
ar
X

iv
:1

70
2.

00
26

8v
1

 [
cs

.L
O

]
 1

 F
eb

 2
01

7

Proof Diagrams for Multiplicative Linear Logic:

Syntax and Semantics

Matteo Acclavio

February 2, 2017

Abstract

Proof nets are a syntax for linear logic proofs which gives a coarser
notion of proof equivalence with respect to syntactic equality together
with an intuitive geometrical representation of proofs.

In this paper we give an alternative 2-dimensional syntax for multi-
plicative linear logic derivations. The syntax of string diagrams autho-
rizes the definition of a framework where the sequentializability of a term,
i.e. deciding whether the term corresponds to a correct derivation, can
be verified in linear time.

Furthermore, we can use this syntax to define a denotational semantics
for multiplicative linear logic with units by means of equivalence classes
of proof diagrams modulo a terminating rewriting.

1 Introduction

Proof nets are a geometrical representation of linear logic proofs introduced by
J-Y.Girard [7]. The building blocks of this syntax are called proof structures,
later generalized by Y. Lafont [17] in the so-called interaction nets. To recog-
nize if a proof structure is a proof net one needs to verify its sequentializability
property, that is, verifying whether it corresponds to a correct linear logic proof
derivation. Following Girard’s original correction criterion, others methods have
been introduced: the method by Danos-Regnier [6], that ensures graph acyclic-
ity by a notion of switchings on ⊗ cells, and the method by Guerrini [11],
that reformulates correction by means of graph contractability. Unfortunately
the aforementioned criteria become ineffective in presence of the multiplicative
unit ⊥. In order to recover a sequentialization condition for the multiplicative
fragment with units (MLLu) Girard has introduced the notion of jumps [10].
These are untyped edges which assign a ⊥ to an axiom in order to represent a
dependency relation of the respective rules in sequentialization.

One peculiar feature of this syntax for proofs is that proof structures al-
low to recover the semantical equivalence of derivations under some inference
rules permutations [17]. In the case of the multiplicative fragment of linear
logic (MLL), proof nets perfectly capture this equivalence by giving a canonical
representative for each class. On the other hand, in presence of multiplicative
units, proof nets are not canonical [21] and have to be identified up to jump
re-assignation, ruling out a satisfactory notion of proof net [14].

1

http://arxiv.org/abs/1702.00268v1

In this work give an alternative syntax forMLLu proofs. For this purpose, we
replace the underlying interaction nets syntax with the one of string diagrams.
We show that this syntax, which also presents an intuitive 2-dimensional rep-
resentation of proofs, is able to capture some inference rule permutations in
derivations.

String diagrams [16] are a syntax with a rigid structure for 2-arrows (or 2-
cells) of a 2-category. Although the two syntaxes may graphically look similar,
string diagrams’ strings do not just denote connections between cells but they
represent morphisms. Since crossing strings is not allowed without the intro-
duction of twisting operators, we introduce the notion of twisting relations in
order to equate diagrams by permitting cells to cross certain strings.

As soon as we consider a derivation of a proof as a sequence of n-ary oper-
ators applications over lists of formulas, we are able to express it by means of
string diagrams which keep track of lists reordering. In a sense, string diagrams
diagrams keep track of edge crossing in pictorial representations of proof nets.

We study several diagram rewriting systems given by twisting polygraphs. In
this particular class of polygraph [5] string crossings are restrained to a specific
family of strings, while some rewriting rules recover the graph representation
equivalence.

The syntax of string diagrams allows us to define a polygraph where we
introduce some control strings in order to encode the correct parenthesization
of operators. In particular, these strings prevent the representation of non-
correct applications of inference rules, resulting into a sound framework where
sequentializability, that is if a proof diagram corresponds to a derivation, linearly
depends on diagram inputs and outputs pattern only.

Furthermore, this syntax induces an equivalence relation over linear logic
derivations representable by the same proof diagrams. However, this equiv-
alence does not capture all rule permutations required for the elimination of
the so called commutative cuts. In fact, these rule permutations require the
permutation of derivation tree branches as shown in the following case:

1

...

⊢ Γ, A,B

2

...

⊢ ∆, C
⊗1

⊢ Γ,∆, (B ⊗1 C), A

3

...

⊢ Σ, D
⊗2

⊢ Γ,∆,Σ, (A⊗1 D), (B ⊗2 C)
∼

1

...

⊢ Γ, A,B

3

...

⊢ Σ, D
⊗2

⊢ Γ,Σ, (A⊗1 D), B

2

...

⊢ ∆, C
⊗1

⊢ Γ,∆,Σ, (A⊗1 D), (B ⊗2 C)

If a syntax does not equate derivations differing for rule permutations, it
is crucial for a cut-elimination theorem to explicitly authorize them. On the
other hand, this syntax makes equivalent some proofs which are representable
by proof nets differing in jumps assignation only.

With the purpose of keeping this last nice feature and extend the equivalence
to include the missed rules permutations, we here extend the results presented
in [3] by enriching our polygraph with some additional generators and rewriting
rules. The equivalence induced by these rewriting rules induces an equivalence
over derivation (seen as syntactical expressions) effective to identify all and
only MLLu derivations which we use to consider equivalent (with respect of
independent inference rules permutations).

Extending the polygraph with the rewriting rules for cut-elimination achiev-
ing a a relative cut-elimination theorem. We conclude by giving a denotational
semantics [8] forMLLu proofs by means of equivalence classes of proof diagrams.

2

2 String diagrams

In this section we recall some basic notions in string diagram rewriting [16]. For
an introduction to this syntax see Selinger’s survey [20] and refer to in J.Baez’s
notes [4] for some interesting observations on the motivation and applications
of this formalism.

Given two lists Γ = Γ1 ∗ · · · ∗ Γn and ∆ = ∆1 ∗ · · · ∗ ∆m of symbols in an
alphabet Σ, a string diagram φ : Γ ⇒ ∆ with inputs in(φ) = Γ and outputs
out(φ) = ∆ is pictured as follows:

Γ

φ

∆

A string diagram can be interpreted as a function with multiple inputs and
outputs of type respectively Γ1, . . .Γn and ∆1, . . . ,∆m. Diagrams may be com-
posed in two different ways. If φ : Γ ⇒ ∆ and φ′ : Γ′ ⇒ ∆′ are diagrams, we
define:

• sequential composition: if ∆ = Γ′, the diagram φ′ ◦φ : p⇒ q′ corresponds
to usual composition of maps as the notation suggests.

This composition is associative with units idΓ : Γ ⇒ Γ for each possible
list of inputs Γ. In other words, we have φ ◦ idin(φ) = φ = idout(φ) ◦ φ.

The identity diagram idΓ is pictured as follows:
Γ

Γ

• parallel composition: the diagram φ∗φ′ : Γ∗Γ′ ⇒ ∆∗∆′ is always defined.
This composition is associative with unit id0 : ∅ ⇒ ∅. In other words, we
have id0 ∗ φ = φ = φ ∗ id0. This id0 is called the empty diagram.

These two compositions are respectively represented as follows:

Γ

φ

φ′

∆′

Γ Γ′

φ φ′

∆ ∆′

.

Our two compositions satisfy the interchange rule: if φ : Γ ⇒ ∆ and φ′ : Γ′ ⇒
∆′, then

(id∆ ∗ φ′) ◦ (φ ∗ idΓ′) = φ ∗ φ′ = (φ ∗ id∆′) ◦ (idΓ ∗ φ′)

that corresponds to the following picture:

Γ Γ′

φ

φ′

∆ ∆′

=

Γ Γ′

φ φ′

∆ ∆′

=

Γ Γ′

φ′

φ

∆ ∆′

String diagrams are a formalism for morphisms in a strict monoidal category
with objects finite lists of symbols over an alphabet Σ. The sequential compo-
sition ◦ denotes the usual morphisms composition while the product is the list
concatenation and it is denoted by ∗.

3

Definition 1 (Signature). Fixed an alphabet Σ we denote by Σ∗ the set of
words or lists over Σ. A signature S is a set of atomic diagrams (or gates
type). Given a signature, a diagram φ : Γ ⇒ ∆ (with Γ,∆ ∈ Σ∗) represents a
morphism in the monoidal category S∗ in which morphisms are freely generated
by S, i.e. by the two compositions ∗ and ◦ and identities. A gate is an occurrence
of an atomic diagram, we denote g : α or we say that g is an α-gate if g is an
occurrence of α ∈ S.

Definition 2. We say that φ is a subdiagram of φ′ if and only if there exist
ψu, ψd ∈ S∗ and Γ,∆ such that φ′ = χd ◦ (idΓ ∗ φ ∗ id∆) ◦ χu.

Notation Given φ ∈ S∗ and S ′ ⊆ S, we write |φ|S′ the number of gates in φ
with gate type α ∈ S ′.

Definition 3. We call horizontal a diagram φ generated by parallel composition
(and identities) only in S∗. It is elementary if |φ|S = 1.

2.1 Diagram rewriting

Definition 4 (Diagram Rewriting System). Fixed an alphabet Σ, a diagram
rewriting system is a couple (S,R) given by a signature S and a set R of
rewriting rules of the form

Γ

φ

∆

❴ *4

Γ

φ′

∆

where φ, φ′ : Γ ⇒ ∆ are diagrams in S∗ with same inputs and outputs. We call
φ and φ′ respectively source and target of the rewriting rules.

Definition 5. We allow each rewriting rule under any context, that is, if

φ ❴*4 φ′ in R then, for every χu, χd ∈ S∗,

χu

φ

χd

❴ *4

χu

φ′

χd

.

