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Abstract
The Nelson–Oppen combination method is ubiquitous in Satisfiability Modulo Theories
solvers. However, one of its major drawbacks is to be restricted to disjoint unions of theories.
We investigate the problem of extending this combination method to particular non-disjoint
unions of theories defined by connecting disjoint theories via bridging functions. A possible
application is to solve verification problems expressed in a combination of data structures
connected to arithmetic with bridging functions such as the length of lists and the size of
trees. We present a sound and complete combination method à la Nelson–Oppen for the
theory of absolutely free data structures, including lists and trees. This combination proce-
dure is then refined for standard interpretations. The resulting theory has a nice politeness
property, enabling combinations with arbitrary decidable theories of elements. In addition,
we have identified a class of polite data structure theories for which the combination method
remains sound and complete. This class includes all the subtheories of absolutely free data
structures (e.g, the empty theory, injectivity, projection). Again, the politeness property holds
for any theory in this class, which can thus be combined with bridging functions and arbitrary
decidable theories of elements. This illustrates the significance of politeness in the context
of non-disjoint combinations of theories.
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1 Introduction

Solving the satisfiability problemmodulo a theory given as a union of decidable sub-theories
naturally calls for combinationmethods. TheNelson–Oppen combinationmethod [15] is now
ubiquitous in SatisfiabilityModulo Theories (SMT) solvers. However, this technique imposes
strong assumptions on the theories in the combination; in the classical scheme [15,27], the
theories notably have to be signature-disjoint and stably infinite. Many recent advances aim
to go beyond these two limitations.

The design of a combination method for non-disjoint unions of theories is clearly a hard
task [12,28]. To stay within the frontiers of decidability, it is necessary to impose restrictions
on the theories in the combination; and at the same time, those restrictions should be per-
missive enough to accommodate concrete applications of the combination scheme. For this
reason, it is worth exploring specific classes of non-disjoint combinations of theories that
appear frequently in software specification, and for which it would be useful to have a simple
combination procedure. The case of sets, possibly represented by shared unary predicates,
is a motivating example [8,30]. When considering the data structure of sets, the cardinality
operator is a natural bridging function from sets to natural numbers [33]. The length of lists is
another classical example of a bridging function between a data structure of lists and a target
theory of arithmetic. For these combinations, non-disjointness arises from connecting two
disjoint theories via a third theory defining the bridging function. This problem is of prime
interest for software verification [11,22,24,34], in particular for the verification of recursive
(functional) programs with functions defined by pattern-matching. For instance, a satisfia-
bility procedure for data structures combined with bridging functions is the core reasoning
engine of the verification tool Leon targeting Scala programs [25]. To solve instances of
this problem, dedicated techniques have been developed [24,31], and general frameworks,
based on non-disjoint combination [3,12], superposition [1,7,16] or locality [22] are also
applicable. The superposition calculi provide elegant and uniform ways to build satisfiability
procedures for data structures [1,2], possibly extended with bridging functions [7,14,16,17].
Then, the resulting satisfiability procedures can be combined using a non-disjoint combi-
nation approach à la Ghilardi [12]. This blend of superposition and combination has been
applied to unions of data structure theories sharing some particular fragments of arithmetic,
like integer offsets [17] and Abelian groups [16]; it is however difficult to go beyond Abelian
groups and consider for instance any decidable fragment of arithmetic as a shared theory.

The results by Zhang et al. [34], Zarba [31], Sofronie-Stokkermans [22] and Suter et al.
[24] have given rise to the straight combination approach highlighted in this paper. In [34],
Zhang et al. investigate the problem of extending the theory of finite trees with a length
function, by showing a decision procedure for the quantifier-free extended theory and more
generally a quantifier elimination procedure. The satisfiability procedure given in [34] for
quantifier-free formulas relies on a reduction to arithmetic. The challenging case appears
when the trees are generated by a finite set of constants. To solve that case, the reduction
must incorporate counting constraints because there are only finitely many distinct trees with
the same given length. In [31], Zarba presents a procedure for checking satisfiability of lists
with length by using a reduction to arithmetic, and a similar reduction applies to multisets
with multiplicity [32]. The motivation was to relax the stably-infiniteness assumption in
Nelson–Oppen’s procedure, in particular, to be able to consider data structures over a finite
domain of elements, where the elements correspond to the constants in the setting of [34].
In both [34] and [31,32], the authors focus on standard interpretations. For instance, the
standard interpretation for lists corresponds to the case where lists are interpreted as finite
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Combination Methods for Theories with Bridging Functions 99

lists of elements. Sofronie-Stokkermans [22] relies on locality properties of axiomatized data
structures to show that the definition of the function connecting the theories can be eliminated
(using instantiations by ground terms). The subtle problem of restricting interpretations to
standard ones is also discussed. In [22], it is mentioned that the case of an infinite set of
constants is easy, and counting constraints are used as in [34] to deal with a finite set of
constants. In [24], Suter et al. present a dedicated procedure for standard interpretations that
is sound and complete for sufficiently surjective abstraction functions.

To solve the satisfiability problem in unions of theories connected with bridging functions,
we investigate here an approach by reduction from non-disjoint to disjoint combination. This
approach does not impose any limitation on the target theory, and so any (decidable) fragment
of arithmetic is suitable. The resulting combination procedure is correct for absolutely free
data structures. Our correctness proof is not based on locality principles [22], though it bears
similarities with it. The proof relies instead on the construction of a combined model in the
line of the Nelson–Oppen procedure.

Building on this combination procedure, we then focus on a satisfiability procedure for the
restricted class of standard interpretations of absolutely free data structures. The correctness
of the combined satisfiability procedure for standard interpretations is based on a politeness
property, previously introduced to consider disjoint combinations of some data structure the-
ories with any theory of elements [13,20]. Intuitively, a polite theory satisfies some form of
finite model property and is smooth, i.e. any model can be extended to models of greater
cardinality. This paper is a first application of politeness to non-disjoint combinations. The
benefit of applying politeness is twofold. First, it provides a way to relate satisfiability in
standard interpretations to satisfiability in the class of all interpretations. Second, it is instru-
mental to solve in a modular way the satisfiability problem in the combination of (1) standard
interpretations of a data structure theory extended with a bridging function and (2) an arbi-
trary theory of elements. The resulting satisfiability procedure has some similarities with the
one studied in [19,24,25], but thanks to politeness, it is expressed as a clean combination
procedure.

Our combination procedures for arbitrary/standard interpretations are first illustrated on
the prominent case of lists with length [11]. This is a simple but meaningful case to grasp
the concepts and techniques developed in the paper. We later show that our combination
procedures apply to the general case of trees with bridging functions.

Another contribution of this paper is to identify a class of data structure theories for which
our first combination method remains complete. In this class, theories are many-sorted, with
disjoint sorts to denote respectively the data instances and the structure instances. When the
source theory is in this class, the target theory can be arbitrary, due to the fact that we are
focusing on data structure theories that also fulfill the politeness property. Hence, the second
contribution can be considered as another way to extend the use of polite theories to some
simple non-disjoint combinations. The class of data structure theories is of practical interest
since it includes well-known finitely axiomatized theories for which a rewriting approach
to satisfiability can be successfully applied [1,2]. In this class, one can find the theory of
equality, the theory of (acyclic) lists/trees, the theory of absolutely free data structures (with
or without selectors).

The completeness proof of our combination method requires the construction of a com-
bined model from the models available in the component theories. For that purpose, we
introduce the notion of polished theory, for which a satisfiable input admits particular term-
generated models modulo a congruence relation E , where the generators and E are derived
from the terms of the input. The originality of our rewriting approach is to define a bridging
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theory as a convergent term rewrite system F , and to analyze the interplay between F and
E . The careful study of F ∪ E leads to the construction of the combined model.

The paper extends and improves two previous shorter versions considering respectively
standard interpretations [9] and axiomatized data structure theories [10]. The new notion
of polished theory represents a significant improvement with respect to the class of basic
data structure theories studied in [10]. Polished theories allow us to get a clear connection
with politeness. As a consequence, we can now consider arbitrary target theories instead of
stably infinite ones as in [10], especially in presence of selectors. Moreover, we show that
combinations produce theories that remain polished and can be further combined in the same
way. This provides an elegant solution to chain several bridging theories, whereas it was
previously not clear in [10] that the resulting combined theories remain suitable for further
combinations.

Section 2 recalls basic concepts and notations and Sect. 3 introduces the theory of abso-
lutely free data structures. The combination problem and the related combination procedure
are presented in Sect. 4. In Sect. 5, we focus on the restriction to standard interpretations for
the cases of lists (Sects. 5.1–5.2) and trees (Sect. 5.3), by considering appropriate bridging
functions and the combination problem with an arbitrary theory of elements. In Sect. 6, we
introduce the class of polished theories. By using a rewriting approach, we prove in Sect. 6.2
the completeness of the combination procedure (given in Sect. 4) for this class of theories.
Section 7 discusses in details the connections of our contributions with existing works.

2 Preliminaries

2.1 Terms and Equational Theories

We assume a first-order many-sorted signature Σ given by a set of sorts and sets of function
and predicate symbols (equipped with an arity), together with a denumerable set of sorted
variables V. Nullary function symbols are called constant symbols. A Σ-term is a term built
over the signature Σ with variables in V. A ground Σ-term is a Σ-term without variables.
The set of ground Σ-terms (of sort σ ) is denoted by T (Σ) (resp. Tσ (Σ)). Given a set of
constants C disjoint from Σ , the signature Σ ∪C is called a constant expansion of Σ if sorts
of C belong to Σ ; constants in C are said to be free.

We assume that, for each sort σ , the equality symbol “=σ ” is a logical symbol that does
not occur in Σ and that is always interpreted as the identity relation over (the interpretation
of) σ ; moreover, as a notational convention, we omit the subscript for sorts and we simply
use the symbol =.

An equality is a pair of terms (of same sort), denoted by s = t . Given a set of equalities
E , the relation =E denotes the equational theory of E which is defined as the smallest
relation including E which is closed by reflexivity, symmetry, transitivity, congruence and
substitutivity. For any term t , the equivalence class of t modulo =E is denoted by [[t]]E or
simply [[t]] if E is clear from the context. Given a constant expansion Σ ∪ C , the set of
equivalence classes of ground (Σ ∪C)-terms modulo=E is denoted by T (Σ ∪C) /=E and
by a slight abuse of notation, the corresponding (Σ ∪ C)-structure defined in the usual way
is also denoted by T (Σ ∪C) /=E . A term rewrite system R is a set of oriented equalities. A
convergent term rewrite system R is defined in the usual way [4] and implies, for any term
t , the existence and the unicity of its normal form t ↓R which is the same for all terms of an
equivalence class modulo =R .
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Combination Methods for Theories with Bridging Functions 101

2.2 Formulas

The notions of atomic Σ-formulas and first-order Σ-formulas are defined in the usual way.
In particular an atomic formula is either an equality, or a predicate symbol applied to the right
number of well-sorted terms. Formulas are built from atomic formulas, Boolean connectives
(¬, ∧, ∨,⇒, ≡), and quantifiers (∀, ∃). A literal is an atomic formula or the negation of an
atomic formula. A flat equality is either of the form t0 = t1 or t0 = f (t1, . . . , tn) where each
term t0, . . . , tn is a variable or a constant. A disequality t0 
= t1 is flat when each term t0, t1 is
a variable or a constant. For any predicate p ∈ Σ , a literal p(t1, . . . , tn) or ¬p(t1, . . . , tn) is
flat when each term t1, . . . , tn is a variable or a constant. An arrangement over a finite set of
variables V is a maximal satisfiable set of well-sorted equalities and disequalities x = y or
x 
= y, with x, y ∈ V . Given a quantifier-freeΣ-formulaϕ and a set S of sorts inΣ , a S-sorted
arranged form of ϕ is any conjunction of ϕ with an arrangement over the S-sorted variables
in ϕ. For n distinct variables x1, . . . , xn , the set of literals {xi 
= x j | i 
= j, i, j = 1, . . . , n}
is denoted by {x1 
= · · · 
= xn}. Free variables are defined in the usual way, and the set of
free variables of a formula ϕ is denoted by Var(ϕ). Given a sort σ , Varσ (ϕ) denotes the set
of variables of sort σ in Var(ϕ). A formula with no free variables is closed, and a formula
without variables is ground. A universal formula is a closed formula ∀x1 . . . ∀xn . ϕ where ϕ

is quantifier-free. A (finite) Σ-theory is a (finite) set of closed Σ-formulas. Two theories are
disjoint if no predicate or function symbols occur in both respective signatures.

