote “I find it interesting that the algorithm seems simpler than the
conditions under which it is a decision procedure.” By Theorem 7.4 now we
have a simple characterisation of these conditions, namely that unsatisfiability
after instantiation is always detected by unit-clause propagation. Using the
characterisation SLUR = UC, we can show coNP-completeness of hardness-
determination:

Theorem 7.5 For fixed k ∈ N the decision whether hd(F ) ≤ k (i.e., whether
F ∈ UCk, or, by Theorem 7.4, whether F ∈ SLURk) is coNP-complete.

Proof: The decision whether F /∈ SLURk is in NP by definition of SLURk

(or use Lemma 5.4). By Theorem 3 in Čepek et al. [12] we have that SLUR is
coNP-complete, which by Lemma 6.3 can be lifted to higher k. �

7.2 Comparison to the previous hierarchies

The alternative hierarchies SLUR∗(k) and CANON(k) (recall Subsection 3.2)
do not generalise r1 by rk, but extend r1 in various ways (maintaining linear-time
computation for the (non-deterministic) transitions). In this way in Čepek et al.
[12], Balyo et al. [2] rather complicated argumentations arise, in contrast to our
elegant characterisation of the classes UCk in Theorem 5.7. As a consequence,
we can give short proofs that the alternative hierarchies are subsumed by our
hierarchy, while already the second level of our hierarchy is (naturally) not con-
tained in any levels of these two hierarchies (naturally, since the time-exponent
for deciding whether a (non-deterministic) transition can be done w.r.t. hierar-
chy SLURk depends on k).

First we simplify and generalise the main result of Balyo et al. [2], that
CANON(1) ⊆ SLUR. By definition we have CANON(0) = UC0.

Theorem 7.6 For all k ∈ N0 we have:

1. CANON(k) ⊆ UCk.

2. UC1 6⊆ CANON(k) (and thus CANON(k) ⊂ UCk for k ≥ 1).

Proof: By Theorem 5.7 and the fact, that the Horton-Strahler number of a tree
is at most the height, we see that CANON(k) ⊆ UCk. That UC1 6⊆ CANON(k)
can be seen by observing that there are formulas in HO∩USAT with arbitrary
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resolution-height complexity and so HO 6⊆ CANON(k). By HO ⊂ UC1 we get
UC1 6⊆ CANON(k). �

Also the other hierarchy SLUR∗(k) is strictly contained in our hierarchy:

Theorem 7.7 For all k ∈ N0 we have:

1. SLUR∗(k) ⊂ SLURk+1.

2. SLUR2 6⊆ SLUR∗(k).

Proof: Part 1 follows most easily by using Lemma 6.4 together with the simple
fact that slur∗(k)(F ) = {F} for F 6= ⊤ implies rk+1(F ) = {⊥}; for the strictness
of the inclusion use Part 2. Part 2 follows from CANON(2) 6⊆ SLUR∗(k)
(Lemma 13 in Balyo et al. [2]), while by Theorem 7.6 we have CANON(2) ⊆
SLUR2. �

Part 1 of Theorem 7.7 can not be improved, since SLUR∗(k) and SLURk

are incomparable:

Lemma 7.8 For k ≥ 2 holds SLUR∗(k) 6⊆ SLURk and SLURk 6⊆ SLUR∗(k).

Proof: That SLURk 6⊆ SLUR∗(k) follows by Part 2 of Theorem 7.7. That
SLUR∗(k) 6⊆ SLURk follows from the fact that for the full unsatisfiable clause-
set Fk on k variables (i.e., containing all 2k clauses of length k) we have Fk+1 ∈
SLUR∗(k) by Lemma 10 in Balyo et al. [2] but Fk+1 6∈ SLURk by Part 2 of
Lemma 6.2. �

8 Optimisation

We conclude by considering the question of finding, for an input-clause-set F ,
short equivalent clause-sets F ′ ∈ UCk for fixed k. Definition 8.1 provides the
appropriate notion of “irredundancy” via the notion of a “k-base”, where irre-
dundancy refers to both removal of literal occurrences and removal of clauses.
In Theorem 8.3 we show that the problem is solvable in polynomial time for
inputs F ∈ 2–CLS, while in Theorem 8.4 we show that the problem is NP-
complete even when restricting the input to Horn clause-sets with very few
prime implicates.