We say that ψ reduces, or rewrites, to ψ′ (denoted ψ
∗
❴*4 ψ′) if there is a rewriting

sequence P : ψ = ψ0
❴*4 ψ1

❴ *4 . . . ❴*4 ψn = ψ′ .

We here recall some classical notions in rewriting:

• A diagram φ is irreducible if there is no φ′ such that φ ❴ *4 φ′ ;

• A rewriting system terminates if there is no infinite rewriting sequence;

• A rewriting system is confluent if for all φ1, φ2 and φ such that φ ❴ *4 φ1

and φ ❴*4 φ2 , there exists φ′ such that φ1
∗
❴*4 φ′ and φ2

∗
❴ *4 φ′ ;

• A rewriting system is convergent if both properties hold.

4

3 Polygraphs

In this section we formulate some basic notion in string diagram rewriting by
using the language of polygraphs. Introduced by Street [22] as computads, later
reformulated and extended by Burroni [5], polygraphs can be considered as
the generalization for higher dimensional categories of the notion of monoid
presentation and the construction of the free category generated by a quiver.

Here we study some diagram rewriting systems with labels on strings in
terms of 3-polygraphs, which are denoted Σ = (Σ0,Σ1,Σ2,Σ3). In particular,
we consider polygraphs with just one 0-cell in Σ0 in order to avoid background
labeling. The set of 1-cells Σ1 represents string labels, the 2-cells in Σ2 are the
signature SΣ of our rewriting system with rules RΣ = Σ3, the set of 3-cells.
We say that a polygraph Σ exhibits some computational properties when the
relative diagram rewriting system does.
Notation We denote φ ∈ Σ whenever φ is a diagram generated by the associated
signature SΣ. If Σ is a 3-polygraph with one 0-cell, we denote by 〈Σ〉 the
monoidal category with objects words in Σ1 and morphisms [φ] (we denote
[φ] ∈ 〈Σ〉) the equivalence classes of diagrams φ ∈ S∗ modulo RΣ. We say that
Σ′ extends Σ if Σ′ can be obtained by Σ by extending the sets of i-cells, that is
Σi ⊆ Σ′

i for all i.

3.1 Twisting Polygraph

In this section we introduce a notion of polygraph which generalizes polygraphic
presentations of symmetric monoidal categories.

Definition 6 (Symmetric polygraph). We call the polygraph of permutation
the following monochrome 3-polygraph:

S =

(

Σ0 = {�},Σ1 = {},Σ2 = { },Σ3 =

{

❴ *4 , ❴*4

})

We call symmetric a 3-polygraph Σ with one 0-cell, one 1-cell (i.e. Σ1 = {}),
containing one 2-cell ∈ Σ2 and such that the following holds

= ,
α

=
α

and
α

=
α

for all α ∈ Σ2

in the 2-category Σ∗. In such 3-polygraph to denote diagrams inputs and out-
puts it suffices to provide the respective numbers of their input and output
strings.

Theorem 3.1 (Convergence of S). The polygraph S is convergent.

Proof. As in [18], in order to prove termination we interprete every diagram
φ : n ⇒ m ∈ S∗ with a monotone function [φ] : N

n → N
m. These have

well-founded partial order induced by product order on N
p (x̄ = (x1, . . . , xp) ≤

(y1, . . . yp) = ȳ whenever x1 ≤ x1 ∧ · · · ∧ xp ≤ yp):

f, g : N∗p → N
∗p then f < g iff f(x̄) < g(x̄) for all x̄ ∈ N

∗p.

5

We interpret the gate by the function [](x, y) → (y, x + y). This allow

us to associate to any 3-cell φ ❴*4 ψ two monotone maps [φ] and [ψ] such that

[φ] > [ψ]:

[]

(x, y) = (2x+ y, x+ y) > (x, y) =
[]

(x, y),
[]

(x, y, z) = (2x+ y + z, x+ y, x) > (x+ y + z, x+ y, x) =

[]

(x, y, z)

By the compatibility of the order with sequential and parallel composition, this

suffices to prove that, for any couple of diagrams, [φ] > [ψ] holds if φ
∗
❴*4 ψ .

Since this order on monotone maps on integers admits no infinite decreasing
chain, infinite reduction paths can not exist.

In order to prove convergence, it suffices to check the confluence of the
following critical peaks, that are the minimal critical branchings of the rewriting
system (see [2] for details):

Each diagram in S can be interpreted as a permutation in the group of
permutations over n elements Sn with product ◦ defined as their function com-
position. On the other hand, each σ ∈ Sn corresponds to some diagrams in S.
In particular, we interpret the diagram idk−1 ∗ ∗ idn−(k+1) : n ⇒ n as the
transposition (k, k + 1) ∈ Sn.

Notation We note Ladln = : n ⇒ n and Ladrn = : n ⇒ n the
left and right ladder diagrams corresponding respectively to the permutations
(1, n, n− 1, . . . , 2) and (n, 1, 2, . . . , n− 1) in Sn.

Proposition 3.2. For any permutation σ ∈ Sn there is a unique diagram in
normal form φ̂σ : n ⇒ n ∈ S corresponding to σ. We call it the canonical
diagram of σ.

Proof. We define S1 = {} and Sn+1 the set of diagrams in S of the form:

σ′

= φ̂σ : n+ 1 ⇒ n+ 1

with σ′ ∈ Sn and = = Ladlk ∗ id(n+1−k). We have

|Sn| = n! since |S1| = 1 and |Sn+1| = (n + 1)|Sn| on account of n + 1 =
|{Ladlk}1≤k≤n+1| = |{Ladlk ∗ id(n+1−k)}1≤k≤n+1|.

To exhibit a one-to-one correspondence between Sn+1 and Sn+1, for any
σ ∈ Sn+1 we define Er(σ) ∈ Sn as the permutation

Er(σ) =

{

i→ σ(i + 1) if σ(i + 1) < σ(1)

i→ σ(i + 1) + 1 if σ(1) < σ(i + 1)
.

6

and φ̂σ = (Ladlk ∗ id(n+1−σ(1))) ◦ (id1 ∗ φ̂Er(σ)).

No element in Sn contains subdiagram of the form nor . This means

that they are irreducible and so, by the confluence of S, in normal form.

Definition 7 (Twisting polygraph). A twisting polygraph is a 3-polygraph Σ
with one 0-cell equipped with a set TΣ ⊆ Σ1 called twisting family such that for
each A,B ∈ TΣ there is a twisting operator A,B : A ∗B ⇒ B ∗A ∈ Σ2 and Σ3

includes the following families TR of twisting relations :

• For all A,B,C ∈ TΣ:

A B
❴*4 A B and

A B C

C B A

❴*4

A B C

C B A

; (1)

• For all α : Γ → Γ′ ∈ Σ2 with Γ,Γ′ ∈ T ∗
Σ, A ∈ TΣ, at least one of the two

possible orientation of the following rewriting rules is in Σ3:

Γ A

α

A Γ′

❱%/
Γ A

α

A Γ′

❱eo
and

A Γ

α

Γ′ A

❱%/
A Γ

α

Γ′ A

❱eo
. (2)

Moreover, if φ, ψ are twisting diagrams (i.e. diagrams made only of twisting

operators) φ
∗

RΣ

❴ *4 ψ iff φ
∗

RT

❴*4 ψ where RT is the set given by rewriting rules of

(1). A total-twisting polygraphy is a twisting polygraph with TΣ = Σ1.

The idea behind twisting polygraphs is to present diagram rewriting systems
where, in equivalence classes modulo rewriting, the crossings of strings labeled
by the twisting family are not taken into account. In fact, the family of relations
(1) says that these crossings are involutive and satisfy Yang-Baxter equation
[15] for braidings, while relations in (2) allow gates to “cross” a string in case
of fitting labels.

We interpret a twisting diagram φσ : Γ ⇒ σ(Γ) as the permutations in S|Γ|

acting over the order of occurrence of 1-cells in the word Γ ∈ T ∗
Σ. For this

reason, as in S, we define left ladders, right ladders and the standard diagrams
φ̂Γσ : Γ → σ(Γ) (or simply φ̂σ) with source and target in T ∗

Σ. In conformity with

the twisting polygraph restrictions over Σ3, we can prove the uniqueness of φ̂σ
as in Proposition 3.2.

4 Multiplicative Linear Logic sequent calculus

In this paper we focus on the multiplicative fragment of linear logic sequent
calculus with units. We here we recall the usual inference rules:

7

Identity or Axiom Cut
Structural

Ax
⊢ A,A⊥ ⊢ Σ, A ⊢ Γ, A⊥

Cut
⊢ Σ,Γ

Tensor Par
Multiplicative

⊢ Σ, A ⊢ B,Γ
⊗

⊢ Σ, (A⊗B),Γ

⊢ Σ, A,B
`

⊢ Σ, A`B

Bottom 1
Units

⊢ Σ
⊥

⊢ Σ,⊥

1
⊢ 1

We also consider the usually omitted exchange rule:

⊢ A1, . . . , Ak
σ ∈ Sk⊢ Aσ(1), . . . , Aσ(k)

We call principal a formula which occurs in the conclusion of a rule but does
not occur in the premise(s) and active a formula which occurs in the premise of
a rule but not in the conclusion. In a derivation d(Γ), we say that a Cut rule
is commutative when one of its active formulas is not principal. Moreover, a
commutative cut is pure if the non-principal active formula is principal for a ⊗
rule. A cut-free derivation is a derivation with no occurrences of Cut rules.

We finally recall that the multiplicative linear logic fragment with units
(MLLu) is given by the aforementioned inference rules, while the multiplica-
tive fragment (MLL) is the one given by the inference rules Ax,Cut,⊗,` (and
exchange) only.

