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Abstract We develop an idea originally proposed by Michel and Van Henten-
ryck of how to perform bit-vector constraint propagation on the word level.
Most operations are propagated in constant time, assuming the bit-vector
fits in a machine word. In contrast, bit-vector SMT solvers usually solve bit-
vector problems by (ultimately) bit-blasting, that is, mapping the resulting
operations to conjunctive normal form clauses, and using SAT technology to
solve them. Bit-blasting generates intermediate variables which can be an ad-
vantage, as these can be searched on and learnt about. As each approach has
advantages, it makes sense to try to combine them. In this paper, we describe
an approach to bit-vector solving using word-level propagation with learn-
ing. We have designed alternative word-level propagators to Michel and Van
Hentenryck’s, and evaluated different variants of the approach. We have also
experimented with different approaches to learning and back-jumping in the
solver. Based on the insights gained, we have built a portfolio solver, Wombit,
which essentially extends the STP bit-vector solver. Using machine learning
techniques, the solver makes a judicious up-front decision about whether to
use word-level propagation or fall back on bit-blasting.
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1 Introduction

Decision procedures for quantifier-free fragments of first-order theories, also
known as satisfiability modulo theory (SMT) solvers, find widespread use in
many areas, such as program analysis and verification, security, and schedul-
ing. For example, in predicate abstraction program verification, tools like
BLAST [15] and CPAchecker [16] use SMT solvers to decide validity of for-
mulas that capture the effects of program statements. Program verifiers such
as Why3 [17] and Boogie2 [45] use Z3 [23] as back-end solver. In symbolic
execution, KLEE [19] uses STP [31] as its underlying constraint solver. In
automatic exploit generation [10], SMT solvers are used to report bugs if
some path is feasible but violates some safety property. In rotating workforce
scheduling [27], the problem is transformed using an SMT encoding and
ultimately solved by the SMT solver.

Of the many first-order theories for which SMT solvers are available, one of
the most useful is the theory of quantifier-free bit-vector logic (QF BV). Since
most time-critical and safety-critical software is built on fixed-width integers,
it is vital to reason about fixed-width integers correctly and accurately in a
software verification context. In programming languages such as C, fixed-
width integers and fixed-width arithmetic operations are naturally seen as
bit-vectors and bit-vector operations. Many program analysis and verification
tools fail to take this fixed-width reality into account, instead assuming ideal
integers, and this is a source of unsoundness. The QF BV theory is a basis for
sound reasoning in the context of fixed-width integer problems.

Most bit-vector SMT solvers [12, 53, 25, 31, 46] ultimately rely on bit-
blasting to solve bit-vector constraints, that is, translating constraints to propo-
sitional logic form. This tends to cause two problems. First, bit-blasting may
result in very large propositional formulas that even the most powerful cur-
rent SAT solvers struggle to handle. Second, it disperses important word-level
information during the encoding—much is obscured in translation. Here we
investigate alternatives to bit-blasting, replacing it with word-level propaga-
tion entirely to produce a pure word-level bit-vector SMT solver.

The use of word-level propagation in the context of bit-vector solvers was
suggested by Michel and Van Hentenryck [50] who view the problem as a
Constraint Satisfaction Problem (CSP). Each variable is associated with a “bit-
vector domain” which is progressively tightened using word-level constraint
propagation rules. In Section 4 we explain and extend this idea. It has consid-
erable appeal, because the propagation rules can be made to run in constant
time (as long as the bit-vectors are not longer than the size of a machine reg-
ister). An additional rule to check if a tightened domain remains valid also
runs in constant time.
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Importantly, we add a “learning” mechanism to the originally proposed
method, since it seems plausible that explanations for the propagated bits can
be used to advantage. Section 4 explains propagation and the generation of
explanations for bit-vector operations in some detail.

We investigate design choices for word-level solvers in Section 5. Alterna-
tive (“decomposed”) word-level propagators are proposed for some opera-
tions, based on insights in Warren’s compendium [70] and we investigate the
relative strengths and weaknesses of decomposed and composed propaga-
tors. In a learning solver we can generate explanations in a “forward” manner,
as propagation progresses, as is done in a SAT solver, or we can generate them
in a “backward” manner during conflict analysis, as in a typical SMT solver.
Forward explanation is simpler to implement, while backward explanation
may require less explanation work overall.

Another design choice comes from a potential benefit of word-level propa-
gation which is deeper conflict analysis. Normally, using bit-blasting, conflict
analysis starts as soon as the first conflict is found. In the word-level solver,
we could do the same, to find the first conflict clause and backtrack to the
level indicated by this conflict (we call this “standard backjumping”). Alterna-
tively, with word-level propagation, we can discover several conflicts at once,
corresponding to several backtrack levels. We choose the smallest of these
levels, in order to backtrack to the highest level of the search tree and add all
the learnt clauses along the way to prevent all the conflicts from happening
again (we call this “multi-conflict backjumping”).

To construct the solver we have extended MiniSAT [26] so that it can keep
track of opportunities for word-level propagation and intersperse this kind of
propagation with unit propagation. Our word-level propagators contribute
to MiniSAT’s powerful search and learning mechanism by providing clauses
as explanations for word-level propagated bits. In this way, the word-level
propagators become lazy clause generators [57] for a SAT solver extended
with constraint programming technology [62].

To evaluate the potential of word-level solving, we have performed a se-
quence of experiments. We have compared different combinations of features
against a naive bit-blaster, to identify the best combinations (Section 5.4). In a
second stage (Section 6) we apply the word-level simplification used in STP
to our word-level solvers as preprocessing, and then compare the result with
STP. The reason we choose STP is its focus on bit-vector logic and few other
theories, and its powerful word-level simplification method that can solve
purely linear problems outright. Note that we do not do bit-blasting or any
Boolean simplification in the word-level solvers.

Our experimental results suggest that STP and word-level solvers are
somewhat complementary. There are many test cases which STP is best at
solving, and other cases where a word-level solver wins. This suggests the
possibility of developing a portfolio solver that can combine solvers so that we
can gain the benefit from each. This raises the problem of identifying which
cases favour which solver. To solve this, in Section 7 we use machine learning
techniques to classify the cases for each solver. Using a classifier generated
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by machine learning, we have implemented a portfolio solver called Wombit
which outperforms the component solvers (STP and two word-level solvers)
significantly. Wombit and its source code is available at Github: https://
github.com/wenxiw2/Wombit.

This paper is mostly a distillation of a masters thesis [68]; it extends a
previous paper [69], the focus of which was the idea of word-level propagation
in a bit-vector solver. In this previous work we:

– created a word-level propagating (but bit-level explaining) constraint
solver;

– designed algorithms for generation of explanations for word-level propa-
gators (restricted to linear arithmetic and bit-twiddling operations); and

– provided an empirical evaluation of the word-level propagation approach,
compared with the standard bit-blasting approach to these problems.

In this paper we expand on the previous work [69] as follows:

1. We have embedded the word-level solving techniques into the QF BV
solver STP, without changing the architecture of either STP or the word-
level solver much (suggesting that similar embeddings are possible with
other SMT solvers).

2. We have added word-level propagators for non-linear arithmetic, that is,
multiplication, unsigned and signed division, unsigned remainder, signed
remainder (sign follows dividend/divisor).

3. We have extended the evaluation by comparing the performance of the STP
solver with that of two variants of word-level solvers. Since we now cover
all operations, including non-linear arithmetic, this evaluation utilises all
folders in the QF BV category of the standard SMT-LIB2 benchmarks. The
only test cases we have had to exclude are those in which the bit-width
for bit-vector operations exceeds 64 (the size of our machine registers).

4. We have analysed the solvers’ relative performances and strengths, in an
attempt to identify input features that set the solvers apart.

5. From this we have developed a portfolio solver which, based on charac-
teristics of its input, chooses one of the solvers (STP or one of the two
word-level solvers) for the task, using a model generated by machine
learning techniques.

2 Preliminaries

2.1 Bit-Vectors and the SMT-LIB2 Quantifier-Free Bit-Vector Theory

We use 0 and 1 for the truth values (false and true, respectively). We shall
need to distinguish word-level logical operations from Boolean operations
carefully. As bit-wise operations we use∼, &, |, and⊕, for bit complement, con-
junction, disjunction, and exclusive or, respectively. As Boolean connectives,
we use ¬, ∧ and ∨ for negation, conjunction, and disjunction, respectively.
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A bit-vector x[w] is a sequence of w binary digits (bits). The elements of the
sequence are indexed from right to left, starting with index 0 : x = xw−1...x1x0.
In addition, we use c[w] to denote a constant bit-vector with length w, and use
b to denote a Boolean variable.

The operations in the QF BV category of SMT-LIB2 can be divided into
three categories: logical constraints, structural constraints and arithmetic con-
straints.
Logical Constraints. Logical constraints include:

– bitwise negation: (bvnot x[w]) = y[w]

– bitwise conjunction: (bvand x[w], y[w], z[w], ...) = n[w]

– bitwise disjunction: (bvor x[w], y[w], z[w], ...) = n[w]

– bitwise exclusive or: (bvxor x[w], y[w], z[w], ...) = n[w]

– bitwise nand (negation of and): (bvnand x[w], y[w], z[w], ...) = n[w]

– bitwise nor (negation of or): (bvnor x[w], y[w], z[w], ...) = n[w]

– bitwise equivalence (negation of xor): (bvxnor x[w], y[w], z[w], ...) = n[w]

Arithmetic Constraints. Arithmetic constraints include (fixed-width) linear
and non-linear constraints. (For presentation purposes we find it convenient
to include the ite constraint in this category.) The constraints are:

– if-then-else: (ite b, x[w], y[w]) = z[w]; equivalent to ( b∧ z[w] = x[w]) ∨ (¬b∧
z[w] = y[w]).

– addition: (bvadd x[w], y[w], z[w], ...) = n[w]

– unary minus: (bvneg x[w]) = y[w]; equivalent to y[w] = ˜x[w]+ 1

– subtraction: (bvsub x[w], y[w]) = z[w]; equivalent to z[w] = x[w]+ ˜y[w]+ 1

– reified equality: (= x[w], y[w], z[w], ...) = b; equivalent to
(

b∧ (x[w] = y[w])∧ (x[w] = z[w])∧ ...
)

∨
(

¬b∧ (x[w] , y[w])∧ (x[w] , z[w])∧ ...
)

.

– reified disequality: (distinct x[w], y[w], z[w], ...) = b; equivalent to
(

b∧ (x[w] , y[w])∧ (x[w] , z[w])∧ ...
)

∨
(

¬b∧ (x[w] = y[w])∧ (x[w] = z[w])∧ ...
)

.

– unsigned less than or equals: (bvule x[w], y[w]) = b
– unsigned less than: (bvult x[w], y[w]) = b
– unsigned greater than equals: (bvuge x[w], y[w]) = b
– unsigned greater than: (bvugt x[w], y[w]) = b
– corresponding signed inequality constraints:

(bvsle x[w], y[w]) = b, (bvslt x[w], y[w]) = b, (bvsge x[w], y[w]) = b, and
(bvsgt x[w], y[w]) = b. Signed inequality constraints can be translated into
unsigned inequality constraints. For instance, b= (bvslt x[w], y[w]) is equiv-
alent to (not (bvule y[w], x[w]))⊕ xw−1⊕ yw−1.

