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Regular Language Representations

in the Constructive Type Theory of Coq

Christian Doczkal† · Gert Smolka

March 5, 2018

Abstract We explore the theory of regular language representations in the constructive type

theory of Coq. We cover various forms of automata (deterministic, nondeterministic, one-

way, two-way), regular expressions, and the logic WS1S. We give translations between all

representations, show decidability results, and provide operations for various closure proper-

ties. Our results include a constructive decidability proof for the logic WS1S, a constructive

refinement of the Myhill-Nerode characterization of regularity, and translations from two-

way automata to one-way automata with verified upper bounds for the increase in size. All

results are verified with an accompanying Coq development of about 3000 lines.

Keywords Regular Languages · Two-Way Automata · WS1S · Constructive Type Theory ·
Interactive Theorem Proving · Coq · Ssreflect

1 Introduction

Regular languages and their representations [20,24,22] are an important topic in Computer

Science. The representations of regular languages range from various forms of automata

(deterministic, nondeterministic, one-way, two-way) to regular expressions and formulas in

monadic second-order logic. The core of the theory consists of algorithms that translate

between different representations, decide language properties like membership and empti-

ness, and realize language operations such as union, complement, concatenation, iteration,

word reversal, right-quotient, and image and preimage under word homomorphisms. The
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translation of formulas to automata yields a decision method for WS1S, a logic with non-

elementary complexity interesting in its own right. Minimal DFAs provide a normal form

for DFAs that is unique up to renaming. There is also an abstract characterization of regular

languages based on finite partitions (Myhill-Nerode relations).

We present a formal development of the aforementioned results in the constructive type

theory of Coq [35]. We observe that constructive type theory provides for an elegant presen-

tation of the theory of regular languages, improving on the usual set-theoretic presentation

by addressing computational issues explicitly and by providing an expressive facility for

inductive definitions. One aspect where the constructive approach leads to new insight is

the Myhill-Nerode theorem, which in the literature is formulated as a nonconstructive char-

acterization of regular languages. We refine the theorem such that we obtain a constructive

characterization of regular languages with a class of finite partitions we call classifiers. Clas-

sifiers provide a big-step representation of DFAs useful for establishing decidability results

and as intermediate representation for the translation of 2NFAs to DFAs.

First-class finite types and dependent types are essential for our development. Languages

are formalized as predicates on words, words are formalized as lists over alphabets, and al-

phabets are formalized as finite types of symbols. Automata are formalized as structures

involving an alphabet and a finite type of states. Classifiers and finite partitions are formal-

ized as functions mapping words to elements of a finite type. Given a two-way automaton

and an input word, we represent the possible configurations as a finite type. Here, dependent

types are used to represent the finitely many possible head positions on the input word. In

order to be able to quantify over automata, (e.g., in the definition of regularity) it is essential

that finite types are first-class objects, which is not the case in HOL-based provers [42].

The results we prove are known in the literature. Our efforts concern constructive proofs

and the formalization of the results and definitions in constructive type theory. Considerable

refinement was needed for the constructive formulation of the Myhill-Nerode theorem. Two

of our main results, the characterization of regular languages with WS1S formulas [6,13,

37] and with two-way automata [31,34,39], have not been formalized before, although their

technical complexity certainly calls for machined-checked proofs. In the case of two-way

automata, we adapt the proofs of Vardi [39] and Shepherdson [34] to tapes with endmarkers

and generalize Shepherdson’s proof from 2DFAs to 2NFAs.

Our main goal is an elegant presentation of the results in constructive type theory with

machine-checked proofs. Constructive type theory ensures that all constructed functions are

computable. Our focus is on clarity and simplicity, concrete executability is not a concern.

The paper develops the theory and the proofs in an informal mathematical language

based on constructive type theory and is accompanied by a Coq development [10]. The

paper and the Coq development are aligned such that it is easy to go back and forth. All

numbered theorems in the paper correspond to theorems in the Coq development, and the

proofs in the paper outline the Coq proofs. When appropriate, we discuss issues concerning

the Coq development in the paper, but we do not give Coq code in the paper.

The Coq development employs the Ssreflect extension and makes essential use of the

basic modules of the Mathematical Components library [36]. The development consists of

about 3000 lines of code. The two biggest parts are the results about WS1S (870 lines) and

two-way automata (550 lines).

As it comes to related work, we distinguish between work concerned with the theory

of regular languages and work concerned with the formalization of regular language the-

ory using interactive theorem provers. Papers from the first group will be mentioned in the

technical sections of the paper they relate to, while papers from the second group will be

discussed in Section 14.
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The present paper extends and revises the material of two previous conference pa-

pers [11,12] of the authors.

The paper is organized as follows. We start with type-theoretic preliminaries (Section 2)

and fix notations for languages (Section 3). We then define the notion of regularity using

DFAs (Section 4). Afterwards, we consider classifiers (Section 5), NFAs (Section 6), and

regular regular expressions (Section 7) and show that they yield representations of of regular

languages. The remaining part of the paper studies DFA minimization (Section 8), two-way

automata (Sections 9 to 11), and the logic WS1S (Sections 12 and 13).

2 Type Theory Preliminaries

We formalize our results in the constructive and intensional type theory of the proof assistant

Coq. In this setting, decidability properties are of great importance. A decider for a predicate

P : X → Prop is a boolean predicate p : X → B satisfying

∀x.Px ↔ (px = true)

We call a predicate decidable if it has a decider. Similar to predicates, a decidable proposi-

tion is a proposition that is equivalent to some boolean expression. We will mostly use the

same notation for decidable propositions and the associated boolean expressions. In partic-

ular, if a boolean b appears as a proposition, it is to be read as b = true.

In Coq, operations such as boolean equality tests and choice operators are not available

for all types. Nevertheless, there are certain classes of types for which these operations are

definable. For our purposes, three classes of types are of particular importance. These are

discrete types, countable types, and finite types [16].

We call a type X discrete if equality on (elements of) X is decidable. The type of

booleans B and the type of natural numbers N are both discrete.

We call a type X countable if there are functions f : X → N and g : N→ X⊥ (X⊥ being

the option type over X) such that g( f x) = Somex for all x : X . Since N is discrete, all

countable types are also discrete. Moreover, every countable type X comes equipped with a

choice operator

xchooseX : ∀p : X → B.(∃x. px)→ X

satisfying p(xchooseX pE) for all E : (∃x. px). That is, xchooseX turns abstract1 existence

proofs into concrete witnesses. If X is countable, the type X∗ of lists over X is also countable.

We will repeatedly make use of the fact that surjective functions from countable types

to discrete types have right inverses.

Lemma 2.1 Let X be countable, let Y be discrete, and let f : X →Y be surjective. Then one

can define a function f : Y → X such that f ( f y) = y for all y.

Proof By surjectivity, we have a proof E : (∀y∃x. f x = y). It is easy to verify that f y :=
xchooseX (E y) is a right inverse as required. ⊓⊔

A finite type is a discrete type X together with a duplicate free list enumerating all ele-

ments of X . If X is finite, we write |X | for the number of elements of X and rankx for the

position of an element x : X in the list enumerating the type. For our purposes, the most im-

portant property of finite types is that quantification over finite types preserves decidability.

1 Here, abstract means that no witness can be extracted from the existence proof. The function xchooseX

computes a witness by enumerating elements of X . The proof argument is only used to guarantee termination.
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Discrete, countable, and finite types are closed under forming product types X ×Y , sum

types X +Y , and option types X⊥. Moreover, all three classes of types are closed under build-

ing subtypes with respect to decidable predicates. Let p : X → B. The Σ -type {x : X | px},

whose elements are dependent pairs of elements x : X and proofs of px= true, can be treated

as a subtype of X . In particular, the first projection yields an injection from {x : X | px} to X

since px = true is proof irrelevant, i.e., has at most one proof [18].

Finite types also come with a power operator. That is, if X and Y are finite types then

there is a finite type Y X whose |Y ||X | elements represent the functions from X to Y up to

extensionality. We write 2X for the finite type of (extensional) finite sets with decidable

membership represented as BX . If a finite type X appears as a set, it is to be read as the full

set over X .

3 Languages in Constructive Type Theory

An alphabet is a finite type. A word over an alphabet is a list over the alphabet. We shall

use the letters Σ and Γ for alphabets. Since we write X∗ for the type of lists over X , Σ ∗

denotes the type of words over Σ . The elements of an alphabet are called symbols. We shall

use the letters a and b for symbols and the letters x, y, and z for words. As usual, we write ε

for the empty word (i.e., the empty list), xy or x · y for the concatenation of words, a for the

singleton word [a], an for the word consisting of n occurrences of the symbol a, and |x| for

the length of words. We also write x[n,m] for the subword from position n (inclusive) to m

(exclusive).

A language over Σ is a unary predicate on Σ ∗. We shall write x ∈ L for Lx when con-

venient. Given that we work in an intensional type theory, languages containing the same

words are not necessarily equal. We call two languages equivalent and write L1 ≡ L2 if they

contain the same words. The absence of extensionality will not cause difficulties since all

our constructions respect language equivalence. Note that in contrast to languages, which are

predicates on the infinite type Σ ∗, sets over finite types (e.g., sets of states) are represented

extensionally.

We employ the usual notations for languages. We write /0 for the empty language,

Σ ∗ for the language of all words, L := Σ ∗ \ L for complements of languages, L1 · L2 :=
{xy | x ∈ L1,y ∈ L2 } for concatenations of languages, L0 := {ε} and Ln+1 := L · Ln for

powers of languages, and L∗ :=
⋃

n Ln for Kleene stars of languages. Further, we write

L1/L2 := {x | ∃y ∈ L2.xy ∈ L1 } for right quotients and L1\L2 := {y | ∃x ∈ L1.xy ∈ L2 }
for left quotients of languages. Moreover, we write RL(x) := {y | xy ∈ L} for the resid-

ual language of L with respect to x. Note that residual languages are a special case of left

quotients. That is, we have RL(x) ≡ {x}\L (but not RL(x) = {x}\L due to the absence of

extensionality).

A function h : Σ ∗ → Γ ∗ from words to words is a (word) homomorphism if h(x · y) =
h(x) · h(y). We write h−1(L) := {x | hx ∈ L} for the preimage of L under h and h(L) :=
{y | ∃x ∈ L.hx = y} for the image of L under h.

Lemma 3.1 Let x ∈ Σ ∗, let L and L′ be decidable languages, and let h be a homomorphism.

Then the languages Σ ∗, /0, {x}, L, L∪L′, L∩L′, L ·L′, L∗, RL(x), and h−1(L) are decidable.

Proof Let x : Σ ∗. Then x∈ L ·L′ is decidable since there are only finitely many ways to split x.

Decidability of x ∈ L∗ then follows by complete induction on |x| using the equivalence

ax ∈ L∗ ↔ x ∈ RL(a) ·L
∗. All other claims are trivial. ⊓⊔
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Note that the language h(L) is generally not decidable even for decidable L.2 The languages

associated to the various representations of regular languages will always be decidable.

