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Abstract

In this paper we consider a fragment of the first-order theory of
the real numbers that includes systems of n equations in n variables,
and for which all functions are computable in the sense that it is possi-
ble to compute arbitrarily close interval approximations. Even though
this fragment is undecidable, we prove that—under the additional as-
sumption of bounded domains—there is a (possibly non-terminating)
algorithm for checking satisfiability such that (1) whenever it termi-
nates, it computes a correct answer, and (2) it always terminates when
the input is robust. A formula is robust, if its satisfiability does not
change under small continuous perturbations. We also prove that it is
not possible to generalize this result to the full first-order language—
removing the restriction on the number of equations versus number of
variables. As a basic tool for our algorithm we use the notion of degree
from the field of topology.

1 Introduction

It is well known that, while the theory of real numbers with addition and
multiplication is decidable [42], any periodic function makes the problem
undecidable, since it allows encoding of the integers. The root existence
problem for uni-variate functions defined by addition, multiplication, the
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sine function and the constant π is also undecidable [43]. This even holds
if we consider only functions on bounded domains, because an algorithm
deciding it could be used to compute a fixed point of a continuous func-
tion from a ball to itself which is known to be non-computable for some
computable functions [4, 33].

Recently, several papers [19, 35, 37, 13] have argued, that in continuous
domains (where we have notions of neighborhood, perturbation etc.) such
undecidability results do not always have much practical relevance. The
reason is, that real-world manifestations of abstract mathematical objects
in such domains will always be exposed to perturbations (imprecision of
production, engineering approximations, unpredictable influences of the en-
vironment etc.). Engineers take these perturbations into account by coming
up with robust designs, that is, designs that do not change essentially under
such perturbations. Hence, in this context, it is sufficient to come up with
algorithms that are able to decide such robust problem instances. They are
allowed to run forever in non-robust cases, but must not return incorrect
results, in whatever case. In a recent paper we called problems possessing
such an algorithm quasi-decidable [38].

The main contribution of this paper can be summarized as follows:

• We show quasi-decidability of a certain fragment of the first-order the-
ory of the reals (Theorem 1). The basic building blocks are existen-
tially quantified disjunctions of systems of n equalities over at most
n variables and arbitrarily many inequalities. Those blocks may be
combined using universal quantifiers, conjunctions, and disjunctions.
All variables are assumed to range over closed and bounded intervals.

• We show that the result cannot be extended to the full first-order
language. More specifically, in the basic building blocks (systems of
equalities and inequalities) it is impossible to remove the restriction
that the number of variables has to be at most the number of equal-
ities (Theorem 2). Still, while we show that this restriction cannot
be removed completely, this leaves open the possibility to replace the
restriction by a weaker constraint on the number of variables and equa-
tions.

The allowed function symbols include addition, multiplication, expo-
nentiation, and sine. More specifically, they have to be continuous, and
for compact intervals I1, . . . , In, we need to be able to compute an interval
J ⊇ f(I1×· · ·×In) such that the over-approximation of J over f(I1×. . .×In)
can be made arbitrarily small.

The main tool we use is the notion of the degree of a continuous function
that comes from differential topology. For continuous functions f : [a, b]→
R, the degree deg (f, [a, b], 0) is 0 iff f(a) and f(b) have the same sign,
otherwise the degree is either 1 or−1, depending on whether the sign changes
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from negative to positive or the other way round. If f is continuous and
the degree is nonzero, then the equation f(x) = 0 has a solution by the
intermediate value theorem. For higher dimensional functions, the degree
is a computable [1, 17] integer whose value may be greater than 1, and a
nonzero degree still indicates the existence of a root of f . The converse is not
true and the existence of a root does not imply nonzero degree in general.
We show how, for robustly satisfiable formulas built up from certain blocks
of n equations in n variables, to make the degree test eventually succeed,
while at the same time handling inequalities and logical symbols.

The proof of our second contribution—the class of equations and in-
equalities with no relation between the number of equations and variables
is not quasi-decidable—is based on a reduction from a recent undecidability
result [16] for a related robust satisfiability problem, cited in Theorem 10.

Even though this work applies results from a quite distant field—topology—
to automated reasoning, the paper is largely self-contained. Usage of results
from topology that are not explicitly delineated in this paper is concentrated
exclusively in Section 6.

The content of the paper is as follows: In Section 2, we define the notions
of robustness and quasi-decidability, and state the two main theorems of the
paper. In Section 3, we provide the quasi-decision procedure whose existence
is claimed by the first main theorem. In Section 4, we present the notion
of topological degree and describe its main properties. In Section 5, we
show that the quasi-decision procedure always returns a correct result. In
Section 6 we show some non-algorithmic properties of the degree that will
be the essential for showing termination for robust inputs in Section 7. In
Section 8 we prove the second main theorem. In Section 9 we discuss related
work. Finally, in Section 10, we conclude the paper.

2 Statement of the Results

We will start this section with informal discussion of a motivating example.
Consider the first-order predicate logic formula

∃x . [x ≥ −1 ∧ x ≤ 1 ∧ sinx = 0]

with the usual interpretation over the real numbers. This formula is true,
and remains true, even if it is perturbed a little bit. On the other hand, the
formula

∃x . [x ≥ 1 ∧ x ≤ 2 ∧ sinx = 1]

is also true, but does not remain true when perturbing it, for example by
increasing the right-most number 1 a little bit. We will later call formulas of
the first type robust, and formulas of the second type non-robust. Our first
theorem will state that, for a certain class of formulas over the reals that

3



includes function symbols such as sin, there exists an algorithm (a ”quasi-
decision procedure”) that decides whether a given formula is true, but that
is only required to terminate for robust inputs while it may run forever for
non-robust inputs.

In the rest of the section, after fixing notation, we define the class of
functions that we consider (Definition 1). Then we will formalize the no-
tion of perturbing predicate-logical formulas (Definition 2) which results in
a precisely defined notion of a formula being robust (Definition 3). Finally,
we state Theorem 1 that ensures the existence of such a quasi-decision pro-
cedure and the negative Theorem 2 that puts a limit on generalization of
the approach.

We define a box in Rn (or also n-box) to be the Cartesian product of n
closed intervals of finite length (i.e., a hyper-rectangle). The width width(B)
of a box B is the maximum of the width of the constituting intervals of B.
For x ∈ Rn, |x| will refer to its maximum norm |x| := max{|x1|, . . . , |xn|}
and for a continuous function f : Ω → Rn, we use the supremum norm
||f ||Ω := sup{|f(x)|; x ∈ Ω}. If ||f − g||Ω ≤ α for some α > 0, we say
that g is an α-perturbation of f in Ω. If Ω is clear from the context then
we will simply write ||f ||, or say that g is an α-perturbation of f , without
explicitly mentioning Ω. For a set Ω ⊆ Rn, Ω̄ is its closure, Ω◦ its interior
and ∂Ω = Ω̄\Ω◦ its boundary with respect to the Euclidean topology. We
will call the closure Ω̄ of an open connected bounded set Ω a closed region.

For defining the class of formulas, we will first fix the class of functions
that we handle. Intuitively, we allow functions whose range can be arbitrarly
closely approximated by boxes:

Definition 1 Let Ω ⊆ Rm be a box with rational vertices. We say that a
function f : Ω→ Rn is interval computable, iff there exists a corresponding
algorithm I(f) that computes, for any box B ⊆ Ω with rational vertices, an
n-box I(f)(B) ⊆ Rn with rational vertices such that

• I(f)(B) ⊇ {f(x) | x ∈ B}, and

• for every ε > 0 there is a δ > 0 such that for every box B with
0 < width(B) < δ, width(I(f)(B)) < ε.

Each interval computable function is uniformly continuous. Moreover, a
function f : Ω → Rn, with Ω ⊆ Rm a box with rational vertices, is interval
computable iff it is computable in the sense of computable analysis [8] (for
seeing this, note especially that a function that is computable in the sense of
computable analysis has a computable modulus of continuity [27, Theorem
2.13]).

For common function symbols that can be written in terms of symbolic
expressions containing symbols denoting rational constants, the constant π,
addition, multiplication, exponentiation, trigonometric functions and square
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root, the algorithm I(f) can be implemented from the expression by interval
arithmetic [30, 29] with arbitrary precision interval endpoints.

In the rest of the paper, we assume that a set of function and predicate
symbols is given, together with structure assigning to each function symbol
an interval computable function and to each predicate symbol a correspond-
ing relation over the real numbers. We assume that this symbol set contains
at least all rational constants, addition, multiplication, and the predicate
symbols = and ≥ with their usual interpretation. Whenever we will write
concrete function or predicate symbols, this structure will assign their stan-
dard meaning over the real numbers. From now on, we will restrict ourselves
to formulas from the first-order language corresponding to the given symbol
set.

We also assume that a map I is given that assigns, to each function
symbol f , an algorithm I(f) satisfying the specification in Definition 1. This
map I is assumed to be algorithmic. Such assignment I naturally extends
to terms of the language via composition of interval functions: if t is a
term of the language, then the algorithm I(t) represents the corresponding
function and satisfies both assumptions of Definition 1. In addition, we will
assume that every variable ranges over a closed bounded interval introduced
by a corresponding quantifier of the form ∃x ∈ I or ∀x ∈ I. Throughout the
paper we will require those bounds to be small enough to avoid any function
application outside of the domain of any interval computable function. In a
similar way, whenever we introduce bounds on the free variables of a formula,
we assume them to be small enough to avoid such function applications.

As usual, a sentence will refer to a formula without free variables. Now
we formalize perturbations of formulas by defining some notion of distance
on sentences.

Definition 2 Let F,G be two sentences. We say that F and G have the
same structure iff one can be obtained from the other by only exchanging
terms (i.e., they have the same Boolean and quantification structure includ-
ing bounds of quantified variables, and the same predicate symbols).

We define the distance d on sentences as follows. If two sentences F and
G do not have the same structure, then d(F,G) :=∞. In the case where they
do have the same structure, assume that the sentence F contains terms de-
noting functions f1, . . . , fp and the sentence G contains in the corresponding
places terms denoting the functions g1, . . . , gp. We define the distance

d(F,G) := max
i∈{1,...,p}

||fi − gi||Ωi ,

where Ωi denotes the respective domain of those functions, that is, the box
defined by the quantification of all the variables.

For example, the sentences

∃x ∈ [0, 1]∀y ∈ [0, 1] . x2 − y = xy ∧ x = y
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and
∃x ∈ [0, 1]∀y ∈ [0, 1] . x2 − y = xy + 1 ∧ x = y2

have the same structure, because the only difference is in the terms involved.
The distance d(F,G) = 1, because—with (x, y) ∈ [0, 1]2—we have that
max |(x2 − y)− (x2 − y)| = 0, max |xy − (xy + 1)| = 1, max |x− x| = 0 and
max |y − y2| = 1/4. As another example, the sentences 1 ≥ 0 and ¬¬1 ≥ 0
do not have the same structure, and hence their distance is ∞.

Definition 3 Let S be a sentence and ε > 0. We say that S is ε-robust
iff for every sentence S′, d(S′, S) < ε implies that S′ and S have the same
truth value. We say that the sentence S is robust iff there is an ε > 0 such
that S is ε-robust. We say that a sentence S is robustly true iff it is both
robust and true. We say that a sentence S is robustly false iff it is both
robust and false.