2.3 Semantics

From the semantic side, aΣ-interpretation I comprises non-empty pairwise disjoint domains
I[σ ] for every sort σ , a sort- and arity-matching total function I[ f ] for every function symbol
f , a sort- and arity-matching predicate I[p] for every predicate symbol p, and an element
I[x] ∈ I[σ ] for every variable x ∈ V of sort σ . By extension, an interpretation defines a value
in I[σ ] for every term of sort σ , and a truth value for every formula. We may write I |� ϕ

whenever I[ϕ] = 
. A Σ-structure is a Σ-interpretation over an empty set of variables.
A model of a formula (theory) is an interpretation that evaluates the formula (resp. all

formulas in the theory) to true. A formula or theory is satisfiable (or consistent) if it has a
model; it is unsatisfiable otherwise. The unsatisfiable formula⊥ is used to denote the empty
clause, i.e., the empty disjunction of literals. A formula G is T -satisfiable if it is satisfiable in
the theory T , that is, if T ∪{G} is satisfiable. A T -model ofG is amodel of T ∪{G}. A formula
G is T -unsatisfiable if it has no T -models. Given a signature Σ and a set of sorts S in Σ , a
Σ-theory T is stably infinite with respect to S if any T -satisfiable set of literals is satisfiable
in a model A of T whose domain A[σ ] is infinite for any σ ∈ S. A Σ-theory is said to be
stably infinite if it is stably infinite with respect to the set of all sorts in Σ . A Σ-theory T can
be equivalently defined as a pair T = (Σ,A), where A is a class of Σ-structures. We may
writeA ∈ T when T = (Σ,A) andA ∈ A. Given a Σ-structureA and a signature Σ ′ ⊆ Σ ,
AΣ ′

is the Σ ′-structure defined by restricting A to interpret only symbols in Σ ′. Given a
Σ-theory T and a signature Σ ′ ⊆ Σ , TΣ ′

is the Σ ′-theory (Σ ′,AΣ ′
) where AΣ ′

is the
class of Σ ′-structures AΣ ′

such that A ∈ T . Given theories Ti = (Σi ,Ai ) for i = 1, 2, the
combination of T1 and T2 is the theory (Σ1∪Σ2,A)whereA is the set ofΣ1∪Σ2-structures
A such that the Σi -structure AΣi is in Ai for i = 1, 2. When theories are defined as sets of
closed formulas like in Sect. 6, the combination corresponds to the union of theories and so
the union operator ∪ is used to combine them. We also use the union operator ∪ to denote
the combination of theories defined as classes of structures, i.e., T1 ∪ T2 = (Σ1 ∪Σ2,A).
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3 Absolutely Free Data Structures

The theory of Absolutely Free Data Structures (AFDS for short) [22] is convenient to capture
usual constructor-based data structures, e.g. lists and trees.

Definition 1 (Absolutely free data structures) Consider a set of sorts Elem, and a sort
struct /∈ Elem. Let Σ be a signature whose set of sorts is {struct} ∪ Elem and
whose function symbols c ∈ Σ (called constructors) have arities of the form:

c : σ1 × · · · × σm × struct× · · · × struct→ struct

where σ1, . . . , σm ∈ Elem. Consider the following axioms (where upper case letters denote
implicitly universally quantified variables)

(Injc) c(X1, . . . , Xn) = c(Y1, . . . , Yn)⇒∧n
i=1 Xi = Yi

(Disc,d) c(X1, . . . , Xn) 
= d(Y1, . . . , Ym)

(AcycΣ) X 
= t[X ] if t is a non-variable Σ-term

The theory of Absolutely Free Data Structures over Σ is

AFDSΣ =
( ⋃

c∈Σ

Injc
) ∪ ( ⋃

c,d∈Σ,c 
=d
Disc,d

) ∪ AcycΣ

We do not consider yet selectors, e.g., car and cdr for lists. Handling selectors is easy with
standard interpretations (of lists and trees) as discussed in Sect. 5, but requires some care with
axiomatized theories (Sect. 6). Also notice that Definition 1 above is predicate-free, hence,
every Σ-literal is either an equality or a disequality.

Example 1 The theory of lists is an example of AFDS where the constructors are cons :
elem×struct→ struct and nil : struct. Similarly (binary) trees are also a classical
AFDS example, with the constructor operators cons : elem × struct × struct →
struct and nil : struct. The theory of pairs (of numbers) is another example of AFDS,
with the constructor cons : num× num→ struct. ��

The theory AFDS has nice properties with respect to the satisfiability problem. Like any
Horn theory, AFDS is convex [26]. Thanks to this, a satisfiability procedure modulo AFDS
can consider separately the set of equalities, and each of the disequalities. Given an input set
of flat literals divided into a set of equalities Γ and a set of disequalities Δ, the procedure
works as follows:

1. It applies the rules in Fig. 1 on Γ exhaustively, to compute a solved form E . If E = ⊥,
then the procedure reports unsatisfiability. Otherwise, E is a set of equalities leading
through variable replacement to an idempotent substitution μ.

2. The procedure reports unsatisfiability if there is some disequality x 
= y ∈ Δ such that
xμ = yμ. Otherwise, it reports satisfiability.

As a side note, remark that AFDS is a Shostak theory [21], which means that it admits
a solver (the syntactic unification procedure in Fig. 1) and a canonizer which is simply
the identity. As illustrated above, a satisfiability procedure modulo a Shostak theory can
be constructed by using both the solver and the canonizer [29]. Also, as usual for Shostak
theories, equality entailment is easily checked by canonizing the output of the solver.
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Combination Methods for Theories with Bridging Functions 103

Del : {x = x} ∪
Dec : {x = c(x1, . . . , xn), x = c(x1, . . . , xn)} ∪

x = c(x1, . . . , xn), x1 = x1, . . . , xn = xn} ∪ if c ∈
Clash : {x = c(x1, . . . , xn), x = d(y1, . . . , ym )} ∪

if c, d ∈ c d
Cycle : {x = t1[x1], . . . , xn−1 = tn [x]} ∪

if t1, . . . , tn are -terms of depth 1
Merge : {x = y} ∪ x y} ∪ {x = y}

if x, y ∈ Var x y

Fig. 1 Syntactic unification over flat equalities

Proposition 1 Let ϕ = Γ ∪Δ be a set of flat Σ-literals with Γ and Δ respectively the sets
of equalities and disequalities in ϕ. If ϕ is AFDSΣ -satisfiable, then ϕ is satisfiable in an
AFDSΣ -interpretation T (Σ ∪ V ) /=E , where V is the set of variables in ϕ and E is the
solved form of Γ computed by the syntactic unification algorithm given in Fig. 1.

Proof In Fig. 1, we adapt a standard syntactic unification algorithm to maintain equalities in
flat form. This syntactic unification algorithm is used to compute the solved form E of Γ .
Consider the interpretationA whose domain A is T (Σ ∪ V ) /=E and such that constructors
c ∈ Σ are interpreted as expected:A[c]([[e]]; [[t1]], . . . , [[tn]]) = [[c(e; t1, . . . tn)]] andA[v] =
[[v]] for each v ∈ V . By this definition, A is a model of AFDSΣ , and A satisfies E , as well
as the set of equalities in ϕ. Moreover, A satisfies all the disequalities in ϕ, otherwise it
would contradict the assumption that ϕ is AFDSΣ -satisfiable. Hence, we can conclude that
A satisfies ϕ. ��

4 The Combination Problem for Bridging Functions

Consider a many-sorted Σs-theory Ts (where s stands for source). In this paper, the set of
sorts in Σs is {struct}∪Elem with struct /∈ Elem, and Σ denotes the subsignature of
Σs containing only the constructor symbols c : σ1×· · ·×σn → struct, with σ1, . . . , σn ∈
{struct} ∪ Elem. Similarly to Definition 1 and without loss of generality, we assume that
each constructor inΣ is of the form c : σ1×· · ·×σm×struct×· · ·×struct→ struct,
with σ1, . . . , σm ∈ Elem. Given a tuple e of terms of sorts in Elem and a tuple t of terms
of sort struct, the tuple e, t may be written e; t to distinguish terms of sort struct from
the other ones, e.g. to denote a term c(e; t).

In addition to the Σs-theory Ts , we consider a Σt -theory Tt (where t stands for target)
such that Ts and Tt are disjoint and the set of sorts shared byΣs andΣt are included in Elem.
A bridging theory T f connecting Ts to Tt is a set of equational axioms defining a bridging
function f by structural induction over the constructors in Σ . A similar notion is sometimes
called catamorphism in the literature, e.g., in [19].

Definition 2 (Bridging theory) Let Σ be a signature as given in Definition 1 and let Σt be
a signature such that Σ and Σt have distinct function symbols, and may share sorts, except
struct. A bridging function f /∈ Σ ∪Σt has arity struct→ t where t is a sort in Σt .
A bridging theory T f associated with a bridging function f has the form:

T f =
⋃

c∈Σ

{
∀e∀t1, . . . , tn . f (c(e; t1, . . . , tn)) = fc(e; f (t1), . . . , f (tn))

}

where fc(x; y) denotes a Σt -term. When x does not occur in fc(x; y) for any c ∈ Σ , we say
that T f is Elem-independent.
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Observe that the notation fc(x; y) does not enforce all elements of x; y to occur in the term
fc(x; y). In particular fc(x; y)may only depend on elements in x of sort inΣt . Or the bridging
theory may be Elem-independent, in which case fc(x; y) does not depend at all on x. By
definition, for any constant c inΣ there is an equality f (c) = fc in T f and for simplicity fc is
assumed to be a constant in Σt . For instance, in the case of length of lists, �(nil) = �nil = 0.

Example 2 (Example 1 continued). Many useful theories fall into the above definition such
as:

– Length of lists: �(cons(e, y)) = 1+ �(y), �(nil) = 0
– Sum of lists of numbers: lsum(cons(e, y)) = e + lsum(y), lsum(nil) = 0
– Sum of pairs of numbers: psum(cons(e, e′)) = e + e′

Among these bridging theories, only the length of lists is Elem-independent. ��
We introduce a combination method for a non-disjoint union of theories T = Ts ∪T f ∪Tt

where the bridging theory T f follows Definition 2. We describe below a decision procedure
for checking the T -satisfiability of sets of literals. As usual, the input set of literals is first
purified to get a separate form.