Remark 1 (On Negation). We assume negation to be involutive, i.e. A⊥⊥ = A

and the De Morgan’s laws to apply with respect to ` and ⊗, i.e. (A♥B)⊥ =
B⊥♥⊥A⊥ for any formulas A,B where ♥ = ` and ♥⊥ = ⊗ or vice versa ♥ = ⊗
and ♥⊥ = `. Moreover 1⊥ = ⊥.

Remark 2 (On Rules). In this work we interpret inference rules as operators
with specific arities over the set of sequents: Ax and 1 are 0-ary, ` and ⊥ are
unary and ⊗ and Cut are binary.

Notation We indicate with FMℓℓ and FMℓℓu the sets of formulas respectively
in MLL and MLLu . Moreover we indicate with F∗

Mℓℓ and F∗
Mℓℓu

their respective
sets of sequents.

In the formalism of sequent calculus, oftentimes two derivations are identified
when they can be transformed one into the other by a sequence of permutations
over inference rules. Indeed, this identification is crucial for a cut-elimination
result whenever we face a commutative cuts. In this paper we consider the
equivalence among derivations only form a syntactical viewpoint: namely, two
derivations are considered equal if and only if they display exactly the same
sequents (multisets of formulas) and the same rules in the same order. We
then formalize the equivalence relation ∼ over MLLu derivations given by the
permutation of inference rules with disjoint sets of active formula occurrences:

8

Definition 8. We define the standard equivalence over MLLu derivations (de-
noted by ∼) as the equivalence derivations generated by the following equiva-
lences for all A,B,C,D ∈ FMℓℓu , Γ,∆,Σ ∈ F∗

Mℓℓu
:

• If ⊙1,⊙2 ∈ {`,⊥}:

...

⊢ Γ,∆,Σ
⊙1

⊢ ⊙1(Γ),∆,Σ
⊙2

⊢ ⊙1(Γ),⊙2(∆),Σ
∼

...

⊢ Γ,∆,Σ
⊙2

⊢ Γ,⊙2(∆),Σ
⊙1

⊢ ⊙1(Γ),⊙2(∆),Σ

where

⊙1(Γ) =

{

Γ,⊥ if ⊙1 = ⊥
Γ′, A`B if ⊙1 = ` and Γ = Γ′, A,B

and

⊙2(∆) =

{

∆,⊥ if ⊙2 = ⊥
∆′, C `D if ⊙2 = ` and ∆ = ∆′, C,D

• If ⊙1 ∈ {⊗, Cut}, ⊙2 ∈ {`,⊥}:

...

⊢ ∆, A

...

⊢ B,Γ,Σ
⊙1

⊢ ∆,⊙1(A,B),Γ,Σ
⊙2

⊢ ∆,⊙1(A,B),⊙2(Γ),Σ
∼

...

⊢ ∆, A

...

⊢ B,Γ,Σ
⊙2

⊢ ∆, B,⊙2(Γ),Σ
⊙1

⊢ ∆,⊙1(A,B),⊙2(Γ),Σ

and

...

⊢ Γ, A,Σ

...

⊢ B,∆
⊙1

⊢ Γ,⊙1(A,B),∆,Σ
⊙2

⊢ ⊙2(Γ),⊙1(A,B),∆,Σ
∼

...

⊢ Γ, A,Σ
⊙2

⊢ ⊙2(Γ), A,Σ

...

⊢ B,∆
⊙1

⊢ ⊙2(Γ),⊙1(A,B),∆,Σ

where

⊙1(A,B) =

{

A⊗B if ⊙1 = ⊗
∅ if ⊙1 = Cut and A = B⊥

⊙2(Γ) =

{

Γ,⊥ if ⊙2 = ⊥
Γ′, A`B if ⊙2 = ` and Γ = Γ′, A,B

• If ⊙1,⊙2 ∈ {⊗, Cut}:

...

⊢ Γ, A

...

⊢ Σ, B, C
⊙1

⊢ Γ,Σ,⊙1(A,B), C

...

⊢ ∆, D
⊙2

⊢ Γ,Σ,∆,⊙1(A,B), (C ⊙2 D)
∼

...

⊢ Γ, A

...

⊢ Σ, B, C

...

⊢ ∆, D
⊙2

⊢ Σ,∆, B,⊙2(C,D)
⊙1

⊢ Γ,Σ,∆,⊙1(A,B),⊙2(C,D)

9

...

⊢ Γ, A, C

...

⊢ Σ, B
⊙1

⊢ Γ,Σ,⊙1(A,B), C

...

⊢ ∆, D
⊙2

⊢ Γ,Σ,∆,⊙1(A,B), (C ⊙2 D)
∼

...

⊢ Γ, A, C

...

⊢ ∆, D
⊙2

⊢ Γ,∆, A,⊙2(C,D)

...

⊢ Σ, B
⊙1

⊢ Γ,Σ,∆,⊙1(A,B), (C ⊙2 D)

...

⊢ Σ, C

...

⊢ Γ, A

...

⊢ ∆, D,B
⊙1

⊢ Γ,∆, D,⊙1(A,B)
⊙2

⊢ Γ,Σ,∆,⊙1(A,B),⊙2(C,D)
∼

...

⊢ Γ, A

...

⊢ Σ, C

...

⊢ ∆, D,B
⊙2

⊢ Σ,∆, B,⊙2(C,D)
⊙1

⊢ Γ,Σ,∆,⊙1(A,B),⊙2(C,D)

⊙1(A,B) =

{

A⊗B if ⊙1 = ⊗
∅ if ⊙1 = Cut and A = B⊥

⊙2(C,D) =

{

C ⊗D if ⊙2 = ⊗
∅ if ⊙2 = Cut and C = D⊥

We define the cut-elimination procedure by the following set of rewriting
rules over derivations:

Definition 9 (Cut-elimination procedure). The cut-elimination procedure is
the relation →Cut generated by the following (oriented) relations called cut-
elimination steps :

...

⊢ Γ, A
Ax

⊢ A⊥, A
Cut

⊢ Γ, A
→Cut

...

⊢ Γ, A

Ax
⊢ A,A⊥

...

⊢ Γ, A
Cut

⊢ Γ, A
→Cut

...

⊢ Γ, A

...

⊢ Γ, A

...

⊢ B,∆
⊗

⊢ Γ,∆, A⊗B

...

⊢ B⊥, A⊥,Σ
`

⊢ B⊥ `A⊥,Σ
Cut

⊢ Γ,∆,Σ
→Cut

...

⊢ Γ, A

...

⊢ B,∆

...

⊢ B⊥, A⊥,Σ
Cut

⊢ ∆, A⊥,Σ
Cut

⊢ Γ,∆,Σ

...

⊢ B⊥, A⊥,Σ
`

⊢ B⊥ `A⊥,Σ

...

⊢ Γ, A

...

⊢ B,∆
⊗

⊢ Γ,∆, A⊗B
Cut

⊢ Γ,∆,Σ
→Cut

...

⊢ B⊥, A⊥,Σ

...

⊢ B,∆
Cut

⊢ ∆, A⊥,Σ

...

⊢ Γ, A
Cut

⊢ Γ,∆,Σ

...

⊢ Γ
⊥

⊢ Γ,⊥
1

⊢ 1
Cut

⊢ Γ
→Cut

...

⊢ Γ

1
⊢ 1

...

⊢ Γ
⊥

⊢ Γ,⊥
Cut

⊢ Γ
→Cut

...

⊢ Γ

The cut-elimination theorem for MLLu sequent calculus is proved by show-
ing the termination of the cut-elimination procedure [7]. This result requires
the identification of derivations by the standard equivalence. Alternatively, the
proof requires the definition of some additional rewriting rules which permute
the commutative Cut instances. We remark that even in non-commutative
extensions of linear logics [1] where permutations of formulas in a sequent
are strongly restricted, we (unexpectedly) require permutations over derivation
branches for a proof of cut-elimination theorem.

10

For this reason, any denotational semantic of MLLu sequent calculus [9, 19,
23] has to take into account the standard equivalence of derivations in order
to capture the cut-elimination. It results that the equivalence relation over
derivations induced by any such semantics contains the equivalence relation ≈
over the derivations syntax generated by (→Cut ∪ ∼).

5 String diagram syntax for linear logic

In this section we define some particular 3-polygraphs which generate a family
of string diagrams we call proof diagrams. These diagrams are a syntax for
linear logic sequent calculus with explicit exchange rules.

The first polygraph ΣMLLu
we define generates a family of terms correspond-

ing to the different representations of MLLu proof nets, with explicit notation
for wire crossings but no jump assignations.

We then improve this construction adding two non-twisting colors for strings
and we adapt certain gate types in order to make them interact with these con-
trol strings. Due to the more rigid structure of the diagrammatic syntax, in this
polygraph Ũ we are able to characterize diagrams corresponding to linear logic
derivations by just checking their inputs and outputs patterns. On the other
hand, the rewriting we define is able to capture all permutations of inference
rules with exception of the ones between two binary rules (⊗ or Cut), in par-
ticular the one needed to eliminate commutative cuts, crucial for the sequent
calculus cut-elimination theorem.

We extend to U the polygraphic presentation of this model by extending
Ũ with two sets of generators and relations which allows us to perform some
transformations corresponding to certain permutations of binary inference rules.
We then show that the classes of equivalent diagrams modulo the rewriting of
this polygraph are in one-to-one correspondence with the classes of ∼-equivalent
MLLu proof.