The semantics of the non-linear arithmetic constraints are as follows:

– (bvmul x[w], y[w], z[w], ...) = n[w]: multiplication modulo 2w.
– (bvudiv x[w], y[w]) = z[w]: unsigned division, truncating towards 0 (unde-

fined if divisor is 0).
– (bvurem x[w], y[w]) = z[w]: unsigned remainder after truncating division

(undefined if divisor is 0).
– (bvsdiv x[w], y[w]) = z[w]: two’s complement signed division.
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– (bvsrem x[w], y[w]) = z[w]: two’s complement signed remainder (sign fol-
lows dividend).

– (bvsmod x[w], y[w]) = z[w]: two’s complement signed remainder (sign fol-
lows divisor).

Structural Constraints. The structural constraints include:

– left shift: (bvshl x[w], y[w]) = z[w]: left shift x[w] by the number of y[w] bit
positions to get z[w], which is equivalent to the multiplication of x[w] by
2y[w] .

– logical right shift: (bvlshr x[w], y[w]) = z[w]: logical right shift x[w] by the
number of y[w] bit positions to get z[w], which is equivalent to the unsigned
division of x[w] by 2y[w] .

– arithmetic right shift: (bvashr x[w], y[w]) = z[w]: like the logical right shift,
except that the most significant bits (zw−1...z(w−y[w])) of z[w] always copy the
most significant bit of x[w] (xw−1).

– left rotation: (rotate left n, x[w]) = y[w]: left rotate x[w] by n bit positions to
get y[w].

– right rotation: (rotate right n, x[w])= y[w]: right rotate x[w] by n bit positions
to get y[w].

– concatenation: (concat x[w1], y[w2]) = z[w1+w2]: z[w1+w2] is the concatenation
of bit-vectors x and y.

– repeat: (repeat n, x[w]) = y[w∗n]: y[w∗n] is the concatenation of n copies of
x[w].

– extraction: (extract n, m, x[w]) = y[n−m+1]: y[n−m+1] is the extraction of bits n
down to m from x[w].

– zero extension: (zero extend n, x[w]) = y[w+n]: y[w+n] is the n-bit unsigned
equivalent of bit-vector x[w].

– signed extension: (sign extend n, x[w]) = y[w+n]: y[w+n] is the (w+n)-bit
signed equivalent of bit-vector x[w].

2.2 Propagation-Based Constraint Solving

A common method employed in tackling combinatorial problems over finite
domains is to enhance systematic search with cheap (but generally incom-
plete) reasoning techniques, such as local search and constraint propagation.
Propagation assumes that each constraint variable has an associated domain:
a set of possible values that the variable can take. The real information that re-
sides in a domain is its complement—the values that the variable can definitely
not take. Propagation is the process of taking a constraint and decreasing the
domains of its variables, in a sound manner, according to what the constraint
expresses. For example, if x currently has domain {3,4,5} and y has domain
{1,2,3,4}, the constraint x < y allows us to tighten the domains to {3} and {4}
respectively. The job of a propagator for the constraint is to perform this kind
of tightening.

A propagation-based solver interleaves propagation and search, typically
resorting to the latter only when the former fails to make progress. Unit
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propagation is a well-known example in SAT solving, but the propagation
concept generalises to other kinds of constraint satisfaction problems. We here
take a propagator for a constraint c to be a contracting, monotone, idempotent
function f on domains. That is, it makes the given domain smaller if it changes
it at all (contraction); it does not squander information (monotonicity); and it
performs in one attempt all the contraction that it is capable of (idempotence).1

A propagator usually does more than propagate information. Two impor-
tant roles are conflict checking and explanation generation. A conflict occurs
when the domain of some variable becomes empty. An explanation is an ad-
ditional (logically redundant) constraint added for the purpose of pruning
search.

From the definition of a propagator, it is clear that the identity function
is a propagator, albeit not a very useful one. To get a handle on propaga-
tion strength, various “consistency” notions are used. An n-ary constraint
C(x1, . . . ,xn) is domain consistent with respect to the domain product D1×· · ·×Dn

iff, for each variable xi and value v ∈Di, the constraint C(v1, . . . ,vi−1,v,vi+1, . . . ,vn)
holds for some v1 ∈ D1, ...,vi−1 ∈ Di−1,vi+1 ∈ Di+1, . . . ,vn ∈ Dn. That is, none of
the domains D1, . . . ,Dn can be tightened based on C(x1, ...,xn).

In the context of bit-vector constraints, a weaker property of bit-consistency
is proposed by Michel and Van Hentenryck [50]. It rests on a notion of do-
main which is equivalent to the domain of “trit-vectors” that we introduce
in Section 4.1. In analogy with domain consistency, bit consistency guaran-
tees that no free bit position in any bit-vector variable can be fixed, based on
C(x1, ...,xn). The aim is for propagators (for the different kinds of constraints)
to achieve bit consistency.

3 Overview of the Word-Level Solver

3.1 The Architecture and Solving Algorithm of MiniSAT

MiniSAT [26] is a small, complete, and efficient SAT solver which was de-
signed with domain specific extension in mind. It performs a SAT solving
algorithm as outlined in Algorithm 1 [26, 43]. Three important components
of the architecture are:

– A propagation queue (BPQueue(ℓ)) is used for unit propagation; it keeps
track of the order of the assigned literals at the current level. The assigned
literal is enqueued into the propagation queue once decided or implied,
and is dequeued from the propagation queue to implicate new literals if
possible.

– A watcher list (BWatch(ℓ)) is constructed from the clauses of the input CNF
formula, and adds the clauses to the related literal dynamically, based on
the two watched literal scheme [51] for effective unit propagation.

1 In some formalisations of propagation, the idempotence requirement is dropped, primarily
for technical reasons—to ensure that the set of propagators is closed under function composition.
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Algorithm 1 General algorithm for SAT solver and the propagation solvers

add the input into the system ⊲ initialization
if Propagate() , true then ⊲ top level conflict

return UNSAT
while true do

if Propagate() = true then ⊲ no conflict
if ¬decide() then ⊲ all variables are assigned

return SAT
else

decide()
dl← dl+1 ⊲ Increment decision level due to new decision

else ⊲ conflict happens
if top-level conflict found then

return UNSAT
else

learnt clause := conflict analyze()
backjump(learnt clause) ⊲ dl is decremented due to backjumping

– A reason array (Reasons(b)) stores the antecedent clause (the explanation) for
each implicated variable, for the purpose of conflict analysis. For a decided
variable, and for the variable of a unit clause, the reason array holds null.

3.2 The Extended Architecture and Solving Algorithm

The extended architecture for our word-level SAT based solver is shown in
Figure 1. The top part above the dashed line is largely the architecture of a
typical SAT solver (we have used MiniSAT), but extended with a map from
each individual bit of an integer to that integer. This is the b→ w map box
on the left, which we refer to as the word origin map. The input to the word-
level solver can be a mixture of word-level formulas (bit-vector constraints,
including arithmetic constraints) and propositional formulas in CNF. Only
the CNF formulas are propagated through unit propagation inside the SAT
solver. The word-level formulas are handled by the corresponding so-called
“word-level propagators” (explained below) without any bit-blasting. The
added components for word-level solving are:

– The word-level watch list (WWatch(x)) is constructed by the propagators of
the input word-level operations, and adds the propagators to the related
bit-vector statically at the beginning.

– The word-level propagator queue (WPQueue) is used for word-level propa-
gation and keeps track of the order of the enqueued propagators at the
current level, ensuring that an already enqueued propagator does not ap-
pear multiple times. In our implementation, the word-level propagator
queue has a lower priority than the Boolean propagation queue.

– A word-level propagator performs word-level propagation and conflict check-
ing. (The exact workings of these propagators will become clear in Sec-
tion 4.) If a conflict is detected, the propagator generates a conflict clause

3 ; otherwise it sends the fixed literal(s) 1 to the Boolean propagation
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Fig. 1 Overall architecture: MiniSAT (top) and word-level mechanism (bottom)

queue and generates explanation(s) 2 / 2’ for why the literal(s) became

true. (The 2 / 2’ distinction will be explained in Section 3.3.) A word-level
propagator p(b,x1, . . . ,xk) which involves a Boolean parameter b is not only
statically stored in the word-level watch list, but also statically stored in
the original Boolean watch list. For example, the propagator p(b,x1,x2,x3)
for the if-then-else constraint ite(b,x1,x2) = x3 is in the word-level lists for
x1, x2 and x3, and also in the Boolean lists for b and ¬b.

The extended solving process is shown in Algorithm 2. We extend the enqueue
function of MiniSAT by adding the word origin map (b→w) mentioned above.
When a bit ℓ of an integer x is newly decided or propagated, this literal is
enqueued into the Boolean propagation queue, and all the related word-level
propagators of integer x in the word-level watch list are enqueued into the
propagator queue.

When a literal is dequeued from the Boolean propagation queue, either
the corresponding Boolean constraints in the Boolean watch list are invoked
to do the unit propagation, or the propagators in the word-level watch list are
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Algorithm 2 Extended solving process in word-level SAT based solver

function Enqueue(literal ℓ, clause C, prop p)
BPQueue.enqueue(ℓ)
b← var(ℓ) ⊲ get the corresponding Boolean variable b
Reasons[b]← C/p ⊲ forward manner: add the explanation C for b to the reason array

⊲ backward manner: add the propagator p which fixed ℓ to the reason array
if ℓ is in a bit-vector then

x← word(b) ⊲ get the corresponding bit-vector x
for p in WWatch(x) do

if p is not in WPQueue then
WPQueue.enqueue(p) ⊲ enqueue propagators not in WPQueue

function Propagate( )
clause confl← null
while confl = null do ⊲ no conflict

while ¬BPQueue.isEmpty() ∧ confl = null do
ℓ← BPQueue.dequeue()
if BWatch(l) is a propagator p then

WPQueue.enqueue(p)
else if BWatch(l) is a clause c then

confl← unit prop(c)

if confl = null then ⊲ BPQueue is empty, no conflict
p←WPQueue.dequeue()
confl← word prop(p)

return confl

enqueued into the propagator queue. Only when the Boolean propagation
queue is empty do we start to dequeue propagators from the propagator
queue. We thus favour unit propagation since it is faster. Since previously
learnt clauses are in the priority queue, previous conflicts can be avoided
earlier this way.

As can be seen from Figure 1, the interactions between MiniSAT (top part)

and the word-level mechanism (bottom part) are the propagated literals 1 ,

explanations 2 / 2’ , and the conflict clauses 3 . Without these capabilities,
word-level propagators cannot benefit from the learning capabilities of the
SAT solver, including back-jumping and powerful adaptive search.