Definition 3 (Separate form) A set of literals ϕ is in separate form if ϕ = ϕs ∪ϕt ∪ϕ f where:

– ϕs contains only Σs-literals such that its struct-sorted subterms only occur in flat
literals;

– ϕt contains only Σt -literals;
– ϕ f contains only flat equalities of the form fx = f (x), where fx denotes a variable

associated with f (x), such that fx and f (x) occur once in ϕ f and Varstruct(ϕs) =
Varstruct(ϕ f ).

It is easy to convert any set of literals into an equisatisfiable separate form by introducing
fresh variables to denote impure terms.

Example 3 Consider the theory of (acyclic) lists with a length function �. The constructors
of lists are cons : elem×struct→ struct and nil : struct, where elem is distinct
from the sort for integers. Assumeϕ is the set of literals

{
x = cons(a, cons(b, z)), �(x)+1 =

�(z)
}
. By purification, ϕ is transformed into the separate form ϕs ∪ ϕint ∪ ϕ� where:

– ϕs = {y = cons(b, z), x = cons(a, y)},
– ϕint = {�x + 1 = �z},
– ϕ� = {�x = �(x), �y = �(y), �z = �(z)}.

��
Unlike classical disjoint combinationmethods, it is not sufficient to guess just one arrange-

ment on the shared variables to get a modular decision procedure. Notably it is necessary to
include information derived from the bridging theory.

Definition 4 (Combinable separate form) Given a set of literals in separate form ϕ = ϕs ∪
ϕt ∪ ϕ f and two arrangements

– α over the variables of sorts in Σs ∩Σt occurring in ϕs ;
– α′ over the variables of sort struct in ϕs ;
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Combination Methods for Theories with Bridging Functions 105

the combinable separate form extending ϕ with α, α′ is

ϕ(α, α′) = (ϕs ∪ α′ ∪ α) ∪ (ϕt ∪ α ∪ CPE ) ∪ ϕ f

where E is the set of Σ-equalities in ϕ ∪ α ∪ α′, and CPE is the target encoding of E on the
bridging theory T f , defined as the set of Σt -literals

CPE = { fx ′ = fc(e; fx1 , . . . , fxn ) | c(e; x1, . . . , xn) = x ′ ∈ E}
∪ { fx ′ = fx | x =struct x ′ ∈ E}

Since ϕ is in separate form, the target encoding CPE contains a Σt -equality for each
struct-sorted equality in E . It results from the superposition of equalities in E into the
axioms of T f . Thus, CPE can be viewed as a set of critical pairs, a classical notion used in
the completion of term rewrite systems [4].

Example 4 Consider the separate form ϕs ∪ ϕint ∪ ϕ� from Example 3. For the arrangement
α′ = {x 
= y 
= z}, the target encodingCPE is {�y = �z+1, �x = �y+1}where E = ϕs , and
the corresponding combinable separate form is (ϕs∪{x 
= y 
= z})∪(ϕint∪{�y = �z+1, �x =
�y + 1}) ∪ ϕ�. For the arrangement α′ = {x = y, x 
= z}, the corresponding combinable
separate form is (ϕs ∪ {x = y, x 
= z})∪ (ϕint ∪ {�x = �y, �y = �z + 1, �x = �y + 1})∪ ϕ�.

��
Proposition 2 Any separate form is T -equivalent to a finite disjunction of combinable sepa-
rate forms.

Proof Let ϕ be a separate form. Consider all the finitely many possible arrangements α, α′
as given in Definition 4. We have that T |� ϕ ⇔ ∨

α,α′(ϕ ∪ α ∪ α′). Let ϕ(α, α′) =
ϕ ∪ α ∪ α′ ∪ CPE where E is the set of Σ-equalities in ϕ ∪ α ∪ α′. By definition, ϕ(α, α′)
is the combinable separate form extending ϕ by α, α′. Since T |� (ϕ ∪ α ∪ α′)⇒ CPE , we
have that ϕ(α, α′) is T -equivalent to ϕ ∪ α ∪ α′, and so T |� ϕ ⇔∨

α,α′ ϕ(α, α′). ��
From now on, we will only consider combinable separate forms and assume that a com-

binable separate form ϕs ∪ ϕt ∪ ϕ f includes α ∪ α′ and α ∪ CPE respectively in ϕs and ϕt

for some arrangements α, α′.
In Sect. 6, we investigate a class of source theories Ts (including AFDSΣ ) where the

T -satisfiability of any combinable separate form ϕ can be checked in a modular way, by
considering the Ts-satisfiability of ϕs and the Tt -satisfiability of ϕt . Notice that ϕ f is not used
when checking satisfiability: these constraints are indeed now encoded within ϕt , according
to Definition 4. The proof of this modular result is given below for the particular case where
Ts is AFDSΣ . Even if it is subsumed by a similar proof presented for a more general case in
Sect. 6, we believe it is interesting to provide a first simplified version in the case of AFDS.

Theorem 1 Let T = Ts ∪ T f ∪ Tt , where Ts = AFDSΣ , Tt shares only sorts with Ts and T f

is a bridging theory. A combinable separate form ϕs ∪ ϕt ∪ ϕ f is T -satisfiable if and only if
ϕs is Ts-satisfiable and ϕt is Tt -satisfiable.

Proof The soundness (only-if direction) is obvious since Ts and Tt are included in T . To
prove the completeness (if-direction), consider the set S of sorts shared by Σs and Σt , and
the following sets of variables:

– V = Var(ϕs),
– Vstruct = Varstruct(ϕs),
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– Vt = {x | x ∈ Varσ (ϕs ∪ ϕt ∪ ϕ f ), σ is a sort in Σt }.
Note that V ∩ Vt is the set of S-sorted variables in ϕs .

According to Proposition 1, there exists a term-generated Ts-interpretationH satisfying ϕs

suchHΣ is T (Σ ∪V ) /=E where E is the finite set of flat equalities occurring in ϕs . Second,
letB be a Tt -interpretation satisfying ϕt . GivenH andB, there exists another Ts-interpretation
A satisfying ϕs such that

– A[σ ] coincides with B[σ ] for each sort σ in S;
– AΣ is T (Σ ∪ V ∪ D) /=E for an appropriate set of elements D of sorts in S.

This particular modelA exists due to the arrangement α over V ∩Vt , and the fact that the sorts
Elem in Σs can be considered as uninterpreted in Ts since there are no function symbols in
Σs of arity σ1 · · · σn → σ with σ ∈ Elem.

We are now ready to define an interpretation M. First, we specify the domains. Let
M[σ ] = B[σ ] for any sort σ ∈ Σt andM[σ ] = A[σ ] for any σ ∈ Σs . HenceM[struct]
is Tstruct(Σ ∪ V ∪ D) /=E . We consider the following interpretation in M:

– for each u ∈ Vt , M[u] = B[u] and for each x ∈ V , M[x] = [[x]]; this is well-defined
due to the arrangement α over V ∩ Vt

– the interpretation of constructors c ∈ Σs is defined on the equivalence classes in the
usual way: M[c](M[e]; [[t1]], . . . , [[tn]]) = [[c(e; t1, . . . tn)]]

– the interpretation of the symbols in Σt is the same as the one in B
– the interpretation of the function f is defined recursively over the equivalence classes in

M[struct] as follows:
– If it is the equivalence class of some x ∈ Vstruct, then M[ f ]([[x]]) = B[ fx ].
– Otherwise, the equivalence class must consist of just one constructed element. If
[[c(e; t1, . . . tn)]] is an equivalence class of this form, then

M[ f ]([[c(e; t1, . . . , tn)]]) = fc(M[e];M[ f ]([[t1]]), . . . ,M[ f ]([[tn]]))
Now we need to show that M is a T -interpretation satisfying ϕs ∪ ϕt ∪ ϕ f . The sets of

literals ϕs and ϕt are clearly satisfied by M, since they are respectively satisfied by A and
B and we preserve these interpretations. It remains to check that ϕ f is satisfied by M. For
any x ∈ Vstruct, we have that M[ f ](M[x]) = M[ f ]([[x]]) = B[ fx ] = M[ fx ], and so
ϕ f =⋃

x∈Vstruct{ fx = f (x)} is satisfied by M.
Then we still need to prove that M |� T . By construction of M, we have that M |�

AFDSΣ and M |� Tt . To prove that M |� T f , let us analyze the different equivalence
classes ofM[struct]:
– If we consider the equivalence class of some x ∈ Vstruct, ϕt contains the literal fx =

fc(e; fx1 , . . . , fxn ) if x = c(e; x1, . . . , xn) occurs in ϕs . This literal is satisfied by B, and
sinceM[ f ]([[v]]) = B[ fv] for any v ∈ Vstruct, the axioms of T f must hold.

– Otherwise, we recursively defineM[ f ] by resorting to the definition given by the axioms
of T f , so they hold by construction.

��
For simplicity, the combination method given by Theorem 1 is presented in a non-

deterministic way, guessing two arrangements α and α′. Since AFDSΣ is a convex theory,
it is also possible to get a more deductive method by replacing the guessing of α′ with the
computation of all struct-sorted equalities between variables which are entailed by ϕs∪α.
Then, the resulting (combined) deductive method is similar to the one obtained by applying
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the locality approach [22,23]. The arrangement α is used to take into account the possible
non-convexity of Tt . By assumption, Tt is not necessarily stably infinite with respect to the set
of sorts Elem. This can be assumed without loss of completeness because the theory AFDSΣ

is indeed polite with respect to Elem (cf. Sect. 6). Consequently, a satisfiability procedure
for AFDSΣ ∪ Tt can be obtained by applying a Nelson–Oppen combination method [13,20],
when Tt is an arbitrary theory sharing only sorts in Elem with AFDSΣ . In the same way,
Theorem 1 provides a Nelson–Oppen combination method for AFDSΣ ∪ Tt extended with
some bridging theory T f connecting AFDSΣ to Tt .

Example 5 Consider the theory of (acyclic) lists with a length function � and the separate form
ϕs ∪ϕint ∪ϕ� given in Example 3. Let α′ be the only arrangement over the list variables such
that α′∪ϕs is satisfiable, i.e. {x 
= y 
= z}. ByDefinition 4,CPE is {�y = �z+1, �x = �y+1}
since E = ϕs . The set ϕs ∪ α′ is satisfiable in the theory of lists. However ϕint ∪ CPE is
unsatisfiable in the theory of linear arithmetic (over the integers). The original set of literals
ϕ is thus unsatisfiable. ��

The next satisfiable formula is used as a running example in Sect. 5.

Example 6 Consider again the theory of (acyclic) lists with a length function �, and the
following set of literals ϕ = {x1 = cons(d, y1), x2 = cons(d, y2), x1 
= x2 
= y1 
= y2 
=
y3, �(y2) = �(y3)}. By purification, ϕ is transformed into the separate form ϕs ∪ ϕint ∪ ϕ�

where:

– ϕs = {x1 = cons(d, y1), x2 = cons(d, y2), x1 
= x2 
= y1 
= y2 
= y3},
– ϕint = {�y2 = �y3},
– ϕ� = {�x1 = �(x1), �x2 = �(x2), �y1 = �(y1), �y2 = �(y2), �y3 = �(y3)}.