4 Deterministic Finite Automata

Deterministic finite automata (DFAs) can be seen as the most basic operational represen-

tation of regular languages. We take DFAs to be the representation defining the notion of

regularity.

Definition 4.1 A deterministic finite automaton (DFA) is a structure (Q,s,F,δ ) where

– Q is a finite type of states.

– s : Q is the starting state.

– F : 2Q is the set of final states.

– δ : Q → Σ → Q is the transition function.

In Coq, we represent DFAs using dependent records:

dfa := { state : finType

start : state

final : set state

trans : state→ Σ → state}

Here, state : finType restricts the type of states to be a finite type. The combination of de-

pendent records and finite types provides for a formalization of finite automata that is very

convenient to work with. In particular, there are no well-formedness conditions.

Let A = (Q,s,F,δ ) be a DFA. We extend δ to a function δ̂ : Q → Σ ∗ → Q by recursion

on words:3

δ̂ qε := q

δ̂ q(ax) := δ̂ (δ qa)x

If δ̂ qx ∈ F for some state q and some word x, we say that q accepts x. The language of A is

then defined as the language accepted by the starting state:

L (A) := {x ∈ Σ ∗ | δ̂ sx ∈ F }

Note that L (A) is a decidable language.

Definition 4.2 A DFA A accepts a language L if L ≡ L (A).

Definition 4.3 A language is regular if it is accepted by some DFA.

Regular languages enjoy a number of closure properties. The closure under boolean

operations (e.g., complement and intersection) and preimages of homomorphisms can easily

be established using DFAs. For other closure properties we will use different representations.

2 The language L := {anbm | The n-th Turing machine holds within m steps on input ε } is decidable, but

the image of L under the homomorphism mapping a to a and b to ε is undecidable.
3 In [24], δ̂ is defined recursively starting from the right end of the word. In Coq, structural recursion is

more natural and the impact on the proofs appears to be minimal.
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Lemma 4.4 Let A1 and A2 be DFAs, and let ⊙ : B→ B→ B. Then one can construct DFAs

accepting L (A1) and {x | x ∈ L (A1)⊙ x ∈ L (A2)}.

Proof We show the case for the binary boolean operation “⊙”. Let A1 = (Q1,s1,F1,δ1) and

A2 = (Q2,s2,F2,δ2). It is easy to verify that the DFA (Q,s,F,δ ) where

Q := Q1 ×Q2 F := {q | q ∈ F1 ⊙q ∈ F2 }

s := (s1,s2) δ (p,q)a := (δ1 pa,δ2 qa)

accepts {x | x ∈ L (A1)⊙ x ∈ L (A2)}. ⊓⊔

Lemma 4.5 Let L ⊆ Γ ∗ be regular and let h : Σ ∗ → Γ ∗ be a homomorphism. Then h−1(L)
is regular.

Proof Let A = (Q,s,F,δ ) be a DFA accepting L. Then the DFA (Q,s,F,δ ′) with δ ′pa :=

δ̂ p (ha) accepts h−1(L). ⊓⊔

We now prove two criteria for nonregularity. The first criterion is based on residual

languages. The reachable states of a DFA accept, up to equivalence, exactly the residual

languages of its language. Consequently, a language with infinitely many nonequivalent

residual languages cannot be regular.

Theorem 4.6 (Residual Criterion) Let L be a language and let f : N→ Σ ∗ such that n = m

whenever RL( f n)≡ RL( f m). Then L is not regular.

Proof Assume that L is regular and let A = (Q,s,F,δ ) be a DFA accepting L. We define

a function g : N → Q as gn := δ̂ s( f n). Using the assumption on f , we obtain that g is

injective. This is a contradiction since Q is finite. ⊓⊔

Example 4.7 Let L = {anbn | n ∈ N}. Then f n := an satisfies the residual criterion.

The contrapositive of Theorem 4.6 is referred to as “Continuation Lemma” in [33].

Another criterion for nonregularity is the Pumping Lemma [31]. The intuition is that for

every DFA the runs on sufficiently long words must include cycles that may be repeated by

repeating the corresponding part of the input word.

Lemma 4.8 Let A be a DFA and let x,z,y : Σ ∗. If xyz ∈ L (A) and |A|< |y|, then there exist

u, v, and w such that y = uvw, v 6= ε , and xuviwz ∈ L (A) for all i : N.

Proof Let A=(Q,s,F,δ ) and xyz∈L (A) with |A|< |y|. Let f (n) := δ̂ (δ̂ sx)(y[0,n]). Since

|A| < |y|, we obtain j < k < |y| such that f ( j) = f (k). It is easy to verify that u := y[0, j],
v := y[ j,k] and w := y[k, |y|] satisfy the required properties. ⊓⊔

Note that the argument in the proof of Lemma 4.8 does not make use of the notion of “runs”

employed in the informal argument. While the notion of a run provides useful intuitions

about DFAs, the formalization of our results for DFAs would not profit from making the

concept explicit.

Lemma 4.9 (Pumping) Let L ⊆ Σ ∗. Then L is nonregular if for all k ∈ N there exist words

x,y,z : Σ ∗ such that k ≤ |y|, xyz ∈ L, and for all u,v,w such that y = uvw and v 6= ε there

exists some i such that xuviwz /∈ L.

We include the Pumping Lemma because of its ubiquity in the literature. For proofs of

nonregularity, the Residual Criterion (Theorem 4.6) is usually easier to use. In particular, the

Pumping Lemma is incomplete in the sense that there are examples of decidable nonregular

languages (cf. [21]) that do not satisfy the precondition of Lemma 4.9.
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5 Classifiers

We now introduce the notion of classifier. A classifier is a function that can be seen as rep-

resenting a right-congruent partition of Σ ∗ with finite index. Right-congruence provides for

a cut-off property that is useful for establishing decidabiliy properties. Moreover, classifiers

refining a given language correspond to Myhill-Nerode relations [20,24]. Based on classi-

fiers, we will establish a constructive Myhill-Nerode characterization of regularity.

Definition 5.1 We call a function f : Σ ∗ → Q classifier if Q is a finite type and f is right-

congruent, i.e., f (xa) = f (ya) whenever f x = f y.

Lemma 5.2 Let f : Σ ∗ → Q be a classifier and let x be a word such that |Q| < |x|. Then

there exists some word y such that |y|< |x| and f x = f y.

Proof Since |Q| < |x|, there exist i, j such that i < j < |x| and f (x[0, i]) = f (x[0, j]). The

claim then follows with right-congruence by setting y := x[0, i] · x[ j, |x|]. ⊓⊔

Theorem 5.3 (Cut-Off) Let f : Σ ∗ → Q be a classifier and let P : Q → Prop. Then

(∃x.P( f x)) ↔ ∃x. |x| ≤ |Q|∧P( f x)

Proof By complete induction on |x| using Lemma 5.2. ⊓⊔

Corollary 5.4 Let f : Σ ∗ → Q be a classifier. Then ∃x. p( f x) and ∀x. p( f x) are decidable

for all decidable predicates p : Q → B.

Proof Decidability of ∃x. p( f x) follows with Theorem 5.3, since there are only finitely

many words of length at most |Q|. Decidability of ∀x. p( f x) then follows from decidability

of ∃x.¬p( f x). ⊓⊔

Corollary 5.5 Let f : Σ ∗ → Q be a classifier. Then the image of f can be constructed as a

subtype of Q.

Proof By Corollary 5.4, we have that ∃x. f x = q is decidable for all q. Hence, we can

construct the subtype {q : Q | ∃x. f x = q}. ⊓⊔

If f : Σ ∗ → Q is a classifier, we write f (Σ ∗) for the subtype of Q corresponding to the image

of f .

We now extend the notion of classifier to classifiers for a given language and show that

this provides another representation for regular languages.

Definition 5.6 Let L be a language. A classifier for L is a classifier that refines L, i.e., a

classifier such that (x ∈ L ↔ y ∈ L) whenever f x = f y.

Fact 5.7 Let A = (Q,s,F,δ ) be a DFA. Then δ̂q is a classifier for the language accepted

by q. In particular, δ̂ s is a classifier for L (A).

Conversely, we can turn a classifier-decider pair for a language into a DFA.

Lemma 5.8 Let L be decidable and let f : Σ ∗ → Q be a classifier for L. Then one can

construct a DFA accepting L that has at most |Q| states.
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Proof By casting the results of f from Q to f (Σ ∗), we obtain a surjective classifier g : Σ ∗ →
f (Σ ∗) for L (Corollary 5.5). Since g is surjective, it has a right inverse g (Lemma 2.1). It is

straightforward to verify that the DFA (Q′,s,F,δ ) where

Q′ := f (Σ ∗)

s := gε

F := {q | gq ∈ L}

δ qa := g((gq) ·a)

accepts the language L and has at most |Q| states. ⊓⊔

Theorem 5.9 A language is regular if and only if it has both a decider and a classifier.

Remark 5.10 Classifiers can be seen as computational representations of Myhill-Nerode

relations (i.e., right congruent relations of finite index that refine the language). Lemma 5.8

corresponds to the observation in [34] that the construction of DFAs from Myhil-Nerode

relations is “effective” (or computational) whenever language membership is decidable and

the number of equivalence classes is bounded. In addition to the upper bound on the number

of equivalence classes (i.e., the size of Q), Lemma 5.8 includes (via the decidable equality

on the finite type Q) the redundant assumption that the Myhill-Nerode relation is decidable.

This simplifies both the statement and the proof and is sufficient for our purposes.

The cut-off property for classifiers (Theorem 5.3) allows us to easily establish decidabil-

ity of language emptiness for DFAs.

Theorem 5.11 1. Language (non-)emptiness for DFAs is decidable.

2. Language inclusion and equivalence for DFAs are decidable.

Proof For (1), let A = (Q,s,F,δ ) be a DFA. Then L (A) is nonempty iff ∃x.δ̂ sx ∈ F

which is decidable since δ̂ s is a classifier (Corollary 5.4). Claim (2) follows with (1) and

Lemma 4.4. ⊓⊔

Note that, constructively, decidability of non-emptiness (i.e., ∃x.x ∈ L) implies decidability

of language emptiness (i.e., L ≡ /0), but not the other way around. We remark that our proof

of decidability of language emptiness is essentially the proof given in [31] with the cut-off

property made explicit.

With decidability of language emptiness in place, we can show the closure of regular

languages under quotients. For DFAs A=(Q,s,F,δ ) and q : Q, we define A[q] :=(Q,q,F,δ ).

Lemma 5.12 Let L1 and L2 be regular. Then L1/L2 is regular.

Proof Let A = (Q,s,F,δ ) be a DFA accepting L1. We want to define a DFA B = (Q,s,F ′,δ )

where F ′ := {q | ∃y ∈ L2. δ̂ qy ∈ F }. For this to be well-defined we need to be able to decide

which states are final states. We have ∃y ∈ L2. δ̂ qy ∈ F iff L2 ∩L (A[q]) is nonempty which

is decidable (Lemma 4.4 and Theorem 5.11). ⊓⊔

Lemma 5.13 Let L1 and L2 be regular. Then L1\L2 is regular.