A broad-brush example will illustrate how the word-level propagators
collaborate with MiniSAT. Suppose we need to solve a problem which includes
the constraint (x < y)→ (x < y+ 1) (say x, y and 1 are bit-vectors of width 3).
In the parsing phase we translate the constraint into four basic constraints by
introducing two Boolean variables d and e, and one bit-vector variable z:

c1 : y+ 1= z c2 : d↔ x < y c3 : e↔ x < z c4 : d→ e

Unconstrained bit-level variables (x0,x1,x2, y0, y1, y2, z0,z1,z2) are added to
MiniSAT for x, y, and z respectively. In the origin map, each bit is mapped to its
corresponding bit-vector. Suppose a decision assigns d to 1; so d is enqueued
into BPQueue. Later, when d is dequeued, it will trigger unit propagation.
Also, looking up d in BWatch, the propagator for the d→ x < y constraint is
found and enqueued into the propagator queue WPQueue. Later, when this
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propagator is dequeued, it will perform the relevant word-level propagation.
Now it may happen that, say, the bit x1 is propagated by the propagator for
d→ x < y. Then x1 in turn is sent to the BPQueue, and the solver looks up the
origin map to determine x1’s corresponding bit-vector x. It then enqueues all
propagators whose arguments contain bit-vector x. In this case, propagators
for d↔ x < y and e↔ x < z are enqueued. And so the process continues. It
stops when all variables are assigned and a solution is generated, or a top-level
conflict indicates the problem’s unsatisfiability.

3.3 Forward and Backward Explanation Generation

An essential ingredient for conflict analysis in SAT solving is the generation
of explanations—reasons why a given literal was implied. An explanation for
a fixed literal is essential for conflict analysis in SAT solving. The explanations
are used to build the implication graph, used to generate a learnt clause [51]
when backtracking. Furthermore, the explanation is only demanded during
the conflict analysis.

When a literal ℓ is generated by word-level propagation, there are two
alternatives for explanation generation, as indicated in Figure 1. One possibil-

ity (labelled 2 in the figure) is to generate the explanation clause ci directly
and send it to the Reasons array. This mirrors what is normally done in a SAT
solver, and we call it “forward explanation”: we generate the explanation
eagerly, in a forward manner, as we do the propagation.

As the explanation is only needed for conflict analysis, we can, alterna-
tively, generate it on demand [32] during the conflict analysis. This alternative

is labelled 2’ in Figure 1. When ℓ is propagated, rather than send a clause to
the reason array Reasons, we send the propagator p which fixed ℓ. It is entirely
possible that ℓ is never involved in the conflict analysis, in which case we
save the explanation generation cost. Otherwise, if an explanation is called
for, Reasons will provide the propagator p, and we make p do the explanation
generation for ℓ. The concrete clause (the explanation) is submitted to conflict

analysis 2’ . We call this method “backward explanation”.
Compared to forward explanation, backward explanation can save expla-

nation generation cost for literals not involved in conflict analysis. However,
it does require revisiting the reason array when an explanation is requested.
In Section 5.4, we evaluate the two methods of explanation generation.

4 Word-Level Propagators

4.1 Trit-Vectors and Word-Level Propagation

A “trit-vector” (for bit-width w) is a sequence of w elements taken from
{0,1,∗} which is used to denote the bit-vector during the reasoning. Here the
∗ represents an undetermined bit, so a trit-vector x corresponds to the cube
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(
∧

i∈I0
¬xi)∧ (

∧

i∈I1
xi), where I0 is the set of index positions that hold a 0, and

I1 is the set of index positions that hold a 1.
In an implementation, the trit-vector can be represented by a pair 〈lo(x),hi(x)〉

of bit-vectors, with lo(x) and hi(x) representing the lower and upper bound of
x respectively. More precisely,

lo(x)i =

{

0 if xi = ∗

xi otherwise
hi(x)i =

{

1 if xi = ∗

xi otherwise

For example, trit-vector z= 011*0*11 is written 〈01100011,01110111〉 in this “lo-
hi” form. The advantage of this form is that, as long as the bit-width of a trit-
vector x is less than or equal to the size of machine registers, lo(x) and hi(x) can
be treated as unsigned integers; in our example, z is 〈99,119〉. Supported by an
implementation language (such as C) that can utilise word-level operations,
we can rephrase bit-propagation on a trit-vector as word-level operations on
its bounds. For a concrete example, consider y= *1110*** corresponding to
〈01110000,11110111〉, and the constraint y = z (where z is as above). We can
utilize the word-level rule: lo(y)= lo(z) = lo(y) | lo(z), hi(y)= hi(z) = hi(y) & hi(z)
to obtain the new lo-hi form of y (and z): 〈01110011,01110111〉 representing
01110*11. Instead of propagating the bits one by one, we effectively fix the
bits y7, y1, y0 and z4 simultaneously with the word-level operations on the
bounds.

The lo-hi form allows for invalid representations of trit-vectors. That hap-
pens when, for some x, a bit in lo(x) is 1 while the corresponding bit in hi(x)
is 0. As will be seen, propagation can produce such invalid forms, but this
happens when, and only when, an inconsistency is present in the current set
of constraints. The simplified validity checking rule [50] is:

valid(x) = ˜ lo(x) |hi(x) (1)

The result for a valid bit-vector lo-hi form should be a bit-vector consisting
entirely of 1-bits with the same bit-width as the bit-vector variable; otherwise
it is invalid, and the 0 bits in the result are the bits that cause the invalidity.
For example, consider constraint y = z, and bit-vectors y= 1*00 and z= 00*1.
First, we utilize the word-level rule to get the new lo-hi form of y (and z):
〈1001,0000〉. Then we use the validity checking rule on the new lo-hi form:
valid(y) = valid(z) = ˜ lo(y) | hi(y) = 0110.

The following predicates on trit-vectors will prove useful:

fixed(x) ≡ lo(x) = hi(x)
msb(x[w]) = xw−1

lit(b) =

{

pbq if lo(b) = 1
p¬bq if hi(b) = 0

pos(x) = {lit(xi) | lo(xi) = 1}
neg(x) = {lit(xi) | hi(xi) = 0}
lits(x) = pos(x)∪neg(x)

We use fixed(x) to return a Boolean value indicating whether every bit in trit-
vector x is fixed, that is, 0 or 1. We use msb(xw) to denote the most significant bit
of trit-vector x. We use lit(b) to return the literal corresponding to the Boolean
bit b under the condition that b is fixed (hence the use of Quine corners). We
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use pos(x) (neg(x)) to return the set of literals fixed to 1 (respectively 0) in
trit-vector x, and lits(x) to return the set of fixed literals in x. In algorithms, we
take such a set of literals to mean the conjunction of the literals.

4.2 Word-Level Propagation with Bit-Level Explanation

Bit-blasting is the most common approach to bit-vector constraint solving. Bit-
blasting rewrites all the word-level formulas into a large number of low-level
propositional formulas although many of them may be redundant and never
used in the solving process. Instead of doing bit-blasting, we use word-level
propagation utilizing the lo-hi form. The propagators perform the propaga-
tion, and in our variant they also generate explanations in the form of clauses,
for literals fixed by propagation. They can be seen as lazy clause generators,
generating clauses only as these are needed.

The input of the word-level propagators are the domain of each bit-
vector and sometimes Boolean variables (for example, the propagator for
the ite(b,x1,x2) = y constraint). Inside the propagator, we utilize (and extend)
the propagation rules introduced by Michel and Van Hentenryck [50] to do
the propagation at the word level. In the following propagation rules, l and
u denote the old lower and upper bound respectively; low and up denote the
new lower and upper bound respectively. Note that a lower or upper bound
is a bit-vector as shown in the following rules, and in an implementation
language such as C, we need it to fit into a machine register. This is a limi-
tation of our current word-level propagator—the bit width of its associated
bit-vectors must be no longer than the size of a machine register (in our case
64 bits). This restriction can be lifted through translations that reflect standard
implementation of arbitrary-precision arithmetic [63]; this, however, we have
not done.

After each round of propagation for the bit-vector interval, the propagators
apply validity checking (1) on the new intervals. After this, either some bits are
propagated, or a conflict happened which means a conflict clause (or several
conflict clauses) should be returned. Note that a conflict clause which stems
from one bit set to b, is the same as the explanation why this bit would become
fixed to ¬b. The explanations that we generate are presented in the following.

When there is no conflict, the propagators explain every propagated bit at
the bit level. The explanation for the propagated bit is a set of literals which
make up the reason for having fixed the propagated bit. Take the bitwise
equality (x = y) as an example: when the ith bit of integer xi is fixed to 1, we
know that the reason is that yi is already fixed to 1. So the clause c : ¬yi∨xi is
the explanation why xi is fixed to 1.

We next introduce the propagators for bit-vector constraints. Section 4.3
covers basic propagators, for logical constraints and structural constraints.
Section 4.4 deals with propagation for arithmetic constraints, using a concept
of decomposition. Section 4.5 briefly explores alternative ways of propagating
reified constraints, using what we call composed propagators.
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4.3 Basic Propagators

Both the propagation rules and the explanations are based on certain infer-
ence rules, as explained below. Since the explanation generation is straight-
forwardly done at the bit level, we concentrate on how to generate word-level
propagation rules. The approach is general, so we simply illustrate it via an
example. Full details can be found elsewhere [68].

Let us begin with the simplest constraint, bitwise equality, say, y = x. This
constraint can only tighten the bounds for x and y, leaving them identical.
Let the bounds for x be [lx,ux] (before propagation), and let the bounds for
y be [ly,uy]. The new, tighter, lower bound for x, which we denote lowx, is
obtained by taking the disjunction of lx and ly,similarly the new, tighter upper
bound is obtained through conjunction of the components’ upper bounds.
More precisely:

lowx = lx | ly

upx = ux & uy

lowy = lowx

upy = upx

4.3.1 Logical Constraints

The propagation rules for the bitwise operators are generated by similar
reasoning, and in an entirely systematic way. Take z = x & y. Again, lower
bounds for the involved variables can be tightened through disjunction, just
as the upper bounds are tightened through conjunction. For a single bit, zi

of z, we have the inference rules that zi = 0 iff xi = 0 or yi = 0, and zi = 1 iff
xi = 1 and yi = 1. The first rule entails that we may be able to tighten z’s upper
bound, in case either x or y (or both) have a 0 in some position i. The second
entails that we may be able to tighten z’s lower bound, in case x and y share
a 1 in some position. Similarly, we can reason about the bounds for x and y.
Altogether, expressed at the word level, we have:

Propagation rules for the z = x & y constraint:

lowx = lx | lz

upx = ux & ˜(˜uz & ly)

lowy = ly | lz

upy = uy & ˜(˜uz & lx)

lowz = lz | (lx & ly)
upz = uz & ux & uy

Example 1 Consider x= ∗∗00∗, y= 1111∗, z= 01∗∗1, and constraint z= x& y. The
lower and upper bounds for each bit-vector variable before the propagation
are as shown below (left column). After propagation, we have the improved
lower and upper bounds (middle column) and the result from the validity
checking rules (right column).
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lx = 00000
ux = 11001
ly = 11110
uy = 11111
lz = 01001
uz = 01111

lowx = 01001
upx = 01001

}

valid(x) = 11111

lowy = 11111
upy = 11111

}

valid(y) = 11111

lowz = 01001
upz = 01001

}

valid(z) = 11111

Note how the constraint was found to be satisfiable, and, in this example, all
bits ended up being determined. ⊓⊔

Explanations for the z = x & y constraint:

The constraint z = x & y gives rise to these explanations, per bit position i:

c1 : xi∨¬zi c2 : yi∨¬zi c3 : ¬x2∨¬yi∨ zi

Propagators for other logical constraints follow the same pattern.