Definition 8.1 A clause-set F is a k-base for some k ∈ N0∪{+∞} if hd(F ) ≤
k, and after removing any literal occurrence or any clause from F , the result F ′

is either not equivalent to F or has hd(F ′) > k.

Remarks:

1. Every k-base F is primal, that is, F ⊆ prc0(F ).

2. A clause-set F is a 0-base iff F = prc0(F ), while F is an ∞-base iff F
is primal and irredundant (removal of any clause yields a clause-set not
equivalent to F ).
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3. For a given clause-set F , we consider the problem of computing a short-
est (w.r.t. the number of clauses or the number of literal occurrences)
equivalent k-base F ′, which we call a k-base for F :

(a) By Schaefer and Umans [42] for k = ∞ this problem is Σ2-complete.

(b) A special case of interest here is when F = prc0(F ), in which case
F ′ ⊆ F must hold. Since all prime implicates are given as input,
for k < ∞ the decision problem whether F has a k-base of size at
most k (k is part of the input) is now in NP. In Theorem 8.4 we will
see that this decision problem is actually NP-complete, even under
rather restricted circumstances.

Example 8.2 Consider the clause-set

F :=
{
{v1, v3, v4}
︸ ︷︷ ︸

C1

, {v2, v3, v4}
︸ ︷︷ ︸

C2

, {v2, v3, v4}
︸ ︷︷ ︸

C3

, {v2, v3, v4}
︸ ︷︷ ︸

C4

, {v1, v3, v4}
︸ ︷︷ ︸

C5

, {v1, v2}
︸ ︷︷ ︸

C6

}
.

and clause-sets F1 := F \ {C5} and F2 := F \ {C6}. We have that:

1. F is a 0-base, that is, prc0(F ) = F .

We have to show that F is closed under resolution modulo subsumption.
We have the following possible resolutions in F with the associated sub-
suming clauses: C1 ⋄C2 ⊃ C6, C1 ⋄C3 ⊃ C6, C2 ⋄C5 ⊃ C6, C3 ⋄C5 ⊃ C6,
C4 ⋄C6 = C5.

2. F, F1 and F2 are the only k-bases (k ∈ N0) that are equivalent to F .

To show that there are no other k-bases equivalent to F we must show that
all other subsets of F are not equivalent to F. It suffices to show that the
clauses C1, C2, C3, C4 are irredundant (i.e., occur in all primal clause-sets
equivalent to F ) and the clause-set F3 := F \ {C5, C6} is not equivalent
to F . The irredundancy of C1, C2, C3, C4 is seen by the fact that they are
not obtained as resolvents. That F3 is not equivalent to F follows from
the fact that F3 does not contain positive clauses while F does.

3. F1 is a 1-base (and 2-base) and is equivalent to F but is not a 0-base.

We have C4 ⋄C6 = C5 and thus F1 |= C5. To see hd(F1) = 1, observe
hd(ϕC5

∗ F1) = hd({{v2}, {v2}}) = 1.

4. F2 is a 2-base and is equivalent to F but is not a 1-base.

We have (C1 ⋄C3) ⋄(C2 ⋄C5) = C6 and thus F2 |= C6. Furthermore
hd(ϕC6

∗ F2) = hd({{v3, v4}, {v3, v4}, {v3, v4}, {v3, v4}}) = 2.

5. Thus F is neither a 1-base nor a 2-base.

Theorem 8.3 For clause-sets F ∈ 2–CLS we can compute shortest-size (min-
imum number of clauses or minimum number of literal occurrences) equivalent
k-bases F ′ for all k ∈ N0 ∪ {+∞} in polynomial time as follows:
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1. If F is unsatisfiable, then the best possibility is F ′ := {⊥}. So assume in
the sequel that F is satisfiable.