Proof Let A = (Q,s,F,δ ) be a DFA accepting L2 and let S := {q | ∃x ∈ L1. δ̂ sx = q}.

Similar to the proof of Lemma 5.12, membership in S is decidable since ∃x ∈ L1. δ̂ sx = q is

equivalent to the non-emptiness of L1∩L (B) where B := (Q,s,{q},δ ). It is straightforward

to verify that L1\L2 ≡
⋃

q∈S L (A[q]). Thus, L1\L2 is regular since regular languages are

closed under union (Lemma 4.4). ⊓⊔
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We remark that there are languages that can be shown regular using excluded middle

but cannot be shown regular constructively. To see this, consider the constant language

L := {x | P} where P is some independent proposition (i.e., a proposition for which P∨¬P

is not provable constructively). Assuming ∀P.P∨¬P, one can easily show the existence of a

DFA accepting L. However, even without excluded middle, the existence of a DFA accept-

ing L would allow us to prove ε ∈ L∨ ε /∈ L and therefore also P∨¬P. Hence, we have:

Fact 5.14 (∀P : Prop. P∨¬P) ↔ ∀P : Prop. ∃A : dfa.L (A)≡ {w | P}.

Since the constant function from Σ ∗ to the unit type is a classifier for {x | P}, this

also shows that the restriction to decidable languages in Lemma 5.8 is unavoidable in a

constructive setting. For our use of Lemma 5.8 in the translation from 2NFAs to DFAs

(cf. Section 11), the decidability condition is easily satisfied.

Similar to constant languages, one can show using excluded middle that L1/L2 is regular

whenever L1 is regular (for any language L2). However, without a proper computational

representation of L2 it is impossible to determine which of the finitely many possible sets of

final states is the correct one (cf. proof of Lemma 5.12). In contrast to Lemma 5.8, assuming

decidabiliy of L2 is not sufficient. To see this, consider the regular language L1 := Σ ∗ and the

class of decidable languages L2(m) := {an | the m-th Turing machine holds within n steps

on input ε }. Then L1/L2(m) is nonempty iff the m-th Turing machine halts on input ε . If

we could constructively show the existence of automata for all languages L1/L2(m), this

would give us, via the constructive interpretation of the logic, a method for deciding the

halting problem. A sufficient requirement on the representation of L2 is that non-emptiness

of L2 ∩L (Aq) is decidable. We formalize the case where L2 is given by a DFA and remark

that that a context-free grammar for L2 would suffice.

6 Nondeterministic Finite Automata

Nondeterministic finite automata (NFAs) are another prominent representation of regular

languages. Nondeterminism often allows for constructions that are simpler than directly

constructing DFAs. We give conversions between DFAs and NFAs and then use NFAs to

establish the closure of regular languages under concatenation and Kleene star. We will

also use NFAs as one possible target for the reduction from two-way automata to one-way

automata (Section 10) and to show decidability of WS1S (Section 12).

Nondeterministic finite automata differ from DFAs in that the transition function is re-

placed with a relation. Moreover, we allow multiple starting states.

Definition 6.1 A nondeterministic finite automation (NFA) is a structure (Q,S,F,→) where:

– Q is a finite type of states.

– S : 2Q is the set of starting states.

– F : 2Q is the set of final states.

– → : Q → Σ → Q → B is the transition relation.

We write p
a
→ q for the application of → to p, a, and q.

Let A = (Q,S,F,→) be an NFA. Similar to DFAs, we define acceptance for every state of

an NFA by structural recursion on the input word.

accept pε := p ∈ F

accept p(ax) := ∃q. p
a
→ q∧acceptqx
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The language of an NFA is the union of the languages accepted by its starting states.

L (A) := {x ∈ Σ ∗ | ∃s ∈ S.acceptsx}

Note that since Q is finite, L (A) is a decidable language. As with DFAs, acceptance of

languages is defined up to language equivalence.

Since we allow multiple starting states, the disjoint union of two NFAs yields an NFA

for the union of the respective languages.

Lemma 6.2 Let N be an n-state NFA and let M be an m-state NFA. Then one can construct

an NFA with n+m states that accepts L (N)∪L (M).

Proof Let N = (Q1,S1,F1,→1) and M = (Q2,S2,F2,→2). The NFA for L (N)∪L (M) uses

the sum type Q1 +Q2 as the type of states and { inlq | q ∈ S1 }∪{ inrq | q ∈ S2 } as starting

states. Final states and transition relation are defined analogously. ⊓⊔

We establish the equivalence between DFAs and NFAs using the powerset construction.

Lemma 6.3 For every n-state NFA A, one can construct a DFA with 2n states that accepts

L (A).

Proof Let A = (Q,S,F,→) be an NFA. Then the DFA (Q′,s′,F ′,δ ′) where

Q′ := 2Q F ′ := {X | X ∩F 6= /0}

s′ := S δ ′ X a := {q | ∃p ∈ X . p
a
→ q}

is a DFA accepting L (A). ⊓⊔

Since DFAs can easily be transformed to NFAs, we obtain:

Theorem 6.4 A language is regular if and only if it is accepted by some NFA.

One can work directly with NFAs to show the closure of regular languages under con-

catenation and iteration. Indeed, this is what we did in [11]. However, the proofs become

simpler if one first extends NFAs with ε-transitions.

We define εNFAs like NFAs with additional transitions of the form p
ε
→ q, i.e., transi-

tions that do not consume a symbol from the input word. In contrast to NFAs, acceptance

for εNFAs cannot be defined using a simple recursion on the input word due to possible

sequences of ε-transitions of arbitrary length. Thus, we define acceptance for εNFAs as an

inductive predicate. Let N = (Q,S,F,→) be an εNFA. The acceptance relation for N is

defined inductively as follows:

p ∈ F

acceptε pε

p
a
→ q acceptε qx

acceptε p(a :: x)

p
ε
→ q acceptε qx

acceptε px

Note that, in contrast to NFAs, the language of an εNFA is – a priori – not a decidable lan-

guage. However, decidability (and equivalence to NFAs) are easily established by removing

ε-edges as shown below.

Lemma 6.5 For every n-state εNFA N one can construct an n-state NFA accepting L (N).
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Proof Let N = (Q,S,F,→) be some εNFA. We define an NFA N′ = (Q,S′,F, ) where

S′ := {q | ∃s ∈ S.s
ε
→∗ q}

p
a
 q := ∃q′.p

a
→ q′∧q′

ε
→∗ q

The inclusion L (N′) ⊆ L (N) follows by induction on words. The converse inclusion fol-

lows by induction on the acceptance relation. ⊓⊔

Lemma 6.6 Let N1 and N2 be NFAs. Then one can construct NFAs accepting L (N1)
∗ and

L (N1) ·L (N2).

Proof We show the case for L (N1) ·L (N2). Let N1 = (Q1,S1,F1,→1) and N2 = (Q2,S2,F2,
→2). By Lemma 6.5, it suffices to construct an εNFA. We define an εNFA M = (Q,S,F,→)
where

Q := Q1 +Q2 inl p
a
→ inlq := p

a
→1 q

S := { inl p | p ∈ S1 } inr p
a
→ inrq := p

a
→2 q

F := { inr p | p ∈ F2 } inl p
ε
→ inrq := p ∈ F1 ∧q ∈ S2

and no other transitions are possible. To show that M accepts L (N1) ·L (N2) it suffices to

show the following three properties:

1. ∀p : Q2.accept px → acceptε (inr p)x

2. ∀p : Q1.accept px → y ∈ L (N2)→ acceptε (inl p)xy

3. ∀p : Q1 +Q2.

acceptε px →

{

acceptqx if p = inrq

∃yz. x = yz∧acceptqy∧ z ∈ L (N2) if p = inlq

Claims (1) and (2) follow by induction on x where (1) provides the base case for (2).

Claim (3) follows by induction on acceptε px. ⊓⊔

The proof the lemma above avoids the need for the notion of a run through a simple

generalization of the statement. For the translations from 2NFAs to NFAs (Section 10) and

MSO formulas to NFAs (Section 13) we were unable to find such generalizations. For this

reason, we also formalize the notion of (accepting) runs on NFAs.

Let N = (Q,S,F,→) be an NFA. We define a relation run : Σ ∗ → Q → Q∗ → Prop

relating words and nonempty sequences of states inductively as follows:

q ∈ F

runε q []

p
a
→ q runxql

run(ax) p(q :: l)

An accepting run for x is a sequence of states (s :: l) such that s ∈ S and runxs l. Note that

accepting runs for x must have length |x|+1. We write (ri)i≤|x| for runs of length |x|+1 and

ri for the i-th element (counting from 0).

Lemma 6.7 x ∈ L (N) iff there exists an accepting run for x.
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7 Regular Expressions

In this section we establish the equivalence between finite automata and regular expressions,

another prominent representation of regular languages. While finite automata can be seen as

operational characterizations of regular languages, regular expressions provide a composi-

tional (or algebraic) characterization of regular languages. We consider regular expressions

with the following syntax:

e := /0 | ε | a | e · e | e+ e | e∗ (a : Σ)

As with words, we usually omit the “·” operator. We write |e| for the tree size of e. The

language of a regular expression e, written L (e), is defined as follows:

L ( /0) := /0 L (e1e2) := L (e1) ·L (e2)

L (ε) := {ε} L (e1 + e2) := L (e1)∪L (e2)

L (a) := {a} L (e∗) := L (e)∗

Lemma 7.1 L (e) is a decidable language for every regular expression e.

Proof Immediate with Lemma 3.1. ⊓⊔

Remark 7.2 In the Coq development, we directly assign decidable languages to regular ex-

pressions using the constructions underlying the proof of Lemma 3.1.

The main result of this section is that regular expressions describe exactly the regular

languages. One direction is fairly straightforward.

Lemma 7.3 For every regular expression e one can construct an NFA accepting L (e) that

has at most 2 · |e| states.

Proof By induction on e. The base cases are straightforward, the remaining cases follow

with Lemma 6.2 and the constructions underlying Lemma 6.6. ⊓⊔

We now translate DFAs to regular expressions. There are a number of algorithms for

constructing regular expressions from automata, e.g., Brzozowski’s algebraic method [5]

and Kleene’s algorithm [23,24]. We employ a variant of Kleene’s algorithm for DFAs, be-

cause we deem it easiest to formalize.

For the rest of this section, we fix some DFA A = (Q,s,F,δ ). We define an indexed

collection of transition languages between states p,q : Q as follows:

LX
p,q := {x ∈ Σ ∗ | δ̂ px = q,∀0 < i < |x|.δ̂ p(x[0, i]) ∈ X }

That is, x ∈ LX
p,q if starting from state p and reading x the automaton A ends in state q and

visits only states from X in between. Note that in the particular case where X is Q, the

requirement on the intermediate states is trivially fulfilled. Consequently, the language of A

can be expressed as the union of the transition languages between the starting state and the

final states.

Lemma 7.4 L (A)≡
⋃

q∈F L
Q
s,q



Regular Language Representations in the Constructive Type Theory of Coq 13

That is, to obtain a regular expression for L (A), it suffices to construct regular expressions

for L
Q
s,q where q∈F . We recursively solve this problem for all languages LX

p,q by successively

removing states from X . For the case where X = /0, one can directly give a regular expression.