Note that, since we restricted ourselves to formulas with function symbols
denoting interval-computable functions, all functions involved in the above
definitions are interval computable, hence uniformly continuous.

Also note that equivalence of two formulas does not necessarily imply
the same robustness. For example, the formula ∃x ∈ [0, 2] . x − 1 = 0 is
robust, but the formula ∃x ∈ [0, 2] . x− 1 = 0 ∧ x− 1 = 0 is not, since both
occurrences of the function x− 1 can be perturbed independently.

Definition 4 A quasi-decision procedure for some class B of formulas is
an algorithm that takes as inputs a sentence ϕ from B and an algorithm I
converting function symbols f to algorithms I(f). The algorithm computes
the truth value of ϕ whenever ϕ is robust. If ϕ is non-robust, the algorithm
may run forever but must not return an incorrect result.

If such a quasi-decision procedure exists for some class B, then we say
that B is quasi-decidable.

Now we are ready to state our first result.

Theorem 1 The following class of formulas B, defined recursively below, is
quasi-decidable:

(a) B contains all formulas of the form

∃x ∈ B . [f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0 ∧ g1 ≥ 0 ∧ g2 ≥ 0 ∧ . . . ∧ gk ≥ 0]

where f1, . . . , fn, g1, . . . , gk are terms denoting interval-computable func-
tions, B is an m-box (the expression ∃x ∈ B denoting a block of m ex-
istential quantifiers) with rational vertices and either n ≥ m or n = 0.
The integer k may be arbitrary and we also admit k = 0 (i.e., the case
without inequalities).
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(b) Let I ⊆ R be a closed bounded interval with rational endpoints. If U is
in B, then

∀x ∈ I . U
is also in B.

(c) If U, V are in B, then
U ∧ V U ∨ V

are also in B.

The formulas corresponding to (a) represent systems of equations and in-
equalities. However, we assume that there are no more existential quantifiers
than equations in (a), corresponding to the condition n ≥ m.

The following sentence is an example of a formula in class B:

∀x ∈ [−1, 1]
∃y ∈ [−1, 1] ∃z ∈ [−1, 1]

[x2 − y2 − z2 = 0 ∧ x3 − y3 − z3 = 0].

The following sentence is an example of a sentence not in B
∃x ∈ [0, 1] ∃y ∈ [0, 1] . x− y = 0

because the domain of the particular function is a 2-dimensional box and
there is only one equation, so the assumptions in (a) are violated.

Throughout we will use the convention that logical connectives bind
stronger than quantifiers. Moreover, we use brackets to denote Boolean
structure of formulas. Sometimes we will use line breaks instead of brackets
for this purpose. We will use the symbol ≡ to denote equality of first-order
formulas.

If ∃x ∈ B . F1 and ∃x ∈ B . F2 are in the class B, then ∃x ∈ B . [F1 ∨F2]
is robust if and only if the formula [∃x ∈ B . F1] ∨ [∃x ∈ B . F2] is robust
and they are equi-satisfiable. Hence a quasi-decision procedure for B can
handle disjunctions within existential quantification, too. In the following,
however, we will restrict ourselves to the class B.

The following theorem shows a limitation of possible extension of quasi-
decidability of the class B to the whole first-order theory removing the re-
striction on the number of equations versus number of variables:

Theorem 2 Assume that the our symbol set is rich enough to contain func-
tion symbols for all piecewise linear functions defined on rational triangula-
tions of boxes with rational values in the vertices. Then there is no algorithm
Q with the following specification:

• Q is quasi-decision procedure for the class of sentences of the form

∃x ∈ [0, 1]d . f1(x) = 0 ∧ . . . ∧ fn(x) = 0 ∧ g(x) ≥ 0

where (f, g) : [0, 1]d → Rn × R and d and n are arbitrary.
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• Q can access all functions fj, g in the formula only via the oracle
I(fj), resp. I(g). That is, Q can call I(fj) and I(g) arbitrary many
times but has no access to the syntactical representation of fj and g.

As will be seen from the proof in Section 8, the second condition in Theo-
rem 2 may be replaced by the alternative condition:

• Q does not terminate whenever the input is non-robust.

Whether or not the second condition in Theorem 2 can be omitted com-
pletely is—up to the best of our knowledge—an open problem.

3 The Quasi-decision Procedure

In this section, we construct an algorithm that decides, whether a robust
sentence in B is true. The algorithm serves purely for proving Theorem 1.
We do not claim it to be practically efficient whatsoever and leave a practi-
cally efficient quasi-decision procedure for future work.

For any formula U ∈ B, variable x and x0 ∈ R we denote by U [x← x0]
the formula derived from U by substituting x0 for x in every free occurrence
of x in U . We also allow x to be an n-tuple of variables, and x0 ∈ Rn, in
which case U [x← x0] denotes the parallel substitution of entries of x0 with
their corresponding entries of x.

In our algorithms, we use an alternative form of the Cartesian product
that concatenates tuples from the argument sets, instead of forming pairs.
That is, for setsX ⊆ Rn and Y ⊆ Rm it produces the set {(x1, . . . , xn, y1, . . . , yn) |
(x1, . . . , xn) ∈ X, (y1, . . . , ym) ∈ Y }. Especially, for the set {()} containing
the 0-tuple, {()}×X will be X. The width of {()}, viewed as a box, is zero
by definition.

We construct an auxiliary algorithm CheckSat(S, P, r) with the following
specification:

Input:

• a formula S from B in l free variables p,

• an l-box P bounding the free variables of S,

• r ∈ Q>0,

such that the width of P is at most r.

Output: a nonempty subset of {T,F}

with the following two properties:

Correctness: If the algorithm returns {T} ({F}), then for all p0 ∈ P ,
S[p← p0] is robustly true (robustly false).
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Definiteness: If for a given l-box P0 bounding the free variables of S,
either for all p0 ∈ P0 the sentence S[p ← p0] is robustly true or for
all p0 ∈ P0 the sentence S[p ← p0] is robustly false, then there exists
an ε > 0 such that for every r ≤ ε and every sub-box P ⊆ P0 with
width smaller than r, the algorithm returns {T} or {F} (as opposed
to {T,F}).

CheckSat(S, P, r) terminates always, but may return the indefinite result
{T,F}. The existence of such an algorithm immediately implies Theorem 1,
because then the algorithm below is a quasi-decision procedure for B.

ε← 1
loop

R← CheckSat(S, {()}, ε)
if |R| = 1 then // R is either {T} or {F}

return s s.t. s ∈ R
else

ε← ε/2

Note that the specification of CheckSat does not only result in a quasi-
decision procedure, but also checks robustness of the input.

We will now define the algorithm CheckSat(S, P, r) in detail. We will
leave the proof that it fulfills the specification to Sections 5 (correctness)
and 7 (definiteness). The algorithm is recursive, following the definition of
class B. We will now describe the parts corresponding to the individual
cases of this definition.

3.1 System of Equations and Inequalities

We first consider the case (a) of class B, that is, a formula S of the form

∃x ∈ B . [f1 = 0 ∧ . . . ∧ fn = 0 ∧ g1 ≥ 0 ∧ . . . ∧ gk ≥ 0]

where B is an m-box. In an abuse of notation we also use f1, . . . , fn and
g1, . . . , gk for the functions denoted by those terms. They are functions in
P ×B → R with P ×B ⊆ Rl+m, where l is the number of free variables of S.
We assume that the order of the arguments of those functions is the same
as the order in which the respective variables are quantified in the overall
formula. Finally, we denote by f : P ×B → Rn the function defined by the
components (f1, . . . , fn) and by g : P ×B → Rk the function defined by the
components (g1, . . . , gk).

Disproving the formula is straight-forward using the information given
by I(f) and I(g). However, in order to ensure that the computed over-
approximation is not too big, instead of working with I(f)(B) and I(g)(B)
we work with elements of a partition Sr of B into small enough pieces, where
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“small enough” is determined by the parameter r (Line 2 of the algorithm
SoEI below). For this, we will call a set of boxes Sr a grid covering B iff⋃

B′∈Sr
B′ = B and for every B1 ∈ Sr and B2 ∈ Sr, int(B1) ∩ int(B2) = ∅.

The core of the algorithm for proving the formula is a test whether
a system of equations f = 0 has a solution in a bounded region. The
test analyzes the boundary of the region and exploits continuity to deduce
existence of a zero in the interior.

In the one-dimensional case, a bounded region is simply a closed interval.
If f has opposite sign on the two end-points of the interval, the intermediate
value theorem tells us, that f has a solution in the interior. Here f has to be
non-zero on both interval endpoints (since f is in general non-polynomial,
we cannot verify that f is zero on an interval endpoint, we can only exclude
this). In general, we use the notion of the degree from the field of differential
topology [28, 32]. For a continuous function f : Ω → Rn where Ω is a
bounded open set and p /∈ f(∂Ω), the degree of f with respect to Ω and a
point p ∈ Rn is an integer denoted by deg (f,Ω, p). If deg (f,Ω, p) 6= 0 then
the equation f = p has a solution in Ω. Since the degree is a non-trivial
mathematical notion, we defer more details on the degree to Section 4 below.

For ensuring that the test deg (f,Ω, p) 6= 0 eventually succeeds we have to
make sure that Ω encloses a robust zero closely enough (the notion “closely
enough” will be made precise in Sections 6 and 7). So, also in this case,
we work with the partition Sr of B, and we compute the degree of the
individual pieces. However, for ensuring that f is non-zero on the boundary
of the pieces, we merge those pieces of the partition Sr for which we cannot
prove that (Line 6).

Checking the inequalities is straight-forward (Lines 11 to 13) using I(g).
In order to ensure that the used boxes are small enough, we undo the merg-
ings before the check (Line 11) and apply I(g) to the individual boxes
(Line 12).

The algorithm looks as follows:

Algorithm SoEI(S, P, r) // System of equations and inequalities

1: Let B be the m-box for the domain of the quantified variables in S.
2: Let Sr be a grid of boxes covering B s.t.

each grid element has width at most r.
3: if for every box A ∈ Sr

either 0 /∈ I(f)(P ×A) or I(g)(P ×A) ∩ [0,∞)k = ∅ then
4: return {F} // f = 0 ∧ g ≥ 0 has no solution
5: if m = n then
6: Merge all boxes in Sr containing a common face C s.t. 0 ∈ I(f)(P × C).
7: Remove all grid elements in Sr containing a face C s.t. C ⊆ ∂B and 0 ∈ I(f)(P × C).
8: Let p0 be an arbitrary element of P
9: for each grid element A ∈ Sr do
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10: if deg (f(p0), A, 0) 6= 0 then // equations hold, so check inequalities
11: Let Sr(A) be a grid of boxes covering A of width at most r
12: if for all E ∈ Sr(A), I(g)(P × E) ⊆ (0,∞)k then
13: return {T}
14:return {T,F} // no test succeeded, or n > m

Here we suppose that f is present in the formula (i.e., n > 0). The algorithm
can be easily adapted to the case, where it is not. In the case n > m, the
algorithm can simply return {T,F}, see Lemma 5 below. An illustration of
the algorithm is shown in Figure 1.

g(p0) ≥ 0g(p0) < 0

B

E1 E2
x1

x2
A′

Figure 1: Illustration of the SoEI algorithm. Assume that f(p0) has two
zeros x1 and x2, and assume that {x | g(p0, x) ≥ 0} is to the right of the
thick curve. The algorithm creates a grid of boxes Sr (line 2). If each
element of the grid provably does not contain a solution (check at line 3), it
returns {F}. If this is not the case, then it checks whether f is non-zero on
all boundaries of grid elements (line 6). In our example, f is close to zero
on the common boundary of E and E′ and so the algorithm merges them
into one grid element A1. If deg (f(p0), A1, 0) 6= 0, then it checks whether
for each p, g(p) ≥ 0 on E1 and E2 (line 12). If this is true as well, then
f = 0 ∧ g ≥ 0 is robustly satisfiable on B and the algorithm terminates
with {T}. In case of another box A2 containing a robust zero of f , the given
partition may not provide enough evidence for the claim that g(p, x2) ≥ 0
for each p (in which case the condition on line 12 is not satisfied).