We conclude with the polygraph UCut which include the rewriting rules cor-
responding to cut-elimination steps of MLLu sequent calculus showing that the
associated quotient over MLLu derivations captures the semantics equivalence
of proof.
Notation From now on, in order to unify the notation 1-cell composition with
the one of sequents, we replace the symbol ∗ for string diagrams parallel com-
position with a comma.

5.1 Proof diagrams and MLL
u
proof nets

The first polygraph we introduce can be seen as a formal syntax for proof net
representations.

Definition 10. The 3-polygraph ΣCut
MLLu

is the polygraph of multiplicative linear
logic proof nets with units. It is given by the following sets of cells:

• Σu0 = { � }; • Σu1 = FMℓℓu ;

11

• Σu2 =















































































































⊗A,B : A,B ⇒ A⊗B =

A B

⊗

A⊗B

`A,B : A,B ⇒ A`B =

A B

`

A`B

AxA : � ⇒ A,A⊥ =
A

AA⊥

CutA : A,A⊥ ⇒ � =
AA⊥

A

A,B : A,B ⇒ B,A =
A B

B A

1 : � ⇒ 1 = 1

⊥ : � ⇒ ⊥ = ⊥















































































































A,B∈FMℓℓu

If there is no ambiguity we note and instead of A and A .

• Σu3 = ΣMTwist ∪ ΣuTwist ∪ ΣAxCut ∪ ΣMCut ∪ΣuCut where:

– ΣMTwist is given by the following twisting relations:

A B

A B

❴ *4 A B ,

A B C

C B A

❴ *4

A B C

C B A

,

B

B AA⊥

❴*4
B

B AA⊥

,

B

AA⊥B

❴*4
B

AA⊥B

,

AA⊥B

B

❴ *4
AA⊥B

B

,

B AA⊥

B

❴*4
B AA⊥

B

,

A B C

⊗

C A⊗B

❴ *4

A B C

⊗

C A⊗B

,

A B C

⊗

B⊗C A

❴*4

A B C

⊗

B⊗C A

,

A B C

`

C A`B

❴ *4

A B C

`

C A`B

,

A B C

`

B`C A

❴ *4

A B C

`

B`C A

;

together with two rules representing the involution A⊥⊥ = A:

A

A A⊥

❴ *4 A⊥

A⊥ A

,

A A⊥

A
❴ *4

A⊥ A

A⊥ ;

– ΣuTwist is given by the following twisting relations:

A

A ⊥

❴*4
A

A ⊥

,
A

⊥ A

❴ *4
A

⊥ A

,
A

A 1

❴ *4
A

A 1

,
A

1 A

❴ *4
A

1 A

;

– ΣAxCut is following the set of rules for the cut elimination:

12

Γ A

A Γ

❴ *4

Γ A

A Γ

,

A Γ

Γ A

❴*4

A Γ

Γ A

, for any Γ ∈ FMℓℓ
∗

A

A

❴*4 A ,

A Γ

σ

A σ(Γ)

❴ *4

A Γ

σ

A σ(Γ)

, for any

Γ

σ

σ(Γ)

canonical diagram of σ;

– ΣMCut is following the set of rules for the cut elimination:

A B B⊥A⊥

` ⊗
❴*4

A B B⊥A⊥

,

A B B⊥A⊥

⊗ `
❴ *4

A B B⊥A⊥

,

– ΣuCut the following set of rules for cut elimination:

❴ *4 ∅ , ❴*4 ∅

.

Remark 3. The polygraph ΣCut
MLLu

is twisting with twisting family FMℓℓu , i.e. it
is total twisting.

Theorem 5.1 (Interpretation of proofs in ΣCut
MLLu

). For any derivation d(Γ) of

⊢ Γ in MLLu there is a proof diagram φd(Γ) : � ⇒ Γ ∈ ΣCut
MLLu

.

Proof. Let d(Γ) be a derivation in MLLu of ⊢ Γ. First we observe that, if there

is a diagram φ : ∆ ⇒ Γ so there also is a diagram φσ = φ̂σ ◦ φ : ∆ ⇒ σ(Γ) for
all permutation σ ∈ S|Γ|. Thus, we can proceed by induction on the number of
inference rules appearing in d(Γ):

• If just one inference rule occurs in d(Γ), it must be an Ax rule or a 1 rule.
It follows that Γ = A,A⊥ and φd(Γ) = AxA : � ⇒ A,A⊥ or that Γ = 1
and φΓ = 1 : � ⇒ 1;

• If n + 1 inference rules occur in d(Γ), then we consider the last one and
we distinguish two cases in base of its arity (see Remark 2):

– If it is unary and Γ = Γ′, A`B, then, by inductive hypothesis, there
is a diagram φd(Γ′,A,B) : � → Γ′, A,B of the derivation d(Γ′, A,B)
with n inference rules. Therefore

φd(Γ) = (idΓ′ ,`A,B) ◦ φd(Γ′,A,B) : � ⇒ Γ;

– If it is an unary ⊥ and Γ = Γ′,⊥, then, by inductive hypothesis,
there is a diagram φΓ′ : � ⇒ Γ′ and φΓ = φΓ′ ,⊥.

– If it is binary and Γ = ∆, A ⊗ B,∆′, then, by inductive hypothesis,
there are two diagrams φd(∆,A) : � ⇒ ∆, A and φd(B,∆′) : � ⇒
B,∆′ relative to the two derivations d(∆, A) and d(B,∆′) with at
most n inference rules. Therefore

φd(Γ) = (id∆,⊗A,B, id∆′) ◦ (φd(∆,A), φd(B,∆′)) : � ⇒ Γ;

13

– Similarly, if it is binary and Γ = ∆, Cut(A,A⊥),∆′, then

φd(Γ) = (id∆, cutA, id∆′) ◦ (φd(∆,A), φd(A⊥,∆′)) : � ⇒ Γ.

The 2-cells of this syntax remindsMLLu proof structure representations. We
remark two important differences: cells are always top-to-bottom orientated,
that is with the active port on the bottom, and wire crossing are part of this
syntax by means of twisting operators. This intuition leads to the following:

Proposition 5.2 (Proof structure interpretation). We can associate to any
proof diagram φ in ΣCut

MLLu
a MLLu proof structures Pφ.

Proof. It suffices to consider a proof diagram as a specific representation of a
proof structure with no specific jumps assignation: strings, Ax-gates and Cut-
gates are interpreted as wires (! and !), twisting operators
as wire crossing and gates of type ⊗,`,⊥ and 1 as the corresponding cells of
the proof structure with a coherent labeling with respect of gate types. Then,
since proof diagrams in ΣCut

MLLu
keep no records about jump assignations, for

each ⊥-gate we assign arbitrary jump.

However, the converse is not true. In fact even if we interpret down-to-down
and up-to-up wire turn-backs as Ax and Cut gates respectively (i.e.

and) and wire crossing as occurrences of twisting operators, in the
syntax of proof diagrams we are not able to represent some (incorrect) proof
structures because of the type of inputs and outputs of Ax and Cut gates. By

means of example, consider the proof structure ` whose translation in proof

diagram syntax requires the existence of A,B ∈ FMℓℓu with A⊥ = A⊥ ` B in
order to be well defined.

5.2 Proof diagram with control for MLL
u

In order to have an analogous of the proof net correctness criterion formalized
inside a syntax of MLLu proof diagrams, we enrich the set of string labels with
two new non-twisting colors L = (left) and R = (right) that we call control
strings.

The idea is to use these strings to reproduce a 2-dimensional notation for
parenthesization, in order to internalize a notion of well-paranthesization in a
setting where a proof derivation can be seen as a sequence of operations over
lists of sequents. Thus, unary derivation rules act on single sequents (as in the
case of ` and ⊥), binary ones act on two sequent (as in the case of ⊗ and Cut)
and the 0-ary one, that are Ax and 1, generates a new sequent. For this purpose
we re-define the 2-cells for 0-ary and binary rules in order to make them interact
with control strings.
Notation In order to help reader, L and R control strings are represented in
diagrams by strings decorated by a certain number of and respectively. These
have to be considered as string labels and not gates.

Definition 11. The control polygraph of multiplicative linear logic with units
Ũ is given by the following sets of cells:

14

• Ũ0 = { � }; • Ũ1 = FMℓℓu ∪ {L = , R = };

• Ũ2 =















































































































⊗A,B : A,R,L,B ⇒ A⊗B =

A B

⊗

A⊗B

`A,B : A,B ⇒ A`B =

A B

`

A`B

AxA : � ⇒ L,A,A⊥, R =
A

AA⊥

CutA : A,R,L,A⊥ ⇒ � = A A⊥

A,B : A,B ⇒ B,A =
A B

B A

1 : � ⇒ L, 1, R = 1

⊥ : � ⇒ ⊥ = ⊥















































































































A,B∈FMℓℓu

• Ũ3 = M̃Twist ∪ ŨTwist where:

– M̃Twist is given by the following twisting relations:

A B

A B

❴*4 A B ,

A B C

C B A

❴*4

A B C

C B A

,

A B C

`

C A`B

❴ *4

A B C

`

C A`B

,

A B C

`

B`C A

❴*4

A B C

`

B`C A

;

together with one rule representing the involution A⊥⊥ = A:

A

A⊥A

❴ *4
A⊥

A⊥A

– ŨTwist is given by the following twisting relations:

A

A ⊥

❴ *4
A

A ⊥

,

A

⊥ A

❴*4
A

⊥ A

.

Remark 4. The polygraph Ũ is twisting with twisting family FMℓℓu . This means
that we can represent any crossing of strings labeled by MLLu formulas and these
crossings interact as we attend with 2-cells which are not connected to control
strings.