Let p,q : Q. We define:

R /0
p,q := (if p = q then ε else /0)+∑

a∈Σ
δ (p,a)=q

a

Lemma 7.5 L
(

R /0
p,q

)

≡ L /0
p,q.

For nonempty sets of allowed intermediate states, consider some word x from L
{r}∪X
p,q . Read-

ing x starting from p, the automaton will either not visit r at all, or reach r, go through a

number of cycles starting and ending at r, and then continue to q without visiting r again.

This motivates the following recursive equivalence:

Lemma 7.6 Let p,q,r : Q and X ⊆ Q, then

L
{r}∪X
p,q ≡ LX

p,r ·
(

LX
r,r

)∗
·LX

r,q ∪ LX
p,q

Proof The inclusion from right to left is easy to show. For the other direction, we first show

∀x.x ∈ L
{r}∪X
p,q → x ∈ LX

p,q ∨∃yz.x = yz∧ y ∈ LX
p,r ∧ z ∈ L

{r}∪X
r,q ∧|z|< |x| (*)

We consider two cases:

δ̂ p(x[0, i]) 6= r for all i such that 0 < i < |x|. In this case, we have x ∈ LX
p,q.

δ̂ p(x[0, i]) = r for some i with 0 < i < |x|. Let i be the minimal i satisfying the condition. It

is straightforward to verify that x[0, i] ∈ LX
p,q and x[i, |x|] ∈ L

{r}∪X
r,q . Moreover, |x[i, |x|]|<

|x| since 0 < i.

The inclusion from left to right then follows by complete induction on word length using (*).

⊓⊔

The construction of the regular expression accepting L (A) then follows the recursive struc-

ture given by Lemma 7.6. We define a function reg : Q∗ → Q → Q → regexp by recursion

on the list of states:

reg [] pq := R /0
p,q

reg (r :: l) pq := (reg l pr)(reg l r r)∗(reg l r q)+(reg l pq)

Lemma 7.7 Let l : Q∗ and p,q : Q. Then L (reg l pq)≡ L
{r |r∈ l }
p,q .

Theorem 7.8 A language is regular iff it is accepted by some regular expression.

Proof Let L be a regular language. Since A was chosen arbitrarily, we can assume that

A accepts L. Hence, the claim follows with Lemmas 7.4 and 7.7 (taking l to be the list

enumerating the finite type Q). The converse follows with Lemma 7.3 and Theorem 6.4. ⊓⊔

The equivalence between DFAs and regular expressions yields two closure properties of

regular expressions that are difficult to prove without automata.4

4 Wu et al. [42] derive the closure of regular expressions under complement by proving the Myhill-Nerode

theorem using regular expressions. The proof is significantly more complex than the automata constructions.
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Corollary 7.9 Let e1 and e2 be regular expressions. Then one can construct regular expres-

sions accepting L (e1)∩L (e2) and L (e1).

Remark 7.10 The constructions presented in this section allow the definition of a comple-

mentation operation for regular expressions that causes a doubly-exponential increase in

the size of the expression. The DFA for the complement language of some expression e

can have up to 22·|e| states and the construction underlying Theorem 7.8 yields expressions

of size O(|Σ | · |Q| · 42·|Q|) (see the Coq development for a precise bound). While this may

seem expensive, it matches the doubly exponential lower bound for the complementation of

regular expressions [15].

Using regular expressions, it is straightforward to show that regular languages are closed

under images of homomorphisms and under word reversal.

Lemma 7.11 Let L ⊆ Σ ∗ be regular and let h : Σ ∗ → Γ ∗ be a homomorphism. Then h(L) is

regular.

Proof Let e be a regular expression for L. Replacing all atoms a occurring in e with an

expression accepting {h(a)} yields a regular expression for h(L). ⊓⊔

Lemma 7.12 Let L be regular. Then {x | revx ∈ L} is regular.

Proof Let e such that L (e) ≡ L. It is straightforward to compute a regular expression for

{x | revx ∈ L} by reversing all sequential compositions e1e2 in e. ⊓⊔

Remark 7.13 Closure under word reversal can also be shown using NFAs. However, both

the direct structural acceptance criterion and the notion of accepting run (Section 6) are

asymmetric in that they always need to reach final states. To show closure under word re-

versal using NFAs, we would have to generalize the notion of run to runs between any pair

of states. The proof above requires no such generalization.

Together with the closure properties established in Sections 4 and 6, we obtain:

Theorem 7.14 (Closure Properties) Let L1 and L2 be regular. Then L1, L∗
1,L1∪L2, L1∩L2,

L1 ·L2, h(L), h−1(L), L1/L2, L1\L2 and {x | revx ∈ L} are regular.

Note that, all closure properties are established as operations on the underlying representa-

tions of the input languages.

8 DFA Minimization

In this section, we show that for every regular language there exists a unique minimal au-

tomaton (cf. [24]). The proof is based on a simple minimization function that prunes un-

reachable states and collapses states that accept the same language.

Definition 8.1 Let A = (Q,s,F,δ ) be a DFA. We call A

– connected if every state is reachable, i.e. ∀q : Q∃x : Σ ∗. δ̂ sx = q.

– collapsed if no distinct states p,q : Q are related by the collapsing relation

p ≈A q := ∀x. δ̂ px ∈ F ↔ δ̂ qx ∈ F

– minimal if every DFA accepting L (A) has at least |Q| states.
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The collapsing relation relates states that accept the same language and can therefore be

merged. It turns out that an automaton is minimal iff if it is connected and collapsed. We

first show that all connected and collapsed automata for a given language are isomorphic

and therefore have the same size.

Definition 8.2 Let A1 = (Q1,s1,F1,δ1) and A2 = (Q2,s2,F2,δ2) be DFAs. We call A1 and

A2 isomorphic, if there exists a a bijection i : Q1 → Q2 satisfying

∀q : Q1. i(δ1 qa) = δ2 (iq)a

∀q : Q1. iq ∈ F2 ↔ q ∈ F1

i s1 = s2

Theorem 8.3 Let A1 and A2 be connected and collapsed DFAs accepting the same lan-

guage. Then A1 and A2 are isomorphic.

Proof Let A1 = (Q1,s1,F1,δ1) and A2 = (Q2,s2,F2,δ2). Since A1 and A2 are connected,

δ̂1s : Σ ∗ → Q1 and δ̂2s : Σ ∗ → Q2 are both surjective. By Lemma 2.1, we can define

i :=
(

δ̂2 s
)

◦
(

δ̂1 s
)

j :=
(

δ̂1 s
)

◦
(

δ̂2 s
)

Since A and B are also collapsed, we have i( j p) = p and j(iq) = q for all p and q. Thus,

i : Q1 → Q2 is a bijection. The remaining properties are easy to verify. ⊓⊔

A straightforward consequence of Theorem 8.3 is the fact that every function that estab-

lishes connectedness and collapsedness without increasing the number of states is a correct

minimization function.

Lemma 8.4 Let F : dfa→ dfa such that for all A we have L (FA)≡ L (A), |FA| ≤ |A|, and

FA is connected and collapsed. Then for all A, FA is minimal (and accepts L (A)).

Proof Let B be some DFA accepting L (F A). Then |FA|= |FB| ≤ |B|. ⊓⊔

We now construct a minimization function by defining two operations on DFAs, called

prune and collapse, that preserve the language and respectively establish connectedness and

collapsedness.

For prune we construct the sub-automaton whose type of states is the subtype of reach-

able states. Recall that for every DFA (Q,s,F,δ ) the function δ̂ s is a classifier. Conse-

quently, the pruning function can be defined as follows (cf. Corollary 5.5).

prune(Q,s,F,δ ) := (Q′,s,F ′,δ ) where

Q′ := (δ̂ s)(Σ ∗)

F ′ := {q ∈ Q′ | q ∈ F }

Remark 8.5 For the definition in Coq we also need to cast s from Q to Q′ and lift δ to

a function of type Q′ → Σ → Q′. This is straightforward since s is clearly reachable and

transitions preserve reachability.

Lemma 8.6 pruneA is connected, accepts L (A) and has at most |A| states.
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To define the function collapse, we make use of quotient types. A quotient type for some

type Q and an equivalence relation ≈ on Q is a type Q/≈ together with a surjective function

π : Q → Q/≈ satisfying π p = πq ↔ p ≈ q. If Q is countable and ≈ is decidable, then

Q/≈ can be constructed as a subtype of Q [7]. In this case π also has a right inverse π

(Lemma 2.1).

To show decidability of the collapsing relation, we again make use of Corollary 5.4.

Lemma 8.7 Let A be a DFA. Then ≈A is decidable.

Proof Let A = (Q,s,F,δ ) and let q,r : Q. Decidability of q ≈A r follows with Corollary 5.4

by taking f x := (δ̂ qx, δ̂ r x) and p := λ (q,r).q ∈ F ↔ r ∈ F . ⊓⊔

The function collapse takes as input some automaton A and returns the quotient automaton

with respect to the collapsing relation.

collapseA := (Q′,s′,F ′,δ ) where A = (Q,s,F,δ ) and

Q′ := Q/≈A

s′ := π s

F ′ := {q | π q ∈ F }

δ ′qa := π(δ (π q)a)

Lemma 8.8 Let A be a connected DFA. Then collapseA accepts L (A), is collapsed and

connected, and has at most |A| states.

We obtain a minimization function by defining minimize := collapse◦prune.

Theorem 8.9 Let A be a DFA, then minimizeA accepts L (A) and is connected, collapsed,

and minimal.

Proof Immediate with Lemmas 8.6, 8.8, and 8.4. ⊓⊔

Theorem 8.10 Let A be a DFA. Then A is minimal iff A is connected and collapsed.

Proof Assume A is is minimal. Then both prune and collapse preserve the number of states.

Hence, all states must be reachable and ≈A must be an identity relation. For the converse

direction, assume A is connected and collapsed and fix some DFA B with L (A) = L (B).
Then |A|= |minimizeB| ≤ |B| by Theorems 8.3 and 8.9 ⊓⊔

Corollary 8.11 All minimal automata accepting a given language are isomorphic.

Note that the premise |FA| ≤ |A| of Lemma 8.4 becomes redundant with Theorem 8.10.

However, the relevant direction of the proof of Theorem 8.10 relies on the fact that the func-

tion minimize establishes connectedness and collapsedness without increasing the number

of states.

We remark that the classifier obtained from a minimal DFA corresponds to the coarsest

Myhill-Nerode relation [20,24] (cf. Remark 5.10).

Fact 8.12 If A = (Q,s,F,δ ) is a minimal DFA for L, then δ̂ sx = δ̂ sy iff RL(x)≡ RL(y).
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9 Two-Way Finite Automata

A two-way finite automaton (2FA) is essentially a read-only Turing machine, i.e., a machine

with a finite state control and a read head that may move back and forth on the input word.