Propagation rules for the z = x⊕ y constraint:

lowx = lx | (∼uz & ly) | (lz & ∼uy)
upx = ux & (uz | uy) & (∼(ly & lz))
lowy = ly | (∼uz & lx) | (lz & ∼ux)
upy = uy & (uz | ux) & (∼(lx & lz))
lowz = lz | (∼ux & ly) | (lx & ∼uy)
upz = uz & (ux | uy) & (∼(lx & ly))

Explanations for the z = x⊕ y constraint:

c1 : xi∨ yi∨¬zi c2 : xi∨¬yi∨ zi c3 : ¬xi∨ yi∨ zi c4 : ¬xi∨¬yi∨¬zi

The next example shows a case where a conflict happens in propagation.

Example 2 Consider x = 1*000, y = 0**1* and z = 01*00 and constraint z =
x⊕ y. The lower and upper bounds for each bit-vector variable before the
propagation are as shown below (left column). After the propagator is invoked
to run the propagation rules, we get the new lower and upper bounds (middle
column) and the result from the validity checking rules (right column).

lx = 10000
ux = 11000
ly = 00010
uy = 01111
lz = 01000
uz = 01100

lowx = 10010
upx = 01000

}

valid(x) = 01101

lowy = 10010
upy = 01100

}

valid(y) = 01101

lowz = 11010
upz = 01100

}

valid(z) = 01101

There are two conflicts, and the conflict clauses are¬x4∨ y4∨z4 and x1∨¬y1∨

z1. ⊓⊔

Propagation rules and explanations for all the remaining logical constraints
can be found elsewhere [68].
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4.3.2 Structural Constraints

We can take the structural constraints as variants of the bitwise equality con-
straints for bit manipulation. Therefore, the propagation rules for structural
constraints are based on the propagation rules of the bitwise equality con-
straints but with different “masks” fixing the particular bits to be 1 or 0. The
explanations for the structural constraints are also similar to the bitwise equal-
ity constraints but with some bit shift (≪,≫u,≫s, rotl, rotr), or fixing some bit
values (≪,≫u,≫s, extu, exts).

We show the propagation rule and the explanation for the signed extension
constraint y = sign extend(n,x) as an example. Example 3 below shows an
instance where several bits can be fixed at the same time.

Propagation rules for the y = sign extend(n,x) constraint:

1. if xwx−1 = 0:

mask1 = 0[n].1[wx]

mask2 = 0[wx+n]

lowx = lx | (ly & mask1)
upx = ux & (uy & mask1)
lowy = (lx | mask2) | ly

upy = (ux | mask2) & uy

The role of mask1 is to extract the rightmost wx bits from y. The role of
mask2 is to extend x to wx+n bit width.

2. if xwx−1 = 1

mask1 = 0[n].1[wx]

mask2 = 1[n].0[wx]

lowx = lx | (ly & mask1)
upx = ux & (uy & mask1)
lowy = lowx | mask2

upy = upx | mask2

mask1 is extracts the rightmost wx bits of y. The role of mask2 is to force the
leftmost n bits of y to one.

3. If xwx−1 = ∗:
– if yi = 0 (for some i ≥ wx− 1): fix xwx−1 = 0, then apply rule 1.
– else if yi = 1 (for some i ≥ wx− 1): fix xwx−1 = 1, then apply rule 2.
– else

mask1 = 0[n].1[wx]

mask2 = 1[n].0[wx]

mask3 = 0[wy]

lowx = lx | (ly & mask1)
upx = ux & (uy & mask1)
lowy = ly | (lx | mask3)
upy = uy & (ux | mask2)
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The role of mask1 is to extract the rightmost wx bits from y. mask2 and mask3

are used to extend x to the same bit-width as y, without affecting the new
lower and upper bound of y.

Explanations for the y = sign extend(n,x) constraint:

– For yi:
c1 : xwx−1∨¬yi and c2 : ¬xwx−1∨ yi if i ≥ wx− 1
c1 : xi∨¬yi and c2 : ¬xi∨ yi otherwise

– For xi:

c1 : xi∨¬y j and c2 : ¬xi∨ y j (for all j ≥ wx− 1) if i = wx− 1
c1 : xi∨¬yi and c2 : ¬xi∨ yi otherwise

Example 3 Consider n= 3, x= *0*0, and y= 1**1*1*. Since x3 = *, we apply rule
3 of the propagation rule. Since there exists y3 = 1, rule 2 is applied and the
following new lower and upper bounds are obtained:

lowx = 1010
upx = 1010

}

valid(x) = 1111
newx = 1010

lowy = 1111010
upy = 1111010

}

valid(y) = 1111111
newy = 1111010

The explanation for newly fixed x1 = 1 is the clause: x1∨¬y1; for newly fixed
x3 = 1 is the clause: x3∨¬y3; for the newly fixed y0 = 0 is the clause: ¬y0∨x0;
for the newly fixed y2 = 0 is the clause: ¬y2 ∨ x2; for the newly fixed y4 = 1
and y5 = 1 is the clause: yi∨¬x3 (i = 4 and 5 respectively). ⊓⊔

Example 4 Consider n = 2, x = 00, and y = 100*. Using rule 1 we calculate lowy

= 1000 and upy = 0000. Hence valid(y) = 0111 leading to the conclusion that
y = sign extend(2,x) is not satisfiable. ⊓⊔

Note that, for the shift constraints the number of the shift bits is not
necessarily a constant; it can be a bit-vector variable. Take the general left shift
operation (x = y≪ z) as an example. Here z is not a constant, but a bit-vector
variable. Algorithm 3 shows how STP deals with this kind of constraint. Our
approach mirrors that, but rather than resorting to bit-by-bit processing, we
generate and process corresponding word-level constraints. Specifically, we
generate a nested ite expression corresponding to the for loop of Algorithm 3.

Example 5 For bit width 4, the only interesting shift values are < 4, so only
the z0 and z1 bits are of interest—if a more significant bit is set, the result of
the shift will be 0. (In Algorithm 3, the variable care bits records the number
of interesting bits from z.) Hence we generate

x = let x′ = ite(z0, y≪ 1, y) in ite(z3∨ z2,0, ite(z1,x
′≪ 2,x′))

In a context where we have derived, say, y= 0011 and z= 00*1, this effectively
reduces to x = ite(z1,1000,0110). ⊓⊔

A way of reducing a propagator into several basic propagators (“decom-
position”) is now introduced.
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Algorithm 3 Propagator for x = y≪ z

care bits← ⌈log2 bitwid⌉
previous x← y
for i← 0 to care bits−1 do

shift amount← 1≪ i
current x← ite(zi ,previous x≪ shift amount,previous x)
previous x← current x

zrest bits← zbitwid−1 ∨ zbitwid−2∨· · ·∨ zcare bits

x← ite(zrest bits,0,current x)

4.4 Decomposed Propagators

We now consider the important concept of decomposition, that is, how to break
a target constraint into several basic constraints while introducing interme-
diate variables. We can then use the corresponding propagators for the basic
constraints to solve the target constraint. The propagation rules and the expla-
nation for the target constraint simply combine those of the basic constraints.
We use decomposition for all the arithmetic constraints.

Consider the if-then-else constraint ite. We use it to illustrate how the de-
composed propagators cooperate to solve a target constraint. We also give the
specific decomposition rules we use for non-linear arithmetic constraints. The
decomposition rules for the linear arithmetic constraints including addition,
unary minus and subtraction constraints can be found elsewhere [69].

4.4.1 The If-Then-Else Constraint z = ite(b,x, y)

The constraint z= iteBV(bv,x, y) discussed by Michel and Van Hentenryck [50]
is different from the one z = ite(b,x, y) in SMT-LIB2, because of the first pa-
rameter: one is a bit-vector (bv) while the other is a Boolean variable (b).
However, we can transform the constraint z = ite(b,x, y) into the constraint
z = iteBV(bv,x, y), by introducing a signed extension constraint and a new bit-
vector variable bv. Note that within the propagator for signed extension, we
treat Boolean variable b as a bit-vector with bit-width 1, while outside the
propagator we treat b as a Boolean variable and put the propagator into a
Boolean watch list as explained in Section 3. Assuming the bit-width is n:

bv = sign extend(n− 1,b)
z = ite(bv,x, y)

Therefore, the propagator for constraint z = ite(b,x, y) can be divided into
two decomposed propagators: one is for the sign extend(n− 1,b) constraint
and the other is for the ite(bv,x, y) constraint. The propagation rules and the
explanations for the z = ite(b,x, y) propagator are combinations of those for
the two component propagators.
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The propagation rules for z = iteBV(bv,x, y) are as follows2:

lowbv = lbv | (lz & (∼uy)) | ((∼uz) & ly)
upbv = ubv & (∼lz | ux) & (uz | (∼lx))
lowx = lx | (lz & (lbv | (∼uy)))
upx = ux & (∼((∼uz) & (lbv | ly)))
lowy = ly | (lz & ((∼ubv) | (∼ux)))
upy = uy & (uz | (ubv & (∼lx)))
lowz = lz | (lbv & lx) | ((∼ubv) & ly) | (lx & ly)
upz = uz & (∼lbv | ux) & (ubv | uy) & (ux | uy)

The explanation for the z = iteBV(bv,x, y) constraint:

c1 : ¬bvi∨¬xi∨ zi c2 : ¬bvi∨xi∨¬zi c3 : bvi∨¬yi∨ zi

c4 : bvi∨ yi∨¬zi c5 : ¬xi∨¬yi∨ zi c6 : xi∨ yi∨¬zi

The propagation rules and explanation for the signed extension propagator
were given in Section 4.3.2.

Example 6 Consider x = 1*0**, y = *1*1*, z = 0***0, b = *, and constraint z =
ite(b,x, y). The intermediate variable bv = *****, and the lower and upper
bounds for each bit-vector variable before the propagation are:

lbv = 00000 ubv = 11111 lx = 10000 ux = 11011
ly = 01010 uy = 11111 lz = 00000 uz = 01110

Since some bits are fixed in x, y and z, we assume the propagator for z =
iteBV(bv,x, y) is enqueued in the propagation queue waiting to do its work.
After the propagator is invoked, to run the propagation rules and the validity
checking (which in this case indicates that there is no conflict), bv4 and y4 are
newly fixed to 0:

lowbv = 00000

upbv = 01111















valid(bv) = 11111

newbv = 0****

lowx = 10000

upx = 11011















valid(x) = 11111

newx = 1*0**

lowy = 01010

upy = 01111















valid(y) = 11111

newy = 01*1*

lowz = 00000

upz = 01110















valid(z) = 11111

newz = 0***0

The explanation for bv4 = 0 is the clause ¬bv4∨¬x4∨ z4, and for y4 = 0 is the
clause¬x4∨¬y4∨z4. Because of the newly fixed bits, both the propagators for
bv = sign extend(4,b) and z = iteBV(bv,x, y) are enqueued. When the signed
extension propagator is invoked, the Boolean variable b is fixed to 0, and
the remaining bits in bv are all fixed such that bv = 00000 (details are in
Section 4.3.2). After that, the propagator for z= iteBV(bv,x, y) is invoked again,

2 The propagation rules for z = iteBV(bv,x, y) differ substantially from those in [50] which are:

lowy = ly | (lz & (lbv | (∼ux))) and upy = uy & ∼ (∼uz & (lbv | lx)) (using our notation). These rules
are not quite correct. For example, for bit-width 1, let z = 1, bv = 0, and let x and y be unknown,
then y should be fixed to 1. But under the rule above, lowy = 0, which is an error.
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and we get the newly propagated bit-vectors: bv = 00000, x = 1*0**, y = 01*10,
and z = 01*10. Therefore, in this propagation round, y0 is fixed to 0 , and
z1 and z3 are fixed to 1, with the explanation bvi ∨¬yi ∨ zi (i is 0, 1 and 3
respectively). ⊓⊔

4.4.2 Non-Linear Arithmetic Constraints

We deal with non-linear arithmetic constraints by first developing a propa-
gator for multiplication, and then transforming all remainder and division
constraints into multiplication and other basic constraints using decomposi-
tion. These transformations use the rules given by Limaye and Seshia [46].
Therefore, the task of solving non-linear arithmetic constraints is reduced to
solving the multiplication constraint.