Remark 5 (Cut-gates shape). We assume the De Morgan’s laws in the defini-
tion of Cut-gate inputs, as given in Remark 1. That is, for any A,B ∈ FMℓℓu :

• CutA`B : (A`B), R, L, (B⊥ ⊗A⊥) ⇒ � ;

• CutA⊗B : (A⊗B), R, L, (B⊥ `A⊥) ⇒ � ;

15

• Cut⊥ : ⊥, R, L, 1`A⊥ ⇒ � ;

• Cut1 : 1, R, L,⊥ ⇒ � ;

In this setting we are able to prove that the sequentializability of a diagram
depends only on its inputs and outputs. Moreover, we are able to characterize
MLLu provable sequents in terms of existence of proof diagrams with a specific
type.

Theorem 5.3 (Controlled proof diagram correspondence in Ũ).

⊢MLLu Γ ⇔ ∃φ ∈ Ũ such that φ : � ⇒ L,Γ, R.

Proof. To prove the left-to-right implication ⇒, as in Teor. 5.1, we remark that,
if there is a diagram φ : � ⇒ L,Γ, R with Γ sequent in MLLu , so there is a
diagram

φσ = (idL, φ̂σ, idR) ◦ φ : � ⇒ L, σ(Γ), R

for any permutation σ ∈ S|Γ|. Then we proceed by induction on the number of
inference rules in a derivation d(Γ) in MLLu :

• If just one inference rule occurs d(Γ), then it is an Ax or a 1, then Γ =
A,A⊥ and φd(Γ) = AxA : � ⇒ L,A,A⊥, R or Γ = 1 and φd(Γ) = 1 :
� ⇒ L, 1, R;

• If n + 1 inference rules appear, then we consider the last one and we
distinguish two cases in base of its arity:

– If it is an unary ` and Γ = Γ′, A`B, then, by inductive hypothesis,
there is a diagram φd(Γ′,A,B) : � ⇒ L,Γ′, A,B,R of the derivation
d(Γ′, A,B) and

φd(Γ) = (idL,Γ′ ,`A,B, idR) ◦ φd(Γ′,A,B) : � ⇒ L,Γ, R;

– Similarly, if it is a unary ⊥ and Γ = Γ′,⊥, then, by inductive
hypothesis, there is a diagram φΓ′ : � ⇒ L,Γ′, R and φΓ =
(L,⊥, idΓ′ , R) ◦ φΓ′ ;

– If it is a binary⊗ and Γ = ∆, A⊗B,∆′, then, by inductive hypothesis,
there are two diagrams φd(∆,A) : � ⇒ L,∆, A,R and φd(B,∆′) :
� ⇒ L,B,∆′, R relative to the two derivations d(∆, A) and d(B,∆′)
with at most n inference rules. Therefore

φd(Γ) = (idL,∆,⊗A,B, id∆′,R) ◦ (φd(∆,A), φd(B,∆′)) : � ⇒ L,Γ, R

– Similarly, if it is a binary Cut and Γ = ∆, Cut(A,A⊥),∆′, then

φd(Γ) = (idL,∆, CutA⊥ , id∆′,R) ◦ (φd(∆,A), φd(A⊥,∆′)) : � ⇒ L,Γ, R.

In order to prove sequentialization, i.e. the right-to-left implication ⇐, we
proceed by induction on the number |φ|S of gates in φ:

• If |φ|
M̃

= 0 so φ : idΓ : Γ ⇒ Γ. By hypothesis φ has no input (i.e.
s2(φ) = �) so it is the identity diagram over the empty string, this is
the empty diagram id0 : � ⇒ � which it is not sequentializable since
t2(φ) = � 6= L,R;

16

• If |φ|
Ũ
= 1 then φ is an elementary diagram. The elementary diagrams

with source � and target L,Γ, R with Γ ∈ F∗
Mℓℓu

are atomic made of

a unique 2-cell of type AxA : � → L,A,A⊥, R for some A ∈ FMℓℓu or
1 : 0 → L, 1, R. The associated sequent ⊢ A,A⊥ or ⊢ 1 is derivable in
MLLu ;

• Otherwise there is 2-cell of type α : Γ′ ⇒ α(Γ′) ∈ M̃2 and Γ = ∆, α(Γ′),∆′.
In this case φ = (idL,∆, α, id∆,R)◦φ′ where φ′ : � ⇒ L,∆,Γ′,∆′, R. We
have the following cases:

– If α = A,B, Γ′ = A,B and α(Γ′) = B,A. The diagram φ′ is
sequentializable by inductive hypothesis since |φ|

Ũ
= |φ′|

M̃
+ 1:

φ′

∆ ⊥ ∆′

– Similarly if α = `A,B, Γ
′ = A,B and α(Γ′) = A ` B or if α = ⊥,

Γ′ = ∅ and α(Γ′) = ⊥:

φ′

∆ B A ∆′

φ′

`

∆ A`B ∆′

– If α = ⊗A,B so Γ′ = A,R,L,B, α(Γ′) = A⊗B and

φ′ : � ⇒ L,∆, A,R, L,B,∆′, R.

This diagram is a parallel composition φ = φ′l, φ
′
r with

φ′l : � ⇒ L,∆, A,R and φ′r : � ⇒ L,B,∆′, R

of two diagrams which satisfy inductive hypothesis since |φ|
M̃

=
|φ′l|M̃ + |φ′r |M̃ + 1:

φ′

l φ′

r

⊗

∆ A⊗B ∆′

– Similarly if α = CutA with B = A⊥ we have Γ′ = A,R,L,A⊥ and
α(Γ′) = ∅:

φ′

l φ′

r

∆ ∆′

In particular, this theorem gives and representation procedure to associate a
diagram to a derivation and a sequentialization procedure to associate a deriva-
tion to a proof diagram.

17

Definition 12 (Representation). We say that a proof diagram φ ∈ U with
φ : � ⇒ L,Γ, R represents a derivation d(Γ) if it can be sequentialized into
the derivation d(Γ), and that a derivation d(Γ) is represented by φ or that φ is
a diagrammatic representation of d(Γ) if the derivation d(Γ) can be imitated by
φ.

Definition 13 (Proof diagram branch). We says that ψ is a branch of a sequen-
tializable proof diagram φ if it is a subdiagram of the form ψ : � ⇒ L,Γ, R.

A branch ψ ⊆ ψ represents to a sub-derivation of the derivation represented
by φ, in other words it is a branch of the relative derivation tree.

We prove the termination of the polygraph Ũ in order to give a definition of
irreducible proof diagram.

Theorem 5.4 (Termination of Ũ). The polygraph Ũ is terminating.

Proof. We define a termination order [12] by associating to any proof diagram
φ : Γ ⇒ ∆ a function [φ] : N|Γ| ⇒ N

|∆| according to the following interpreta-
tions:

[] : ∅ → (1, 1, 1, 1) , [] : (z1, x, y, z2) → ∅ ,

[`] : (x, y) → x+ y + 1 , [⊗](x, z1, z2, y) → x+ y + 1 ,

[] : (x, y) → (y, x+ y) , [] : (∅) → 1 , [] : (∅) → (1, 1, 1) ,

In particular, for any rule φ ❴ *4 φ′ ∈ Ũ3 we have such that [φ] > [φ′]:

[]

(x, y) = (2x+ y, x+ y) > (x, y) =
[]

(x, y),

[]

(x, y, z) = (2x+ y + z, x+ y, x) > (x+ y + z, x+ y, x) =

[]

(x, y, z),

[]

∅ = (0, 2, 1, 0) > (0, 1, 1, 0) =
[]

∅,

[

`

]

(x, y, z) = (x+y+z+1, x+y+1) > (x+y+z, x+y+1) =

[

`

]

(x, y, z),

[

`

]

(x, y, z) = (y+ z+ 1, x+ y+ z+ 1) > (y+ z +1, x+ y) =

[

`

]

(x, y, z),

[]

(x) = (x+ 2, 1) > (x, 1) =
[]

(x),

[]

(x) = (x+ 2, x) > (1, x) =
[]

(x),

The compatibility of the order with sequential and parallel composition suf-
fices to conclude that for any couple of diagrams [φ] > [φ′] holds whenever

φ
∗
❴*4 ψ . This rules out the existence of an infinite reduction path by the same

argumentations given inTheorem 3.1 proof.

In the next section we study the quotient over derivations induced by the
morphisms in 〈Ũ〉.

18

5.3 The quotient over derivations induced by Ũ

The polygraph Ũ generates a monoidal category 〈Ũ〉 where morphisms are the
equivalence classes of proof diagrams generated by the signature Ũ2 modulo the
rewriting rules in Ũ3. The representability of a derivation by means of a proof
diagram gives raise to an important question about the correlation between two
derivations represented by the same proof diagram.

In this section we study the equivalence relation between derivations which
can be represented by the same proof diagrams and by proof diagrams belonging
to the same equivalence class in 〈Ũ〉. We compare it with the standard equiv-
alence relation ∼ and the equivalence relation induced over derivation by the
proof net syntax [21].

If we denote Nd(Γ) the proof net representing the derivation d(Γ) and φd(Γ) ∈

Ũ a proof diagram representing a derivation d(Γ), we can define the following
equivalence relations over MLLu derivations:

• we denote ∼N the equivalence relation over derivations induced by proof
nets syntax. It is defined as follows:

d′(Γ) ∼N d′′(Γ) iff Nd′(Γ) = Nd′′(Γ).

In other words, d′(Γ) ∼N d′′(Γ) if and only if they can be represented by
the same proof net.