One of the fundamental results about 2FAs is that the ability to move back and forth does not

increase expressiveness [31]. That is, two-way automata are yet another representation of the

class of regular languages. As for one-way automata, we consider both the deterministic and

the nondeterministic variant.

In the literature, two-way automata appear in a number of variations. Modern accounts

of two-way automata [29] usually consider automata with end-markers. That is, on input x

the automaton is run on the string⊲x⊳, where⊲ and⊳ are marker symbols that do not occur

in Σ and allow the automaton to detect the word boundaries. These marker symbols are not

present in early work on two-way automata [31,34,39]. The ability to detect word bound-

aries allows for the construction of more compact automata for some languages. In fact, the

emptiness problem for nondeterministic two-way automata with only one endmarker over

a singleton alphabet is polynomial while the corresponding problem for two-way automata

with two endmarkers is NP-complete [40]. Remarkably, the original proofs in [34,39] carry

over to the setting with end-markers without conceptual changes.

Definition 9.1 A nondeterministic two-way automaton (2NFA) is a structure M = (Q,s,F,
δ ,δ⊲,δ⊳) where

– Q is a finite type of states

– s : Q is the starting state

– F : 2Q is the set of final states

– δ : Q → Σ → 2Q×{L,R} is the transition function for symbols

– δ⊲ : Q → 2Q is the transition function for the left marker

– δ⊳ : Q → 2Q is the transition function for the right marker

Let M = (Q,s,F,δ ,δ⊲,δ⊳) be a 2NFA. If (q,R) ∈ δ pa, this means that when reading the

symbol a while in state p, the automaton may enter state q and move its read head one

position to the right. For end-markers, we only allow the head to move back onto the word

(or to the opposing marker if the input is ε), so no direction needs to be given.

On an input word x : Σ ∗ the configurations of M on x, written Cx, are pairs (p, i) ∈
Q×{0, . . . , |x|+ 1} where i is the position of the read head. We take i = 0 to mean that

the head is on the left marker and i = |x|+ 1 to mean that the head is on the right marker.

Otherwise, the head is on the i-th symbol of x (counting from 1). In particular, we do not

allow the head to move beyond the end-markers. In following, we write x[i] for the i-th

symbol of x. The step relation →x: Cx →Cx → B updates state and head position according

to the transition function for the current head position:

δ̇ pi :=











(δ⊲ p)×{R} i = 0

δ p(x[i]) 0 < i ≤ |x|

(δ⊳ p)×{L} i = |x|+1

(p, i)−→x (q, j) :=(q,L) ∈ δ̇ pi∧ i = j+1 ∨ (q,R) ∈ δ̇ pi∧ i+1 = j

We write →∗
x for the reflexive transitive closure of →x. The language of M is then defined

as follows:

L (M) := {x | ∃q ∈ F.(s,1)−→x
∗ (q, |x|+1)}
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That is, M accepts the word x if it can reach the right end-marker while being in a final state.

In Coq, we represent Cx as the finite type Q×ord(|x|+2), where ordn := {m : N | m < n}.

This allows us to represent →x as well as →∗
x as decidable relations on Cx.5 Hence, L (M) is

a decidable language. In the mathematical presentation, we treat ordn like N and handle the

bound implicitly. In Coq, we use a conversion function inord : ∀n.N→ ord(n+1) which be-

haves like the ‘identity’ on numbers in the correct range and otherwise returns 0. This allows

us to sidestep most of the issues arising from the dependency of the type of configurations

on the input word. In particular, we recover the separation between stating facts about →x

and proving that all mentioned indices stay within bounds.

Definition 9.2 A deterministic two-way automaton (2DFA) is a 2NFA (Q,s,F,δ ,δ⊲,δ⊳)
where |δ⊳ q| ≤ 1, |δ⊲ q| ≤ 1, and |δ qa| ≤ 1 for all q : Q and a : Σ .

Fact 9.3 For every n-state DFA one can construct an n-state 2DFA that accepts the same

language and only moves its head to the right.

Remark 9.4 While Fact 9.3 is obvious from the mathematical point of view, the formal proof

is somewhat cumbersome due to the mismatch between the acceptance condition for DFAs,

which is defined by recursion on the input word, and the acceptance condition for 2FAs,

where the word remains constant throughout the computation.

The next two sections are devoted to the translation of two-way automata to one-way

automata. There are several such translations in the literature. Vardi [39] gives a simple con-

struction that takes as input some 2NFA M and yields an NFA accepting L (M). This estab-

lishes that deterministic and nondeterministic two-way automata accept exactly the regular

languages. The size of the constructed NFA is exponential in the size of M. Consequently,

if one wants to obtain an automaton for the input language, rather than its complement, the

construction incurs a doubly exponential blowup in the number of states. Shepherdson [34]

gives a translation from 2DFAs to DFAs that incurs only an exponential blowup. Building

on ideas from [39], we adapt this construction to 2NFAs.

We first present the translation to NFAs since it is much simpler. We then give a direct

translation from 2NFAs to DFAs. We also show that when applied to 2DFAs, the latter

construction yields the bounds on the size of the constructed DFA established in [34].

10 Vardi Construction

Let M = (Q,s,F,δ ,δ⊲,δ⊳) be a 2NFA. We construct an NFA accepting L (M). Vardi [39]

formulates the proof for 2NFAs without markers. We adapt the proof to 2NFAs with markers.

The main idea is to define certificates for the non-acceptance of a string x by M. The proof

then consists of two parts:

1. proving that these negative certificates are sound and complete

2. constructing an NFA whose accepting runs correspond to negative certificates

Definition 10.1 A negative certificate for a word x is a set C ⊆Cx satisfying:

N1. (s,1) ∈ C

N2. If (p, i) ∈ C and (p, i)→x (q, j), then (q, j) ∈ C .

N3. If q ∈ F then (q, |x|+1) /∈ C .

5 That the transitive closure of a decidable relation is decidable is established in the Ssreflect libraries

using depth-first search.
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The first two conditions ensure that the negative certificates for x overapproximate the con-

figurations M can reach on input x. The third condition ensures that no accepting configura-

tion is reachable.

Lemma 10.2 Let x : Σ ∗. There exists a negative certificate for x iff x /∈ L (M).

Proof Let R := {(q, j) | (s,1)→∗
x (q, j)}. If there exists a negative certificate C for x, then

R ⊆ C and, therefore, x /∈ L (M). Conversely, if x /∈ L (M), then R is a negative certificate

for x. ⊓⊔

Let x be a word and let C be a negative certificate for x. The certificate C can be viewed as

(|x|+2)-tuple over 2Q where the i-th component, written Ci, is the set {q | (q, i) ∈ C }.

We define an NFA whose accepting runs correspond to this tuple view of negative cer-

tificates. For this, condition (N2) needs to be rephrased into a collection of local conditions,

i.e., conditions that no longer mention the head position.

Definition 10.3 Let U,V,W : 2Q and a : Σ . We say that

– (U,V ) is ⊲-closed if q ∈V whenever p ∈U and q ∈ δ⊲ p.

– (U,V ) is ⊳-closed if q ∈U whenever p ∈V and q ∈ δ⊳ p.

– (U,V,W ) is a-closed if for all p ∈V we have

1. q ∈U whenever (q,L) ∈ δ pa

2. q ∈W whenever (q,R) ∈ δ pa

We define an NFA N = (Q′,S′,F ′,→) that incrementally checks the closure conditions de-

fined above:

Q′ := 2Q ×2Q

S′ := {(U,V ) | s ∈V and (U,V ) is ⊲-closed}

F ′ := {(U,V ) | F ∩V = /0 and (U,V ) is ⊳-closed}

(U,V )
a
→ (V ′,W ) := (V =V ′∧ (U,V,W ) is a-closed)

For q : Q′, we write q.1 for the first component of q and q.2 for the second component.

Note that transition relation requires the two states to overlap. Hence, the runs of N on

some word x, which consist of |x| transitions, define (|x|+2)-tuples. We will show that the

accepting runs of N correspond exactly to negative certificates.

Lemma 10.4 x ∈ L (N) iff there exists a negative certificate for x.

Proof By Lemma 6.7, it suffices to show that there exists an accepting run iff there exists a

negative certificate.

“⇒” Let (ri)i≤|x| be an accepting run of N on x. We define a negative certificate C for x

where C0 := (r0).1 and Ci+1 := (ri).2.

“⇐” If C is a negative certificate for x we can define a run (ri)i≤|x| for x on M where

r0 := (C0,C1) and ri+1 := (Ci,Ci+1). ⊓⊔

Remark 10.5 The formalization of the lemma above is straightforward but tedious due to the

need to unfold the comparatively intricate definitions of N, C , and (ri)i≤|x|. With about 60

lines, the proof of Lemma 10.4 is considerably longer than the proofs of most other lemmas.

Lemma 10.6 L (N) = L (M).

Proof Follows immediately with Lemmas 10.2 and 10.4. ⊓⊔
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Theorem 10.7 For every n-state 2NFA M one can construct an NFA accepting L (M) and

having at most 22n states.

If one wants to obtain a DFA for L (M) using this construction, one needs to determinize N

before complementing it. Since N is already exponentially larger than M, the resulting DFA

then has a size that is doubly exponential in |Q|.
We remark that, perhaps surprisingly, the translation from 2NFAs to NFAs for the com-

plement language becomes simpler and more ‘symmetric’ in the presence of end-markers.

The original construction [39] uses 2Q + 2Q × 2Q as the type of states while the construc-

tion above gets along with the type 2Q × 2Q. States from the type 2Q are required to check

beginning and end of a negative certificate in the absence of end-markers.

11 Shepherdson Construction

We now give a second proof that the language accepted by a 2NFA is regular. The proof

follows the original proof of Shepherdson [34]. In [34], the proof is given for 2DFAs without

end-markers. Building on ideas form Vardi [39], we adapt the proof to 2NFAs with end-

markers.

We fix some 2NFA M = (Q,s,F,δ ,δ⊲,δ⊳) for the rest of this section. In order to con-

struct a DFA for L (M), it suffices to construct a classifier for L (M) (Lemma 5.8). For this,

we need to come up with a finite type X and a function T : Σ ∗ → X which is right-congruent

and refines L (M).
The construction exploits that the input is read-only. Therefore, M can only save a finite

amount of information in its finite state control. Consider the situation where M is running

on a composite word xz. In order to accept xz, M must move its head all the way to the right.

In particular, it must move the read-head beyond the end of x and there is a finite set S ⊆ Q

of states that M can possibly be in when this happens for the first time. Once the read head is

to the right of x, M may move its head back onto x. However, the only additional information

that can be gathered about x is the set of states M may be in when returning to z. Since the

possible states upon return may depend on the state M is in when entering x form the right,

this defines a relation R ⊆ Q×Q. The set S and the relation R provide all the information

required about x to determine whether xz ∈ L (M). For every word x, S and R (as defined

above) define a finite table. We will define a function

T : Σ ∗ → 2Q ×2Q×Q

returning the table for a given word. Note that 2Q ×2Q×Q is a finite type, i.e., there are only

finitely many possible tables. We will show that L (M) is regular, by showing that T is a

classifier for L (M), i.e., that T is right-congruent and refines L (M).
To formally define T , we need to be able to stop M once its head reaches a specified

position. We define the k-stop relation on x:

(p, i)
k
−→x (q, j) := (p, i)−→x (q, j)∧ i 6= k

Note that for k ≥ |x|+2 the stop relation coincides with the step relation. The function T is

then defined as follows:

T x := ({ q | (s,1)
|x|+1
−−−→x

∗ (q, |x|+1)},

{(p,q) |(p, |x|)
|x|+1
−−−→x

∗ (q, |x|+1)})
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Note that T returns a pair of a set and a relation. We write (T x).1 for the first component of

T x and (T x).2 for the second component.