Formula ϕs already includes the arrangement α′ = {x1 
= x2 
= y1 
= y2 
= y3}. The target
encoding is CPE = {�x1 = �y1 + 1, �x2 = �y2 + 1} since E is the set of equalities in ϕs . The
set ϕs is satisfiable in the theory of lists. The set ϕint ∪CPE is also satisfiable in the theory of
linear arithmetic (over the integers), e.g. �x1 = 4, �x2 = 3, �y1 = 3, �y2 = 2, �y3 = 2. Thus
ϕ is satisfiable. According to the proof of Theorem 1, ϕ is satisfiable in a modelM such that
M[struct] = Tstruct(Σ ∪ V ) /=E for Σ = {cons, nil} and V = {d, x1, x2, y1, y2, y3},
M[elem] = {[[d]]}, andM[int] = Z. The function M[�] :M[struct] →M[int] is
defined recursively as follows:

– M[�]([[x1]]) = 4, M[�]([[x2]]) =M[�]([[y1]]) = 3, M[�]([[y2]]) =M[�]([[y3]]) = 2,
andM[�]([[nil]]) = 0;

– M[�]([[cons(d, Y )]]) = 1+M[�]([[Y ]]).
As another example, consider the combinable separate form ψ = ψs ∪ ψint ∪ ψ� where:

– ψs = {x1 = cons(d, y1), x2 = cons(d, y2), x1 
= x2 
= y1 
= y2 
= y3},
– ψint = {�y2 = �y3 , �x1 = �y1 + 1, �x2 = �y2 + 1, �y2 = �y1 − �x1},
– ψ� = {�x1 = �(x1), �x2 = �(x2), �y1 = �(y1), �y2 = �(y2), �y3 = �(y3)}.

Again, ψs is satisfiable in the theory of lists, and ψint is also satisfiable in the theory of linear
arithmetic (over the integers), where necessarily �x2 = 0, �y2 = −1, �y3 = −1. Thus, ψ

is satisfiable in a model such that the range of � includes necessarily −1 and � maps both
nil and x2 to 0. Thus, this model does not correspond to a standard interpretation of lists,
where the length of any list is necessarily positive and nil is the unique list whose length is
0. To avoid this kind of non-desirable models, we study in Sect. 5 the satisfiability problem
in standard interpretations of lists. ��
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The example below discusses the case of lists over the integers where the sort of integers
is shared by the theory of lists and the theory of integers.

Example 7 Consider the theory of (acyclic) lists over the integers with a length function �. In
that case, the constructors of lists are cons : int×struct→ struct and nil : struct,
where int denotes the sort for integers. Assume the separate form ϕ = ϕs ∪ϕint ∪ϕ� where:

– ϕs = {x = cons(�x , z), y = cons(�y, z), x 
= y},
– ϕint = ∅,
– ϕ� = {�x = �(x), �y = �(y), �z = �(z)}.

Let α′ be the only arrangement over the list variables such that ϕs ∪ α′ is satisfiable, i.e.
{x 
= y 
= z}. By Definition 4, CPE is {�x = �z + 1, �y = �z + 1}. Let α be the only
arrangement over the int-sorted variables in ϕs such that ϕint ∪ α ∪ CPE is satisfiable, i.e.
{�x = �y}. Then ϕs ∪ α′ ∪ α is unsatisfiable. Consequently, all combinable separate forms
of ϕ are unsatisfiable, and so ϕ is unsatisfiable. ��

5 Standard Interpretations

Now consider the satisfiability problem modulo data structure theories defined as classes of
standard structures: each interpretation domain of struct contains only the (infinite set of)
finite terms generated by the constructors and the elements in the interpretation domains of
Elem. Thanks to this natural assumption on the domains, these standard structures faithfully
capture the concept of the data structures, while remaining models of the (axiomatized)
theories considered in previous sections. We investigate satisfiability procedures for standard
structures based on the combination method of Sect. 4. We first study the case of lists, and
then the general case of trees corresponding to the standard interpretations of absolutely free
data structures. Both cases involve a theory of integers defined as follows.

Definition 5 (Theory of integers) Given a signature Σint including {0 : int, 1 : int,+ :
int × int → int,≤: int × int}, the theory of integers TZ is (Σint, {A}) where A is
the Σint interpretation such that A[int] = Z and symbols in Σint are interpreted according
to their standard interpretation in Z.

In the following, we assume the existence of a TZ-satisfiability procedure.

5.1 Lists with Length

Definition 6 (Standard list-interpretation) Consider a Σint-theory of integers TZ as in Def-
inition 5, a signature Σ = {cons : elem × struct → struct, nil : struct} such
that elem 
= int, and let Σlist = Σ ∪ {� : struct → int} ∪ Σint . A standard list-
interpretation A is a Σlist-interpretation satisfying the following conditions:

– A[struct] = (A[elem])∗ where (A[elem])∗ is the set of all finite sequences 〈e1,
. . . , en〉 for n ≥ 0 and e1, . . . , en ∈ A[elem];

– A[nil] = 〈〉;
– A[cons](e, 〈e1, . . . , en〉) = 〈e, e1, . . . , en〉, for n ≥ 0 and e, e1, . . . , en ∈ A[elem];
– A[�](〈e1, . . . , en〉) = n, and in particular A[�](〈〉) = 0;
– AΣint ∈ TZ.
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The theory of (standard interpretations) of lists with length is defined as the pair T si
list =

(Σlist,A), where A is the class of all standard list-structures.

Remark 1 The sorts elem and int in Definition 6 are distinct. As a consequence elem can
be interpreted as an arbitrary set of elements, possibly finite or infinite. The case of lists over
the integers is discussed in Remark 3.

Remark 2 Definition 6 does not mention selectors car and cdr. A standard list-interpretation
A with selectors car, cdr would follow the additional conditions:

– carA(〈e1, . . . , en〉) = e1, for each n > 0 and e1, . . . , en ∈ A[elem];
– cdrA(〈e1, . . . , en〉) = 〈e2, . . . , en〉, for each n > 0 and e1, . . . , en ∈ A[elem].

Thus, selectors car and cdr are defined only on non-empty lists, and can be seen as syntactic
sugar: any equality e = car(x) (resp. y = cdr(x)) can be equivalently expressed as an
equality x = cons(e, x ′) (resp. x = cons(d, y)) where x ′ (resp. d) is a fresh variable. For
this reason, we have chosen to define standard interpretations of lists without selectors.

We showbelow that T si
list-satisfiability can be reduced to satisfiabilitymodulo the combined

theory of lists with length Tlist defined as (the class of all the models of) the union of theories
AFDSΣ ∪ T� ∪ TZ where Σ = {cons : elem×struct→ struct, nil : struct}, and
T� = {∀e∀y. �(cons(e, y)) = 1 + �(y), �(nil) = 0}. Since T si

list |� Tlist , a T si
list-satisfiable

formula is also Tlist-satisfiable. However, a Tlist-satisfiable formula is not necessarily T si
list-

satisfiable, as illustrated by the formula ψ in Example 6. To tackle this problem, the solution
consists in guessing the different forms of standard lists, using the length function as an
abstraction to denote empty and non-empty lists. Thanks to arithmetic constraints stating
that each positive value of a length variable �x corresponds to the length of some finite list
x , it is possible to guarantee the existence of a standard model. Given a set of literals ϕ in
separate form and a natural number n, a range constraint for ϕ bounded by n is a set of literals
ρ = {ρ(�x ) | �x ∈ Varint(ϕ�)} where ρ(�x ) is either �x = i (0 ≤ i < n) or �x ≥ n. A range
constraint ρ is feasible for ϕ if ϕint ∪ ρ is TZ-satisfiable. The setRn(ϕ) is defined as the set
of all range constraints bounded by n that are feasible for ϕ. For instance, given the bound
n = 1 and the formula ψ introduced in Example 6, it is easy to check that R1(ψ) = ∅. The
bound n = 1 suffices to get a T si

list-satisfiability procedure:

Proposition 3 For any combinable separate form ϕ and any ρ ∈ R1(ϕ), let w(ϕ ∧ ρ) be the
formula ϕ ∪ ρ ∪ {x = nil | �x = 0 ∈ ρ}. Any combinable separate form ϕ is T si

list -satisfiable
iff there exists a feasible range constraint ρ ∈ R1(ϕ) such that w(ϕ ∧ ρ) is Tlist -satisfiable.

Proof Given a feasible range constraint ρ such that there exists a Tlist-model of w(ϕ ∧ ρ),
we show the existence of a T si

list-model of ϕ ∧ ρ.
By using syntactic unification as in Sect. 3, w(ϕ ∧ ρ) is equivalent to a set of literals ϕ′

whose struct part contains only flat disequalities and equalities of the following forms:

(1) flat equalities v = x such that v occurs once in ϕ′,
(2) equalities x = t , where t is a nil-terminated list and x occurs once in the equalities of ϕ′,
(3) equalities x = cons(d, y), where x and y cannot be equal to nil-terminated lists (by

applying the variable replacement of syntactic unification).

Let us detail how to interpret struct-variables. For variables occurring in (2), the inter-
pretation is obvious. The solved form ϕ′ defines a (partial) ordering> on variables occurring
in (3): x > y if x = cons(d, y) occurs in ϕ′. Each minimal variable with respect to > has a
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length greater or equal than 1, otherwise it would occur in (2). For the minimal variables, we
use the interpretation satisfying ρ to consider lists of appropriate strictly positive lengths and
containing fresh (distinct) elements. For non-minimal variables, the interpretation is induc-
tively defined by the equalities of the form (3) occurring in ϕ. By this construction, different
struct-variables are still interpreted by distinct lists. Moreover, any equality �x = �(x)
in ϕ� is satisfied by this interpretation since ϕ is a combinable separate form. Therefore, all
literals of ϕ′ are true in this interpretation, and so a T si

list-model of ϕ′ has been constructed. It
is a T si

list-model of ϕ since ϕ′ is T si
list-equivalent to ϕ ∧ ρ. ��

Remark 3 The proof of Proposition 3 also holds when considering lists over the integers with
the length function. Let Tlist[Z] be the theory introduced in Example 7 and the related theory
of standard interpretations T si

list[Z] obtained from the definition of T si
list by replacing elem

with int. Just like in Proposition 3, satisfiability in T si
list[Z] can be reduced to satisfiability

in Tlist[Z] since the domain of Z is infinite. Actually, the proof of Proposition 3 is perfectly
suitable also in this case. After guessing range constraints bounded by n = 1, the combination
method introduced in Sect. 4 can be applied to get a satisfiability procedure in Tlist[Z].

The theoryT si
list canbedivided in twocomplementary subtheorieswhere the length function

behaves completely differently:

1. the theory of lists built over only one element,

T=1list = T si
list ∪ {∃v : elem ∀x : elem. x = v},

2. and the theory of lists built over at least two elements,

T≥2list = T si
list ∪ {∃v, v′ : elem. v 
= v′}.

The T si
list-satisfiability problem can be obviously divided into two cases since a formula is

T si
list-satisfiable if and only if it is T=1list -satisfiable or T

≥2
list -satisfiable. In the singular case of

T=1list , the length function � is a bijection between the lists built over only one element and
N. Thus, a T=1list -satisfiability procedure can be easily obtained by adding to a combinable
separate form ϕ(α, α′) the target constraint

⋃

x 
=y∈α′
{�x 
= �y} ∪

⋃

�x∈Varint(ϕ�)

{�x ≥ 0}

to encode the bijectivity of �. Then, such a separate form is T=1list -satisfiable if and only if its
int-part is TZ-satisfiable. The problem of T=1list -satisfiability being solved, it remains now

to study the T≥2list -satisfiability problem, where there are at least two elements in standard

interpretations. The T≥2list -satisfiability problem can be solved by another finite and complete
guessing of values for list lengths. Compared to the guessing used for T si

list-satisfiability in

Proposition 3, this new guessing leads to a T≥2list -satisfiability procedure with the property of
being more generally combinable. It is a complete guessing because beyond a limit value n,
that now depends on the input formula, there are enough different lists to build a T≥2list -model
satisfying constraints of the form x1 
= · · · 
= xm ∧ �(x1) ≥ n ∧ · · · ∧ �(xm) ≥ n.