3.2 Universal Quantifiers

The recursive call corresponding to Case (b) of class B looks as follows:

Algorithm Univ(∀x ∈ I . S, P, r):
Let Ir be a grid of sub-intervals of I of width at most r

return
∧̃

I′∈IrCheckSat(S, P × I ′, r)
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Here, in the return statement, the symbol
∧̃

denotes the lifting of Boolean
conjunction to sets of Boolean values:

U ∧̃V := {u ∧ v | u ∈ U, v ∈ V }.

3.3 Conjunctions and Disjunctions

Finally, the recursive call corresponding to Case (c) of class B looks as fol-
lows:

Algorithm Conj(S ∧ T, P, r)

return CheckSat(S, P1, r) ∧̃ CheckSat(T, P2, r)
where P1 (P2) is the projection of P

to the free variables of S (T , respectively).

Here, in the return statement, the symbol ∧̃ again denotes the lifting
of conjunction to sets of Boolean values. The algorithm for disjunction is
completely analogous, replacing ∧̃ with ∨̃ (and its lifting to sets of Boolean
values).

4 Degree of a Continuous Function

In this section we describe some basic properties of the topological degree.
We already mentioned in the introduction that in the one-dimensional case,
that is, for continuous functions f : [a, b] → R with f(a) 6= 0 and f(b) 6= 0,
the degree deg (f, [a, b], 0) is 0 iff f(a) and f(b) have the same sign, otherwise
the degree is either −1 or 1, depending on whether the sign changes from
negative to positive or the other way round. Hence, in this case, the degree
gives the information given by the intermediate value theorem plus some
directional information.

In dimension two, the degree of a continuous function f from a disc to R2

is just the number of times f(x) winds around the origin counter-clockwise
as x follows the circle forming the boundary of the disc (i.e., the “winding
number”). Again, a non-zero winding number implies that f has a zero.

There are several ways of defining the degree in general. We work with
an axiomatic definition, that can be shown to be unique [32, Section I.5].
Let Ω ⊆ Rn be open and bounded, f : Ω̄→ Rn continuous, and p /∈ f(∂Ω).
Then deg (f,Ω, p) is an integer satisfying the following properties [31, Thm.
1.2.6.]:

1. For the identity function I, deg (I,Ω, p) = 1 iff p ∈ Ω

2. If deg (f,Ω, p) 6= 0 then f(x) = p has a solution in Ω
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3. If there is a continuous function (a “homotopy”) h : [0, 1] × Ω̄ →
Rn such that h(0) = f , h(1) = g and p /∈ h(t, ∂Ω) for all t, then
deg (f,Ω, p) = deg (g,Ω, p)

4. If Ω1 ∩ Ω2 = ∅, Ω1 ⊆ Ω, Ω2 ⊆ Ω, and p /∈ f(Ω̄ \ (Ω1 ∪ Ω2)), then
deg (f,Ω, p) = deg (f,Ω1, p) + deg (f,Ω2, p)

5. deg (f,Ω, p), as a function of p, is constant on any connected compo-
nent of Rn\f(∂Ω).

The first axiom says that for the identity function, the degree counts
the zeros in Ω precisely. Due to the second axiom one can infer existence
of a zero from a non-zero degree. Due to the third axiom, the degree is
invariant under continuous deformations of the function that do not cause
any essential change of the boundary information. From this it can be
immediately seen that the degree depends only on the boundary ∂Ω: for two
functions f and g that agree on ∂Ω, the function h(t, x) = tf(x)+(1−t)g(x)
is a homotopy between f and g, as needed by the premise of Axiom 3.

In the SoEI algorithm, we apply the degree to the triple (f,A, 0) where
A is not open but the closure of an open set (it is the union of boxes).
For completeness, we define deg (f,A, p) := deg (f,A◦, p) where A◦ is the
interior of A, whenever p /∈ f(∂A).

Many algorithms for computing the degree have been proposed [15, 25, 7,
1, 17]. More specifically, if B is an n-box, f : B → Rn is interval computable,
0 /∈ f(∂B) and an algorithm I(f) is given, then the degree deg (f,B, 0) can
be algorithmically computed. This justifies the use of line 10 of algorithm
SoEI in Section 3.1.

The axioms defining the degree only argue about zeros, but not about
robustness. Still, a nonzero degree is closely connected with the existence
of a robust root:

Lemma 1 Let Ω̄ ⊆ Rn be a closed region with interior Ω, f : Ω̄ → Rn be
continuous, 0 /∈ f(∂Ω) and let deg (f,Ω, 0) 6= 0.

Then any continuous g : Ω̄→ Rn such that ‖g − f‖ < minx∈∂Ω |f | has a
zero in Ω.

Proof. Let ε < minx∈∂Ω |f |. For any g such that ||g − f ||Ω̄ < ε, we define
a homotopy h(t, x) = tf(x) + (1− t)g(x) between f and g. We see that for
x ∈ ∂Ω and t ∈ [0, 1],

|h(t, x)| = |tf(x)+(1−t)g(x)| = |f(x)+(1−t)(g(x)−f(x))| ≥ |f(x)|−ε > 0

so that h(t, x) 6= 0 for x ∈ ∂Ω. From Properties 2 and 3, we see that g(x) = 0
has a solution. �

In particular, this implies that the sentence ∃x ∈ B · f(x) = 0 is not
only true, but also robust, whenever deg (f,B◦, 0) 6= 0. The upper bound
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on the distance between f and g results in an ε such that this sentence is
ε-robust. This allows extensions of the algorithms of this paper to return
such an ε, which may be useful in applications.

For proving definiteness, we will need a partial converse of this statement
which will be given by Theorem 6 in Section 6.

5 Proof of Correctness

We will prove here that the algorithm CheckSat proposed in Section 3 fulfills
the first part of its specification, that is: it always returns a correct result.
The proof will again be divided into the cases constituting the definition of
class B, from which correctness of the overall, recursive algorithm follows by
induction.

Before that, we prove some technical results on the relationship between
the class B and robustness.

Note that, in this section, the assumption that our symbol set contains
addition and multiplication, is not used. Hence the algorithm is correct even
if we do not have those symbols in the symbol set.

5.1 Robustness and the Class B
First we prove a lemma on the effect of substitution of nearby constants on
robustness.

Lemma 2 Let S be a formula in l free variables, P an l-box bounding the
free variables of S and p0 be a point in the interior of P . If S[p ← p0] is
a robust sentence, then there exists a neighborhood U ⊆ Rl of p0, such that
for all u ∈ U , S[p← u] is robust and has the same truth value as S[p← p0].

Proof. Assume that S[p ← p0] is robust. Then there is an ε > 0 such
that for all formulas T with d(S[p← p0], T ) < ε, T and S[p← p0] have the
same truth value. Since all functions in S are interval-computable, they are
uniformly continuous. Hence for ε > 0, there exists a number δ > 0 such
that for each function f occurring in S it holds that |f(x, u)−f(x, p0)| < ε/2
whenever u, p0 ∈ P and |u − p0| < δ. In other words, there exists a δ > 0
s.t. for all u ∈ P with |u− p0| < δ, d(S[p← p0], S[p← u]) < ε/2, and hence
S[p← p0] and S[p← u] have equal truth value. We claim that S[p← u] is
also robust: this is because if T ′ is any sentence with d(S[p← u], T ′) < ε/2,
then d(T ′, S[p← p0]) < ε and T ′ has still the same truth value as S[p← p0].
So the neighborhood U := {u ∈ P | |u− p0| < δ} of p0 satisfies the required
properties. �

Due to the syntactical structure of formulas in the class B we automati-
cally have robustness in the false case:

14



Lemma 3 Let S be a sentence from B. If S is false, then it is robustly
false.

Proof. We proceed by induction, following the cases of class B. Let S be
the sentence ∃x ∈ B . f = 0 ∧ g ≥ 0, where f = 0, and g ≥ 0 are the usual
short-cuts for conjunctions of equalities, and inequalities, respectively. Let
S be false. If f = 0 has no solution in B, then ||f || > ε for some ε > 0 and
||f̃ || > 0 for small enough perturbations f̃ of f . Similarly, if g < 0 on B, then
the same is true for small enough perturbations of g. Finally, if f−1({0})∩B
and g−1[0,∞)k ∩B are both nonempty, then they are compact and disjoint,
which implies that they have a positive distance. For small perturbations
f̃ , g̃ of f and g, f̃−1{0} and g̃−1[0,∞)k are still disjoint, which implies that
S is robustly false.

Further, assume that I ⊆ R is a compact interval and ∀x ∈ I . S is a
false sentence. Then there exists an x0 ∈ I such that S[x ← x0] is false.
From the induction hypothesis, it is robustly false. Let ε > 0 be such that
S[x← x0] is ε-robust and let S′ be a formula such that d(∀x . S′, ∀x . S) < ε.
Then d(S′[x ← x0], S[x ← x0]) < ε and S′[x ← x0] is false. So, ∀x ∈ I . S′
is false and it follows that ∀x ∈ I . S is robustly false.

Finally, let U and V be sentences in B and U ∧ V be false. Then either
U or V is false and the induction hypothesis says that it is robustly false.
So, U ∧ V is robustly false. Similarly, if U ∨ V is false, then both U and V
are robustly false and U ∨ V is robustly false. �

In the case of this lemma, the proof goes through for any number of
equalities, independent of the restriction that class B puts on this number.
Further, the last lemma remains true even if we leave the set of interval-
computable functions and allow arbitrary, small enough continuous pertur-
bations. Moreover, it holds even if all functions in the original formula S are
only continuous and not interval computable. We only have used continuity
of the perturbations and the proof does not use any algorithmic input.

Universal quantification preserves robustness in the following sense:

Lemma 4 Let S be a formula containing a free variable x and let I be a
bounded closed interval. Then the sentence S[x ← x0] is robustly true for
all x0 in I if and only if the sentence ∀x ∈ I . S is robustly true.