Before we can show that T is a classifier for L (M), we need a number of properties of

the stop relation. The first lemma captures the intuition, that for composite words xz, all the

information M can gather about x is given by T x.

Lemma 11.1 Let p,q : Q and let x,z : Σ ∗. Then

1. q ∈ (T x).1 iff (s,1)
|x|+1
−−−→xz

∗ (q, |x|+1)

2. (p,q) ∈ (T x).2 iff (p, |x|)
|x|+1
−−−→xz

∗ (q, |x|+1)

Since for composite words xz everything that can be gathered about x is provided by T x,

M behaves the same on xz and yz whenever T x = T y. To show this, we need to exploit that

M moves its head only one step at a time. This is captured by the lemma below.

Lemma 11.2 Let i ≤ k ≤ j and let l be a
k′

−→x -path from (p, i) to (q, j). Then there exists

some state p′ such that l can be split into a
k
−→x -path from (p, i) to (p′,k) and a

k′

−→x -path from

(p′,k) to (q, j).

Proof By induction on the length of the
k′

−→x -path from (p, i) to (q, j).

Lemma 11.2 can be turned into an equivalence if k′ ≥ k. We state this equivalence in terms

of transitive closure since for most parts of the development the concrete path is irrelevant.

Lemma 11.3 Let i ≤ k ≤ j and let k′ ≥ k. Then (p, i)
k′

−→x
∗ (q, j) iff there exists some p′ such

that (p, i)
k
−→x

∗ (p′,k)
k′

−→x
∗ (q, j).

We now show that for runs of M that start and end on the right part of a composite word xz,

x can be replaced with y whenever T x = T y.

Lemma 11.4 Let p,q : Q and let x,y,z : Σ ∗ such that T x= T y. Then for all k > 1, i≤ |z|+1,

and 1 ≤ j ≤ |z|+1, we have

(p, |x|+ i)
|x|+k
−−−→xz

∗ (q, |x|+ j) iff (p, |y|+ i)
|y|+k
−−−→yz

∗ (q, |y|+ j)

Proof By symmetry, it suffices to show the direction from left to right. We proceed by

induction on the length of the path from (p, |x|+ i) to (q, |x|+ j). There are two cases to

consider:

i = 0. According to Lemma 11.2 the path can be split such that:

(p, |x|)
|x|+1
−−−→xz

∗ (p′, |x|+1)
|x|+k
−−−→xz

∗ (q, |x|+ j)

Thus, (p, p′) ∈ (T x).2 by Lemma 11.1. Applying Lemma 11.1 again, we obtain

(p, |y|)
|y|+1
−−−→yz

∗ (p′, |y|+1)

The claim then follows by induction hypothesis since the path from (p, |x|) to (p′, |x|+1)
must make at least one step.
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i > 0. The path from (p, |x|+ i) to (q, |x|+ j) is either trivial and the claim follows im-

mediately or or there exist p′ and i′ such that (p, |x|+ i)
|x|+k
−−−→xz (p′, |x|+ i′). But then

(p, |y|+ i)
|y|+k
−−−→yz (p′, |y|+ i′) and the claim follows by induction hypothesis. ⊓⊔

Now we have everything we need to show that T is a classifier for L (M).

Lemma 11.5 T refines L (M).

Proof Fix x,y : Σ ∗ and assume T x = T y. By symmetry, it suffices to show y ∈L (M) when-

ever x ∈ L (M). If x ∈ L (M), then (s,1)
|x|+2
−−−→x

∗ (p, |x|+ 1) for some p ∈ F . We show

y ∈ L (M) by showing (s,1)
|y|+2
−−−→y

∗ (p, |y|+1). By Lemma 11.3, there exists a state q such

that:

(s,1)
|x|+1
−−−→x

∗ (q, |x|+1)
|x|+2
−−−→x

∗ (p, |x|+1)

We can simulate the first part on y using Lemma 11.1 and the second part using Lemma 11.4.

⊓⊔

Lemma 11.6 T is right-congruent.

Proof Fix words x,y : Σ ∗ and some symbol a : Σ and assume T x = T y. We need to show

T xa = T ya. We first show (T xa).2 = (T ya).2. Let (p,q) ∈ Q×Q. We have to show that

(p, |xa|)
|xa|+1
−−−→xa

∗ (q, |xa|+1) implies (p, |ya|)
|ya|+1
−−−→ya

∗ (q, |ya|+1)

Since |xa|+ 1 = |x|+ 2 this follows immediately with Lemma 11.4. It remains to show

(T xa).1 = (T ya).1. By symmetry, it suffices to show that

(s,1)
|xa|+1
−−−→xa

∗ (q, |xa|+1) implies (s,1)
|ya|+1
−−−→ya

∗ (q, |ya|+1)

By Lemma 11.3, there exists a state p such that:

(s,1)
|x|+1
−−−→xa

∗ (p, |x|+1)
|xa|+1
−−−→xa

∗ (q, |xa|+1)

Thus, we have p ∈ (T x).1 (and therefore also p ∈ (T y).1) and (p,q) ∈ (T xa).2. Since we

have shown above that (T xa).2 = (T ya).2, the claim follows with Lemma 11.1. ⊓⊔

Note that Lemma 11.4 is used very differently in the proofs of Lemma 11.5 and Lemma 11.6.

In the first case we are interested in acceptance and set k to |x|+2 so we never actually stop.

In the second case we set k to |xa|+1 to stop on the right marker.

Using Lemma 5.8 and the two lemmas above, we obtain:

Theorem 11.7 Let M be a 2NFA with n states. Then one can construct a DFA accepting

L (M) having at most 2n2+n states.

We now show that for deterministic two-way automata, the bound on the size of the

constructed DFA can be improved from 2n2+n to (n+1)(n+1).

Fact 11.8 Let M = (Q,s,F,δ ,δ⊲,δ⊳) be a 2DFA. Then
k
−→x is functional for all k and x.
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Corollary 11.9 Let M be a 2DFA with n states. Then one can construct a DFA accepting

L (M) having at most (n+1)(n+1) states.

Proof Let M = (Q,s,F,δ ,δ⊲,δ⊳) be deterministic and let T : Σ ∗ → 2Q ×2Q×Q be defined

as above. Since T is right-congruent (Lemma 11.6) we can construct the type T (Σ ∗) (Corol-

lary 5.5). By Lemma 5.8, it suffices to show that T (Σ ∗) has at most (|Q|+1)(|Q|+1) elements.

Let (S,R) : T (Σ ∗). Then T x = (S,R) for some x : Σ ∗. We show that S has at most one

element. Assume p,q ∈ S. By the definition of T , we have

(s,1)
|x|+1
−−−→x

∗ (p, |x|+1) and (s,1)
|x|+1
−−−→x

∗ (q, |x|+1)

Since
|x|+1
−−−→x is functional and both (p, |x|+1) and (p, |x|+1) are terminal, we have p = q.

A similar argument yields that R is a functional relation. Consequently, we can construct an

injection

i : T (Σ ∗)→ Q⊥× (Q⊥)
Q

Given some (S,R) : T (Σ ∗), (i(S,R)).1 is defined to be the unique element of S or ⊥ if S = /0.

The definition of (i(S,R)).2 is analogous. The claim then follows since Q⊥ × (Q⊥)
Q has

exactly (|Q|+1)(|Q|+1) elements. ⊓⊔

12 Weak Monadic Second-Order Logic

We now consider weak monadic second order logic (WMSO), or more precisely the WMSO

theory of one successor relation (WS1S). Our main results about WS1S are the decidability

of satisfiability and model checking and a proof of the characterization theorem of Büchi [6],

Elgot [13], and Trakhtenbrot [37] ([17, Theorem 12.26]), i.e., the fact that formulas can be

assigned languages in such a way that the class of languages described by formulas is exactly

the class of regular languages.

The aforementioned results are all closely related. The decidability results are obtained

by translating formulas to NFAs. Together with the closure or regular languages under

preimages of homomorphisms, this translation also yields an automaton for the language

associated to a given formula. To show that formulas can express all regular languages, we

give a formula describing the runs of a given automaton. Here, we rely on the fact that the

the satisfaction relation is decidable as this ensures that the logic behaves classically even

though we are working in a constructive setting.

We consider MSO formulas according to the following grammar:

φ ,ψ := X ⊆ Y | X < Y | ⊥ | φ → ψ | ∃X .φ (X ,Y : N)

We take variables to be natural numbers rather than objects of some abstract type of vari-

ables. Informally, a valuation is a function assigning finite sets of natural numbers to every

variable. A valuation V satisfies X ⊆ Y if V X ⊆ V Y , and X < Y if every element of V X is

smaller than every element of V Y . We write V |= φ if V satisfies φ .

We will show that V |= φ is decidable. This establishes that the logic behaves classically

(i.e., V |= ¬¬φ → φ with ¬ψ := ψ → ⊥ as usual). In particular, it allows us to use the

classical definition of universal quantification (i.e., ∀X .φ := ¬∃X .¬φ ) and similarly for the

remaining logical operations.
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The use of < for second-order variables allows us to employ a syntax without first-

order variables. First-order variables can be emulated using second-order variables that are

required to be singletons. That is, we define predicates

emptyX := ∀Y.X ⊆ Y

singletonX := ¬emptyX ∧∀Y.¬emptyY → Y ⊆ X → X ⊆ Y

and emulate the first-order quantifier ∃n.φ using ∃n.singletonn∧ φ . If n and m are single-

tons, n < m corresponds to the usual less-than relation on the respective unique members.

We remark that our MSO formulas are technically first-order formulas.

We begin by giving a formal definition of the satisfaction relation. Recall that variables

are natural numbers. The formalization employs formulas in De Bruijn representation [1].

That is, the named binder ∃X .φ is replaced by the nameless binder ∃φ that always binds

the variable 0 and lowers all free variables by one. The named formula ∃Y.X ⊆ Y is then

represented as ∃(X +1 ⊆ 0) as usual.

The satisfaction relation between valuations V : N→ N
∗ (finite sets being represented

as lists) and formulas φ , written V |= φ , is defined by recursion on formulas:

V |= X ⊆ Y := ∀n ∈ V X .n ∈ V Y

V |= X < Y := ∀n ∈ V X ∀m ∈ V Y.n < m

V |=⊥ :=⊥

V |= φ → ψ := V |= φ → V |= ψ

V |= ∃φ := ∃N : N∗.N :: V |= φ

Here, N :: V := λn. if n = 0 then N else V (n− 1) is the ‘stream cons’ operation on valua-

tions and handles the shifting of free variables underneath of quantifiers. While valuations

assign lists of natural numbers to the free variables, we will treat these these lists like finite

sets and use standard set notations.