Proposition 4 For any set of literals ϕ in combinable separate form, there exists a bound n
such that

– ϕ is T≥2list -equivalent to
∨

ρ∈Rn(ϕ)(ϕ ∧ ρ)
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– For any ρ ∈ Rn(ϕ), there exists a formula denoted by witness(ϕ ∧ ρ) such that ϕ ∧ ρ is
T≥2list -equivalent to (∃v̄)witness(ϕ∧ρ) for the set of variables v̄ = Var(witness(ϕ∧ρ))\
Var(ϕ ∧ ρ), and any {elem}-sorted arranged form of witness(ϕ ∧ ρ) is T≥2list -satisfiable
iff it is Tlist -satisfiable.

Proof Since ϕ is a combinable separate form, it implies a unique arrangement over struct-
variables. Let m be the number of the corresponding equivalence classes over struct-
variables. In order to have m different lists of length at least n, it is sufficient to define the
bound n of range constraints as n = �log2(m)�. Let us now define the witness of a range
constraint ρ:

– witnessrc({�x = 0} ∪ ρ) = {x = nil} ∪ witnessrc(ρ)

– witnessrc({�x = i} ∪ ρ) = {x = cons(e1, . . . cons(ei , nil) . . . )} ∪ witnessrc(ρ) if 0 <

i < n, where e1, . . . , ei are fresh elem-variables
– witnessrc({�x ≥ n} ∪ ρ) = witnessrc(ρ)

Then, witness(ϕ ∧ ρ) = (e 
= e′) ∧ ϕ ∧ ρ ∧ witnessrc(ρ), where e, e′ are two distinct fresh
elem-variables.

Consider an arbitrary arrangement arr over the elem-variables occurring in witness(ϕ∧
ρ). Similarly to the proof of Proposition 3 and by using syntactic unification as in Sect. 3,
if witness(ϕ ∧ ρ) ∧ arr is Tlist-satisfiable then it is possible to construct a Tlist-equivalent
set of literals ϕ′ whose struct-part contains only flat disequalities and equalities of the
following forms:

(1) flat equalities v = x such that v occurs once in ϕ′,
(2) equalities x = t , where t is a nil-terminated list and x occurs once in the equalities of ϕ′,
(3) equalities x = cons(d, y), where x and y cannot be equal to nil-terminated lists (by

applying the variable replacement of syntactic unification).

Let us now define a T≥2list -interpretation. First, the equalities in (1) can be discarded since
v occurs once in ϕ′. The interpretation of variables occurring in (2) directly follows from
ϕ′. It remains to show how to interpret variables occurring in (3). Note that each of these
variables has a length greater or equal than n, otherwise it would occur in (2). As in the proof
of Proposition 3, the solved form ϕ′ defines a (partial) ordering > on these variables: x > y
if x = cons(d, y) occurs in ϕ′. Each minimal variable y with respect to > is interpreted
by a fresh nil-terminated list not occurring in ϕ′ whose elements are (the representatives
of) e, e′, and whose length is the interpretation of �y (this is possible by definition of n and
the fact that �y ≥ n). Then, the interpretation of non-minimal variables follows from the
equalities (3) in ϕ′. By construction, distinct variables are interpreted by distinct lists. In
other words, the struct-disequalities introduced by arr are satisfied by this interpretation.
Furthermore, any equality �x = �(x) in ϕ� is satisfied by this interpretation since ϕ is a
combinable separate form. Therefore, all literals of ϕ′ are true in this interpretation, and so
we have built a T≥2list -model of witness(ϕ ∧ ρ) ∧ arr . ��

Example 8 Consider the T≥2list -satisfiability of the combinable separate form built in Exam-
ple 6: ϕ = ϕ� ∪ {x1 = cons(d, y1), x2 = cons(d, y2), x1 
= x2 
= y1 
= y2 
= y3, �x1 =
�y1 + 1, �x2 = �y2 + 1, �y2 = �y3}. The five distinct struct-variables imply that range
constraints are bounded by n = �log2(5)� = 3. There are 45 = 1024 possible range con-
straints since each variable can be equal to 0, 1, 2 or greater than or equal to 3. We now focus
on a few feasible range constraints and their related witness, the remaining ones are handled
similarly.
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1. ρ = {�x1 = �x2 = 1, �y1 = �y2 = �y3 = 0}. To obtain a witness of ϕ and ρ, we
add y1 = y2 = y3 = nil, x1 = cons(ex1 , nil), and x2 = cons(ex2 , nil). It follows that
ex1 = ex2 = d and x1 = x2 which contradicts ϕ.

2. ρ = {�x1 ≥ 3, �y1 = �x2 = 2, �y2 = �y3 = 1}. A possible witness for this range
constraint would comprise

– y1 = cons(e′y1 , cons(ey1 , nil))
– y2 = cons(ey2 , nil)
– y3 = cons(ey3 , nil)
– x1 = cons(d, y1) = cons(d, cons(e′y1 , cons(ey1 , nil)))
– x2 = cons(d, y2) = cons(d, cons(ey2 , nil))

All the struct-variables are instantiated by distinct lists, provided the arrangement
over elem-variables is such that ey2 
= ey3 and, either ey1 
= ey2 or e

′
y1 
= d .

3. ρ = {�x1 = 1, �y1 = 0, �x2 ≥ 3, �y2 ≥ 3, �y3 ≥ 3}. The related witness is equisatisfiable
to ϕ ∪ ρ ∪ {y1 = nil, e 
= e′}, which is satisfiable with

– y2 = cons(e, cons(e, cons(e, nil)))
– y3 = cons(e, cons(e, cons(e′, nil)))
– y1 = nil
– x1 = cons(d, nil)
– x2 = cons(d, cons(e, cons(e, cons(e, nil))))

��
In the following sectionwewill prove that the T≥2list -satisfiability procedure of Proposition 4

is useful for the combination of T≥2list with an arbitrary theory for elements, whereas the T si
list-

satisfiability procedure of Proposition 3 is restricted to the combination of T si
list with a stably

infinite theory for elements.

5.2 Combining Lists with an Arbitrary Theory of Elements

We here show that T≥2list is actually a polite theory, and so it can be combined with an arbitrary
disjoint theory of elements, using the combination method designed for polite theories [13,
20]. By definition, a polite theory is both finitely witnessable and smooth.

Definition 7 (Polite theory) Consider a set S = {σ1, . . . , σn} of sorts in a signature Σ . A
Σ-theory T is smooth with respect to S if:

– for every T -satisfiable quantifier-free Σ-formula ϕ,
– for every T -interpretation A satisfying ϕ,
– for every cardinal number κ1, . . . , κn such that κi ≥ |A[σi ]|, for i = 1, . . . , n,

there exists a T -model B of ϕ such that |B[σi ]| = κi for i = 1, . . . , n.
Given a Σ-theory T , a quantifier-free Σ-formula ψ is a finite witness of ϕ in T with

respect to S if:

1. ϕ and (∃v̄)ψ are T -equivalent, where v̄ = Var(ψ) \ Var(ϕ);
2. for any S-sorted arranged formψ ′ ofψ , ifψ ′ is T -satisfiable then there exists a T -model

A of ψ ′ such that A[σ ] = {A[v] | v ∈ Varσ (ψ ′)}, for each σ ∈ S.

T is finitely witnessable with respect to S if there exists a computable function witness such
that, for every quantifier-free Σ-formula ϕ, witness(ϕ) is a finite witness of ϕ in T with
respect to S.
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A Σ-theory T is polite with respect to S if it is both smooth and finitely witnessable with
respect to S.

Proposition 5 T≥2list is polite with respect to {elem}.
Proof The smoothness of the theory of standard interpretations of lists has been shown in
[20], and this is preserved when considering the length function. By definition of T≥2list , any
set of elements can be used to build the lists (since � is {elem}-independent). Hence, any
T≥2list -satisfiable formula remains T≥2list -satisfiable when augmenting the domain of sort elem

with new elements, and so T≥2list is smooth.

To show the finite witnessability of T≥2list , consider the witness function defined for Propo-
sition 4. For any combinable separate form ϕ, the formula

∨

ρ∈Rn(ϕ)

wi tness(ϕ ∧ ρ)

is a finite witness of ϕ in T≥2list with respect to {elem}. Indeed, the T≥2list -model built in the
proof of Proposition 4 interprets the elem sort as the set of interpreted elem-variables
occurring in that formula. ��

Consider the satisfiability problem in the disjoint combination T≥2list ∪ Telem where Telem is

a Σelem-theory sharing only the sort elem with T≥2list . Due to the politeness of T≥2list , we can
directly use the combination method known for polite theories [13,20], and this leads to the
following result.

Theorem 2 Let Telem be a Σelem-theory sharing only the sort elem with T≥2list . For any
combinable separate form ϕ and any finite set ϕelem of Σelem-literals, the formula ϕ ∧ ϕelem

is T≥2list ∪ Telem-satisfiable iff there exists a range constraint ρ ∈ Rn(ϕ) and an arrangement
arr such that (1)witness(ϕ∧ρ)∧arr is Tlist -satisfiable and (2)ϕelem∧arr is Telem-satisfiable,
where witness(ϕ ∧ ρ) is the formula defined for Proposition 4 and arr is an arrangement
over the variables of sort elem in witness(ϕ ∧ ρ).

Proof It follows from the correctness proof of the combination method known for polite
theories [13,20], using the finite witness of a combinable separate form given in the proof of
Proposition 5.

To conclude the proof, Proposition 4 shows that witness(ϕ ∧ ρ) ∧ arr is T≥2list -satisfiable
iff it is Tlist-satisfiable. ��

Thus, the T≥2list ∪ Telem-satisfiability problem is NP-decidable if the Telem-satisfiability
problem is NP-decidable. Indeed, in the combination procedure of Theorem 2, the guessing
of range constraints and the guessing of arrangements can be done in nondeterministic poly-
nomial time; the witness function is computable in polynomial time; and the satisfiability
problems in AFDSΣ and in TZ are NP-decidable.

Example 9 Consider the combinable separate form of Example 8 and suppose we add a
new literal stating that the sum of the lengths of y1, y2 and y3 is 3, i.e., ϕ = ϕ� ∪ {x1 =
cons(d, y1), x2 = cons(d, y2), x1 
= x2 
= y1 
= y2 
= y3, �x1 = �y1 + 1, �x2 = �y2 +
1, �y2 = �y3 , �y1 + �y2 + �y3 = 3}. Consider also the theory of elements Telem = {∃a, b :
elem. a 
= b ∧ ∀x : elem. x = a ∨ x = b}. As in Example 8, there are five struct-
variables and so range constraints are bounded by n = 3. Among the 45 range constraints,
most of them are not feasible. It is easy to see that any range constraint such that �y2 ≥ 2 is
not feasible. There are only two feasible range constraints, obtained by considering �y2 = 0
or �y2 = 1:
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1. �x1 ≥ 3, �y1 ≥ 3, �x2 = 1, �y2 = 0, �y3 = 0, which leads to �x1 = 4 and �y1 = 3. But
this is T≥2list -unsatisfiable, as it requires y2 = nil and y3 = nil, which makes y2 
= y3
false.