Proof. Let ∀x ∈ I . S be ε-robust and true, and let x0 be an arbitrary,
but fixed element of the interval I. Then clearly S[x ← x0] is true. For
showing that it is also robust, we assume an arbitrary, but fixed sentence X
such that d(X,S[x ← x0]) =: ε′ < ε and prove that X is true, as well. Let
fX , resp. gX be the functions that occur in X on the places corresponding
to S[x← x0]; this is well-defined, because X and S[x← x0] have the same
structure. Consider the formula U that is equal to S except for the fact that
every equality of the form f = 0 is replaced by f + fX − f [x← x0] = 0 and
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g ≥ 0 is replaced by g+gX−g[x← x0] ≥ 0. The distance d(∀x ∈ I . S, ∀x ∈
I . U) = ε′ < ε and so, due to ε-robustness of ∀x ∈ I . S, ∀x ∈ I . U is
true. In particular, U [x← x0] ≡ X is true and it follows that S[x← x0] is
ε-robust and true.

For the converse, assume that for all x0 ∈ I, S[x← x0] is robustly true.
Let

µ(x0) := sup{µ > 0; S[x← x0] is µ-robust}.
Clearly, µ is a continuous function in x0 and has strict lower bound m > 0
on the compact interval I. So, for each x0 ∈ I, S[x ← x0] is m-robust. If
d(∀x ∈ I . S, ∀x ∈ I . U) < m, then for each x0 ∈ I, d(S[x ← x0], U [x ←
x0]) < m and U [x ← x0] is true. So, ∀x ∈ I . U is true and ∀x ∈ I . S is
robustly true. �

Again, the last lemma remains true in the stronger formulation where we
consider a statement robustly true iff any small enough continuous pertur-
bation of its function symbols is true—that is, perturbation by functions
that do not necessarily correspond to terms formed from the given set of
function symbols or functions that are not necessarily interval computable.

5.2 System of Equations and Inequalities

For proving correctness of the algorithm CheckSat we again start with the
case (a) of class B, that is, a formula S of the form

∃x ∈ B . [f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0 ∧ g1 ≥ 0 ∧ g2 ≥ 0 ∧ . . . ∧ gk ≥ 0]

where B is an m-box. Assuming that the formula has l free variables, we
again denote by f : Rl+m → Rn the function defined by the components
(f1, . . . , fn) and g : Rl+m → Rk the function defined by the components
(g1, . . . , gk).

Theorem 3 The algorithm SoEI(S, P, r) fulfills the correctness property of
the specification of CheckSat(S, P, r) (defined at the beginning of Section 3).

Proof.
Assume first that the algorithm terminates with a negative result {F}.

It follows directly from Definition 1, that the input sentence S[p ← p0] is
false for any p0 ∈ P . Lemma 3 implies robustness.

Now assume that it terminates with a positive result {T}. Then there
exists a point p0 ∈ P ⊆ Rl and a connected grid element A ⊆ Rm such
that deg (f(p0), A, 0) 6= 0. For any p ∈ P , p and p0 can be connected by a
curve φ : [0, 1] → P , and f ◦ φ is then a homotopy between f(p0) and f(p)
nowhere zero on ∂A. So, deg (f(p), A, 0) 6= 0 and it follows from Lemma 1
that f(p) = 0 has a robust solution in A. Moreover, the successful check
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whether for all E ∈ Sr(A), I(g)(P × E) ⊆ (0,∞)k implies that for some
small enough d > 0, for all p ∈ P , x ∈ A and j = 1, . . . , k, gj(p, x) > d. It
follows that the input formula is robustly true for all parameter values in P .
�

5.3 Universal Quantifiers

Theorem 4 Let S be a formula containing free variables p. Let P be an l-
box and I a closed interval. Assume that an algorithm CheckSat fulfilling the
correctness property is given. Then also the algorithm Univ(∀x∈I . S, P, r)
fulfills the correctness property.

Proof. If Univ(∀x∈ I . S, P, r) returns {F}, then CheckSat(S, P × I ′, r′)
returned {F} for some I ′ ∈ Ir and it follows that for all p0 ∈ P and x0 ∈ I ′,
S[p ← p0][x ← x0] is robustly false. Then ∀x ∈ I . S[p ← p0] is false for
each p0 ∈ P and it follows from Lemma 3 that it is robustly false.

If the algorithm returns {T}, then CheckSat(S, P × I ′, r′) returned {T}
for all I ′ ∈ Ir and the sentence S[p ← p0][x ← x0] is robustly true for
all x0 ∈ I and p0 ∈ P . It follows from Lemma 4 that for each p0 ∈ P ,
∀x ∈ I . S[p← p0] is robustly true, so the result is correct. �

5.4 Conjunction and Disjunction

Theorem 5 Let S and T be two formulas in B and assume that CheckSat
fulfills the correctness property both when applied to S, and when applied to
T . Then Conj(S ∧ T, P, r) also fulfills the correctness property.

Proof. Let pS , and pT , respectively, be the function that projects any
l-tuple corresponding to the free variables of S ∧ T to those components
corresponding to the free variables of S, and T , respectively.

If Conj returned {T} then the recursive calls for both S and T returned
{T}. Hence, by correctness of the result of the recursive calls, for all p0 ∈ P ,
S[pS(p)← pS(p0)] and T [pT (p)← pT (p0)] are robustly true, and hence also
(S ∧ T )[p← p0].

If Conj returned {F} then the recursive calls for either S or T returned
{F}. Hence, by correctness of the result of the recursive calls, either for all
p0 ∈ P , S[pS(p) ← pS(p0)] is robustly false, or for all p0 ∈ P , T [pT (p) ←
pT (p0)] is robustly false. Hence, also for all p0 ∈ P , (S ∧ T )[p ← p0] is
robustly false. �

For disjunctions the situation is analogous.
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6 From Robustness To Non-Zero Degree

For proving that the algorithm CheckSat fulfills the second part of its spec-
ification, definiteness, we need to prove that for a robust system of equa-
tions, the test provided by a non-zero topological degree eventually succeeds.
While the algorithmic aspects of the proof are part of the next section, in this
section we prove two properties of the degree necessary for this (Lemma 5
and Theorem 6). The first property, Lemma 5, simply says that in the case
overdetermined system of n equations in m < n variables, the input can-
not be robust, and hence the implication (robust input implies succeeding
test for non-zero degree) holds vacuously. The second property, Theorem 6,
shows that robustness implies existence of a region for which the degree is
non-zero. More precisely, we will show a partial converse to Lemma 1, that
is, that a robust solution of f = 0 on Ω implies the existence of a region
U ⊆ Ω s.t. 0 /∈ f(∂U) and deg (f, U, 0) 6= 0.

The rest of the paper will only refer to the two mentioned properties, so
a reader can safely skip this section after noting Lemma 5 and Theorem 6.
The proofs in the section are the only place in the paper that uses results
from topology that are not explicitly delineated in this paper.

Lemma 5 Let Ω̄ be a closed region in Rm, n > m and f : Ω → Rn be
continuous. Then for each ε > 0 there exists a function g : Ω̄ → Rn,
‖g − f‖ < ε, with no root.

Proof. We assume that for some ε, it holds that each g closer to f than ε
has a root, and derive a contradiction. It follows from the Stone-Weierstrass
theorem that the continuous function f may be approximated arbitrarily
precisely with a smooth function (even with a polynomial), and so we can
approximate it by a smooth function f̃ closer than ε/2 to f . Moreover,
each such f̃ with ‖f̃ − f‖ < ε/2 has a root. In particular, f̃(x) − c has
a root for any constant c, |c| < ε/2 and so f̃(Ω) contains a neighborhood
of 0 ∈ Rn. However, all values in f̃(Ω) are critical values (that is, for each
x ∈ Ω̄, the rank of f ′(x)—a matrix n×m—is smaller than n). Due to Sard’s
theorem [28, Chapter 2] the set of critical values of a smooth function has
zero measure in Rn, and so f̃(Ω) cannot contain a neighborhood of 0 ∈ Rn,
a contradiction. �

The rest of the section considers the case of equal dimensions m = n.
First we show that a zero degree of a function implies that any possible
zero of the function can be removed by a change of the function only in the
interior. Moreover, the result of the change will be small in a certain sense.

Lemma 6 Let Ω̄ be a closed region in Rn, f : Ω̄ → Rn continuous, 0 /∈
f(∂Ω) and deg (f,Ω, 0) = 0. Then there exists a continuous nowhere zero
function g : Ω̄→ Rn such that g = f on ∂Ω and ||g||Ω̄ ≤ ||f ||Ω̄.
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Proof. If 0 /∈ f(Ω), we may take g = f . Otherwise, take a neighborhood
U ⊆ Ω of f−1(0) such that ∂U is an (n−1)-manifold (i.e. locally homeomor-
phic to Rn−1). Such a neighborhood U might be constructed as a finite union
of balls. It follows from the degree axioms that deg (f, U, 0) = deg (f,Ω, 0)
and it is a well-known fact in differential topology that f/|f | : ∂U → Sn−1

can be extended to a function g1 : U → Sn−1 iff the degree is zero [24,
Theorem 8.1.]. Let h : Ū → R+ be an extension of |f | : ∂U → R+ (such
extension exists due to Tietze’s Extension Theorem [9, Thm. 4.22]) and let
i : Sn−1 → Rn \ {0} be the inclusion. Then g2 := h (i ◦ g1) : Ū → Rn \ {0} is
a nowhere zero extension of f |∂U . Define g : Ω̄→ Rn \ {0} by g(x) = g2(x)
for x ∈ U and g(x) = f(x) for x /∈ U . This function is continuous, nowhere
zero and coincides with f on ∂U . Possibly multiplying g by a positive scalar
valued function that equals 1 on ∂U and is small inside U◦, we achieve that
||g||Ω ≤ ||f ||Ω. �

Now we show that for a smooth function f , we might change it within
a small region N where the function is nonzero, to produce arbitrary many
regular zero points, both orientation-preserving and orientation-reversing.

Lemma 7 Let U be an open set in Rn, f : U → Rn be smooth. Let N be a
neighborhood of x0 ∈ U such that 0 /∈ f(N) and let k ∈ N. Then there exists
a function f1 such that the following conditions are satisfied:
(1) f1 = f on U \N
(2) ||f1|| ≤ ||f ||
(3) 0 is a regular value of f1|N
(4) N contains 2k points x1, . . . , xk, y1, . . . , yk such that f1(xi) = f1(yi) =
0, f1 is orientation-preserving in the neighborhood of xi and orientation-
reversing in the neighborhood of yi.

Proof. Choose δ > 0 such that x0 + [−2δ, 2δ]n ⊆ N . We construct f1 such
that f1(x) = f(x) for x /∈ (x0 + [−2δ, 2δ]n). For x ∈ (x0 + [−δ, δ]n) we set

(f1)i(x) =

( |xi − x0
i |

δ
− 1

2

)
fi(x

0).

It is easy to see that f−1
1 (0) contains in (x0 + [±δ]) 2n points of the form

(x0
1± δ/2, x0

2± δ/2, . . . , x0
n± δ/2), half of them preserve orientation and half

reverse orientation. Clearly, |f1(x)| ≤ |f(x0)| ≤ ||f || on x0 + [±δ]. Because
deg (f1, x

0 + [±δ], 0) = deg (f, x0 + [±2δ]) = 0, it is easy to see that f1 may
be extended to x0 + [±2δ] so that f1 = f on ∂(x0 + [±2δ]), f1 is nonzero in
x0 + [±2δ] \ (x0 + [±δ]) and the norm ||f1|| ≤ ||f ||. The only zero points of
f1 in N are (x0

1 ± δ/2, . . . , x0
n ± δ/2), so 0 is a regular value of f1|N . The

details are left to the reader.
To produce more zeros we can choose any point x1 ∈ N s.t. f1(x1) 6= 0

and a small neighborhood of x1 in N where f1 is nonzero and continue in
the same way. �
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Finally, we prove the following theorem that will be used in the proof of
definiteness of the CheckSat procedure.