The first step in deciding V |= φ is to capture the fact that only the values that V assigns

to the free variables of φ are relevant. We write boundφ for the least number n such that all

free variables of φ are smaller than n.

Lemma 12.1 If V and V ′ agree on all variables up to boundφ , then V |= φ iff V ′ |= φ .

For every n : N, the class of valuations that assign the empty lists to all variables X ≥ n can

be represented using words over bit-vectors of length n.

Definition 12.2 We write Bn for the alphabet of bit-vectors of length n (i.e., n-tuples over B)

and B
∗
n for the type of words over Bn. When talking about bit-vectors, we write 1 for true and

0 for false. We write 0n for the bit-vector with n zeroes and 1v for extending the bit-vector v

with a 1 on the left. If v : B∗
n, we write v[k] for the k-th symbol of v (0n if |v| ≤ k). For u : Bn,

we write u[k] for the k-th element of u (or 0 if n ≤ k).

Definition 12.3 Let v : B∗
n. The valuation for v, written Vv, is defined as

VvX := {n | n < |v| ∧ v[n][X ] = 1}

Example 12.4 Words over Bn can be thought of as matrices where the characters are columns.

Then the X-th row of the matrix for a word v encodes Vv(X). Consider the 5-letter word v

over B3 depicted by the following matrix.
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0 1 2 3 4

0 1 0 1 0 0

1 0 1 0 0 0

2 0 1 0 1 0

Then Vv(0) = {0,2}, Vv(1) = {1}, Vv(2) = {1,3}, and Vv(X) = /0 for X ≥ 3. ⊓⊔

Lemma 12.5 For each V and n, there exists some v : B∗
n such that V agrees with Vv on all

variables smaller than n.

By assigning valuations to words over Bn, we can assign to every formula the language of

those words whose valuations satisfy the formula.

Definition 12.6 (Vector Language) Let φ be a formula and let n : N. The language of n-

vectors of φ is defined as

Ln(φ) := {v ∈ B
∗
n | Vv |= φ }

It order to decide the satisfaction relation and satisfiability of formulas, it suffices to de-

cide language membership and language emptiness for vector languages. For this purpose,

we construct an NFA An,φ accepting Ln(φ) for any given φ and n. The construction pro-

ceeds by recursion on the formula φ . The main reason for including the index n is the case

for formulas of the form ∃φ . Removing the existential quantifier yields a formula with an

additional free variable. Hence, the problem of constructing an NFA accepting Ln(∃φ) is

reduced to the problem of constructing an NFA accepting Ln+1(φ).
It is straightforward, albeit tedious, to construct automata for ⊆ and <.

Lemma 12.7 For each n, X, Y , one can construct automata An,X⊆Y and An,X<Y such that

L (An,X⊆Y )≡ Ln(X ⊆ Y ) and L (An,X<Y )≡ Ln(X < Y ).

For additional detail on these constructions we refer to the Coq development. In the fol-

lowing, we describe the construction for An,∃φ , which is the most technical of the required

constructions.

Intuitively, An,∃φ is obtained from An+1,φ by guessing the content of the first “row” of

the input word (cf. Example 12.4). The construction is complicated by the fact that one has

to allow for this guessed row to be longer than the input word. This is necessary since the

numbers occurring in the witness of the the quantified variable may need to be larger than

the length of the input word.

Definition 12.8 Let An+1,φ = (Q,S,F,→) be an NFA with alphabet Bn+1. We define an

NFA An,∃φ := (Q,S,F ′, ) with alphabet Bn where

p
v
 q := p(

1v
→∪

0v
→)q

F ′ :=

{

p

∣

∣

∣

∣

∃q ∈ F. p
(

10n

→ ∪
00n

→
)∗

q

}

In order to express the correctness properties of the construction above, we define an

extension operation and a projection operation on words.

Definition 12.9 For b : B∗ and v : B∗
n, we write

(

b
v

)

for the word over Bn+1 where the first

components are given by b and the remaining components are given by v (filling with zeros

or 0n in case |b| 6= |v|). For v : B∗
n+1, we write prv : B∗

n for the result of removing the first

component of every tuple.
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Lemma 12.10 1. |
(

b
v

)

|=max(|b|, |v|)

2. pr
(

b
v

)

= v · (0n)k for some k : N.

3. If v ∈ Ln+1(φ), then prv ∈ Ln(∃φ).
4. If v ∈ Ln(∃φ), then

(

b
v

)

∈ Ln+1(φ) for some b : B∗.

Proof Claims (1) and (2) are easy to prove. Claims (3) and (4) follow with Lemma 12.1. ⊓⊔

Lemma 12.11 Let
(

b
v

)

∈ L (An+1,φ ). Then v ∈ L (An,∃φ ).

Proof It suffices to show that every state q of An+1,φ that accepts
(

b
v

)

accepts v when seen

as a state of An,∃φ . We proceed by induction on b. The base case follows by induction on v.

For the step case either v is nonempty and we can justify a transition in An,∃φ or v is empty

and An+1,φ makes a transition from one final state of An,∃φ to another. ⊓⊔

Lemma 12.12 Let v ∈ L (An,∃φ ). Then
(

b
v

)

∈ L (An+1,φ ) for some b : B∗

Proof Similar to the proof of the previous lemma. ⊓⊔

Lemma 12.13 Let v : B∗
n. Then v · (0n)k ∈ Ln(φ) iff v ∈ Ln(φ).

Lemma 12.14 Let An+1,φ be an NFA accepting Ln+1(φ). Then An,∃φ accepts Ln(∃φ).

Proof L (An,∃φ )⊆ Ln(∃φ): Let v ∈ L (An,∃φ ). By Lemma 12.12, there exists some b : B∗

such that
(

b
v

)

∈L (An+1,φ ) and therefore
(

b
v

)

∈Ln+1(φ) by assumption. Hence, pr
(

b
v

)

∈

Ln(∃φ) by Lemma 12.10(3). By Lemma 12.10(2) pr
(

b
v

)

= v · (0n)k for some k. Thus,

v ∈ Ln(∃φ) by Lemma 12.13.

Ln(∃φ)⊆ L (An,∃φ ): Let v∈Ln(∃φ). Then there exists some b :B∗ such that
(

b
v

)

∈Ln+1(φ)

(Lemma 12.10(4)) and therefore
(

b
v

)

∈L (An+1,φ ). Hence v∈L (An,∃φ ) by Lemma 12.11.

⊓⊔

Theorem 12.15 Given φ and n, one can construct an NFA An,φ accepting Ln(φ).

Proof By induction on φ . The base cases follow with Lemma 12.7 The case where φ = ∃ψ

follows with Lemma 12.14. The remaining cases are straightforward.

Corollary 12.16 V |= φ is decidable.

Proof By Lemma 12.5, we obtain some v : (Bboundφ )
∗, such that Vv agrees with V up to

boundφ . By Lemma 12.1, it suffices to decide Vv |= φ which amounts to checking whether

v ∈ L (Aboundφ ,φ ). ⊓⊔

Corollary 12.17 V |= ¬¬φ → φ .

Proof Immediate with Corollary 12.16.

Corollary 12.18 Satisfiablity of MSO formulas is decidable.

Proof Similar to the proof of Corollary 12.16, the satisfiability problem reduces to the

emptiness problem for L (Aboundφ ,φ ). ⊓⊔

Remark 12.19 The construction outlined above yields a decision procedure of nonelemen-

tary complexity (Negation requires complementation, and thus determinization, while exis-

tential quantification introduces nondeterminism). This is essentially optimal [32].
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The formalization of the results described in this section employs dependent types in a

particularly pleasing manner. The type Bn is represented using n-tuples (i.e., length-indexed

lists) as provided by Ssreflect. The only type-changing operations employed in the proof are

extension and projection (cf. Definition 12.9). The types

( )

: ∀n.B∗ → B
∗
n → B

∗
n+1

pr : ∀n.B∗
n+1 → B

∗
n

can be inferred automatically from the underlying list operations. This simplicity is, at least

in part, due to the De Bruijn representation. Since quantifiers in De Bruijn representation

always quantify over the variable 0, we never have to insert rows in the middle or remove

any row but the first.

13 WS1S as a Representation for Regular Languages

We now prove the characterization theorem of Büchi [6], Elgot [13], and Trakhtenbrot [37]

which establishes WS1S formulas as representations of regular languages.

By assigning valuations to words over Σ , one can associate to the formula φ the lan-

guage LΣ (φ) of those words whose valuations satisfy the formula. Let n be the size of the

alphabet Σ and assume boundφ ≤ n. The valuation corresponding to a word x : Σ ∗ maps

the variable X to the list of occurrences of the X-th symbol of Σ in the word x (or to the

empty list if X ≥ n). Note that the valuation for x interprets the free variables of φ as a parti-

tion since there is exactly one symbol at every position. We formalize LΣ (φ) by bijectively

mapping the symbols of Σ to the unit vectors of length n, i.e., the elements of Bn having

exactly one occurrence of 1.

Definition 13.1 (Σ -language) Let n := |Σ | and for a : Σ let ua : Bn be the unit vector with

a single 1 at position ranka and 0 at all other positions. We write hΣ : Σ ∗ → B
∗
n for the

homomorphism mapping each symbol a : Σ to ua. The Σ -language of a formula φ is then

defined as

LΣ (φ) := {x ∈ Σ ∗ | VhΣ (x) |= φ }

Lemma 13.2 LΣ (φ) is regular.

Proof Since LΣ (φ)≡ h−1(Ln(φ)), regularity follows with Theorems 7.14 and 12.15.

We now show that formulas can describe all regular languages by giving a language

preserving translation from NFAs to formulas. To simplify the presentation, we describe the

construction using named formulas. If a : Σ , we write Pa for the free variable containing the

positions of a in the input word. Further, we use lower-case letters for first-order variables

represented using singleton, e.g., ∃x.x ∈Y is just notation for ∃X .singleton(X)∧X ⊆Y . The

formalization in Coq is carried out using the De Bruijn representation used in the previous

sections.

We fix some NFA A = (Q,S,F,→) (with alphabet Σ ) for the rest of this section. Further

we set n := |Q| and refer to the individual states of A as q0, . . . ,qn−1. We now construct a

formula φA such that LΣ (φA)≡ L (A).
The idea is to construct a formula of the form

φA := ∃m.(φmax∧∃Xn−1 . . .X0.φrun)
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φpart := ∀k.k ≤ m.
∨

qi∈Q



k ∈ Xi ∧
∧

q j∈Q∧qi 6=q j

k /∈ X j





φinit := ∀x.zero(x)→
∨

qi∈S

x ∈ Xi

φfin :=
∨

q j∈F

m ∈ X j

φtrans := ∀k k′.succ(k,k′)→ k < m →
∨

qi
a
→q j

k ∈ Xi ∧ k ∈ Pa ∧ k′ ∈ X j

φrun := φpart ∧φinit ∧φfin ∧φtrans

Fig. 1 Encoding of the runs of A

where φmax ensures that the witness for m is the length of the input word and φrun ensures

that the witnesses for Xn−1 . . .X0 encode an accepting run of A. More precisely, k ∈ Xi is to

mean that after reading k symbols of the input word, the automaton is in state qi.