2. If F = ⊤, then F ′ := ⊤. So assume in the sequel that F 6= ⊤.

3. If F has a forced literal x, then any k-base for F contains {x}, and we
can split off x by considering an optimal k-base for 〈x → 1〉 ∗ F . So we
can assume w.l.o.g. in the sequel that F has no forced literals. (Thus F
as well as prc0(F ) contains only clauses of length equal 2.)

4. Since all k-bases of F without new variables are subsets of prc0(F ), when
considering “shortest k-bases” now there is no differences between the mea-
sures c (number of clauses) and ℓ (number of literal occurrences), and we
can just speak of “shortest k-bases”.

5. The (unique) 0-base of F , the set prc0(F ) ∈ 2–CLS of all prime-implicates,
can be computed in polynomial time by the methods discussed in Section
5.8 in Crama and Hammer [14].

6. Every ∞-base of F without new variables is a 1-base (Lemma 6.6), and
thus w.r.t. k-bases for k ∈ N0 ∪ {+∞} only the determination of shortest
1-bases is left, where the shortest 1-bases are precisely the smallest subsets
of prc0(F ) equivalent to F .

7. Finally in Chapter 9 of Chang [13] (affirmed in Hemaspaandra and Schnoor
[30]) it is shown how to compute shortest equivalent sets of prime-implicates,
and thus shortest 1-bases can be computed in polynomial time.

Theorem 8.4 Consider k ∈ N0 ∪ {+∞}.

1. Assume k ≥ 1. The decision problem “For inputs F ∈ HO+∩3–CLS with
prc0(F ) = F and m ∈ N0, decide whether there is a k-base F ′ of F with
c(F ′) ≤ m.” (note that here F ′ ⊆ F must hold) is NP-complete.

2. For k = 0 the decision problem “For input F ∈ HO and m ∈ N0, decide
whether there is a k-base F ′ of F with c(F ) ≤ m.” is in P.

Proof: For Part 2 one enumerates with polynomial delay the prime implicates
of F (see Section 6.5 in Crama and Hammer [14] for efficient methods): if this
process stops with at most m prime implicates found, then the answer is “yes”,
otherwise the answer is “no”.

For Part 1 we first note that the problem is in NP, since all prime clauses are
given, and hd(F ) ≤ 1. The heart of the completeness is Theorem 6.18 in Crama
and Hammer [14], which states that “Horn minimisation w.r.t. the number of
clauses remains NP-complete even if the input is restricted to cubic pure Horn
expressions.”, plus the fact from the underlying report Boros and Čepek [9], that
for the considered G ∈ HO+ ∩ 3–CLS all prime implicates are also of length at
most 3, and thus we can take as input F := prc0(G) ∈ HO+ ∩ 3–CLS (which
can be computed in polynomial time). �
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9 Conclusion and outlook

We brought together two streams of research, one started by del Val [20] in
1994, introducing UC for knowledge compilation, and one started by Schlipf
et al. [43] in 1995, introducing SLUR for polytime SAT decision. Two natural
generalisations, UCk and SLURk have been provided, and the (actually surpris-
ing) identity SLURk = UCk provides both sides of the equation with additional
tools. Various basic lemmas have been shown, providing a framework for elegant
and powerful proofs. Regarding computational problems, we solved the most
basic questions.

Our main future application, which brings the UC-perspective and the SLUR-
perspective together, is in the area of “good SAT representations”; see Subsec-
tion 9.2 for more information. We consider the approach of representing a
boolean function f via a clause-set F ∈ UCk as the first beginning of what we
envisage as a theory of good SAT representations.

We outline now what seems to us the most promising directions for future
investigations (and where we already have partial results).