Theorem 6 Let Ω̄ be a non-empty closed region in Rn with interior Ω ⊆ Rn

and f : Ω̄ → Rn be continuous. Then there exists an ε > 0 such that each
continuous g, ‖g−f‖ < ε, has a zero in Ω̄ if and only if there exists an open
set U ⊆ Ω such that 0 /∈ f(∂U) and deg (f, U, 0) 6= 0.

The assumption that Ω is the interior of Ω̄ is necessary to exclude some
degenerate cases such as Ω = (−1, 1) \ {0} and f(x) = x; in this case,
f has a robust zero in Ω̄ = [−1, 1] but for any U ⊆ Ω with 0 /∈ f(∂U),
deg (f, U, 0) = 0.
Proof. If the dimension is n = 1, then Ω̄ is a compact interval and clearly
there exists an ε > 0 such that each continuous ε-perturbation of f has a
zero iff there exists x, y ∈ Ω̄ s.t. f(x) < 0 < f(y), and the statement follows.
In the rest of the proof we assume that n ≥ 2.

If deg (f, U, 0) 6= 0 for some U , then we may choose ε := minx∈∂U |f | by
Lemma 1 which proves one implication.

For proving the other direction, we assume that for each open U ⊆ Ω
s.t. 0 /∈ f(∂U), deg (f, U, 0) = 0. We choose a positive ε > 0 and will show
that there exists a continuous 4ε-perturbation g of f with no root.

Let Ωε := {x | |f(x)| < ε}. This is an open set in Ω̄. Let x ∈ f−1(0)∩Ω.
Then there exists a ball U(x) ⊆ Rn open in Rn such that U(x) ⊆ Ωε. For
y ∈ f−1(0) ∩ ∂Ω, we choose U(y) ⊆ Rn to be an open ball in Rn such that
U(y) ∩ Ω̄ ⊆ Ωε. We assumed that Ω is the interior of Ω̄, which implies
∂Ω = ∂Ω̄. So, for each such U(y), the set U(y) \ Ω̄ is a nonempty open set
in Rn.

The set {U(x) |x ∈ f−1(0)} is an open cover of the compact set f−1(0),
so we may take finitely many of these sets U1, . . . , Uk that still cover f−1(0).
Each Ui is either contained in Ωε, or has a nontrivial intersection with ∂Ω.
Let V1, . . . , Vl,W1, . . . ,Wm be the pairwise disjoint connected components
of ∪iUi such that Vi ⊆ Ωε and Wj ∩ ∂Ω 6= ∅ for each i, j.

If x ∈ ∂Vi, then f(x) 6= 0, otherwise x would be contained in the interior
of the same connected component Vi of ∪iUi. In particular, 0 /∈ f(∂Vi)
and due to the assumption above deg (f, Vi, 0) = 0. Vi is connected and it
follows from Lemma 6 that we may change f inside Vi, without changing it on
Ω̄ \ Vi, to construct a function f1 : Ω̄→ Rn, 0 /∈ f1(Vi) and ||f1||Vi ≤ ||f ||Vi .
The inequalities ||f1||Vi ≤ ||f ||Vi ≤ ε imply that f1 is a continuous 2ε-
perturbation of f . This can be done independently for each i, so we may
assume that 0 /∈ f1(∪iVi).

Let us extend f1 to a continuous function f2 : Ω̄ ∪j W̄j → Rn (such
an extension exists by Tietze’s Theorem). Possibly multiplying f2 by a
positive scalar valued function that equals 1 on Ω̄ and is small outside Ω̄,
we may assume that ||f2||∪jWj ≤ ε. The zero set of f2 is contained in ∪jW̄j
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and if f2(x) = 0 for some x ∈ ∂Wj , then x /∈ Ω̄ (otherwise, x would be
contained in the same connected component of ∪iUi as Wj , contradicting
x ∈ ∂Wj). Therefore, f2 is nowhere zero on the compact set Ω̄ \ ∪jWj

and there exists some 0 < ε1 < ε s.t. |f(x)| > ε1 for x ∈ Ω̄ \ ∪jWj .
Let f3 be a continuous ε1-perturbation of f2 that is smooth and 0 is a
regular value of f3 (such a perturbation exists by Stone-Weierstrass and
Sard’s theorems). The set f−1

3 (0) is finite and contained in ∪jW̄j . For each
j and each x ∈ f−1

3 (0) ∩ ∂Wj , we may find a small neighborhood Ox of
x such that x is the only zero point of f3 on Ōx, Ōx ∩ Ω̄ = ∅, Wj \ Ōx

is still connected, and replace Wj by Wj \ Ōx. So, we can assume that
0 /∈ f3(∂Wj) for each j. Let A+(Wj) = {x ∈Wj | f3(x) = 0, det(f ′3(x)) > 0}
and A−(Wj) = {x ∈Wj | f3(x) = 0, det(f ′3(x)) < 0}.

Wj \ Ω̄ is open and nonempty, and we can use Lemma 7 to create at
least 2||A+(Wj)|−|A−(Wj)|| zeros in Wj \ Ω̄ of f3 in which f3 is orientation-
preserving, resp. orientation-reversing, without changing f3 in Wj ∩ Ω̄. We
can then pair all points in A+(Wj)∩ Ω̄ with points in A−(Wj)\ Ω̄ and points
in A−(Wj)∩Ω̄ with A+(Wj)\Ω̄ (some zeros of f3 outside Ω̄ may still remain
unpaired). We suppose that the dimension n ≥ 2, so we may connect each
pair of points x+

a and x−a by a curve ca so that the curves do not intersect
themselves and the complement of these curves in Wj is still connected.
Further, there exist connected and pairwise disjoint open neighborhoods Na

of these curves such that the only zero points of f3 in Na are x+
a and x−a for

each a. The degree deg (f3, Na, 0) = 0, so we may change f3 inside Na to a
continuous function f4 s.t. ||f4||Na ≤ ||f3||Na , and 0 /∈ f4(Na). In this way,
we destroy all zeros of f3 in Ω̄ (although some zeros may still exists outside
Ω̄). We assumed that ||f2||Wj ≤ ε, so ||f3||Wj ≤ ε + ε1 ≤ 2ε and f4|Wj is a
continuous 4ε-perturbation of f |Wj . Changing f3 independently in each Na,
the resulting function f4|Ω̄ is a nowhere zero continuous 4ε-perturbation of
f . �

7 Proof of Definiteness

We will prove here that the algorithm CheckSat proposed in Section 3 fulfills
the second part of its specification, that is, definiteness. This will complete
the proof of Theorem 1. The definiteness proof will again be divided into
the cases constituting the definition of class B, from which correctness of
the overall, recursive algorithm follows by induction.

Unlike in Section 5, in this section, the assumption that the symbol set
of our language contains rational constants, addition, and multiplication,
and consequently all polynomials with rational coefficients is needed: it will
allow us to construct terms representing functions that are arbitrarily close
to a given continuous function.
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7.1 System of Equations and Inequalities

We again start with the case (a) of class B, that is, a formula S of the form

∃x ∈ B . [f1 = 0 ∧ f2 = 0 ∧ . . . ∧ fn = 0 ∧ g1 ≥ 0 ∧ g2 ≥ 0 ∧ . . . ∧ gk ≥ 0]

where B is an m-box. Assuming that the formula has l free variables, we
again denote by f : Rl+m → Rn the function defined by the components
(f1, . . . , fn) and g : Rl+m → Rk the function defined by the components
(g1, . . . , gk).

Theorem 7 The algorithm SoEI(S, P, r) described in Section 3.1 fulfills the
definiteness property of the specification of CheckSat (defined at the begin-
ning of Section 3).

Proof.
Let P0 be an l-box bounding the free variables of S. We divide the proof

into two parts:
Negative case:

Assume that ∃x ∈ B . f(p0) = 0 ∧ g(p0) ≥ 0 is robustly false for each
p0 ∈ P0. We construct an ε > 0 such that for every r ≤ ε and every sub-box
P ⊆ P0 with width smaller than r, the algorithm returns {F}:

The sets X = {(p, x) ∈ P0×B | f(p, x) = 0} and Y = {(p, x) ∈ P0×B |
g(p, x) ≥ 0} are compact and disjoint, so they have a positive distance. For
a small enough α > 0, the sets X ′ = {(p, x) ∈ P0 × B | |f(p, x)| ≤ α} and
Y ′ = {(p, x) ∈ P0 × B | g(p, x) ≥ (−α, . . . ,−α)} are still disjoint and have
a positive distance d > 0.1 If ε0 is small enough, any box of width smaller
than ε0 either has an empty intersection with X ′ or an empty intersection
with Y ′.

The second property of interval computability implies that for α there
exists a δ > 0 such that any box A ⊆ B with width(A) < δ and box P ⊆ P0

with width(P ) < δ have the following properties:

• If P ×A has empty intersection with X ′, then 0 /∈ I(f)(P ×A).

• If P×A has empty intersection with Y ′, then I(g)(P×A)∩[0,∞)k = ∅.

So, if we call the CheckSat algorithm with r ≤ ε := min{δ, ε0} and
P ⊆ P0 of width smaller than r, then for every A ⊆ B in the resulting Sr-
grid, either P×A has empty intersection with X ′ or it has empty intersection
with Y ′ and due to the above properties, A satisfies that 0 /∈ I(f)(P ×A) or
I(g)(P × A) ∩ [0,∞)k = ∅. So the test at Line 3 of the algorithm succeeds

1This follows from the fact that X resp. Y can be separated by open ε′-neighborhoods
U(X) resp. U(Y ) with positive distance from each other, and the fact that using the
uniform continuity of |f | and g, X ′ ⊆ U(X) and Y ′ ⊆ U(Y ) for α small enough.
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and the algorithm terminates with {F}.

Positive Case:
Assume now that ∃x ∈ B . f(p0) = 0 ∧ g(p0) ≥ 0 is robustly true for

each p0 ∈ P0. We prove that there exists an ε > 0 such that for every r ≤ ε
and every sub-box P ⊆ P0 with width smaller than r, the algorithm returns
{T}.

Exploiting that our given set of functions symbols allows us to form
polynomials with rational coefficients, it follows that for some α > 0, each
α-perturbation f̃ of f(p0) and g̃ of g(p0) such that each component of f̃ and
of g̃ is a polynomial with rational coefficients, satisfies that ∃x ∈ B . f̃ =
0 ∧ g̃ ≥ 0 is true. In particular, each polynomial α-perturbation of f(p0) = 0
with rational coefficients has a root in the compact set C := {x ∈ B |
g(p0, x) ≥ α}.

Now we show that m = n. Otherwise m < n and by Lemma 5 there exist
arbitrary close continuous perturbations f̃ of f(p0) with no root in C. The
absolute value of each such f̃ has a positive minimum on C and arbitrary
close to f̃ are rational polynomials with no root in C. But then arbitrary
close to f(p0) would be polynomials with no root in C which contradicts
our assumption. Therefore, m = n.