Assuming the bit-width is n, the multiplication constraint z = x ∗ y can be
transformed in the following way:

z = (x≪ (n− 1)) ∗ yn−1+ (x≪ (n− 2)) ∗ yn−2+ . . .+ (x≪ 1) ∗ y1+ x ∗ y0

= ite(yn−1,x≪ (n− 1),0)+ ite(yn−2,x≪ (n− 2),0)+ . . .
+ ite(y1,x≪ 1,0)+ ite(y0,x,0)

Hence the multiplication propagator is decomposed into n ite propagators
and n− 1 addition propagators.

Example 7 Consider x = 0**1, y = *10*, z = *1*1, and constraint z = x ∗ y. We get
the following addition format according to the transformation rules above.
We use the bit variable names to present the unknown bits (*).

(

y0 = 1 : 0 x2 x1 1
y0 = 0 : 0 0 0 0

)

0 0 0
x1 1

+ y3

z3 1 z1 1

Since z0 = 1 and x0 = 1, the addition propagator concludes y0 = 1. Since
there is no carry in from the second bit position, x2 = 0 is also determined
by the addition propagator. We also know that x1 = z1, and y3 = z3, so further
information can be propagated once we fix some of these four bits. ⊓⊔

4.4.3 Reified Constraints

We base the decomposed propagator for reified equality constraint b↔ x = y
on this observation [70]: b =msb(˜((x− y) | (y−x))). We add intermediate vari-

ables to split this constraint into several basic constraints which can be pro-
cessed by the word-level propagators already introduced. The explanation
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for the reified equality constraint b↔ x = y is made up by those of the ba-
sic constraints—several small explanations with the intermediate literals in-
volved.

m1 = x− y; m2 = −m1; m3 =m1 |m2; m4 = ˜m3; b =msb(m4)

The decomposed rule for the reified disequality constraint b↔ x , y is as
follows: b =msb((x− y) | (y− x)). The way of decomposing the propagator is
similar to the reified equality constraint.

The decomposed propagator for an inequality constraint b↔ x≤ y is based
on this observation [70]:

b =msb((x | ˜y) & ((x⊕ y) | (̃y− x)))

The way to tackle an inequality constraint with decomposed propagators is the
same as for the reified equality and disequality constraints. Other inequality
constraints can be transformed into the unsigned less than or equals constraint
b↔ x ≤u y, based on the semantics introduced in Section 2.1.

4.5 Composed Propagators

Besides using decomposed propagators, we also try an alternative way to
solve the reified constraints which we call composed propagators. A com-
posed propagator is a single compact function which is used to propagate the
constraint in one go.

Take the reified equality constraint b↔ x = y as an example. The main
algorithm for the propagator is shown as Algorithm 4. The propagator reuses
the implementation of the propagators for x = y and x , y (here we call them
”sub-propagators”), or checks that x= y in the current domain in which case it
explains b, or that x, y in the current domain, in which case it explains¬b. De-
tailed algorithms for all composed propagators can be found elsewhere [69].

5 Design Options

In this section we discuss three dimensions in the design space for a word-level
propagation solver: two ways to create the propagators for reified constraints
(composed vs decomposed), two ways to administer explanation (forward vs
backward), and two approaches to conflict analysis (first vs highest decision
level). In Section 5.4 we summarise the combinations we found to work best.

5.1 Propagators: Composed vs Decomposed

Sections 4.4 and 4.5 discussed composed and decomposed propagators to
implement reified constraints. We now investigate the difference between the
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Algorithm 4 Propagator for b↔ x = y

function Prop ReifEq(bit b, bit-vec x, y)
if lo(b) = 1 then

return Prop Eq(x, y)
else if hi(b) = 0 then

return Prop DisEq(x, y)
else

if fixed(x)∧fixed(y)∧ lo(x) = lo(y) then ⊲ x = y
Explanation := lits(x)∧ lits(y)→ b
Enqueue(b,Explanation)

else
z := lo(x) &˜hi(y) |˜hi(x) & lo(y)

if z , 0 then ⊲ x , y
choose i with zi = 1
Explanation := lit(xi)∧ lit(yi)→¬b
Enqueue(¬b,Explanation)

return true

two approaches in search and learning, and we compare the propagation
strength of the two types of propagator.

Differences in Search and Learning. The composed propagators are often
complex to implement. Moreover, the explanations generated by the prop-
agators are often large, especially when the bit-width of the involved bit-
vectors is large. For example, for the reified equality constraint b↔ x = y,
when b = 0, x = 11010, y = 110 ∗0, we propagate bit y1 = 0, and the explanation
is x4 ∧ x3 ∧¬x2 ∧ x1 ∧¬x0 ∧ y4 ∧ y3 ∧¬y2 ∧¬y0 → ¬y1. In some cases it can
be worth splitting the complicated constraint into several smaller constraints
thus decomposing it. Not only are the decomposed components easier to
implement, but more importantly, the intermediate variables introduced can
help make explanations shorter. From Section 4.3 we know that each expla-
nation for a basic constraint contains at most three literals. On the other hand,
the composed propagators are compact, while the decomposed propagators
require communication among the decomposed components.

It is worth pointing out that the two kinds of propagator do not lead to
identical search trees. The presence of intermediate variables introduced by
the decomposition makes a considerable difference to activity based search,
since there are new variables to search on and different initial activities. There-
fore, on the one hand, the intermediate variables in the decomposed propa-
gators allow it to “search in the middle”; on the other hand, they also enlarge
the search space which may lead to greater effort to find a solution.

Differences in Propagation Strength

– Composed Propagators
The composed propagators achieve bit-consistency, as defined in Sec-
tion 2.2. Algorithm 4 and the similar algorithm for inequality constraints
achieve bit-consistency. Hence if we want to show the composed propa-
gators achieve bit-consistency, we only need to prove the sub-propagators
are bit-consistent.
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– reified equality propagator b↔ x = y
The propagation for the equality constraint x = y, obviously is bit-
consistent since it operates bitwise. The propagation for the disequality
constraint x, y is also bit-consistent, since the propagation is on the bit-
level and no more bits can be propagated according to the algorithm.

– reified inequality propagator: b↔ x ≤u y
As proved by Michel and Van Hentenryck [50], the propagation for
x≤u y achieves bit-consistency. The propagation for the x>u y is similar
to the one for x ≤u y, hence it is also bit-consistent.

– Decomposed Propagators
The corresponding decomposed propagators do not achieve bit-consistency.
We show this next, through counter-examples.

Example 8 Consider first the propagator for reified equality, b↔ x = y. Take
x = **0*, y = **1*, and b = *. Clearly it can be deduced that b = 0. However,
the propagation rules from Section 4.4.3 do not fix b, since the subtraction
propagators for x− y and y− x are unable to fix any bits.

Now consider the propagator for reified inequality, b↔ x ≤u y. Take x =
*1**, y = *0**, and b = 1. Clearly we can deduce x3 = 0 and y3 = 1. However,
the propagation rules from Section 4.4.3 do not fix b, again because of the
subtraction propagators’ inability to fix bits. ⊓⊔

5.2 Explanation: Forward vs Backward

Normally in a SAT solver, for every fixed Boolean literal, a reason why it
became true is required for conflict analysis. So normally, when we fix a
Boolean literal in our word-level propagator, we return an explanation for it
eagerly, so-called “forward explanation.”

Another approach [32, 56] is to generate the explanation only during con-
flict analysis where the reason for a propagated literal is required. Compared
to the forward explanation method, this has the advantage that explanations
are only generated as needed. Furthermore, the “backward explanation” is
good for our word-level propagator, since our propagators only have two
parts: one is the propagation part, the other is the explanation generation
part which is more time consuming. Therefore, backward explanation makes
propagation faster, but possibly makes conflict analysis slower, which is the
trade-off between these two approaches.

5.3 Conflict Analysis: First vs Highest Level

We observed in Section 4.1 that we can detect conflicts in many bit positions
simultaneously. But how best to choose one for conflict analysis remains an
open question. With SAT solving, as soon as the first conflict is found, con-
flict analysis is started, returning a learnt clause of the form C∨ ℓ, where ℓ
is the unique literal (UIP) at the current decision level, and the maximum
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decision level in the remainder of the clause C determines the level to back-
jump to. One way to manage conflict analysis for word-level propagation is to
choose the first conflict for conflict analysis, as for SAT. We call this “standard
backjumping”.

An alternative approach is to generate a conflict clause for each bit position
that is in conflict. We can then add all the learnt clauses generated to the clause
database and then jump to the highest decision level indicated by one of them.
This has the advantage of generating more information from the failure, and
potentially higher backjumps. We call this “multi-conflict backjumping”.

Again there is a trade-off between these two approaches. On the one hand,
standard backjumping promises faster conflict analysis; as multi-conflict back-
jumping needs to analyse several conflicts each time. On the other hand,
multi-conflict backjumping can lead to backtracking to a higher level of the
search tree than standard backjumping, with the potential to save on search.

5.4 Identifying the Best Options

In previous work [69] we experimented with the design options discussed
above. The aim was to limit the experimental space, in case one design choice
seemed clearly better than another, in practice.

First, we compared forward vs backward explanation, as well as standard
vs multi-conflict backjumping. The conclusion [69] was that (1) backward
explanation outperforms forward explanation significantly, especially when
the test cases become time consuming, and that (2) multi-conflict backjumping
outperforms standard backjumping (see Table 1 of [69]). Hence, we soon
committed to backward explanation and multi-conflict backjumping.

Next we compared bit-blasting with word-level bit-vector solving using
composed and decomposed propagators, experimenting with all possible
combinations of composed (C) and decomposed (D) propagators for equality
(eq) and for inequality constraints (le). In our experiments [69], the Deq+Dle
word-level propagator was typically faster than bit-blasting on the easy cases,
using less memory. For many difficult cases, the Ceq+Cle word-level propa-
gator outperformed bit-blasting, and again used less memory (see Table 2 of
[69]). In general, however, bit-blasting was found to have the most uniform
and predictable behaviour.