• we denote ≃D the equivalence relation over derivations induced by proof
diagram syntax. It is defined as follows:

d′(Γ) ≃D d′′(Γ) iff ∃φ ∈ Ũ such that φd′(Γ) = φ = φd′′(Γ).

In other words, d′(Γ) ≃D d′′(Γ) if and only if they can be represented by
the same proof diagram in Ũ3.

• we denote ∼D̃ the equivalence relation over derivations induced by 〈Ũ〉. It
is defined as follows:

d′(Γ) ∼D̃ d′′(Γ) iff ∃φd′(Γ), φd′′(Γ) ∈ Ũ s.t. [φd′(Γ)]Ũ = [φd′′(Γ)]Ũ.

In other words, d′(Γ) ∼D̃ d′′(Γ) if and only if they can be represented by

two proof diagrams which are equivalent modulo Ũ3.

It is well-known that ∼N captures all permutation of multiplicative inference
rules except the ones changing the jump assignation for a ⊥ cell. This implies
that ∼N=∼ over the pure multiplicative fragment of linear logic but that ∼N
is finer than ∼ in presence of multiplicative units [14].

We remark that ∼D̃ captures all commutations of unary inference rules (⊥,
` and exchange) with disjoint sets of principal and active formula occurrences
(by the interchange rule) together with permutations between ⊥ or ` rules and
exchange rules (by twisting relations).

At the same time, in MLLu sequent calculus we usually consider sequents as
multisets; thus, the equivalence relation ≃D does not really take into account
the geometry of twisting operators in proof diagrams. In fact, we can always re-
arrange the order of occurrences of formulas in the sequents inside a derivation
before represent it by a proof diagram. This allows to shape at will the geometry

19

of twisting operators of the representation of the derivation. For this reason,
unexpectedly (but not that much) it emerges that the two equivalence relations
≃D and ∼D̃ are equivalent.

However, this equivalence relation≃D is not able to capture all permutations
of binary inference rules (⊗ and Cut): let α, β ∈ {⊗, Cut}, then ∼ equates only
permutations of the kind that follows:

1

...

⊢ Σ, A

2

...

⊢ B,Γ, C
α

⊢ Σ, α(A,B),Γ, C

3

...

⊢ D,∆
β

⊢ Σ, α(A,B),Γ, β(C,D),∆ ∼

1

...

⊢ Σ, A

2

...

⊢ B,Γ, C

3

...

⊢ D,∆
β

⊢ A,Γ, β(C,D),∆
α

⊢ Σ, α(A,B),Γ, β(C,D),∆

that is, permutations of ⊗ or Cut rules that do not change the order of the
branching in a derivation tree.

For an actual example of these particular cases, consider the linear logic
sequent B ⊗ C,A ⊗D. This exhibits two different ∼-equivalent (but also ∼N -
equivalent) derivations which are not ≃D-equivalent:

1

...

⊢ A,B

2

...

⊢ C
⊗

⊢ A,B ⊗ C

3

...

⊢ D
⊗

⊢ A⊗D,B ⊗ C
∼

1

...

⊢ A,B

3

...

⊢ D
⊗

⊢ A⊗D,B

2

...

⊢ C
⊗

⊢ A⊗D,B ⊗D

in fact, their diagrammatic representations belong to two different equivalence
classes in 〈Ũ〉:











1 2 3

A B C D

⊗

⊗











6=

















1 3 2

A B D C

⊗

⊗

















.

It follows that ≃D equates less than ∼. Most of all, the equivalence relation
≃D does not capture the part of the semantical equivalence which is required
in order to take into account the elimination of commutative cuts and, con-
sequently, to have an equivalence relation compatible with the cut-elimination
result.

In the next section, we extend our polygraph in order to make compatible
with cut-elimination the induced equivalence relation over derivations.

Remark 6. The two equivalences ≃D and ∼N are not comparable. In fact, we
have that ≃D captures ⊥ rules permutations which change jump assignations
that are not captured by ∼N , but ≃D does not capture permutations of binary
inference rules which are perfectly captured by ∼N .

20

5.4 The polygraph of MLL
u
proof diagrams

In this section we extend Ũ to a polygraph U in order to induce an equivalence
over proof diagrams which captures the standard equivalence over derivations.
To this end, we extend Ũ with generators and rewriting rules in order to enable
some permutations of proof diagram branches. In effect, these transformations
are forbidden in Ũ by the presence of control strings which impeach the definition
of several twisting operators.

As remarked in the previous section, proof diagram syntax is inefficient to
capture the standard proof equivalence in presence of some configurations in-
cluding the ones of pure commutative cuts. This is because we keep records of
how we manage occurrences of formulas in derivations (by means of twisting
operators) revealing an hidden “tangle” structure.

Definition 14 (Crossing split). If φ ∈ Ẽ is an irreducible proof diagram, we
says that φ has a crossing split if it contains a subdiagram of the form

Γ Γ′ A B ∆ C Σ

N

α

N ′

β

α(N,B) ∆ β(N ′,C) Σ

or

Σ C ∆ B A Γ′ Γ

N

α

N ′

β

Σ β(C,N ′) ∆ α(B,N)

where α, β are splitting gates, that are gates of type ⊗ or Cut.

In other words, we have a crossing split in a proof diagram whenever the
corresponding derivation exhibits two binary inference rules α after β such that
the left (resp. right) active formula of α derives by the rightmost (resp. leftmost)
sub-derivation branch of the left (resp. right) branch of β. For example, consider
the two following configurations with A active formula of α:

Γ1 ΓB Γ2 ΓA

. . .
... . .

.

⊢ Γ, Γ′
A , B

...

⊢ C,∆
β(B,C)

⊢ Γ,∆, Γ′
A , β(B,C)

⊢ Γ′,∆′, A , β(B,C)

...

⊢ D,Σ
α(A,D)

⊢ Γ′,∆′, β(B,C), α(A ,D),Σ
or

...

⊢ Σ, D

...

⊢ ∆, C

ΓA Γ1 ΓB Γ2

. . .
... . .

.

⊢ Γ, Γ′
A , B

β(C,B)
⊢ ∆, β(B,C), Γ′

A ,Γ

⊢ β(B,C), A ,Γ′,∆′

α(D,A)
⊢ Σ, β(B,C), α(D, A),Γ′∆′

where ΓA and Γ′
A are sequents made of subformulas of A only (similarly for the

formula B and ΓB).
These configurations can be avoided in a proof diagram by giving a specific

order to Ax and 1-gates, in the same way we permute branches in derivation
trees by ∼.

We call untangle procedure the method of remove crossing split from a proof
diagram. This requires to perform some rewritings which permute proof diagram
branches. For this purpose, we define some gates type with the following shape:

W W ′

W ′ W

with W,W ′ ∈ (FMeℓℓ ∪ {idR,L})
∗

21

These gates can be seen as some “big twisting operators” able to cross a two
sheafs of strings labeled by L,W,R and L,W ′, R where W,W ′ are lists made
not only by formulas but also by L and R.

Definition 15 (Polygraph of MLLu). The polygraph of multiplicative proof
diagrams is the polygraph U obtained extended the polygraph Ũ as follows:

• U0 = Ũ0; • U1 = Ũ1;

• U2 = Ũ2 ∪Big where

Big =











BW,W =

W W ′

W ′ W











W,W ′∈(FMℓℓu∪{idR,L})∗

;

• U3 = Ũ3 ∪ UBig where UBig is made of the following sets of 3-cells:

– B-introduction: for any α, β ∈ {Cut,⊗} and φ, φ1, φ2, ψ, ψ1, ψ2, N,N
′

irreducible in Ũ, with N,N ′ ∈ { ,`,⊥}∗, we define:

φ φ1 φ2

α

N

β

Γ α ∆ β Σ

❴ *4

φ φ1 φ2

N

β

α

Γ α ∆ β Σ

and

ψ1 ψ2 ψ

α

N

β

Σ β ∆ α Γ

❴ *4

ψ1 ψ2 ψ

N

β

α

Σ β ∆ α Γ

where φ and ψ are respectively of the form:

φ

Γ Γ′ A

=

φ′

N ′

Γ Γ′′ Γ′′′ A

ψ

A Γ′ Γ
=

ψ′

N ′

A Γ′′ Γ′′′ Γ

with Γ′ = Γ′′,Γ′′′;

– The untangle relations: for any

in(x)

x

out(x)

∈ Ẽ2, BW,W ′ ∈ Big

22

W1 x W2 W ′

W ′ W1 out(x) W2

❴ *4

W1 in(x) W2 W ′

W ′ W1 x W2

,

W W ′

1
x W ′

2

W ′

1
out(x) W ′

2 W ′

❴ *4

W W ′

1
in(x) W ′

2

W ′

1
x W ′

2 W

.

To have an intuition, a B-gate can be visualized as follows (but we remind
the reader that such diagrams can not be defined in our syntax since twisting
operators are not defined for control strings):

W W ′

W ′ W

!

W W ′

W ′ W

A B-introduction rule eliminates from a Ũ3-irreducible proof diagram a
crossing split: it exchanges the order of splitting gate, it modifies some twist-
ing operators and it triggers the crossing of two proof diagram branches by the
introduction of a B-gate.