2. �x1 = 2, �y1 = 1, �x2 = 2, �y2 = 1, �y3 = 1, which implies

– y1 = cons(ey1 , nil), y2 = cons(ey2 , nil), y3 = cons(ey3 , nil)
– x1 = cons(d, cons(ey1 , nil)), x2 = cons(d, cons(ey2 , nil))

But this requires ey1 
= ey2 
= ey3 , which is Telem-unsatisfiable.

Hence ϕ is T≥2list ∪ Telem-unsatisfiable. ��

Let us now assume Telem is stably infinite with respect to {elem}. Since T si
list is stably

infinite too, the classical Nelson–Oppen combination method applies to T si
list ∪ Telem by

using the T si
list-satisfiability procedure stated in Proposition 3. This leads to a result similar

to Theorem 2, where it is sufficient to guess only few particular range constraints and less
arrangements.

Proposition 6 Let Telem be a Σelem-theory sharing only the sort elem with T si
list and such

that Telem is stably infinite with respect to {elem}. For any combinable separate form ϕ,
and any finite set ϕelem of Σelem-literals, the formula ϕ ∧ ϕelem is T si

list ∪ Telem-satisfiable iff
there exists a feasible range constraint ρ ∈ R1(ϕ) and an arrangement arr such that (1)
w(ϕ ∧ ρ)∧ arr is Tlist -satisfiable and (2) ϕelem ∧ arr is Telem-satisfiable, where w(ϕ ∧ ρ) is
defined in Proposition 3 and arr is an arrangement over the variables in Var(ϕ)∩Var(ϕelem).

In the above proposition, arr is an arrangement over elem-sorted variables where Var(ϕ) =
Var(w(ϕ ∧ ρ)).

5.3 Trees with Bridging Functions over the Integers

The combination method presented for standard interpretations of lists can be extended to
standard interpretations of any AFDS theory.

Definition 8 (Standard tree-interpretation) Consider a Σint-theory of integers TZ as in Def-
inition 5, a signature Σtree = Σ ∪ { f : struct → int} ∪ Σint where Σ is a signature
as in Definition 1 with int /∈ Elem, and let T f be an Elem-independent bridging theory
as in Definition 2. A standard tree-interpretation A is a Σtree-interpretation satisfying the
following conditions:

– A[struct] is the set of Σ-terms of sort struct built with Elem-sorted elements in
A;

– A[c] = c for each constant constructor c ∈ Σ ;
– A[c](e, t1, . . . , tn) = c(e, t1, . . . , tn) for each non-constant constructor c ∈ Σ , tuple e

of Elem-sorted elements in A, and t1, . . . , tn ∈ A[struct];
– A[ f ](c) = fc for each constant constructor c ∈ Σ ;
– A[ f ](c(e, t1, . . . , tn)) = fc(e,A[ f ](t1), . . . ,A[ f ](tn)) for each non-constant construc-

tor c ∈ Σ , tuple e of Elem-sorted elements in A, and t1, . . . , tn ∈ A[struct];
– AΣint ∈ TZ.

The theory of (standard interpretations) of trees with bridging function f is the pair T si
tree =

(Σtree,A), where A is the class of all standard tree-structures.
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Let Ttree be the combined theory of trees with the bridging function f defined as (the
class of all the models of) the union of theories AFDSΣ ∪ T f ∪ TZ. In a way analogous to
what has been done for lists (cf. Proposition 4), there is a method to reduce T si

tree-satisfiability
to Ttree-satisfiability. Similarly to lists, we introduce finite witnesses which can easily be
computed when f is the height or the size of trees.

The next definition captures the assumptions used to extend the proof of Proposition 4
developed for lists to the case of trees. Let us first introduce some additional notations related
to the range of the bridging function f . Given a theory T defined as a class of standard
tree-structures and any A ∈ T , let F−1A (n) = {t | A[ f ](t) = n}. By definition of T , the
bridging theory T f is Elem-independent. Consequently, the set Ran( f ) = {n | F−1A (n) 
= ∅}
remains identical for all A ∈ T . A range recognizer is a Σint-formula ν = (∃ j̄ . ν′) such
that ν′ is quantifier-free and ν has a unique free variable called the parameter of ν. When this
parameter is instantiated in ν by some int-sorted term t , the resulting formula is denoted
by ν(t).

Definition 9 (Gently growing function) Let T be a theory defined as a class of standard
tree-structures. The bridging function f is gently growing in T if

1. there exists a range recognizer ν such that Ran( f ) is equal to the set {n | n ∈ N and TZ |�
ν(n)};

2. for any n,m ∈ Ran( f ) and any A ∈ T , n ≤ m �⇒ |F−1A (n)| ≤ |F−1A (m)|;
3. there exists a computable function b : N→ N such that for any k > 1 and any A ∈ T ,
|F−1A (b(k))| ≥ k;

4. for any n ∈ Ran( f ), one can compute a finite non-empty set F−1(n) of terms with
variables of sorts in Elem such that

T |� f (x) = n ⇐⇒
⎛

⎝∃v̄.
∨

t∈F−1(n)

x = t

⎞

⎠ where v̄ = Var(F−1(n))

Remark 4 Definition 9 strongly relates to the notion of sufficient surjectivity defined in [24]
via two ingredients: a cardinality constraint together with a finite set of shapes. When f is
gently growing in T and Ran( f ) = N, the sufficient surjectivity can be expressed as the
T -valid formula

f (x) ≥ b(k) ∨
⎛

⎝∃v̄.
∨

t∈Sk
x = t

⎞

⎠

where Sk =⋃
0≤n<b(k) F

−1(n) and v̄ = Var(Sk), for any k > 1.According to this disjunctive

formula, n ≥ b(k) plays the role of the cardinality constraint implying |F−1A (n)| ≥ k for
any A ∈ T , and the remaining disjuncts provide the finite set of shapes. For simplicity,
Definition 9(2) includes a monotonicity assumption that allows us to use n ≥ b(k) as a
simple uniform cardinality constraint. Despite its name, sufficient surjectivity does not imply
surjectivity. To overcome this problem, [19] advocates the need of an additional assumption
stating that Ran( f ) can be given by a range recognizer in the target theory, namely ν in
Definition 9(1). The case ν = (n ≥ 0) is sufficient to consider the classical bridging functions
discussed in the example below.

Example 10 Let us assume that TZ denotes the theory of linear integer arithmetic extended
with the max function. Consider Σ = {cons : elem × struct × · · · × struct →
struct, nil : struct}, and the bridging theories corresponding to the size and the height
of trees:
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– Tsz =
{
sz(cons(e, y1, . . . , ym)) = 1+∑m

i=1 sz(yi ), sz(nil) = 0
}

– Tht =
{
ht(cons(e, y1, . . . , ym)) = 1+maxi∈[1,m] ht(yi ), ht(nil) = 0

}

where m is the number of struct occurrences in the input sorts of cons.
If m > 1 then sz (resp. ht) is gently growing in T si

tree, assuming T f = Tsz (resp. T f = Tht )
in the definition of T si

tree. To state this result, the function b of Definition 9 can be defined as
the identity over N, but it is possible to get a better bound, e.g., thanks to Catalan numbers
[34] for the size of trees. Since Ran(sz) = Ran(ht) = N, ν = (n ≥ 0) is a suitable range
recognizer for both sz and ht .
When m = 1 (i.e., cons : elem × struct → struct), sz and ht coincide with the
length of lists �. According to Sect. 5.2, � is gently growing in T≥2list , that is, T

si
tree ∪ {∃v, v′ :

elem. v 
= v′}. The length function � is neither gently growing in T=1list due to Definition 9(3),
nor in T si

list since T
=1
list ⊂ T si

list . ��
Definition 9 is general enough to encompass bridging functions which are not surjective
between trees and the set of natural numbers, provided that a range recognizer is known. A
simple motivating example is given below.

Example 11 Consider Σ = {cons : elem × struct → struct, nil : struct}, the
bridging theory T f = {∀e∀y. f (cons(e, y)) = 2+ f (y), f (nil) = 0}, and the corresponding
theory T si

tree. Let T = T si
tree ∪ {∃v, v′ : elem. v 
= v′}. In this theory T , the range of f is the

set of even natural numbers, and f is gently growing, with ν, b and F−1 defined as follows:

– ν = (∃ j . n = 2 j),
– b(k) = 2 log2(k),
– F−1(0) = {nil} and for any strictly positive even number, F−1(n) = {cons(e1, . . .

cons(en/2, nil) . . . )}.
In Definition 9, the use of a range recognizer requires a generalization of the notion of

range constraint introduced in the particular case of lists with length.

Definition 10 (Range constraint) Assume f is gently growing in a theory T with ν as range
recognizer. Given a set of literals ϕ in separate form and a natural number n, a T -range
constraint for ϕ bounded by n is a Σint-formula ρ = ∧

fx∈Varint(ϕ f )
ν( fx ) ∧ ρ( fx ) where

ρ( fx ) is either fx = i (0 ≤ i < n) or fx ≥ n. A T -range constraint ρ is feasible for ϕ

if ϕint ∧ ρ is TZ-satisfiable. The set RT ,n(ϕ) is defined as the set of all T -range constraints
bounded by n that are feasible for ϕ.

In the rest of this section, T is clear from the context, and so a T -range constraint is simply
called range constraint. Accordingly,RT ,n(ϕ) is abbreviated into Rn(ϕ).

We are now ready to generalize the proof of Proposition 4 where at least two elements are
assumed. Like in T≥2list , some additional constraints on the minimal cardinality of elements
also have to be considered. Given any sort σ in Elem, we define the theory T≥κ

σ of at
least κ elements of sort σ as follows: T≥κ

σ = {∃v1, . . . , vκ : σ. v1 
= · · · 
= vκ } for
any κ ≥ 2, and T≥1σ = ∅. A cardinality mapping is a mapping κ : Elem → N

+. For
any cardinality mapping κ , let T≥κ

Elem =
⋃

σ∈Elem T
≥κ(σ )
σ , and T≥κ

tree = T si
tree ∪ T≥κ

Elem. By
definition, T si

tree = T≥1treewhere 1 is the (lowest) cardinalitymapping such that 1(σ ) = 1 for any
σ ∈ Elem. According to Definition 6, T≥2list corresponds to T≥2tree such that Elem = {elem},
2(elem) = 2, Σ = {cons : elem × struct → struct, nil : struct}, and f is the
length �.
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Proposition 7 Let κ be any cardinality mapping. Assume f is gently growing in T≥κ
tree . For

any set of literals ϕ in combinable separate form, there exists a bound n such that

– ϕ is T≥κ
tree -equivalent to

∨
ρ∈Rn(ϕ)(ϕ ∧ ρ)

– For any ρ ∈ Rn(ϕ), there exists a formula denoted by witness(ϕ ∧ ρ) such that ϕ ∧ ρ is
T≥κ
tree -equivalent to (∃v̄)witness(ϕ∧ρ) for the set of variables v̄ = Var(witness(ϕ∧ρ))\

Var(ϕ ∧ ρ), and any Elem-sorted arranged form of witness(ϕ ∧ ρ) is T≥κ
tree -satisfiable

iff it is Ttree-satisfiable.

Proof By assumption, there exist computable functions b and F−1 as given in Definition 9.
The proof of Proposition 4 can be adapted by using b and F−1.