We also counted the average number of conflicts found per time unit, to
see to what extent the promise of parallel propagation and conflict checking
is realised in practice (see Table 3 of [69]). For easy benchmarks, word-level
propagation typically led to 50% more conflicts found per time unit. For hard
benchmarks, the rate of conflict finding was more spectacular: ranging from
2.5 to 18 times the rate of the bit-blaster. Table 3 of [69] also gives the number
of inspections (by which we mean a call to a unit or word-level propagator,
whether it results in fixing new bits or not). For hard benchmarks, the table
suggests that the rate of propagation per inspection is close to an order of
magnitude larger for word-level propagation.
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Fig. 2 The main structure of STP (left) and word-level solvers (right)

6 Experimental Evaluation

Having since extended the solvers to the entire QF BV fragment of SMT-
LIB2, we are now able to evaluate the solvers on larger sets of benchmarks,
and compare against an established bit-vector logic solver. In this section we
report on the evaluation. We have incorporated two word-level solvers into
STP [31] and we compare the resulting bit-vector solvers against STP itself.
The two word-level solvers used, Comp-W and Decomp-W, are the ones that
use the Ceq+Cle and Deq+Dle propagation principles, respectively, together
with backward explanation and multi-conflict backjumping.

STP has been developed over many years and been heavily used in many
applications. For example, it has been central to the symbolic execution tool
KLEE. It uses a number of “word-level simplifications” and these can be
highly beneficial for our word-level solvers as well. STP applies an “on-the-
fly” linear solver which enables many other simplification rules, and can
solve purely linear problems outright. The main structure of STP for solving
bit-vector constraints is shown in Figure 2 (left). Word-level simplification
consists of three phases: substitution, simplification and linear solving. We
have constructed variants that replace bit-blasting by word-level solving. The
structure of the word-level solvers is shown in Figure 2 (right). Note that we
do not do bit-blasting or any Boolean simplification in the word-level solver.

We compare the two word-level solvers (Comp-W and Decomp-W) with
the original STP. The experimental data are the test cases from all the folders
in the QF BV category of SMT 2015 competition benchmarks,3 except for the

3 https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=2641
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Table 1 STP vs two word-level solvers on the whole data set (times are in seconds)

Problem STP Comp-W Decomp-W
name number time TO time TO time TO
asp 492 18372 269 18819 283 16187 366
bench-ab 285 0 0 0 0 1 0
bmc-bv 131 79 0 140 0 935 0
bmc-bv-svcomp14 66 146 2 413 12 712 2
brummayerbiere 28 407 4 80 5 92 5
brummayerbiere2 31 9 4 111 5 74 5
brummayerbiere3 58 809 21 546 38 1091 38
brummayerbiere4 10 0 0 0 0 0 0
bruttomesso 314 5760 100 4921 141 7349 163
calypto 18 11 11 1 12 30 10

challenge 2 0 2 0 2 0 2
check2 6 0 0 0 0 0 0
crafted 21 0 0 0 0 0 0
dwp-formulas 332 0 0 0 0 2 0
ecc 8 1 0 0 4 1 0

fft 23 89 17 259 16 196 17
float 186 8528 56 6544 98 8995 118
galois 3 0 2 0 2 1 2
gulwani-pldi08 6 60 0 47 0 331 0
mcm 186 4374 143 5317 142 2486 164
pspace 21 4 0 4 0 4 0
rubik 7 229 1 380 1 80 2
sage 26607 5485 1 11642 86 16415 144
spear 1695 4354 1 787 11 47815 175
stp 1 10 0 8 0 0 1
stp-samples 426 7 2 7 2 8 2
tacas07 5 342 1 5 2 283 2
uclid 416 103 0 97 0 1424 7
uclid-contrib-smtcomp09 7 479 5 0 7 0 7
uum 8 109 6 26 6 287 6
VS3 11 433 10 340 9 385 10
wienand-cav2008 12 346 1 61 1 110 1

Total 31422 50546 659 50555 885 105296 1249
Overall time 380046 493055 729796

ones in which the bit-width for the bit-vector operations is > 64 (the size of
our machine registers). Totally, there are more than 30,000 test cases. The run
time limit for each test case is 500 seconds. The experimental environment is
a commodity computer with a Core-i7 CPU (2.7 GHz) and 5 GB RAM.

Table 1 shows the results. In the table, “time” means the total time in
seconds for all the successful test cases in the folder; “TO” is the number
of cases that timed out; “Total” is the total time of all successful test cases;
“Overall time” is “Total” plus 500 seconds penalty for each unsuccessful
case, which gives an overall “score”. Table 1 highlights the best performances
(according to the overall time) using boldface font.

The topmost scatter plot in Figure 3 shows Comp-W against Decomp-W
performance across individual benchmarks, with each time-out plotted as 500
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Fig. 3 Comp-W vs Decomp-W (top) and STP vs WLS (bottom)
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seconds. The bottom plot likewise visualises STP performance against word-
level solver performance. In this plot, as in Tables 2 and 3 below, we take
the best case between Comp-W and Decomp-W, that is, ’WLS’ indicates the
best of the two word level solvers’ performance in the given case. (Section 7
discusses how to automate the choice of approach.)
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Table 1 (and the plots) show that STP outperforms the word-level solvers,
overall. This is perhaps unsurprising, as STP has been developed over many
years, and is well-engineered. STP also applies Boolean simplification af-
ter bit-blasting, which is not available to the word-level solvers. And, some
benchmarks contain a large number of “pseudo bit-vector operations” with
bit-width 1, which are actually Boolean operations; this favours bit-blasting.

Also note that the composed word-level solver outperforms the decom-
posed word-level solver in most cases. As noted, propagation by the com-
posed propagators is stronger than by the decomposed ones. When the test
cases become harder, composed propagators tend to infer more information.

However, we also find that, in many cases, the word-level solvers dra-
matically outperform STP, even though the overall run time for each folder is
greater. To better understand what kind of test case favours word-level solvers
and which favour STP, we have collected those cases that had significant solv-
ing time difference between the solvers (> 1 second), in total 2979 cases. We
call this collection the core set. Small time differences are more likely to be at-
tributed to irrelevant factors, such as I/O and machine workload, rather than
to solving strategy, which is why we ignore the less-than-1-second cases. In
the core set there are 825 test cases (less than 30%) where STP wins and 2103
cases (about 70%) where Comp-W wins. In the remaining cases, Decomp-W
wins (51 cases, or less than 2%).

Table 2 lists the benchmark families where word-level solvers perform
better, and Table 3 list cases where STP wins. To get a better understanding
of which factors influence performance, we have collected various data. The
tables provide the number of test cases solved in each family (num), together
with various averages taken within each family: the bit-width of bit-vector
constraints (bwid); the number of bit-vector constraints (bitvec); the number
of Boolean operations (bool); the ratio of bit-vector operations to Boolean
operations (vec/bool); the number of logical constraints (logic); the number
of structural constraints (struc); the number of arithmetic constraints (arith);
the number of comparison constraints (comp) including =, distinct, bvule,
bvult, bvuge, bvugt, bvsle, bvslt, bvsge and bvsgt; the number of addition
related constraints (adder) including bvadd, bvneg and bvsub; the number of
multiplication related constraints (multip) including bvmul, bvudiv, bvurem,
bvsdiv, bvsrem and bvsmod.

In Tables 2 and 3, we combine the cases where Comp-W wins with the
cases where Decomp-W wins, to show the test cases where some word-level
solver wins (WLS). We show the average solving time (in seconds) using STP
and WLS respectively. Since more than half of the test cases appear in the
“spear” family (which may bias the analysis), we also provide a summary
row (sum(w/o spear)) which excludes the data from the spear family.

In terms of the solving time and the number of solved test cases in different
families, the solving ability of STP and the word-level solvers are generally
complementary. STP is significantly better at solving “brummayerbiere (2,3)”,
“float” and “sage” families. Word-level solving is significantly better for the
“bruttomesso/core” and “spear” families. For the rest of the families, the
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Problem num bwid bitvec bool vec/bol logic struc arith comp adder multip STP WLS

asp 137 7 9301 15795 0.6 2 0 9299 5498 3801 0 125.3 65.6

bmc-bv 7 41 1207 2281 0.9 0 193 1014 846 20 6 2.0 1.6

bmc-bv-svcomp14 16 30 1362 1899 6.9 3 19 1340 502 12 10 4.3 3.3

brummayerbiere 2 39 255 1713 1.4 0 38 218 34 47 16 70.7 22.4

brummayerbiere2 2 12 29 85 0.4 14 7 8 2 0 2 252.7 33.7

brummayerbiere3 4 25 132 10 18.8 27 38 68 11 39 3 50.0 6.3

bruttomesso/core 131 7 1264 554 4.1 0 864 418 418 0 0 181.6 15.7

bruttomesso/lfsr 5 14 772 871 0.9 0 384 388 388 0 0 95.9 39.1

calypto 2 21 143 4 35.6 0 89 54 18 4 3 255.2 15.0

fft 2 4 1059 1161 0.9 0 549 510 138 372 0 251.2 45.2

float 25 22 2546 1613 1.5 423 915 1208 530 447 12 54.8 25.0

gulwani-pldi08 4 8 1234 400 3.1 3 0 1231 419 490 322 14.7 11.2

mcm 24 11 5563 2785 2.1 350 362 4851 2505 2205 7 204.2 112.4

sage 328 30 821 137 6.7 92 141 588 183 320 85 10.1 3.3

spear 1378 39 1640 425 3.7 0 111 1530 322 42 15 2.8 0.3

stp 1 30 19382 38789 0.5 688 660 18034 17956 59 19 10.4 8.4

tacas07 1 32 1186 1501 0.8 1 0 1185 1045 139 1 10.1 4.5

uclid 80 29 829 108 7.8 138 295 396 251 75.5 69 0.5 0.4

uum 1 9 302 192 1.6 69 155 78 71 0 7 108.9 25.6

VS3 2 6 2507 266 10.8 0 0 2507 386 960 1161 466.3 170.2

Wienand-cav2008 1 4 274 151 1.8 0 172 102 1 95 6 346.0 60.6

summary 2153 32 1998 1432 4.2 29 174 1797 670 353 27 27.1 7.8

sum (w/o spear) 775 21 2634 3222 4.9 79 284 2273 1289 905 49 70.3 21.3
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Problem num bwid bitvec bool vec/bol logic struc arith comp adder multip STP WLS

asp 91 7 8619 12942 0.8 0 0 8619 4931 3687 0 95.6 261.9

bmc-bv 2 32 3611 28850 0.1 102 302 3208 805 1301 202 30.2 53.4

bmc-bv-svcomp14 17 27 725 757 23.6 48 88 588 215 63 15 3.6 13.0

brummayerbiere 4 42 360 114 3.2 87 71 203 45 83 0 66 132.0

brummayerbiere2 4 30 16 367 0.1 7 6 4 1 0 2 0.7 251.4

brummayerbiere3 33 23 460 195 11.2 176 87 196 50 14 8 18.5 263.9

bruttomesso/lfsr 66 44 923 977 1 0 450 473 461 308 0 63.1 436.4

bruttomesso/core 1 34 38 10 3.8 0 26 12 12 0 0 0.2 0.5

bruttomesso/simple-processor 25 10 226 126 1.7 20 72 134 114 20 0 13.1 293.0

calypto 1 6 57 226 0.3 0 2 55 18 0 0 0 0

ecc 4 32 73 476 0.2 3 6 65 40 4 1 0.1 0.2

fft 3 4 617 669 1 0 323 295 79 215 0 28.9 53.6

float 89 22 5710 3228 1.6 1164 1860 2685 1052 962 28 80.4 293.4

gulwani-pldi08 1 6 883 288 3.1 10 0 873 310 335 228 0.8 2.4

mcm 26 11 9010 4815 2 375 434 8200 3900 4178 0 133.5 235.3

rubik 4 3 1616 409 3.9 0 8 1609 199 0 0 56.8 254.4

sage 314 30 441 118 6.3 33 62 346 153 167 25 4.1 19.8

spear 104 41 3472 894 5.9 18 247 3208 679 108 17 3.1 41.0

tacas07 1 32 4601 6469 0.7 0 0 4601 3794 74 0 331.6 500

uclid contrib smtcomp09 2 20 2937 3133 1 23 254 2661 1696 69 0 239.5 500

uclid 32 28 829 108 7.7 137 295 401 252 79 70 0.5 0.8

summary 824 27 2640 2293 4.9 167 327 2146 995 755 19 33.5 139.9
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winner is less clear. STP tends to win decisively when it wins. On the other
hand, the word-level solvers win in the majority of cases. The summary rows
(summary and sum (w/o spear)) of Tables 2 and 3 suggest, if anything, that
STP handles test cases with more logical and structural constraints better,
while the word-level solvers work better for test cases with more arithmetic
constraints, especially multiplication related constraints (multip).