We start by defining

φmax := ∀k.k < m ↔
∨

a∈Σ

k ∈ Pa

For φrun, we need to ensure that the Xi form a partition of the set {0, . . . ,m} in such way that

0 ∈ Xi for some stating state qi, m ∈ X j for some final state q j, and if k ∈ Xi and k+1 ∈ X j

then qi
w[k]
→ q j. This leads to the definition of φrun given in Figure 1, where zero(x) ensures

that x is (the singleton containing) 0 and succ(x,y) ensures that (the unique element of) y

is the successor of (the unique element of) x. The formula employed here is a simplified

version of the formula employed in [19] that more closely matches the notion of run defined

in Section 6.

Lemma 13.3 Let A be an NFA over Σ . Then LΣ (φA)≡ L (A).

Proof Let x ∈ Σ ∗. We show VhΣ (x) |= φA iff x ∈ L (A). If x ∈ L (A) then there exists an

accepting run (ri)i≤|x| of A on x. We set the existential witness for m to |x| and for each Xi to

{k | ∃ j.r j = qi }. It is straightforward to verify that VhΣ (x) |= φA with these instantiations.

Conversely, if VhΣ (x) |= φA, we need to construct a run from the witnesses used for m

and the Xi. Since φpart is satisfied, the X j form a partition of {0, . . . , |x|}. We set ri to be the

unique state q j such that i ∈ X j. Again, it is straightforward to verify that this constitutes an

accepting run of A on x. ⊓⊔

Theorem 13.4 Let L ⊆ Σ ∗. Then L is regular iff L ≡ LΣ (φ) for some φ .

Proof Immediate with Lemma 13.2 and Lemma 13.3. ⊓⊔

Remark 13.5 The proof of Lemma 13.3 relies on the fact that h(LΣ (φ)) is comprised of unit

vectors only. In particular, there is no translation t from NFAs with alphabet Bn to formulas

satisfying Ln(tA)≡L (A) for all A since Ln(φ) is always closed under adding or removing

trailing 0n vectors (Lemma 12.13).

While the simple structure of formulas in De Bruijn representation is nice when analyz-

ing formulas recursively (as in the translation from formulas to NFAs), one has to be careful
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when manually writing down larger formulas. We decompose the formula describing NFA

runs into parts of manageable size as shown in Figure 1 that each come with their own cor-

rectness lemmas that fully characterize the formula. The most complex monolithic formula

is φtrans whose formalization spans 6 lines. The correctness proofs for various parts employ

contexts of the form X0 :: . . . :: Xn−1 :: m :: I. That is, for the state q j the term rankq j (shifted

to respect local quantifiers) refers to X j. Consequently, the X j can be accessed using readable

names even in De Bruijn representation. For context lookups, the shifts required for local

quantifiers can usually be eliminated though simplification (i.e., Coq’s internal notion of

computation). Consequently, wrong indices usually did not simplify as expected and where

therefore easy to spot and correct.

14 Related Work

Given the theoretical and practical importance of regular language representations and their

associated algorithms, there are a number of developments formalizing various aspects of the

theory. This includes verified practical decision procedures as well as more mathematically

minded developments like the one described in this paper.

Constable et al. [8] constructively formalize automata theory, including the Myhill-

Nerode theorem, in Nuprl. They use a notion of finite type to represent state sets. However,

Nuprl allows the construction of (finite) quotient types with respect to undecidable rela-

tions. This allows proving the Myhill-Nerode theorem and the existence of a minimization

function for DFAs assuming only decidability of the language. However, the minimization

function obtained this way is computationally trivial, i.e., does not actually perform mini-

mization [8, Sect. 7.2].

On the Coq side, one of the earliest works is a verified translation from regular expres-

sions to finite automata by Filliâtre [14]. Here, states are represented using finite sets of num-

bers leading to a representation that is considerably more difficult to work with than finite

types. Further, there are a number of verified and executable decision procedures. Coquand

and Siles [9] build a reflective decision procedure for regular expression equivalence based

on Brzozowski’s algebraic method. The main technical difficulty in their work is in formal-

izing the termination argument, i.e., the fact that up to a certain decidable equivalence, reg-

ular expressions have only finitely many derivatives. In a substantial development, Braibant

and Pous [4] verify a more efficient decision procedure for regular expression equivalence

based on finite automata and prove it sound and complete for all Kleene algebras (KA).

For efficiency reasons, they represent state sets as bounded natural numbers. In [30], Pous

describes a complete redesign of [4] based on partial derivatives. As corollary of the com-

pleteness proof for an axiomatization of KA, he obtains a proof of Kleene’s theorem. The

completeness proof uses generalized automata represented as matrices over regular expres-

sions. Moreira et.al. [26] develop a similar decision procedure for KA also based on partial

derivatives.

On the HOL-side (i.e., Isabelle/HOL) the situation is more complex. Since quantifica-

tion over types is not available in these systems, using types to represent state spaces is not

feasible. One alternative representation is to use numbered states or bit lists [27]. However,

this requires the explicit renaming of states when combining automata and weakens the

type checking for automata. Due to this difficulty, much of the work on regular languages

in Isabelle/HOL focuses on regular expressions rather than finite automata. This includes

verified (partial correctness) decision procedures for regular expression and relation algebra

equivalences [25], a decision procedure for WS1S and M2L(Str) based on regular expres-
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DFA

NFA

WS1S

ClassifierRE 2DFA

2NFA

Fig. 2 Summary of translations between representations. The translation from 2NFAs to NFAs yields an

automaton for the complement language.

sions with projection [38], and a proof of the Myhill-Nerode theorem only using regular

expressions [42]. The last paper also includes a detailed discussion of the problem of defin-

ing a type of finite automata in Isabelle/HOL. In a substantial development, Berghofer [2]

develops a verified decision procedure for Presburger arithmetic based on finite automata

over bit-strings.

More recently, and partly in response to [41] and [11], Paulson [28] formalized automata

theory, including the Myhill-Nerode theorem and Brzozowski’s minimization algorithm,

in Isabelle/HOL based on hereditarily finite sets. Like finite types, HF sets have all the

closure properties required for the usual constructions on finite automata. However, there

are a number of differences. Due to the absence of dependent types, the definition of DFAs

in [28] is split into a type that overapproximates DFAs and a predicate that checks well-

formedness conditions (e.g., that the starting state is a state of the automaton). Finite types,

being types, benefit from type checking and thus avoid the need for explicit well-formedness

conditions. Moreover, many finite types are inductively defined data types (e.g., product and

sum types) and thus allow pattern matching leading to more natural definitions.

15 Conclusion

We have shown that many results about regular languages can be obtained constructively and

formally with reasonable effort. We have shown the equivalence of seven representations of

regular languages (DFAs, NFAs, regular expressions, classifiers, 2DFAs, 2NFAs, and MSO

formulas) and a number of closure properties of these representations. Equivalence of the

various representations is obtained trough language-preserving translations as summarized

in Figure 2. As part of the equivalence proof between formulas and NFAs, we establish

decidability of satisfaction and satisfiability for WS1S. The part of this work where con-

structive logic forced us to deviate most from the presentation in the literature is the Myhill

Nerode theorem. This led to the new notion of a classifier and a constructive reformulation

of the theorem providing for the construction of DFAs from classifiers (cf. Remark 5.10).

This construction is used to obtain redundant translations from 2FAs to DFAs providing

better size bounds.

Obtaining an elegant formalization in Coq first requires rethinking the original proofs,

which are mostly phrased in terms of classical set theory, in terms of the constructive type

theory underlying Coq. Finite automata are a typical example of a finite dependently-typed

mathematical structure. Consequently, finite types and dependent types are used pervasively

throughout the whole development. Our representation of finite automata relies on depen-

dent record types and finite types being first-class objects. Dependent types are also used to
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represent the possible configurations of a two-way automaton as a word-indexed collection

of finite types and to obtain the vector languages for formulas.

In addition to the mathematical redesign, we implement all concepts in a manner that is

both faithful to the mathematical development and easy to work with. The Coq development

accompanying this paper [10] matches the paper proofs closely and provides the details

elided in the paper. Altogether the Coq development consists of about 3000 lines of code

(1300 lines of specification / 1700 lines of proof). The two biggest parts of the development

are the results about WS1S (870 lines) and the results about two-way automata (550 lines).

The conciseness of the Coq development is, at least in part, due to our use of the Mathemat-

ical Components Libraries (Math-Comp) [36], which provide the necessary infrastructure

for our development. With the exception of modular arithmetic and binomial coefficients,

our Coq development uses just about every concept provided by the Ssreflect component of

Math-Comp (boolean reflection, finite and countable types, finite sets, graph reachability,

length-indexed lists, etc.).

The present work shows that current interactive theorem proving tools (Coq and Ssre-

flect in our case) allow for a mathematically rewarding and reusable formalization of non-

trivial results about regular languages with reasonable effort.

As mentioned above, the two most technical parts of our development are the transla-

tions from two-way automata to one-way automata and the the translations between NFAs

and MSO formulas. We comment on each of these in turn.

The original translations from two-way automata to one-way automata [34,39] are de-

scribed at a fairly informal level. When spelling out the details, the constructions and proofs

become delicate and call for formalization, in particular if one does not have the robust intu-

itions of experts in automata theory. We adapt the proof of Shepherdson [34] from determin-

istic two-way automata without end-markers to nondeterministic two-way automata with

end-markers. This does not require conceptual changes. We had formalized the construction

for 2DFAs (with end-markers) before realizing that the construction applies, with minimal

changes, also to 2NFAs. That this is the case appears to be known to the experts [29]. How-

ever, to the best of our knowledge, the construction was never published. We not only adapt

Shepherdson’s construction to 2NFAs, we also show that when applied to 2DFAs, the con-

struction yields the bounds established in [34]. One of the advantages of having formal

proofs is that one can modify definitions and lemma statements and have the theorem prover

point out the places in the proof that needed to be adapted. The process of adapting the

construction from 2DFAs to 2NFAs profited greatly from this.

Similar to the translations from two-way automata to one-way automata, the translations

between MSO formulas and NFAs are fairly technical. For the direction from formulas to

NFAs, the main tool for factoring the proof into small lemmas is the introduction of ex-

tension and projection operations on words over bit-vectors. Here, we profit from the De

Bruijn representation for formulas, which ensures that we never have to insert a row into the

middle or remove a row other than the first. The translation from formulas to automata also

establishes decidability of the satisfaction relation and satisfiability. The former establishes

that the logic behaves classically, thus allowing us to show that the logical operations de-

fined in terms of our minimal syntax behave correctly. These operations are then used in the

translation from NFAs to formulas. As a consequence, and unlike in a classical setting, the

correctness proofs for the two translations are not entirely independent.
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