Since ϕ is a combinable separate form, it is obtained by an arrangement over struct-
variables. Let m be the number of the corresponding equivalence classes over struct-
variables. We define the bound n used in range constraints as n = b(m). Let us now define
the witness of a range constraint ρ:

– witnessrc({ fx = i} ∪ ρ) = ∨
t∈F−1(i)(x = t ∧ witnessrc(ρ)) if 0 ≤ i < n, where

variables in t are fresh variables of sort in Elem;
– witnessrc({ fx ≥ n} ∪ ρ) = witnessrc(ρ).

Then, we define witness(ϕ ∧ ρ) as

∧

σ∈Elem

⎛

⎝
∧

v∈Wσ

(v = v) ∧
∧

v,v′∈Wσ ,v 
=v′
(v 
= v′)

⎞

⎠ ∧ ϕ ∧ ρ ∧ witnessrc(ρ)

whereWσ denotes a set of κ(σ ) variables1 of sort σ for any σ ∈ Elem. The construction of a
T≥κ
tree -interpretation is analogous to the construction given in Proposition 4 for lists, by using

terms in Tstruct(Σ,
⋃

σ∈Elem Wσ ) corresponding to instances of terms in
⋃

n≥0 F−1(n),
instead of using nil-terminated lists.

Given a Ttree-satisfiable Elem-sorted arranged form of witness(ϕ ∧ ρ), let ϕ′ be the
equivalent formula obtained as in Proposition 4 by solving the struct-sorted equalities
with syntactic unification. Again, there are enough distinct terms to interpret differently the
minimal struct-variables in ϕ′, thanks to the function b. Then, the interpretation of the
other struct-variables follows from ϕ′. With this interpretation and by using the injectivity
of constructors in Σ , we can prove by structural induction that all flat struct-disequalities
are satisfied. Thestruct-variables also occur in the subset ϕ f of ϕ′. Since ϕ is a combinable
separate form,ϕ f is satisfied too. The interpretation is thus a T

≥κ
tree -model ofϕ′, or equivalently,

of the given Elem-sorted arranged form of witness(ϕ ∧ ρ). ��
Since the finite witnessability and smoothness proofs for T≥2list can be directly extended to

T≥κ
tree , the following politeness result holds for T≥κ

tree , as well as for T
si
tree.

Proposition 8 Let κ be any cardinality mapping. If f is gently growing in T≥κ
tree , then T≥κ

tree is
polite with respect to Elem.

Proof By definition of T≥κ
tree , any set of elements can be used to build the trees, provided

that, for each σ ∈ Elem, the number of σ -sorted elements is greater or equal than κ(σ ).

1 Trivial equalities v = v are used to introduce fresh variables denoting elements. Actually, trivial equalities
of sort σ can be omitted when κ(σ ) > 1: in that case, the non-empty conjunction of disequalities v 
= v′ of
sort σ is sufficient.

123



118 P. Chocron et al.

Hence, any T≥κ
tree -satisfiable formula remains T≥κ

tree -satisfiable when adding elements of sorts
in Elem, and so T≥κ

tree is smooth.
To show the finitewitnessability of T≥κ

tree , we can use thewitness function defined for Propo-
sition 7. For any combinable separate formϕ, consider the disjunction

∨
ρ∈Rn(ϕ) wi tness(ϕ∧

ρ). For this disjunction, one can observe that the T≥κ
tree -model built in the proof of Proposi-

tion 7 interprets each σ ∈ Elem as the set of its interpreted σ -sorted variables. Thus, this
disjunction is a finite witness of ϕ in T≥κ

tree with respect to Elem. ��
Theorem 2 (for lists) can be generalized to trees:

Theorem 3 Assume f is gently growing in T≥κ
tree . Let Telem be aΣelem-theory sharing only the

sorts inElemwith T≥κ
tree . For any combinable separate formϕ and any finite setϕelem ofΣelem-

literals, the formula ϕ ∧ ϕelem is T≥κ
tree ∪ Telem-satisfiable iff there exists a range constraint

ρ ∈ Rn(ϕ) and an arrangement arr such that (1) witness(ϕ ∧ ρ) ∧ arr is Ttree-satisfiable
and (2) ϕelem ∧ arr is Telem-satisfiable, where witness(ϕ ∧ ρ) is the formula defined for
Proposition 7 and arr is an arrangement over the Elem-sorted variables in witness(ϕ ∧ ρ).

Proof In a way similar to Theorem 2, the combination method known for polite theories
[13,20] can be applied to T≥κ

tree ∪Telem, using the finite witness of a combinable separate form
given in the proof of Proposition 8. Then, Proposition 7 shows that witness(ϕ ∧ ρ) ∧ arr is
T≥κ
tree -satisfiable iff it is Ttree-satisfiable. ��
Consequently, the T≥κ

tree ∪ Telem-satisfiability problem can be shown NP-decidable if, in
the related combination procedure, the guessing of range constraints can be done in nonde-
terministic polynomial time; the witness function is computable in polynomial time; and the
Telem-satisfiability problems is NP-decidable. For example, it is easy to see that the first two
conditions can be met in the particular case of T≥2list . Even if it seems difficult to get witness
functions computable in polynomial time in the general case, NP-decidability is easy to prove
in some more noteworthy cases. Consider a theory T si

tree as in Example 10 where T f = Tsz
or T f = Tht . Similarly to Proposition 3, T si

tree-satisfiability reduces to Ttree-satisfiability by
guessing only range constraints bounded by n = 1 and by computing the corresponding
formulas thanks to the function w. In the related decision procedure, the guessing of range
constraints can be done in nondeterministic polynomial time and the function w is com-
putable in polynomial time. Thus the T si

tree-satisfiability problem is NP-decidable. Similarly
to Proposition 6, the combination procedure for T si

tree ∪ Telem-satisfiability is simpler when
Telem is stably infinite with respect to Elem. Again, the form of this procedure shows that
the T si

tree ∪ Telem-satisfiability problem is NP-decidable if the Telem-satisfiability problem is
NP-decidable. When Telem is not stably infinite with respect to Elem, the sizes of witnesses
might explode with a negative impact on complexity.

Example 12 Consider the theory of standard interpretations of (binary) trees T si
tree with con-

structors Σ = {cons : elem × struct × struct → struct, nil : struct}, the
size function sz as defined in Example 10, and the theory of elements with only one object:
Telem = {∀x : elem. x = d}. Let ϕ = {x1 = cons(d, y, nil), x2 = cons(d, nil, y), sz(x3) ≤
2, sz(y) = 1, x1 
= x2 
= x3 
= y 
= nil}. The combinable separate form of ϕ is as follows:

– ϕs = {x1 = cons(d, y, z), x2 = cons(d, z, y), z = nil, x1 
= x2 
= x3 
= y 
= z}
– ϕint = {szx1 = 1+ szy + szz, szx2 = 1+ szz + szy, szx3 ≤ 2, szy = 1, szz = 0}
– ϕsz = {szx1 = sz(x1), szx2 = sz(x2), szx3 = sz(x3), szy = sz(y), szz = sz(z)}

In [34], Catalan numbers are used to get additional counting constraints for the particular case
where the trees are generated by finitely many constants. In our setting, Catalan numbers
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are also applicable to get the bound of range constraints. The n-th Catalan number is the
number of structurally different trees with n nodes, this is, the amount of different trees that
can be built with one element. The formula to compute the n-th Catalan number is given
by Cn = 1

n+1 ×
(2n
n

)
. To find the bound, we look for the first n such that Cn is greater than

the number of different trees in the formula. Our combinable separate form involving five
different trees, we use n = 3 since C2 = 2 and C3 = 5. There are 45 = 1024 possible range
constraints, since each variable can be equal to 0, 1, 2 or greater than or equal to 3. However
only three of them are feasible:

– szx1 = szx2 = szx3 = 2, szy = 1, szz = 0. It is T si
tree-unsatisfiable: y = cons(d, nil, nil),

thus x1 and x2 are the two possible trees of size 2, whereas x3 should also be a tree of
size 2, different to both x1 and x2.

– szx1 = szx2 = 2, szx3 = szy = 1, szz = 0. It is T si
tree-unsatisfiable since x3 = y =

cons(d, nil, nil).
– szx1 = szx2 = 2, szx3 = 0, szy = 1, szz = 0. It is T si

tree-unsatisfiable since x3 = z = nil.

Hence ϕ is T si
tree-unsatisfiable.

Assume the signature Σ includes an additional constant of sort struct, say a, such
that sz(a) = 0. Since there are now more trees of the same size, the same bound n still
works even it is not optimal. Then, the formula ϕ becomes T si

tree-satisfiable by considering
for instance the feasible range constant szx1 = szx2 = 2, szx3 = 0, szy = 1, szz = 0
which leads to a satisfiable witness, e.g., y = cons(d, nil, nil), z = nil, x3 = a, x2 =
cons(d, nil, cons(d, nil, nil)), and x1 = cons(d, cons(d, nil, nil), nil).

Back to the original signature Σ including only the nil constant, let us now con-
sider the same formula but using the height function instead of the size: ϕ′ = {x1 =
cons(d, nil, y), x2 = cons(d, y, nil), ht(x3) ≤ 2, ht(y) = 1, x1 
= x2 
= x3 
= y 
= nil}.
The combinable separate form remains the same (replacing sz by ht) except for ϕ′int which
becomes {htx1 = 1+max(hty, htz), htx2 = 1+max(htz, hty), htx3 ≤ 2, hty = 1, htz = 0}.
The number of trees with height n (built with only one element) can be computed using a
simple formula: Hn = H2

n−1 + 2 × Hn−1 × (
∑n−2

i=0 Hi ), where H1 = H0 = 1. With five
different trees (i.e., x1, x2, x3, y, z), and since H2 = 3 and H3 = 21, we use n = 3. From
the possible range constraints, the following ones are feasible:

– htx1 = htx2 = 2, hty = 1, htz = 0 with htx3 = 0 or htx3 = 1. These are not
T si
tree-satisfiable for reasons analogous to the size case.

– htx1 = htx2 = htx3 = 2, hty = 1, htz = 0. Considering the witness x3 =
cons(d, cons(d, nil, nil), cons(d, nil, nil)), it is T si

tree-satisfiable.

Therefore ϕ′ is T si
tree-satisfiable. ��

6 Axiomatized Data Structures

The previous section focused on standard theories, that is, theories corresponding precisely
to standard data structures such as finite lists and trees. This involves restricting the class
of models of AFDS, axiomatized in Sect. 3. It is also sometimes useful to weaken AFDS
to a subset of its axioms. We now consider again axiomatized theories as a mean to rep-
resent data structures. The signature not only comprises constructors, but may also include
defined symbols, e.g. selectors, bridging functions, or functions over elements. In the end
of the section, we show that this class of theories is stable with respect to combination with
theories for elements or bridging functions. The related combination procedure will be the
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one presented in Sect. 4 for AFDS, and so it is not based on a guessing of range constraints
as for standard interpretations. In the theories considered below, any disequality between
variables, say x 
= y, is indeed easy to satisfy due to the existence of a term-generated model
where x and y are interpreted by different free constants.

6.1 Data Structure Theories

In this section, we now investigate the possibility to consider source theories axiomatized
by some of the axioms of AFDS. In addition, we allow selectors and the related projection
axioms.

Definition 11 (Data structure signature with free sorts) Consider a set of sorts Elem and a
disjoint sort struct. A data structure signature Σs is a signature on {struct} ∪ Elem,
including (but not restricted to)

– Σ , the signature of constructor symbols c : σ1×· · ·×σn → struct, with σ1, . . . , σn ∈
{struct} ∪ Elem;

– Σ ′, the signature of selector symbols sci : struct → σi , with c : σ1 × · · · × σn →
struct a non-constant constructor in Σ .