To test the hypothesis that the word-level solvers will handle difficult
arithmetic constraints better, we generated three sets of benchmarks to stress
test the solvers on non-linear constraints. In these sets, all bit-vector variables
have width 64. Superscripts denote exponentiation, that is, vn is v ·v · · ·v, with
v occurring n times. (An expression such as v28
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with powers running from 2 to 28 (altogether 27 test cases).

Figure 4 shows that for test sets 1, 2, 3 and 5, the word-level solver outper-
forms STP significantly in speed, and it has a more uniform behaviour. In Sets
1, 2 and 3, as the number of the variables increase, the solving ability of STP
declines dramatically. In Set 5, STP (not unexpectedly) shows multifarious be-
haviour as exponents grow. On the whole, word-level solving appears better
at handling constraints that involve multiplication. Set 4, however, shows that
word-level solving may still fail spectacularly where long chains of reasoning
are required (compare Set 2 and Set 4).

All of these results point to the possibility of a portfolio solver that com-
bines the three solvers, so that we can gain some benefit from each. However,
our analysis so far is not sufficiently detailed to allow a reliable classification
of input cases. Hence we turn to machine learning to try to classify input cases
according to their suitability for the individual solvers.

7 Wombit: A Portfolio Solver

Wombit is a portfolio solver. It uses machine learning to predict which solver
among STP, Comp-W, Decomp-W is best at solving a new unseen case. Sec-
tion 7.1 recapitulates the basic concepts and ideas in machine learning, spe-
cially for classification problems. Sections 7.2 and 7.3 show the experimental
result of the simulated portfolio solver and the actual portfolio solver called
Wombit respectively, comparing with STP.

7.1 Classification in Machine Learning

Machine learning provides an automated method of data analysis, which can
detect patterns in data, and use the uncovered patterns to predict future
data [52]. Machine learning is usually divided into two main types: supervised
learning and unsupervised learning. The supervised learning strategy is com-
monly used for classification problems. The goal is to learn a mapping from
the inputs to one of the particular categories. If there are two categories, it
is called binary classification. If there are more than two categories, it is called
multiclass classification. We use the following terminology:

– Training data: data used for training the algorithm.
– Test data: data used for testing the algorithm.
– Dataset: contains the training data and the test data.
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Fig. 4 Word-level solver vs STP on multiplication constraints evaluation
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Fig. 5 Architecture of a supervised learning strategy

– Instance: a single training or test item, usually described in terms of its
features.

– Features: attributes used to characterise an instance and determine its
classification.

– Label: the category associated to an object.
– Example: an instance coupled with a label.
– Model: discovers the relationship between the features and the label.

The dataset can be divided into the training data which are used for training
the model, and the test data which are used for evaluating the model.

7.1.1 Architecture of Supervised Learning Strategy

The supervised learning strategy for classification proceeds in four steps, as
depicted in Figure 5. Firstly, we divide the labelled dataset into training and
test data. Secondly, we need to choose an appropriate type of the machine
learning algorithm adapted to the problem for the classifier. Thirdly, we use
the learner which applies the selected algorithm to train a model on the train-
ing data. Finally, we use the labels predicted by the model and the actual
labels of examples in the test data to evaluate the model, and get the pre-
diction accuracy. Note that there are traditionally many kinds of algorithms
applied in the learner for the classification problem, such as Logistic Regres-
sion [49], Support Vector Machines [20], Boosting [61], Decision Trees [59],
Neural Networks [40] and others.

7.1.2 Cross Validation

To reduce the possibility of over-fitting, we use 10-fold cross-validation. In
k-fold cross-validation, the original sample is randomly partitioned into k
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equal-sized sub-samples called folds (typically, k=5 or 10). A model is trained
on all folds but the ith fold. The generated model is then used to test on the
ith fold, that is, to obtain the predicted labels for the ith fold. This is done for
each i ∈ [1,k]. The prediction accuracy for the whole dataset is the proportion
of the correctly predicted labels among the labels in the whole dataset. The
advantage of this method is that every example gets to be in a test set exactly
once, and gets to be in a training set k− 1 times. The variance of the resulting
estimate is reduced as k is increased. For classification problems, one typically
uses stratified k-fold cross-validation, so that each fold contains roughly the
same proportions of the class labels.

7.2 A Simulated Portfolio Solver Based on Machine Learning

To use machine learning for classification we first need a significant dataset
with good features to help accurately classify the cases. Second, we need to
choose an appropriate machine learning method. We use the core set identified
in Section 6 as our dataset. It consists of 2979 test cases with significant solving
time difference between the solvers (> 1 second). We classify the dataset into
three categories (labels): those where STP wins (825 cases), those where Comp-
W wins (2103 cases), and those where Decomp-W wins (51 cases). We have
chosen 30 features in total, naturally divided into four categories:

– the total number of bit-vector operations, the total number of logical and
structural operations, the total number of arithmetic operations and the
total number of Boolean operations;

– the number of constants and variables;
– the ratio of the bit-vector operations and the Boolean operations, and the

ratio of the logical operations and the arithmetic operations; and
– the number of each specific bit-vector operation.

As machine learning method we choose the well-known C4.5 algorithm [60]
for its proven performance. It builds a model called a decision tree. We did
10-fold cross validation on the collected dataset (core set), using 30 features.
The prediction accuracy was 86%.

Using the prediction of which solver to use and the solving time of each
solver shown in Table 1, we can simulate the solving time for a portfolio
solver on the collected dataset (core set). Table 4 shows the result. Times are
in seconds, and “TO” is the number of timed-out cases. We also show the
optimal solving time by the virtual best solver (VBS). Compared to STP, the
simulated portfolio solver uses less time and solves 35 more test cases.

7.3 Using the Machine Learning Model

Motivated by the promising result of the simulated solver, we have imple-
mented a portfolio solver called Wombit using the decision tree model trained
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Table 4 STP vs word-level solvers vs simulated solver (2979 test cases)

Solver STP Comp-W Decomp-W Simulated Solver VBS
time (s) TO time (s) TO time (s) TO time (s) TO time (s) TO

Total 49586 74 49612 300 103992 664 46291 39 45257 0
Overall time (s) 86458 199612 435992 65790 45257

Table 5 STP vs Wombit (numbers in the last three columns are solving time in seconds)

Solver cases STP Portfolio Solver VBS
non core easy 27859 1087 1108 823
non core hard 585 292500 292500 292500
core 2979 86459 60523 45257
Total 31422 380046 354131 338580

on the whole core data set (the 2979 test cases). The accuracy is 92% on the core
data set. We use Wombit to run on the whole data set which contains 31422
test cases in total. The experiment setup is exactly the same as in Section 6.
The overall time result (in seconds) is shown in Table 5. We also show the
optimal solving time by the virtual best solver (VBS). We split the whole data
set into the core set which is the training set, and the non-core data set which
contains cases without significant solving time difference. We further split the
non-core data set into the easy set with solving time less than 4 seconds, and
the hard set with those cases for which all solvers timed out.

From the result of the non-core easy data set, we can tell that there is little
time overhead in deciding which solver to use. This is because we only need
to traverse the input parse tree one more time to get the features and run the
decision tree to get the suggestion of which solver to use. We also see that the
main solving time difference comes from the core data set where 45 more cases
are solved by Wombit, compared to STP. In general, Wombit outperforms each
component solver (STP, Comp-W, Decomp-W) significantly.

7.4 Threats to Validity

The main concern about the experimental evaluation is whether over-fitting
may have occurred, that is, whether the generated decision tree is designed to
fit the training data so closely that it becomes inaccurate for other (untrained)
data. If it has, then our conclusions about the advantages of the portfolio
approach may not remain valid once the approach is applied more broadly.

As mentioned, the 10-fold cross validation scheme has been used to reduce
the risk of over-fitting from the outset. Beyond that, we can hope to detect over-
fitting (if present) as new datasets appear and we apply Wombit to those.
However, new untrained data becomes available at a fairly slow rate. After
all, SMT-LIB2 files are rather specialised data. It is not clear what it means
for a file to be typical or representative. The competition benchmarks that we
have used originate from a variety of sources and applications, but it is still
possible that they exhibit an undesirable lack of variety.
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Table 6 STP vs word-level solvers vs Wombit in recent test suites (Timeout: 500 seconds)

Problem STP Comp-W Decomp-W Wombit
time (s) time (s) time (s) time (s) Choice

BuchwaldFried-counter 0 0 0 0 -
BuchwaldFried-Sh132 500 500 500 500 Comp-W
BuchwaldFried-Or32.Or32 500 500 500 500 Comp-W
BuchwaldFried-Minus32 500 500 500 500 Comp-W
20170501-Heizmann 500 500 10 11 Decomp-W
20170531-Hansen-zero 0 0 0 0 STP
20170531-Hansen-zero0 0 0 0 0 STP
20170531-Hansen-zero1 0 0 0 0 STP
Overall time (s) 2000.0 2000.0 1510 1511 NA

The data used in our evaluation are from the 2015 SMT competition. For
what it is worth, Table 6 shows how the different solvers perform on the
benchmarks (8 new cases) that were added for the 2017 competition (after
our learner was trained). The ‘-’ indicates no choice was made by Wombit,
which means the problem was already solved by the original STP’s word-
level simplifications. At least on this limited evidence, Wombit appears to
make sensible decisions when presented with new cases.

8 Related Work

SAT and SMT solvers have been developed for several decades, and are
applied in all kinds of areas. We refer to [56] for an overview of the SAT
and SMT solvers. Constraint programming [48] also has a long history which
can be traced back to Artificial Intelligence. Here we focus on the word-level
reasoning for the bit-vector logic (Section 8.1), and the portfolio constraint
solvers using machine learning techniques (Section 8.2).

8.1 Word-Level Reasoning for Bit-Vector Logic

Word-level reasoning on bit-vector logic is NEXPTIME-complete [42]. In spite
of this, the problem has received much attention recently, albeit with limited
progress. Current related work falls into one of or the combination [2] of
three categories: reasoning based on lazy SMT techniques, reasoning based
on constraint programming, reasoning based on linear programming, and
reasoning based on stochastic local search.