At the same time, the untangle relations move gates from the top to the
bottom of a B-gate according with our intuition: when a gate “crosses” a B-
gate, it slides on the sheaf of strings passing from the left to the right and vice
versa. These rules untangle, step-by-step, two crossed branches of a diagram:

Proposition 5.5. [B-gate elimination] If φ, ψ ∈ Ũ are proof diagrams of type
φ : � ⇒ L,W1, R and ψ : � ⇒ L,W2, R with W1,W

′
2 ∈ (FMℓℓu ∪ {idR,L})∗,

then there are rewritings path made only of untangle relations of the following
forms for gates of type BW1,W2

:

φ ψ

W2 W1

∗
❴ *4

ψ φ

W2 W1

We call this rewriting path a B-gate elimination. Moreover, if φ′, ψ′ ∈ Ũ are
proof diagrams of type φ′ : W1 ⇒ L,W ′

1, R and ψ′ : W2 ⇒ L,W ′
2, R with

W1,W
′
1,W2,W

′
2 ∈ (FMℓℓu ∪{idR,L})∗, then there are rewritings path made only

of untangle relations of the following forms:

φ =

W1 W2

φ1 ψ1

W ′

2
W ′

1

∗
❴ *4

W1 W2

φ1 ψ1

W ′

2
W ′

1

= ψ

We call this rewriting path a B-gate reduction.

Proof. By induction over the number of gates in the diagram φ, ψ: each untangle
relation decrease it.

23

We call untangle sequence a rewriting path made of one B-introduction
rule followed by its relative B-gate elimination rewriting path. Each untangle
sequence corresponds to the elimination of a crossing split and it terminates
after a finite number of steps depending on the number of gates in the diagram.

We have a maximal B-gate reduction φ
∗
❴ *4 φ′ when φ′ is of the form:

φ′ = χd ◦ (idW , (ψ
′ ◦B), idW ′) =

W W ′

ψ′

χd

with ψ′ ∈ Big∗

We call any such rewriting path a B-deactivation.
We assume that any of this sequence generate no new crossing split. In fact,

the elimination of a crossing split generate a new one if and only if there is
a gate corresponding to a binary inference rule in parallel with respect of the
lower splitting gate, for example:

φ φ1 φ2 φ3

⊗

⊗ ⊗

In these cases it is possible to verify that either we apply the B-introduction
rule in such a way as to maintain these two gates in the same branching of
the diagram, or we perform a second untangle sequence we are able to recover
a configuration where they are in parallel again. In the previous example we
have:

φ φ1 φ2 φ3

⊗

⊗

⊗

A B C D

∗
❴ *4

φ φ2 φ1 φ3

⊗

⊗

⊗

A B C D

∗
✤

�

φ φ1 φ2 φ3

⊗

⊗

⊗

A B C D

∗
❴*4

φ φ2 φ3 φ1

⊗ ⊗

⊗

A B C D

The choice of define B-introduction rules with premises Ũ3-irreducible dia-
grams with no B-gates leads the following result:

Corollary 5.6. Conflicts between a B-introduction rule and an untangle rela-
tion and conflicts between a rule in UBig and a rule in Ũ3 are trivially solvable.
Then we can assume the corresponding rewritings paths commute.

24

Proof. The subdiagram rewritten by a B-introduction rules is Ũ3-irreducible
and contains no B-gates then all possible non-trivial conflicts are the ones be-
tween two B-introduction rules discussed above. The confluence of non-trivial
critical pairs between untangle relations and rules in Ũ3 follows by argumenta-
tions similar to the ones given in the Proposition 5.5.

This lead the following theorem about the termination of rewriting in U.

Theorem 5.7 (Termination in U). The polygraph U is terminating.

Proof. Corollary 5.6 implies that a rewriting path in U can be written as an alter-
nate sequence of rewriting paths in Ũ3, untangle sequences and B-deactivations.
We know that the length of untangle sequences and B-deactivations are finite
and linearly depend on the number of gates in a diagram. Moreover, Theorem
5.4 proves that there are not infinite rewriting paths composed of rules in Ũ3.
Then, to prove termination it suffices to prove that the number n of alternations
is finite.

For any φ ∈ U, if φCross is the number of crossing splits in φ, any alternate
rewriting path starting from φ counts at most |φ|{Big} B-deactivations and

φCross untangle sequences. In fact, no rule in Ũ3 generates new B-gates either
crossing splits. This is underlined by the correspondence between equivalence
relation over derivations ≃D=∼D̃ and rules permutations over derivations which
do not change the structure of tree branching.

We extend the Theorem 5.3 to proof diagrams in U. This leads the linear
complexity of the test of sequentializability for proof diagrams in U.

Theorem 5.8 (Multiplicative proof diagram correspondence).

⊢MLLu
Γ ⇔ ∃φ ∈ U such that φ : � ⇒ L,Γ, R.

Proof. The left-to-right implication immediate follows by Theorem 5.3. For the
proof of right-to-left implicationwe have to also consider the cases when it occurs
a 2-cells in Big. We observe that a proof diagram φ : � ⇒ L,Γ, R contains a
gate of type B ∈ Big iff there is a subdiagram φ′ ⊆ φ of the form

φ′ = (idL,Γ′ , gα, idΓ′′,R) ◦ (φ
′
2, φ

′
1) ◦B ◦ (φ1, φ2)

with gα gate of type α ∈ {Cut,⊗}. Then, during the sequentialization pro-
cedure, whenever a gate of type ⊗ or Cut occurs, we consider the following
cases:

φ1 φ2

⊗

Γ′ A⊗B Γ′′

,

φ1 φ2

Γ′ Γ′′

,

φ1 φ2

φ′

2
φ′

1

⊗

Γ′ A⊗B Γ′′

,

φ1 φ2

φ′

2
φ′

1

Γ′ Γ′′

.

the first two cases are handled by the same strategy of Theorem5.3. The sequen-
tialization procedure for the two new cases follows the intuition behind B-gates
as proof diagram branchings twisting: (idL,Γ′ , gα, idΓ′′,R)◦(φ′2, φ

′
1)◦B◦(φ1, φ2) :

� ⇒ L,Γ′′, R, L,Γ′, R is sequentializable iff φ′1 ◦ φ1 : � ⇒ L,Γ′, R and
φ′2 ◦ φ2 : � ⇒ L,Γ′′, R are.

25

Remark 7. The signature Ũ2 suffice to represent MLLu derivations, that is,
B-gates are not needed in order to represent proofs and that the quotient 〈U〉
equate more of these proof diagrams than 〈Ũ〉.

Let consider the equivalence relation ∼D over derivations of MLLu sequent
calculus defined as follows:

d′(Γ) ∼D d′′(Γ) iff ∃φd′(Γ), φd′′(Γ)′ ∈ Ũ such that [φd′(Γ)]U = [φd′′(Γ)]U.

where φd(Γ) ∈ U is a diagrammatic representation of a MLLu derivation d(Γ).
In other words, d′(Γ) ∼D d′′(Γ) whenever they can be represented by two proof
diagrams which are equivalent modulo U3.

The standard proof equivalence of MLLu sequents is faithfully represented
by ∼D:

Theorem 5.9 (Proof diagram representation). Two derivations are equivalent
modulo ∼ if and only if they are represented by two equivalent proof diagrams
with respect of 〈U〉. That is:

d(Γ) ∼ d′(Γ) ⇔ d(Γ) ∼D d′(Γ)

Proof. Given two derivation d(Γ), d′(Γ) in MLLu sequent calculus, d(Γ) ∼ d′(Γ)
iff there is a sequence of rules permutations from d(Γ) to d′(Γ). As remarked in
Section 5.3, ∼D̃ capture all rules permutations which do not affect the branching
of a derivation tree and ≃D⊂∼D.

This implies that even if we consider derivations up to rules permutations, it
is possible to well-define the following function which associate to a derivation
an equivalence class of proof diagrams in U:

[−]U : {MLLu derivations} → { morphisms in 〈U〉}

d(Γ) → [φd(Γ)]U

Moreover, in a diagrammatic representation of a derivation (.Γ), untangle
sequences and their inverses permute pairs of proof diagram branches which
correspond to the represented derivation branches. This means that ∼D cap-
tures all rules permutations missed by ≃D, then that ∼=∼D

We define the following polygraph:

Definition 16 (Polygraph of MLLu semantics). The polygraph of multiplicative
linear logic semantics SMLLu

is given by extending the polygraph U with the
following the sets of 3-cells S3 = U3 ∪ SCut

MLLu
where SCut

MLLu
= MCut ∪ UCut is

given by the following sets of 3-cells:

• MCut is made of the following 3-cells:

A

A

❴*4 A ,

A B Γ B⊥A⊥

⊗

`

Γ

❴*4

A B Γ B⊥A⊥

Γ

,

26

A

A

❴*4 A ,

A B Γ B⊥ A⊥

⊗

`

Γ

❴ *4

A B Γ B⊥ A⊥

Γ

,

for all A,B ∈ FMℓℓu , Γ ∈ F∗
Mℓℓu

;

• UCut is made of the following 3-cells:

❴*4 , ❴ *4 ;

Theorem 5.10 (Termination in SMLLu
). The polygraph SMLLu

is terminating.

Proof. Any rewriting path in S3 is a sequence of rewriting paths in U and
rewriting rules in SCut

MLLu
occurrences. If the number these latter is finite in any

rewriting path, we conclude by Theorem 5.7 that there are no infinite rewriting
paths in SMLLu

.
We define the degree δ(g) = ‖A‖ of CutA-gates g ∈ φ as the number of

occurrences of ` and ⊗ symbols in the formula A. We define a weight w(φ) of
a proof diagram φ ∈ U depending on the degrees of all its Cut-gates:

w(φ) =

g∈φ
∑

g:Cut

3δ(g)

We observe that w(φ) = w(ψ) whenever φ
U3

❴ *4 ψ since φ and ψ have the same

occurrences of Cut-gates.
However, w(φ) > w(ψ) whenever φ

S3

❴*4 ψ . In fact, φ has an extra Cut-gates

with respect to the one of ψ or else in φ there is a CutA⊗B-gate or a CutA`B-gate
which is replaced in ψ by one CutA-gate and one CutB-gate. The inequality
holds because for any A,B ∈ FMℓℓu we have 3A⊗B = 3A`B = 3‖A‖+‖B‖+1 >

3‖A‖ + 3‖B‖,
This concludes the proof since any rewriting path in S3 there is a finite

number of occurrence rewriting rules in SCut
MLLu

Consequently, we have a cut-elimination Theorem for sequentializable proof
diagrams in SMLLu

Theorem 5.11 (Cut-elimination). An irreducible proof diagram φ ∈ SMLLu

which represent a derivation contains no Cut-gates.