9.1 Propagation-hardness

Complementary to “unit-refutation completeness” there is the notion of “prop-
agation completeness”, as investigated in Darwiche and Pipatsrisawat [18], Bor-
deaux and Marques-Silva [7]. This will be captured and generalised by a cor-
responding measure phd : CLS → N0 of “propagation-hardness”, defined as
follows:

Definition 9.1 For F ∈ CLS we define the propagation-hardness (for short
“p-hardness”) phd(F ) ∈ N0 as the minimal k ∈ N0 such that for all partial
assignments ϕ ∈ PASS we have

rk(ϕ ∗ F ) = r∞(ϕ ∗ F ).

Now the class PC of “propagation-complete clause-sets” can be properly gener-
alised:

Definition 9.2 For k ∈ N0 let PCk := {F ∈ CLS : phd(F ) ≤ k} (the class of
propagation-complete clause-sets of level k).

We have PC = PC1. These classes lie (strictly) between the UCk-classes:

Lemma 9.3 For k ∈ N0 we have PCk ⊂ UCk ⊂ PCk+1.

9.2 Good representations of boolean functions

The real power of SAT representations comes with new variables. Expressive
power and limitations of “good representations” have to be studied. In the SAT-
context the most useful notion of “representation” of a boolean function f seems
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to be Σ1-QCNF-representations, that is, clause-sets F with var(f) ⊆ var(F ),
where the new variables (in var(F )\var(f)) are implicitly existentially quantified
— in other words, the satisfying assignments of F projected to the variables of
f are precisely the satisfying assignments of f ; see Bubeck and Büning [10] for
some general results. The restricted representations we already considered in
Subsection 1.4 are those without new variables, that is, where var(F ) = var(f).

Additional conditions on F are needed to get “effective” representations,
since in general the evaluation of F for a total assignment for f is an NP-
problem. Strong representations are those with bounded hardness. Strength-
ening Conjecture 1.1 from the introduction, we conjecture that also with new
variables the power of representing boolean functions increases when allowing
higher hardness:

Conjecture 9.4 For every k ∈ N0 the set of sequences (fn)n∈N of boolean
functions having sequences (Fn)n∈N of polysize-representations of p-hardness at
most k (i.e., phd(Fn) ≤ k for all n) is strictly smaller then those having polysize-
representations of hardness at most k (i.e., hd(Fn) ≤ k for all n), which in turn
is strictly smaller then those having polysize-representations of p-hardness at
most k + 1 (i.e., phd(Fn) ≤ k + 1 for all n).

We wish to remind the reader of the open problem mentioned in Subsection 1.5
about the existence of a polysize-representation of bounded hardness for affine
boolean functions.

We need to emphasise here that representations F of boolean functions f
with hd(F ) ≤ k fulfil an absolute condition, that is, we can determine un-
satisfiability by rk for arbitrary partial assignments, not just those using only
the variables of f . When only asking for this relative condition (currently
the standard, posing conditions only on variables occurring in the represented
boolean function f , ignoring the new variables of F ), then by generalising
Bessiere et al. [5] we can show that the hierarchies collapse to the first level.
This is due to the “uncontrolled” use of the new variables (the relative condition
doesn’t pose conditions on them). See Bordeaux, Janota, Marques-Silva, and
Marquis [8] for a study on UC together with the relative condition.

9.3 Applications to cryptanalysis

As an application of the theory of “good representations” we consider crypt-
analytic problems, especially attacking AES/DES, as preliminary discussed in
Gwynne and Kullmann [26, 25]. For the experimental evaluation we consider
the various boolean functions (“constraints”) used by these ciphers, most promi-
nently the “S-boxes”, and systematically search for short representations of
hardness 0, 1, 2 and p-hardness 1, 2. Various solvers are then run on the SAT-
problems obtained by plaintext-/ciphertext pairs (where the task is to determine
the key). The strengthened inference power seems especially interesting for the
combination of look-ahead (“tree-resolution based”) and conflict-driven (“dag-
resolution based”) SAT solvers as introduced in Heule, Kullmann, Wieringa,
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and Biere [33].