8.1.1 Word-Level Reasoning Based on Lazy SMT Techniques

Hadarean et al. [34] propose a lazy bit-vector solver which is organized as a
sequence of sub-solvers: two specialised bit-vector solvers at the word level,
namely an Equality Solver and an Inequality Solver, an “in-processing” solver
which can reduce the bit-blasted formulas when possible, and a bit-blasting
solver at the end. If any of the solvers find unsatisfiability the whole process
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ends and returns UNSAT. Similarly, if one of the solvers finds complete sat-
isfiability the searching process stops and returns SAT. The lazy bit-vector
solver can be seen as a semi-word-level lazy solver. The Equality Solver uti-
lizes a variant of the incremental polynomial-time congruence-closure algo-
rithm [43], while the Inequality Solver relies on an interesting incremental al-
gorithm which maintains the least valuation of the inequality constraints. The
advantage of this method is that specific algorithms can be used for solving
the particular group of constraints. There are also disadvantages. Firstly, solv-
ing the equality and inequality constraints in separate groups may propagate
little information since they cannot interact with other bit-vector constraints.
Secondly, neither can express a conflict on bit-level which significantly affects
the efficiency. Besides, the costs of the interaction between the Theory solver
and the SAT solver cannot be ignored, even though a so-called justification
heuristic engine is applied to reduce the cost.

Our word-level solvers, in contrast, process all bit-vector constraints using
word-level propagators, with a learning mechanism that hooks straight into
MiniSAT’s learning. In this way, the word-level propagators are embedded
in MiniSAT, so that unit propagation seamlessly interleaves with word-level
propagation at practically no overhead.

8.1.2 Word-Level Reasoning Based on Constraint Programming

Bardin et al. [14] propose two kinds of word-level propagators based on two
kinds of domains in the Constraint Logic Programming framework. One is
called Is/C propagator which is built on the union of integer intervals plus
congruence domain and is good at solving linear arithmetic constraints. The
other is the BL (Bit-List) propagator which is built on a “bit-list” domain and
runs in linear time to solve the bitwise constraints. Each variable is associated
with a numerical domain Is/C, and a BL domain (which is similar to the
dedicated domain proposed by Baray et al. [13]); and each constraint has two
associated finite sets of propagators: Is/C and BL propagators. In addition,
specific propagators are designed to ensure the consistency between the two
kinds of domain.

Note that even though the BL domain is equivalent to our “trit-vector”
presentation, the propagators for bitwise operations typically run in time
O(k) instead of constant time for our domain, since bit operations of the
underlying architecture are not exploited. Furthermore, the implementation
involves bit-blasting and the use of additional propagators to ensure the
consistency of the two domains which also affects the efficiency. However,
the work by Bardin et al. [14] has narrowed the gap between the word-level
solving approach and the SAT solving approach considerably, and the gap
continues to narrow. Chihani et al. [22] extend the work of Bardin et al. [14] by
utilising the representational idea of Michel and Van Hentenryck [50] (what
we have called lo-hi form) to build a CP-based bit-vector solver which enables
channelling with other constraint domains, such as bounds constraints and
global difference constraints [29]. Chihani, Bobot and Bardin [21] further argue
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for word-level conflict analysis and learning, to replace the bit-learning that we
have delegated to a SAT solver.

Constraint bound propagators for modular arithmetic constraints have
been proposed by Gotlieb et al. [33] who utilize a domain called clockwise
intervals (CI). The main idea is to find optimal bounds in bound-consistency
filtering of modular integer computations. This approach often requires ap-
proximations and loses efficiency when it encounters general multiplication
and division.

Zeljić et al. [72] propose a word-level bit-vector solver which is developed
based on a Model-Constructing Satisfiability Calculus (mcSAT) proposed by
Jovanović and de Moura [39, 24]. The novel part of their approach is that they
apply a tailor-made conflict-driven learning strategy which exploits both the
propositional and arithmetic properties of the bit-vector operations. However
the cost of conflict generation is relatively high, and the propagation they use
for the bit-vector constraints is simple bound propagation which might affect
the propagation strength.

Note that no propagator in these CP approaches gives the explanation for
the fixed literals which might impact the learning effect.

In addition, Wille et al. [71] look from a different angle in their SWORD tool
which is a SAT solver which facilitates the word-level information to increase
the performance of the SAT solver. They represent some sub-formulas in terms
of modules defined over bit-vector operations which are handled similar to
custom propagators in a constraint solver.

8.1.3 Word-Level Reasoning Based on Linear Programming

This approach is to transform the problem into linear programming con-
straints and is often applied in register transfer level (RTL) verification which
is a well-known hardware verification problem.

Brinkmann et al. [18] propose a method to transform conjunctions of bit-
vector equalities and inequalities into sets of integer linear arithmetic con-
straints and solve them at word-level with an integer linear programming
solver. In particular, the bit-vector variables are translated into linear terms.

The mixed integer linear programming (MILP) approach proposed for
RTL verification is LP-based SAT solving. Fallah et al. [28] have designed an
approach called HSAT which generates linear arithmetic constraints for word-
level operations and conjunctive normal form clauses for Boolean constraints.
Zeng et al. [73] linearize both the word-level constraints and the Boolean
constraints in integer linear constraint problems, in a unified MILP solver
called LPSAT. For RTL verification on the word-level, the performance of LP
solvers is often no better than SMT solvers [44]. SMT solvers are found to do
complete verification checking in fewer iterations and in less time.
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8.1.4 Word-Level Reasoning Based on Stochastic Local Search

Stochastic Local Search (SLS) is a heuristic method which has played an im-
portant role in AI [36]. It was first applied in SMT solvers by Fröhlich et
al. [30] to solve bit-vector problems directly on the theory level. SLS is gen-
erally incomplete—it does not provide proof procedures for unsatisfiability.
It can however be very efficient on satisfiable cases, including hard cases,
and it is therefore highly attractive as a component of combined strategies.
Niemetz et al. [55] extended the approach of [30], finding improved heuristics
for neighbour selection, based on down propagation of assignments. Niemetz
et al. [54] further simplified, extended and formalized the approach. The re-
sult is a bit-vector solver which is “probabilistically asymptotically complete”
in the sense of [35]. It finds use in Boolector [53], as part of a solver portfolio,
and its inclusion there has been found to be beneficial for performance [54].

Our approach is complete in the usual sense and aims to exploit word-level
propagation while utilizing bit-level search. An SLS approach aims to exploit
word-level search to facilitate the word-level reasoning. Both approaches sub-
scribe to the idea that combining word-level reasoning with bit-blasting can
yield significant solver improvements.

8.2 Portfolio CSP Solvers Using Machine Learning

The interest in algorithm selection and configuration for constraint satisfaction
problem (CSP) solving is growing. The reason is that algorithm selection and
configuration is crucial for the performance of a portfolio solver. Machine
learning techniques are usually applied to solve this problem based on the
features of the input case. We refer to [38, 41, 64] for overviews of the general
portfolio approaches.

CPHydra [58] is the first portfolio CSP solver which applies a machine
learning technique called k-nearest neighbour algorithm (K-NN) to exploit
the instances of similarity and to schedule the component solvers. There are
36 extracted features including the static syntactic ones and the dynamic ones
which are solver specific. And the dynamic features, generated by running
a constraint solver called Mistral for a limited amount of time (typically two
seconds), are modelling choices and search statistics, such as the number of
constraint propagation calls and the number of nodes explored. Each instance
contains the features and the solving time of each component solver. CPHydra
combines machine learning with the idea of partitioning CPU-time between
the component solvers to schedule the solvers and maximize the expected
number of solved problem instances within a settled time limit. CPHydra
won the 2008 International CSP Solver Competition.

SUNNY [4] is a lazy portfolio approach which uses the K-NN algorithm
just as CPHydra. The novel idea in SUNNY is that it applies three heuristics to
decide the order of the component solvers to be run, to minimize the average
solving time of each instance. The first, denoted hsel is for selecting the most
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allocating a certain run time to each component solver; the third, denoted
hsch is for sorting the component solvers by increasing allocated solving time.
Variants of SUNNY have been proposed, namely a sequential portfolio solver
called sunny-cp [6], and a parallel solver called sunny-cp2 [5] which won the
gold medal in the open category of MiniZinc Challenge [67] in 2015 and 2016.

In addition, Stojadinović et al. [66] propose a simplified K-NN based port-
folio CSP solver which has a short training phase but achieves state-of-art
performance. Loreggia et al. [47] introduce an automated way for generat-
ing an informative set of features by training a neural network on images
extracted from problem instances. An evaluation of the portfolio approaches
for CSPs is presented by Amadini [7, 3].

Some have looked at the problem from other angles. Arbelaez et al. [8, 9]
use support vector machines (SVM) to dynamically adapt the search heuristics
of a single CSP solver. Stojadinović et al. [65] and Hurley et al. [37] propose
portfolio CSP approaches for selecting among different SAT encodings, in-
stead of CSP solvers.

The most relevant work to Wombit is presented by Abdul Aziz et al. [11]
who use a linear machine learning technique called Ridge regression to esti-
mate the hardness of QF BV SMT problems. The features selected are similar
to ours which are all syntactic ones of the input SMT formula and cheap to get
in hand. The result shows that the extracted features characterize the hardness
of the problem well.

9 Conclusion

We have implemented a bit-vector word-level solver which can solve all the
operations in the SMT-LIB2 QF BV category. We have applied and also ex-
tended word-level propagation algorithms of Michel and Van Hentenryck [50]
to produce an explaining word-level solver based on a SAT solver called Min-
iSAT, by generating the explanation for each fixed literal and the conflict
clause when conflict happens.

We have proposed three dimensions in the design space for a word-level
solver: two ways to create the propagators for reified constraints (composed
propagator vs decomposed propagator); two ways to generate the explana-
tion (forward explanation vs backward explanation); and two ways to do the
conflict analysis (standard backjumping vs multi-conflict backjumping). We
have given an empirical comparison of these design options, and an empirical
comparison of the word-level propagation versus bit-blasting, the standard
approach to these problems. Furthermore, we applied the word-level simpli-
fication in a practically used SMT solver called STP as the preprocessing of
our word-level solvers, and did an empirical comparison with STP.

Motivated by the comparison with STP, we have built a portfolio solver
called Wombit based on machine learning techniques. This solver combines
the two word-level solvers with STP to try to gain the benefits from differ-
ent approaches. Results show that, with careful engineering, a word-level



42 Wang, Søndergaard and Stuckey

propagation approach can be competitive with, or a useful supplement to a
bit-blasting/SAT solving approach.

For future work, it is worthwhile applying the word-level solving method
to other state-of-the-art SMT solvers, such as Boolector [53], and compar-
ing with those state-of-the-art SMT solvers. It may also be advantageous
to let Wombit use the lazy decomposition approach proposed by Abı́o and
Stuckey [1], as a supplement to the decision making of when to use SAT solv-
ing. Furthermore, a mixed way of doing word-level solving and bit-blasting
could be considered, such as bit-blasting the logical constraints and focusing
word-level solving on the arithmetic constraints. Another interesting line of
research would be to combine word-level propagation with word-level search
which we believe would make a significant difference. As we have shown, the
word-level propagation can be seen as doing the bit propagation in parallel.
If a word-level search is applied to guess a “word” instead of a single bit, the
parallel benefit would be exploited much more effectively.
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