Proof. Proposition 5.5 assures that a U3-irreducible proof diagram φ ∈ SMLLu

of type φ : � ⇒ L,Γ, R contains no B-gates and, by Theorem 5.10, neither
crossing splits. Since twisting relations moves ` and ⊥ gates downward in a
proof diagram φ, if a CutA-gate occurs in φ then it has to belong in a subdiagram
with shape the source one of the rules in S3, thus φ is reducible.

However, the twisting relations generates a wide family of critical pairs in
the rewritings of Ũ, U and SMLLu

. Some of these critical peaks are not solvable.
This leads the following:

27

Proposition 5.12 (SMLLu
confluence). The polygraph SMLLu

is not confluent.

Proof. In SMLLu
(but also in Ũ and U) the following critical peak is not confluent:

⊗
⊗ ❴ *4❴jt ⊗

This rules out a confluence for this polygraph.

Since the signature of SMLLu
is the same of MLLu , we naturally extend the

Theorem 5.8:

Theorem 5.13 (Multiplicative linear logic correspondence).

⊢MLLu
Γ ⇔ ∃φ ∈ SMLLu

such that φ : � ⇒ L,Γ, R.

This correspondence, together with Theorem 5.9 ensures the well-definition
of the following function:

Definition 17 (Denotational semantics of proof diagrams). For any MLLu

derivation d(Γ) we associate an equivalence classes of proof diagrams corre-
sponding to a morphism of the category 〈SMLLu

〉 as follows:

[−]D : {MLLu derivations} → { morphisms in 〈SMLLu
〉}

d(Γ) → [d(Γ)]D = [φd(Γ)]SMLLu

where φd(Γ) is an arbitrary representation of d(Γ).

Theorem 5.14 (Proof diagram semantics). [−]D is a denotational semantics
for MLLu sequent calculus.

Proof. We define the following equivalence relation ≈D over MLLu derivations:

d′(Γ) ≈D d′′(Γ) iff [d′(Γ)]D = [d′′(Γ)]D

We remark the existence of a one-to-one correspondence between rewriting
rules in SCut

MLLu
and cut-elimination steps. Moreover, if we denote by ↔∗

Cut the
equivalence relation induced over equivalence classes in 〈U〉 by the rewriting

rules in SCut
MLLu

, we have that 〈SMLLu
〉 = 〈U〉

↔∗

Cut

. This implies the following

properties:

1. if d(Γ) →Cut d̂(Γ), then d(Γ) ≈D d̂(Γ): each cut-elimination step over the
diagrammatic representation of φd(Γ) is replicated by a rewriting rule in
SCut
MLLu

eventually preceded by a rewriting path ❴ *4 ∗
U in U3.

2. ≈D is non-degenerated, i.e. one can find a formula with at least two non-
equivalent proofs: it suffice to take any formula A ∈ FMℓℓu which exhibits
two non-equivalent (with respect of ∼) cut-free derivations d(A) and d′(A),
then trivially d(A) 6≈D d′(A);

28

3. ≈D is a congruence, i.e. if d(∆) ≈ d′(∆) and we obtain d(Γ) and d′(Γ) by
applying the same inference rule to d(∆) and d′(∆) , then d(Γ) ≈ d(Γ)′:
it follow by the compatibility of rewriting with the sequential and parallel
diagram compositions.

We remark that [−]D is coherent with the involutivity of negation. In fact,
the invariance of diagram inputs and outputs with respect to rewriting impose
the equivalence A⊥⊥ = A:

AxA =

A

AA⊥

❴*4
A⊥

AA⊥

❴*4
A⊥⊥

AA⊥

= AxA⊥⊥

Similarly, De Morgan’s laws follow by the definition of Cut-gates (see Remark
5). By means of example, consider the equivalence of A`B = (B⊥ ⊗A⊥)⊥:

φ B⊥⊗A⊥

`

A`B

(A⊥⊗B⊥)⊥

❴ *4

φ

`

(A⊥⊗B⊥)⊥

From these properties we deduce that [−]D defines a denotational semantics
for MLLu sequent calculus by means of equivalence classes of proof diagrams.

6 Conclusion

In this paper we have presented the syntax of proof diagrams, a particular class
of string diagrams suitable for interpreting linear logic proof derivations. Even
if proof diagrams syntax reminds the intuitive 2-dimensional representations of
proof nets, their strings have a more rigid structure with respect to proof net
wirings. This allows for the definition of some control strings and a consequent
linear-time sequentializability test. Indeed, we can test the possibility to inter-
pret a proof diagrams as a MLLu derivation in linear time by checking the type
of its inputs and outputs only.

Furthermore, the syntax of proof diagrams induce an equivalence relation
over the syntax of MLLu sequent calculus derivations. We here summarize some
different equivalence relations over derivation we obtain by different rewriting
systems over proof diagrams:

• an equivalence relation which captures all permutations of ` and ⊥ rules
but not some permutations involving Cut and ⊗ which also permute
derivation branches order. This equivalence induced by proof diagram
syntax turns out to be invariant under a given set of diagram rewriting
rules we call twisting relations ;

• an equivalence relation which captures all permutations of inference rules
and turns out to be equivalent to the standard proof equivalence we always
use to consider in sequent calculus;

29

• an equivalence relation which both captures rules permutations and the
cut-elimination.

In the conclusive Theorem of this paper we define a denotational semantics
for MLLu sequent calculus by means of equivalence classes of proof diagrams.
Moreover, we show that this diagram equivalence is defined by means of a ter-
minating (but not confluent) rewriting.

Acknowledgements

I would like to thank Michele Alberti, Marianna Girlando, Giulio Guerrieri,
Paolo Pistone and Lionel Vaux for the fruitful exchanges during the redaction
of this work. A special acknowledgment to Yves Guiraud who wrote (and up-
graded for the scope) the latex package for string diagrams representations [13]
employed in the present manuscript.

References

[1] V Michele Abrusci. Phase semantics and sequent calculus for pure noncom-
mutative classical linear propositional logic. The Journal of Symbolic Logic,
56(04):1403–1451, 1991.

[2] Matteo Acclavio. A complete proof of coherence for symmetric monoidal cate-
gories using rewriting. arXiv preprint arXiv:1606.01722, 2016.

[3] Matteo Acclavio. Proof diagrams for multiplicative linear logic. arXiv preprint
arXiv:1606.09016, 2016.

[4] John C Baez and Aaron Lauda. A prehistory of n-categorical physics. Deep
Beauty: Understanding the Quantum World Through Mathematical Innovation,
pages 13–128, 2009.

[5] Albert Burroni. Higher-dimensional word problems with applications to equa-
tional logic. Theoretical computer science, 115(1):43–62, 1993.

[6] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive
for Mathematical logic, 28(3):181–203, 1989.

[7] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.

[8] Jean-Yves Girard. A new constructive logic: classic logic. Mathematical Struc-
tures in Computer Science, 1(03):255–296, 1991.

[9] Jean-Yves Girard. Linear logic: its syntax and semantics. London Mathematical
Society Lecture Note Series, pages 1–42, 1995.

[10] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. Lecture Notes
in Pure and Applied Mathematics, pages 97–124, 1996.

[11] Stefano Guerrini and Andrea Masini. Parsing mell proof nets. Theoretical Com-
puter Science, 254(1):317–335, 2001.

[12] Yves Guiraud. Termination orders for three-dimensional rewriting. Journal of
Pure and Applied Algebra, 207(2):341–371, 2006.

[13] Yves Guiraud. Catex latex patch. https://www.irif.fr/ guiraud/catex/s, 2007.

[14] Willem Heijltjes and Robin Houston. No proof nets for mll with units: Proof
equivalence in mll is pspace-complete. In Proceedings of the Joint Meeting of the
Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), page 50. ACM, 2014.

30

[15] Michio Jimbo. Introduction to the yang-baxter equation. International Journal
of Modern Physics A, 4(15):3759–3777, 1989.

[16] André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in
Mathematics, 88(1):55–112, 1991.

[17] Yves Lafont. From proof nets to interaction nets. London Mathematical Society
Lecture Note Series, pages 225–248, 1995.

[18] Yves Lafont. Towards an algebraic theory of boolean circuits. Journal of Pure
and Applied Algebra, 184(2):257–310, 2003.

[19] Paul-André Mellies. Categorical semantics of linear logic. Interactive Models of
Computation and Program Behaviour, Panoramas et syntheses, 27:15–215, 2009.

[20] Peter Selinger. A survey of graphical languages for monoidal categories. In New
structures for physics, pages 289–355. Springer, 2010.

[21] Lutz Straßburger and François Lamarche. On proof nets for multiplicative linear
logic with units. In International Workshop on Computer Science Logic, pages
145–159. Springer, 2004.

[22] Ross Street. Limits indexed by category-valued 2-functors. Journal of Pure and
Applied Algebra, 8(2):149–181, 1976.

[23] Lorenzo Tortora De Falco. Réseaux, cohérence et expériences obsessionnelles.
PhD thesis, 2000.

31