We will now prove that for all p0 ∈ P0 there is an open neighborhood
U(p0) of p0 and ε(p0) > 0 such that for all P ′ ⊆ U(p0), SoEI(S, P ′, ε(p0))
terminates with {T}. So let p0 ∈ P0 be arbitrary, but fixed, for which we
will now construct such a U(p0) and ε(p0).

Let Ω1 ⊆ B be an open neighborhood of C in B such that Ω1 ⊆ {x ∈
B | g(p0, x) ≥ α/2} and let Ω be the interior of Ω̄1 in Rn. We already know
that each small enough polynomial perturbation of f(p0) has a zero in Ω̄.

By construction, Ω̄ = Ω̄1 and Ω̄ is the closure of its interior, so we are
now ready to use Theorem 6. It implies that there exists an open U ⊆ Ω
such that 0 /∈ f(p0)(∂U) and deg (f(p0), U, 0) 6= 0. Otherwise, by Theo-
rem 6 there would exist continuous perturbations of f(p0) with no zero in
Ω̄ arbitrary close to f(p0) and it easily follows that there would also exist
rational polynomial perturbations arbitrary close to f(p0) with no zero in
Ω̄.

While deg (f(p0), U, 0) 6= 0 and the inequalities of S strictly hold for
all elements of {p0} × U , the set U is not a union of boxes, and hence
the algorithm will, in general, not come up with this set. So our goal is
now to construct U(p0) and ε(p0) in such a way that for all P ′ ⊆ U(p0),
SoEI(S, P ′, ε(p0)) approximates U closely enough for the degree test (Line 10
of the algorithm) and the test of inequality satisfaction (Line 12) to succeed.
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Let U(p0) ⊆ P0 be an open neighborhood of {p0} in P0 such that (U(p0)×
Ω) ⊆ {(p, x) | g(p, x) ≥ α/4}2 and let εg(p0) be so small that for every box
K ⊆ U(p0)× Ω of width less than εg(p0),

I(g)(K) ⊆ (0,∞)k (1)

which exists due to the second property of the definition of interval com-
putability.

Possibly making U(p0) smaller, we may assume that 0 /∈ f(U(p0)×∂U).
Let V ⊆ Ω be a neighborhood of ∂U open in B such that 0 /∈ f(U(p0)× V̄ )
(in these constructions we exploit the compactness of ∂U , resp. U(p0)).
We will further assume that U(p0) is connected (if it were not, we could
replace it by the connected component of p0 in U(p0)). The compactness
of U(p0) × V̄ implies that |f | has a positive minimum on this set and the
second property of the definition of interval computability implies that there
exists an εf (p0) such that for every sub-box K ⊆ U(p0)×V of width smaller
than εf (p0),

0 /∈ I(f)(K). (2)

Let εV (p0) be such that each box of width less than εV (p0) that has a
nonempty intersection with ∂U lies in V . Let ε(p0) be min{εf (p0), εg(p0), εV (p0)}.

Having constructed U(p0) and ε(p0) we will now show that they are
indeed small enough for the algorithm to return a positive result: Let P ′ ⊆
U(p0) be a box of width at most ε(p0). We will show that SoEI(S, P ′, ε(p0))
terminates with {T}. The algorithm creates a grid of boxes Sr such that
each grid element has width at most ε(p0). It merges boxes containing a
face C such that 0 ∈ I(f)(P ′×C) and removes elements (i.e. merged boxes)
containing a face C ⊆ ∂B such that 0 ∈ I(f)(P ′×C). Let us denote by Sm

r

the set containing all these merged boxes after the removal. So, elements
of Sm

r can be identified with unions of boxes in Sr. Let M be the smallest
union of elements in Sm

r such that M ⊇ U . M consists of unions of boxes in
Sr that are either contained in U or intersect ∂U and hence are contained
in V . It follows that M ⊆ Ω (by a slight abuse of notation, we denote by M
both the set of elements as well as the underlying space). Further, ∂M ⊆ V ,
0 /∈ I(f)(P ′ × C) for any boundary box C ⊆ ∂M (due to (2)) and

deg (f(p′),M◦, 0) = deg (f(p0),M◦, 0) = deg (f(p0), U, 0) 6= 0

for any p′ ∈ P ′. The first identity follows from the fact that U(p0) is
connected, hence p0 and p′ can be connected by a curve that gives rise to
a homotopy between f(p′) and f(p0) that is nowhere zero on the boundary
faces of M , see axiom 3 defining the degree in Section 4. The second identity

2The set {(p, x) | g(p, x) > α/4} is an open neighborhood of {p0} × Ω̄ and the com-
pactness of Ω̄ implies that there is a neighborhood U(p0) of {p0} such that U(p0)× Ω ⊆
{(p, x) | g(p, x) > α/4}.
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follows from the fact that 0 /∈ f(M \U) and axiom 4 of Section 4 applied to
Ω̄ = M , Ω1 = U and Ω2 = ∅.

Let p′ ∈ P ′ be chosen in the algorithm. There exists a subset M ′ ⊆ M
that consists of elements in Sr where the algorithm finds that deg (f(p′), (M ′)◦, 0) 6=
0 (otherwise, M would be a union of subsets on which f(p′) has zero degree,
contradicting deg (f(p′),M◦, 0) 6= 0). Then it splits elements of M ′ back to
the corresponding elements in Sr and checks the condition whether for all
boxes E ∈ Sr(M ′), I(g)(P ′ ×E) ⊆ (0,∞)k. This is satisfied due to (1) and
the algorithm terminates with {T}.

So we now know that for all p0 ∈ P0, there is an U(p0) and ε(p0) > 0
such that for all P ′ ⊆ U(p0), SoEI(S, P ′, ε(p0)) terminates with {T}. So,
we have a covering {U(p0) | p0 ∈ P0} of the compact set P0 and can choose
a finite sub-covering {U(p1), . . . , U(ps)}. There exists an ε′ such that each
box P ⊆ P0 of width smaller than ε′ is contained in some U(pj). Let ε be
the minimum of ε′ and all the ε(pj), j ∈ {1, . . . , s}. For any P ⊆ P0 of width
at most ε, SoEI(S, P, ε) terminates with a positive result {T}. �

7.2 Universal quantifiers

Theorem 8 Let S be a formula and let I be a closed interval. Let P be
an l-box bounding the free variables of the formula ∀x∈ I . S. Assume that
an algorithm CheckSat fulfilling the definiteness property is given. Then
also the algorithm Univ(∀x∈ I . S, P, r) described in Section 3.2 fulfills the
definiteness property.

Proof. Assume that for all p0 ∈ P0, the sentence ∀x ∈ I . S[p ← p0] is
robustly true. Then, by Lemma 4, for all p0 ∈ P0 and all x0 ∈ I, S[p ←
p0][x ← x0] is robustly true and the property follows directly from the
assumption on CheckSat.

Assume now that for all p0 ∈ P0, ∀x ∈ I . S[p ← p0] is robustly false.
Let p0 ∈ P0. Then there exists a x0 ∈ I such that S[p ← p0][x ← x0]
is false, and hence, due to Lemma 3, it is also robustly false. From this,
Lemma 2 implies that there is a neighborhood P (p0) of p0 and I0 of x0 such
that for all p′0 ∈ P (p0) and x′0 ∈ I0, S[p ← p′0][x ← x′0] is false. It follows
from the assumption on CheckSat that there exists an εp0 such that for all
P ′ ⊆ P (p0), I ′ ⊆ I of width at most εp0 , CheckSat(P ′×I ′, S, εp0) terminates
with {F}.

Because P0 is compact, we can cover it by {P (p0); p0 ∈ Λ} for a finite set
Λ. It is easy to see that there exists an ε′ such that any box of side-length
smaller than ε′ is in at least one of these P (p0). Now, choose ε to be smaller
than ε′ and smaller than εp0 for all p0 ∈ Λ. For any box P of side-length at
most ε, the algorithm Univ(∀x ∈ I . S, P, ε) terminates with {F}. �
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7.3 Conjunction and Disjunction

Theorem 9 Let S and T be two formulas in B and assume that CheckSat
fulfills the definiteness property both when applied to S and when applied T .
Then Conj(S∧T, P, r) (described in Section 3.3) also fulfills the definiteness
property.

Proof. Let pS , and pT , respectively, be the function that projects any
l-tuple corresponding to the free variables of S ∧ T to those components
corresponding to the free variables of S, and T , respectively.

We first assume that for all p0 ∈ P0 the sentence (S ∧ T )[p ← p0] is
robustly true. Then for all p0 ∈ P0, S[pS(p)← pS(p0)] is robustly true and
for all p0 ∈ P0, T [pT (p) ← pT (p0)] is robustly true. So, by definiteness of
the recursive call, there exists an ε1 > 0 such that if r ≤ ε1 and the width
of P1 ⊆ P0 is less than r, then CheckSat(S, pS(P1), r) terminates with {T}.
An analogous ε2 exists for T . For ε < min{ε1, ε2}, r ≤ ε and P ⊆ P0 of
width less than r, Conj(S ∧ T, P, r) terminates with {T}.

Suppose that for all p0 ∈ P0, (S ∧T )[p← p0] is robustly false. Then, for
any p0 ∈ P0, either S[pS(p)← pS(p0)] or T [pT (p)← pT (p0)] is robustly false.
Let p0 ∈ P0. Assume, without loss of generality, that S[pS(p) ← pS(p0)] is
robustly false. By Lemma 2 there exists a neighborhood U of p0 such that
for every u ∈ U , S[pS(p) ← pS(u)] is robustly false. Let P (p0) ⊆ P be a
box neighborhood of p0 contained in the interior of U . By assumption, there
exists an εp0 > 0 such that if r ≤ εp0 and P ′ ⊆ P (p0) has width at most r,
then CheckSat(S, pS(P ′), r) terminates with {F}, hence Conj(S ∧ T, P ′, r)
terminates with {F} as well.

This can be done for each p0 ∈ P0. Let P (p′)◦ be the interior of P (p′) in
the topology of the box P0. Then {P (p′)◦ | p′ ∈ P0} is an open cover of the
compact space P0 and there exists a finite subcovering {P (p1)◦, . . . , P (pm)◦}
of P0. Take ε to be so small that each box P ⊆ P0 of width at most ε is
contained in some P (pj) and ε < mini εpi . Then Conj(S∧T, P, r) terminates
with {F} for any r ≤ ε and any box P of width at most r.

For disjunctions the situation is analogous.
Together with the correctness proof from Section 5 this concludes the

proof of Theorem 1.

8 Limitations on Generalization

We showed in Lemma 5 that an overdetermined system of equations (m < n)
never has a robust solution. In the underdetermined case (m > n), in some
cases, we could fix m−n input variables in f to constants a ∈ Rm−n and try
to analyze the formula ∃x ∈ Ω̄a . f(a, x) = 0, where Ω̄a = {x ∈ Rn | (a, x) ∈
Ω̄}. If f(a, ·) has a robust zero in Ω̄a, then f has a robust zero in Ω̄. However,
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the converse is not true: If f(a, ·) does not have a robust zero in Ω̄a for any
fixed choice of a ∈ Rm−n (the components of a ranging over all (m − n)-
subsets of the total number of m variables), f still may have a robust zero
in Ω̄.