9.4 Relativised hardness

Generalising Bessiere et al. [5] we can show that for example the satisfiable
pigeonhole formulas PHPm

m do not have polysize representations of bounded
hardness even for the relative condition. One way to overcome this barrier
is to generalise the theory started here via the use of oracles as in [36, 37]
(recall Subsection 6.3), and then employing oracles which can handle pigeonhole
formulas. The basic definitions are as follows.

Definition 9.5 A valid oracle for generalised unit-clause propagation is some
U ⊆ USAT with {⊥} ∈ U which is stable under application of partial assign-
ments. The oracle is strong if U0 ⊆ U , where U0 := {F ∈ CLS : ⊥ ∈ F}.

Consider k ∈ N0. In [36] the reduction rUk : CLS → CLS has been defined.
An equivalent definition (generalising Definition 4.3) is as follows for F ∈ CLS:

rU0 (F ) :=

{

{⊥} if F ∈ U

F otherwise

rUk+1(F ) :=

{

rUk+1(〈x→ 1〉 ∗ F ) if ∃x ∈ lit(F ) : rUk (〈x→ 0〉 ∗ F ) = {⊥}

F otherwise
.

Note rk = rU0

k . Generalising Definitions 5.1, 5.5:

Definition 9.6 Consider a valid oracle U . The hardness hdU(F ) ∈ N0

(“hardness with oracle U”) of an unsatisfiable F ∈ CLS is the minimal k ∈ N0

such that rUk (F ) = {⊥}. And for general F ∈ CLS we define hdU (⊤) := 0, while
for F 6= ⊤ let

hdU(F ) := max{hdU (ϕ ∗ F ) : ϕ ∈ PASS ∧ ϕ ∗ F ∈ USAT } ∈ N0.

We have hd = hdU0
, and if U is strong then for all F holds hdU (F ) ≤ hd(F ).

An interesting oracle U (with polytime membership decision) is given by the
class of unsatisfiable clause-sets defined in de Klerk, van Maaren, and Warners
[19] via semidefinite programming, for which we get hdU(PHP

m
m) = 0.

9.5 Width-based hardness

The basic idea is to use width-restricted resolution instead of nested input resolu-
tion, in order to increase inference power from tree-resolution to dag-resolution.
A basic weakness of the standard notion of width-restricted resolution, which
demands that both parent clauses must have length at most k for some fixed
k ∈ N0 (the “width”), is that even Horn clause-sets require unbounded width in
this sense. The correct solution, as investigated and discussed in [36, 37], is to
use the notion of “k-resolution” as introduced in Kleine Büning [34], where only
one parent clause needs to have length at most k (thus properly generalising
unit-resolution).
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Definition 9.7 Consider k ∈ N0.

• Two resolvable clauses C,D are k-resolvable if |C| ≤ k or |D| ≤ k.

• We use F ⊢k C if there is a resolution proof R of some C′ ⊆ C from F
such that all resolutions in R are k-resolutions.

This allows us now to define “width-hardness” (accordingly the “hardness” only
studied in this paper can be called “tree-hardness”):

Definition 9.8 For F ∈ USAT let whd(F ) ∈ N0 be the minimal k ∈ N0 such
that F ⊢k ⊥ holds. And for F ∈ CLS let whd(F ) ∈ N0 be the minimal k ∈ N0

such that for all partial assignments ϕ holds ϕ ∗ F ∈ USAT ⇒ ϕ ∗ F ⊢k ⊥.

We have whd(F ) = k ⇔ hd(F ) = k for k ∈ {0, 1}, while in general whd(F ) ≤
hd(F ) holds (for all F ∈ CLS).

Conjecture 9.9 For every k ∈ N0 the set of families of boolean functions hav-
ing polysize representations of width-hardness at most k is strictly smaller then
those having polysize-representations of width-hardness at most k+1. For k ≥ 1
families showing the separation can be chosen such that they have unbounded
hardness.

Finally we mention that, as in Subsection 9.4, we also have a relativised version
whdU , based on relativised k-resolution as studied in [36, 37].
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