Indeed, Theorem 2 states that a generalization to the underdetermined
case is (under certain weak conditions) impossible, and we will spend the
rest of this section to prove this theorem. If Q is a quasi-decision procedure
(Def. 4) and I an algorithmic assignment of I(f) to all function symbols
f , we will denote by QI the algorithm that takes a sentence ϕ and returns
Q(ϕ, I). We need the following:

Lemma 8 Assume that there exists a quasi-decision procedure Q for some
class of formulas such that each function symbol appears in each formula at
most once, and such that each term in each formula consists of one single
function symbol. Assume that the quasi-decision procedure has access only
to the oracle I(f) for each function symbol f in the formula.3

Then there exists an algorithmic assignment I ′(f) to all function symbols
f such that QI′(ϕ) terminates if and only if ϕ is robust.

Proof. Let us define the addition of boxes naturally by B1 + B2 :=
{b1 + b2 : b1 ∈ B1, b2 ∈ B2}. For every function symbol f corresponding
to a function B → Rn, let I ′(f) be the algorithm defined by I ′(f)(B′) :=
I(f)(B′) + [−width(B′),width(B′)]n. This algorithm is a modification of
I(f), it still represents the function f and satisfies the assumptions of Defi-
nition 1. However, for any box B′ ⊆ B, the output I ′(f)(B′) contains f(B′)
in its interior. We will show that QI′ terminates if and only if the input is
robust.

By definition of Q, QI′(ϕ) terminates whenever ϕ is a robust sentence. It
remains to prove that it does not terminate for inputs that are not robust.
Let ϕ be a fixed non-robust sentence. For proving that QI′(ϕ) does not
terminate, we assume that it does terminate and derive a contradiction.

QI′(ϕ) only uses a finite number of evaluations of I ′(f)(B) with f being
a function in ϕ. Let ϕ̃ be a perturbation of ϕ in which each function f is
replaced by an interval computable function f̃ representable by a term in
our first-order language such that

• ϕ̃ and ϕ have different truth values,

• f̃(B) ⊆ I ′(f)(B) for every B used by QI′(ϕ) in a call to I ′(f)(B).

Such functions exist, because ϕ is non-robust, I ′(f)(B) contains f(B) in its
interior and arbitrarily close to f are other functions representable by a term

3That is, it may call I(f) with any input an arbitrary number of times, but apart from
the results of calling I(f) it does not use any properties of f , nor does it analyze how
I(f) is computed.
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in our first-order language. Now, let I ′′ be equal to I with the exception
that for every f̃ occurring in ϕ̃, I ′′(f̃)(B) :=

• I ′(f)(B), for every box B used by QI′(ϕ) in a call to I ′(f)(B), and

• I(f̃)(B), otherwise.

I ′′ still satisfies both axioms of Definition 1. All function symbols in both
ϕ and ϕ̃ are mutually different and both QI′ and QI′′ do not use any other
information about the function symbols in ϕ and ϕ̃ than the evaluations
I ′(f) and I ′′(f̃), respectively.

However, for every call I ′′(f̃)(B) of QI′′(ϕ̃), and corresponding call
I ′(f)(B) of QI′(ϕ), I ′′(f̃)(B) = I ′(f)(B). Hence QI′′(ϕ̃) uses exactly the
same information about its input as QI′(ϕ) and they have to return the
same result. But this is impossible, because ϕ and ϕ̃ have different truth
values.

Therefore, QI′ does not terminate whenever the input is non-robust. �

For proving Theorem 2 we use a reduction from a recent undecidability
result [16, p. 19]. For this we introduce the following notions: A triangula-
tion of the box [0, 1]d, with d ∈ N, is a subdivision of [0, 1]d into a finite set
S of simplices such that the intersection of any two simplices in S is again
a simplex (possibly empty) in S. A piecewise linear function from [0, 1]d

to Rd is a function that is linear on each simplex of some triangulation. It
is uniquely determined by values on the vertices of the simplices. If the
simplices have rational coordinates and the values of f on the vertices are
all rational, then f is interval computable; moreover, for any box B ⊆ [0, 1]d

with rational vertices, the image f(B) can be computed exactly by means of
linear programming. We summarize the statement given in [16, Inequalities,
Section 4].

Theorem 10 There is no algorithm with the following specification:

Input:

• n, d ∈ N,

• T , a triangulation of [0, 1]d with rational vertices

• (f, g) : [0, 1]d → Rn × R, piecewise linear with rational values on
vertices of T

Output: At least one correct answer from the following two options:

• ∃x ∈ [0, 1]d . f(x) = 0 ∧ g(x) ≤ 0 is robustly true,

• Some 1-perturbation of ∃x ∈ [0, 1]d . f(x) = 0 ∧ g(x) ≤ 0 is false.
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In the cited theorem, the notion of “robustly true” means that for some
ε > 0, for arbitrary continuous functions f̃i and g̃ such that ‖f̃i − f‖ < ε
and ‖g̃−g‖ < ε, it holds that the sentence ∃x ∈ [0, 1]d . f̃(x) = 0 ∧ g̃(x) ≤ 0
is true, not only for interval computable functions from a specified language.
However, if our first-order language contains all piecewise linear functions
with rational values on rational vertices, then both notions of robustness are
equivalent. This can be shown as follows:

Assume that all piecewise linear ε-perturbations f̃PL
i , g̃PL of fi, g satisfy

∃x ∈ [0, 1]d f̃PL(x) = 0 ∧ g̃PL(x) ≤ 0, and for some continuous (ε/2)-
perturbations f ′i , g

′
i the sentence ∃x ∈ [0, 1]d f ′(x) = 0 ∧ g′(x) ≤ 0 is false.

Then the last sentence is also “robustly false” by the remarks after Lemma 3:
“robustly false” here means that any small enough continuous perturba-
tion is false (note that f ′ and g′ doesn’t need to be interval computable).
However, arbitrary close to f ′ and g′ are some piecewise linear functions,
which contradicts our assumption that any piecewise linear ε-perturbation
of ∃x ∈ [0, 1]d f(x) = 0 ∧ g(x) ≤ 0 is true. Therefore, both notions of
being robustly true are equivalent and we do not need to distinguish them
further.

Further, Theorem 10 still holds, if we assume that the function symbols
{f1, . . . , fn, g} in the input formula

∃x ∈ [0, 1]d f1 = 0 ∧ . . . ∧ fn = 0 ∧ g ≤ 0 (3)

are all pairwise different, and that the perturbations consist of formulas in
which all functions are pairwise different. This can be seen as follows:

If, in formula (3), two functions fi and fj or fi and g coincide, we can
easily construct an arbitrary small perturbation of (3) that is false, because
each component can be perturbed independently. So, without loss of gener-
ality, we may assume that all function symbols in the input of Theorem 10
are different. It can easily be shown that the sentence (3) is robustly true if
and only if for some ε > 0, each ε-perturbation

∃x ∈ [0, 1]d f̃1 = 0 ∧ . . . ∧ f̃n = 0 ∧ g̃ ≤ 0

in which all n + 1 functions f̃j , g̃ are different, is true. Similarly, some
1-perturbation is false, if some 1-perturbation in which all functions are
different, is false. Summarizing the previous paragraphs, we obtain the
following consequence:

Lemma 9 Assume that we have a language containing function symbols
for all piecewise linear functions on rational triangulations of [0, 1]d with
rational values on vertices, and the class of all sentences A of the type (3)
such that in each sentence, all function symbols are different. Then there is
no algorithm with the following specification:

Input:

29



• A sentence ϕ from A.

Output: At least one correct answer from the following two options:

• ϕ is robustly true wrt. the class A
• Some 1-perturbation of ϕ from A is false.

Now we are ready to prove Theorem 2:
Proof. [of Theorem 2.] We will assume that a quasi-decision procedure for
the class of sentences defined in Theorem 2 exists, and derive a contradic-
tion. Let us call the assumed quasi-decision procedure Q. We prove that
the existence of Q implies the existence of an algorithm solving the unde-
cidable problem from Lemma 9. For this we will first (Step 1) construct
an algorithm computing positive information, then (Step 2) an algorithm
computing negative information, and finally (Step 3) run them in parallel
to get an algorithm specified in Lemma 9.

Step 1. First we show that the existence of Q implies the existence of
an algorithm with input as in Lemma 9 such that it terminates iff ∃x ∈
[0, 1]d . f = 0 ∧ g ≤ 0 is robustly true.

We can easily construct an algorithm assigning to each piecewise linear
function f : [0, 1]d → R with rational values on the vertices an algorithm
I(f) satisfying the axioms in Definition 1. From the quasi-decision proce-
dure Q for general systems of equations and inequalities we get an algorithm
QI that takes an input such as in Lemma 9 and decides whether it is ro-
bustly true or not, whenever the input is robust. By Lemma 8, we can
algorithmically replace I by I ′ and obtain an algorithm QI′ that terminates
iff the input is robust. This procedure can be modified such that instead
of terminating with {F}, it runs forever. The result is an algorithm that
terminates if and only if the input ∃x ∈ [0, 1]d f = 0 ∧ g ≤ 0 is robustly
true.

Step 2. Now we show that there exists an algorithm with input such as
in Lemma 9 with the following specification:

• if some 1/2-perturbation of ∃x ∈ [0, 1]d . f = 0 ∧ g ≤ 0 is false, then
it terminates, and

• if it terminates, then some 1-perturbation of the above formula is false.

This algorithm can be described as follows: In the i-th step, it constructs the
i-th barycentric subdivision T (i) of the given triangulation T , and further
constructs all piecewise linear functions f ′, g′ on this subdivision such that
their values on the vertices {vk}k of T (i) are rational with denominators at
most i and such that for each k, the values f ′i(vk) resp. g′(vk) differ from
f(vk) resp. g(vk) by less than 1. For all such piecewise linear functions f ′, g′,
the truth value of ∃x ∈ [0, 1]d . f ′ = 0 ∧ g′ ≤ 0 can be computed. Moreover,
due to the restriction on the denominators of the values on the vertices,
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there exists only a finite number of such functions. So, for all those finitely
many f ′ and g′, the algorithm checks whether ∃x ∈ [0, 1]d . f ′ = 0 ∧ g′ ≤ 0
is false and terminates as soon as it finds a pair (f ′, g′) for which the formula
is false.

In the rest of step 2 of the proof we show that this algorithm satisfies
the above specification.

The absolute value |fi − f ′i| of a linear function fi − f ′i is a convex
function on each simplex ∆ ∈ T (i), so on each simplex it attains its maximum
on a vertex. Therefore, a piecewise linear function f ′ is a 1-perturbation of
f iff its restriction to the vertices is a 1-perturbation of the restriction of
f . It follows that f ′ = 0 ∧ g′ ≤ 0 is a 1-perturbation of f = 0 ∧ g ≤ 0
if and only if the differences |fi(vk) − f̃i(vk)| ≤ 1 and |gi(vk) − g̃i(vk)| ≤
1 for all i and all vertices vk. Assume that f, g : [0, 1]d → Rn × R are
piecewise linear on a given triangulation T of [0, 1]d and that some 1/2-
perturbation of f = 0 ∧ g ≤ 0 is unsatisfiable. Each continuous function can
be approximated arbitrarily precisely by some piecewise linear function on
an iterated barycentric subdivision. So, there exists an iterated barycentric
subdivision T (i) of T and piecewise linear functions f̃ , g̃ on T (i) such that
∃x ∈ [0, 1]d . f̃ = 0 ∧ g̃ ≤ 0 is a false 1-perturbation of ∃x ∈ [0, 1]d . f = 0 ∧
g ≤ 0. The algorithm finds this perturbation in its ith step and terminates.

Conversely, if the algorithm terminates, then it had found a false 1-
perturbation of ∃x ∈ [0, 1]d . f = 0 ∧ g ≤ 0.

Step 3. Finally, we show that the existence of Q contradicts Lemma 9.
Given piecewise linear functions (f, g) : [0, 1]d → Rn×R with non-repeating
function symbols and the quasi-decision procedure Q for systems of equa-
tions and inequalities, we could run an algorithm specified in Step 1 that
terminates if and only if ∃x ∈ [0, 1]d . f = 0 ∧ g ≤ 0 is robustly true. Fur-
ther, by Step 2, we could run another algorithm that terminates whenever
some 1/2-perturbation of this formula is false. A formula is either robustly
true, or has a false 1/2-perturbation, so at least one of these algorithm would
always terminate. If the first algorithm terminates, we know that the for-
mula is robustly true and if the second one terminates, we know that some
1-perturbation is false. Thus, we could choose at least one correct answer
from the output specified in Lemma 9, which is impossible. �

9 Related Work

From the very beginning of engineering the notion of robustness has played
a key role. This is being recognized more and more in several scientific
fields: For example, the field of robust control [45, 6] is now considered as a
central subject of control engineering. Robustness also plays an increasingly
important role in applied and computational mathematics, as shown by
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the emerging fields of robust optimization [5] and uncertainty quantification
(with a journal of the same name recently having been launched by SIAM).

Also in the computing field, robustness has been a core issue from the
very beginning. In computer systems design this is usually captured by the
keyword ”fault-tolerance” and for numerical algorithms ”stability”. Robust-
ness also plays an important role in computational geometry [44].

In the complexity analysis of algorithms, the notion of perturbation has
helped to explain the good practical behavior of algorithms with exponential
worst-case complexity [40]. The present paper in analogy applies Spielman
and Deng’s [41] motivation ”The basic idea is to identify typical properties
of practical data, define an input model that captures these properties, and
then rigorously analyze the performance of algorithms assuming their inputs
have these properties” to undecidable problems, where the main goal then
is not performance analysis but finding a terminating algorithm.

Apparently, the first paper that follows this approach of ensuring termi-
nation of an algorithm for all robust inputs to an undecidable problem (in
this case safety verification of hybrid systems) is due to Fränzle [19]. Since
then, a similar approach has been applied several times [19, 20, 35, 37, 13,
e.g.] to problems in formal verification.

To the best of our knowledge, the first paper to apply such an approach
to decision procedures for the real numbers is by one of the co-authors [34,
Theorem 5] (see also [37, Theorem 6]), based on an analysis of robustness of
first-order formulas [35]. The main difference to the present paper and—at
the same time—main weakness is, that it expresses equalities of the form
f(x) = 0 as a conjunction of two equalities of the form f(x) ≤ 0∧−f(x) ≤ 0
which—in general—loses robustness, since the two occurrences of f can
be perturbed independently and a solution of f(x) = 0 can vanish under
perturbations of f(x) ≤ 0∧−f(x) ≤ 0. Hence, the corresponding algorithm
need not necessarily terminate in such cases of satisfiable equalities.

Recently, Gao et. al. [22] took a similar approach: They model pertur-
bations of formulas by the notion of δ-strengthening which roughly means
that inequalities of the form f ≥ 0 are replaced by inequalities of the form
f ≥ δ, where δ > 0. However, instead of allowing non-termination in non-
robust cases, the approach uses the notion of δ-decidability that requires
an algorithm to terminate always, but either decides that the input formula
is true, or that a δ-strengthening of the input formula is false. These two
answers overlap, and especially for non-robust inputs, for every δ > 0, a
δ-strengthening of the input is false, and hence both answers are allowed.

Since δ-decidability cannot give a definite answer for inputs that are
false, δ-decidability does not imply quasi-decidability, in general. However,
it does imply quasi-decidability for classes of formulas that are closed un-
der negation, since then it is possible to run the corresponding algorithm in
parallel on both the input formula and its negation. It would be an easy ex-
tension of the algorithm in this paper to return also quantitative information

32



on robustness (i.e. a value ε ∈ R s.t. the input is ε-robust).
Gao and co-authors handle equalities of the form t = 0 as the non-robust

formula −|t| ≥ 0. Hence—in contrast to the present paper—their approach
cannot prove equalities to have a solution. For example, it cannot prove
that ∃x ∈ [−10, 10] . x = 0 is true since this formula is handled as the
non-robust formula ∃x ∈ [−10, 10] . − |x| ≥ 0 for which, for every δ > 0,
the δ-strengthening ∃x ∈ [−10, 10] . − |x| ≥ δ is false. And indeeed, in
such cases the approach returns that a δ-strengthening of the formula is
false. The paper [22] also studies complexity of such algorithms in some
model of computable analysis [8]. Another paper [23] studies δ-decidability
in a satisfiability modulo theory (SMT) context, where the approach either
returns “unsatisfiable” or “a δ-weakening is satisfiable” with the notion of
δ-weakening defined in analogy to δ-strengthening.

Due to the fact that those approaches [37, 22, 23] do not handle equalities
directly, but reformulated as inequalities, those algorithms that do not need
to, and in fact do not exploit continuity of the involved functions. In contrast
to that, in the present paper we use the topological degree as the notion that
captures the essential information about the roots of continuous functions
under continuous perturbations.

All those approaches can depend on the precise way perturbations of
first-order formulas are modeled. There are various possibilities for this,
and some have been compared [35], but a comprehensive exploration of this
is still missing.

The approach of relaxing the semantics of first-order formulas can be
taken even further than just relaxing the dichotomy satisfiable/unsatisfiable.
For example, one can weaken the necessity of distinguishing between close
values [10], or introduce quantifiers that are weaker than the classical ones [36].

Collins [12] presents similar result to ours for the special case of systems
of n equalities in n variables, formulated in the language of computable
analysis [8]. However, the paper contains only very rough proof sketches,
that we were not able to complete into full proofs.

Franek and Krčál study [16] the problem whether or not each continuous
r-perturbation of a system f(x) = 0 has a solution or not, where f : K →
Rn is a piecewise linear function defined on a finite simplicial complex K.
This turns out to be decidable whenever dimK < 2n − 2 or n is even and
undecidable for a fixed odd n ≥ 3 and arbitrary K.

Verification of zeros of systems of equations is a major topic in the in-
terval computation community [30, 39, 26, 21]. However, here people are
usually not interested in some form of completeness of their methods, but
in usability within numerical solvers for systems of equations or global op-
timization.

Basic existence theorems that are commonly used for proving that an
equation f = 0 has a solution in B are Kantorovich’s, Miranda’s and Bor-
suk’s theorem. Among these Borsuk’s theorem is the strongest [3, 21], that
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is, if the assumptions of the other theorems are fulfilled, then the assump-
tions of Borsuk’s theorem are fulfilled as well.

We will now recall Borsuk’s theorem and then compare its power for
proving existence of a zero with that of the use of the topological degree:

Theorem 11 (Borsuk’s theorem) If B ⊆ Rn is open, bounded, convex
and symmetric with respect to an interior point x, f : B̄ → Rn is continuous
and non-zero on the boundary ∂B and if for any x+ y ∈ ∂B and λ > 0,

f(x+ y) 6= λf(x− y),

then f = 0 has a solution in B.

It can be shown that if the assumption of Miranda’s theorem are satisfied,
then the degree has to be 1 or −1 and if the assumption of Borsuk’s theorem
are satisfied, then the degree deg (f,B, 0) has to be an odd number4. On the
other hand, if f has an isolated zero of even degree, then one cannot prove
that using Borsuk’s theorem. A simple illustration of this is the complex
function f(z) = z2 from C ' R2 to itself, defined in a symmetric and
convex neighborhood B of 0 ' (0, 0). This function has a robust zero in
B and deg (f,B, 0) = 2, so the assumptions of Borsuk’s theorem are not
fulfilled in any such neighborhood B.

An essential ingredience of our algorithm is the computation of the
topological degree. Many papers deal with the question of an effective
implementation, e.g. [15, 25, 7, 1, 17]. Our online package TopDeg5 com-
putes deg (f,B, 0) for a function f defined as an expression containing sym-
bols such as polynomials and sin, and a low-dimensional box B. The de-
gree can also be computed by the use of packages for simplicial homology
computations, such as Chomp6, GAP homology packes7, or a collection
of MATLAB routines PLEX 8. However, to compute the degree with the
use of these programs, one has to create first a simplicial approximation of
f/|f | : ∂B → Sn−1, which can be done by means of interval arithmetic.

A limitation of our approach is the fact that while in the context of real-
world problems and engineering applications, the robustness assumption is
natural, theorems with a purely mathematical motivation often fail to be
robust. In such a context, the only option to automatize theorem proving
of first-order sentences of the reals with function symbols such as sin is the

4This can be shown as follows. The function f̃ := f/|f | : ∂B → Sn−1 is homotopic

to g(x) := f̃(x)−f̃(−x)

|f̃(x)−f̃(−x)| via the homotopy H(t, x) = f̃(x)−tf̃(−x)

|f̃(x)−tf̃(−x)| , so f̃ and g have the

same degree. Assumptions on B imply that ∂B ' Sn−1 and an odd map g(−x) = −g(x)
between spheres has odd degree [14, p. 180].

5http://topdeg.sourceforge.net
6http://chomp.rutgers.edu
7http://www.linalg.org/gap.html
8http://comptop.stanford.edu/u/programs/plex/
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systematic usage of heuristics. This has been successfully implemented in
the MetiTarski [2] package.

10 Conclusion

Motivated by the fact that in many application domains robustness is an
essential property of formal models, we showed that for an undecidable class
of first-order formulas over the real numbers one can algorithmically check
satisfiability in all robust cases (under the additional assumption that all
variables range over bound intervals). Moreover, we showed that it is not
possible to generalize this result to the case without restrictions on the
number of variables versus number of equations. Still, it might be possible
to find a quasi-decision procedure for certain, specific numbers of variables
versus equations. Moreover, it might be possible to find a quasi-decision
procedure for a class of formulas with functions that are more specific than
general interval computable.

The generalization to arbitrary existential quantification is hindered by
the fact that the property that ∀x ∈ I . S is robustly true if and only
if for each x0 ∈ I, the sentence S[x ← x0] is robustly true (Lemma 4)
does not hold in analogy for existential quantifiers. The sentence ∃x ∈
[−1, 1] . x = 0 is robustly true but for any x0 ∈ [−1, 1], the sentence x0 = 0
(x0 is considered to be a constant function here) is not robustly true. A
topological reformulation of adding an existence quantifier to the beginning
of a formula would be desirable and could be a subject of future research.

It also remains an open problem to come up with an algorithm that is
both a quasi-decision procedure and efficient in practice.
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