A sort of Elem is free (in Σs) if it occurs only in the arities of functions symbols in Σ ∪Σ ′.
Given a signatureΣt sharing only sorts withΣs , a consistentΣt -theory shares only free sorts
with a consistent Σs-theory if the sorts shared by Σs and Σt are free in Σs .

To simplify the notation, we assume from now on that constructor symbols c ∈ Σ have
arities c : σ1 × · · · × σm × struct× · · · × struct→ struct as in Definition 1, that
is, all Elem-sorted arguments come first.

Notice that among all selectors corresponding to the constructors, a data structure signature
may only contain a few of them. Furthermore a data structure signature Σs may contain, in
addition to constructors in Σ and selectors in Σ ′, various other symbols, e.g. operators
on elements and bridging functions: in general, Σ ∪ Σ ′ ⊆ Σs . This section provides the
necessary tools to build new expressive data structure theories by combination, starting with
a simple data structure theory with only free sorts.

Definition 12 (Data structure theories) Consider a data structure signature Σs and the set of
axioms

ProjΣ ′ = { ∀x1 . . . xn . s
c
i (c(x1, . . . , xn)) = xi | sci ∈ Σ ′ }

The class of Data Structure TheoriesDST+ comprises all theories Ts such that Ts is the union
of ProjΣ ′ and any subset of axioms among Injc, Disc,d , AcycΣ as given in Definition 1.

The class DST+ includes theories of practical interest worth considering for non-disjoint
combinations with bridging functions. It contains the theory of Absolutely Free Data Struc-
tures, possibly with selectors, but also, for instance, the theory of equality, or simply, injective
functions. It appears that those theories satisfy a model-theoretic property instrumental to
prove the completeness of the combination procedure. They admit some particular Herbrand
models similar to the ones we can build for the theory of equality. This property captures data
structure theories that can be somehow reduced to the theory of equality. One could alter-
natively use the locality approach [23] to get a reduction to the theory of equality through
a finite instantiation of axioms. But our model-based approach eases the construction of a
model for data structures extended with bridging functions.
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Rather than considering the satisfiability of a set of literals modulo a theory, we explore,
in an equivalent way, the consistency of the theory extension including the set of (ground)
literals. This however requires to extend the signature with free constants. We focus on
particular formulas that will be witnessable in a way similar to Definition 7.

Definition 13 (Witnessable extension) Consider a data structure signature Σs including the
signature Σ of constructors and the signature Σ ′ of selectors, together with a finite set
of constants C such that Σs ∪ C is a constant expansion of Σs . Given a Σs-theory Ts , a
witnessable Ts-extension is a Σs ∪ C-theory Ts ∪ G where

– C includes a constant of sort σ for each sort σ in Elem ∪ {struct};
– G is a finite set of ground Σs ∪ C-literals such that its struct-sorted subterms only

occur in flat literals.

By flattening, any finite set of Σs-literals ϕ is Ts-equivalent to a sentence (∃v̄)G, where
Ts∪G corresponds to awitnessable Ts-extension, considering variables inG as free constants.
We focus on theories admitting models defined on structures of terms generated by some
constructors and the free constants occurring in Ts ∪ G.

The model-theoretic properties of DST+ theories are essential for combinations: models
can be generated from some of their symbols (i.e., the constructors). The following definition
captures these properties:

Definition 14 (Polished theory) A consistentΣs-theory Ts is polished if, for any witnessable
Ts-extension Ts ∪ G on signature Σs ∪ C , we have:

(i) If Ts ∪G is consistent, it admits a modelH such thatHΣ∪C is T (Σ ∪C ∪D) /=E where
E is a finite set of ground flat Σ ∪ C-equalities defined as the set of Σ ∪ C-equalities
in G plus some additional equalities between constants of C occurring in G, and D is
a set of fresh elements of non-free Elem-sorts of Σs . Such a model H is called a basic
Herbrand model.

(ii) For any setsD and D′ of fresh elements, respectively of non-freeElem-sorts and free sorts
(inΣs), if Ts∪G admits a basicHerbrandmodelH1 such thatHΣ∪C

1 is T (Σ∪C∪D) /=E ,
then it also admits a model H2 such thatHΣ∪C

2 is T (Σ ∪ C ∪ D ∪ D′) /=E .

A basic Herbrand model is constructed on the subsignatureΣ of Ts . This introduces a natural
distinction between constructors in Σ and defined symbols in Σs \ Σ . The constructors
build the domain of the basic Herbrand model, while the defined symbols are interpreted
as operators on this domain. For instance, the defined symbols in AFDS are the selectors.
The motivation for such a definition is to capture the fact that the theory is tolerant to
combinations with other theories, and in particular, that there is some freedom for choosing
domains with arbitrary cardinality for free Elem-sorts. Polished theories are indeed polite,
but they furthermore have the property that the domain is term-generated modulo the set E
of Σ ∪ C-equalities in G when G corresponds to a S-sorted arranged form for the set S of
free sorts in Elem.

Proposition 9 Polished theories are polite with respect to the set of free sorts in Elem.

Proof Consider a polished Σs-theory Ts (cf. Definition 14), and let S be the set of sorts that
are free in Σs . Assume any set ϕ of Σs-literals such that, considering variables of ϕ as free
constants, Ts ∪ ϕ can be viewed as a witnessable Ts-extension. For any S-sorted arranged
form ϕ′ of ϕ, Ts ∪ ϕ′ corresponds to a witnessable Ts-extension which is consistent if and
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only if ϕ′ is Ts-satisfiable. By Definition 14(i), if ϕ′ is Ts-satisfiable, then there exists a
Ts-interpretationH of ϕ′ such thatH[σ ] =⋃

v∈Varσ (ϕ′) H[v] for each σ ∈ S. Hence, ϕ is a
finite witness of itself in Ts with respect to S.

Smoothness with respect to S is a consequence of Definition 14(i i). ��
The set E of equalities used to build a basic Herbrand model can be obtained by guessing

or in a deductive way. In a guessing approach, the set E would be maximal (obtained from an
arrangement) and in that case no additional equality would be needed. An attractive approach
is to get directly the right E thanks to a deductive process. This is possible for theories Ts
in DST+ since a saturation-based calculus (see Fig. 2) provides a Ts-satisfiability procedure
together with a saturated set of literals including E and yielding a basic Herbrand model.

Proposition 10 Theories in DST+ are polished.

Proof Consider first the finite witnessability property given in Definition 14(i). Assume Ts
is any Σs-theory in DST+ and Ts = Ts ∪ G is any witnessable Ts-extension. In that case,
Σs = Σ ∪Σ ′.

To check the consistency of Ts , we can use a (simplified) superposition calculus. It can
be viewed as an abstract congruence closure procedure for the theory of equality extended
with additional inference rules to take into account the axioms in Ts . In Fig. 2, we provide
a version of this calculus instantiated for the case of AFDS+ = AFDSΣ ∪ ProjΣ ′ . This
inference system is parameterized by an ordering > on constants in C . Notice that there is a
one to one correspondence between the axioms ofAFDS+ and inference rules of this calculus.
A satisfiability procedure for a theory comprising only a subset of AFDS+ is simply obtained
by removing the inference rules corresponding to the missing axioms. For instance, if we
omit Injc, Disc,d , AcycΣ and Projc,i , we retrieve the inference system for the satisfiability
problem in the theory of equality.

Given the inputG, the calculus terminates, and computes afinite saturated set of flat literals,
say G∗. If G∗ does not contain the empty clause, the theoryTs = Ts ∪G is consistent. Along
the lines of the model-generation technique for superposition calculi [5], the set of equalities
in G∗ defines a convergent term rewrite system R helpful to build a model. Formally, let R =
{c1 → c2 | c1 = c2 ∈ G∗, c1, c2 ∈ C, c1 > c2}∪{ f (c1, . . . , cn) → cn+1 | f (c1, . . . , cn) =
cn+1 ∈ G∗}.

We consider the structureH1 of R-normal forms in T (Σ ∪ C) together with an interpre-
tation of selectors in Σ ′, and H1 the domain ofH1. By Definition 13, it is possible to choose,
for each sort σ ∈ Elem ∪ {struct}, an arbitrary but fixed constant uσ ∈ Cσ in R-normal
form. Using this constant uσ , any selector sci : struct→ σ in Σ ′ is interpreted in H1 as
follows:

– For any struct-sorted normal form which is a constant x ∈ C , H1[sci ](x) = x ′ if
sci (x)↓R= x ′ ∈ C , otherwise, H1[sci ](x) = uσ .

– For any struct-sorted normal form which is a term t = c(t1, . . . , tn), H1[sci ](t) = ti .
– For any other struct-sorted normal form t , H1[sci ](t) = uσ .

To show that H1 |� Ts , consider the set of constants CG ⊆ C occurring in G which are
R-normal forms. By definition, CG ⊆ H1. We can check that:

– For any axiom ψ in Ts and any assignment in H1 such that all terms in ψ are assigned
to values in CG , ψ evaluates to true in H1. Otherwise, it would contradict that G∗ is
saturated.

– For any axiom ψ in AFDSΣ ∪ ProjΣ ′ and any assignment in H1 such that some term in
ψ is assigned to a value in H1\CG , ψ evaluates to true in H1.
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Sup : x = x , x = y x = y if x > x , x > y
Cong1 : x j = x j , x = f (. . . , x j , . . . ) x = f (. . . , x j , . . . ) if x j > x j
Cong2 : x = f (x1, . . . , xn), x = f (x1, . . . , xn) x = x
Param : x = x , x y x y if x > x , x > y
Ref : x x
Injc : x = c(x1, . . . , xn), x = c(x1, . . . , xn) x1 = x1 . . . xn = xn if c ∈
Disc,d : x = c(x1, . . . , xn), x = d(y1, . . . , ym) if c, d ∈ c d
Acyc : x = t1[x1], . . . , xn−1 = tn [x if t1, . . . , tn are -terms of depth 1
Projc,i : x = c(x1, . . . , xn) xi = sci (x)

Fig. 2 Ts -satisfiability procedure

Since Ts is included in AFDSΣ ∪ ProjΣ ′ , all axioms in Ts evaluate to true for any assignment
in H1, i.e., H1 |� Ts . Clearly, H1 |� G, and so H1 is a model of Ts = Ts ∪ G.

It remains to introduce an equational theory E that follows Definition 14. Let E be the
set of Σ ∪ C-equalities in G plus the set of C-equalities in G∗. It is easy to check that for
any Σ ∪ C-terms s, t , we have s =E t if and only if s↓R= t ↓R :

– Assume s =E t . Since E ⊆ G∗, we have s =R t and so s↓R= t ↓R .
– Conversely, any rule l → r in R used to R-normalize s and t is such that l =E r , and so

s↓R= t ↓R implies s =E t .

Consequently, the modelH1 constructed above is indeed in the desired form.
Consider now the (smoothness) property given in Definition 14(i i). Since all Elem-sorts

are free in Ts , there are no fresh elements of non-free Elem-sorts. Hence, the set D in
Definition 14(i i) is empty. So we have to show the existence of a modelH2 of Ts such that
its Σ ∪ C-reduct HΣ∪C

2 is T (Σ ∪ C ∪ D′) /=E , where D′ is any set of fresh elements of
Elem-sorts. LetH2 be the (Σ ′ ∪Σ ∪C)-structure defined by T (Σ ∪C ∪ D′) /=E together
with an interpretation of selectors in Σ ′, and H2 the domain ofH2. By definition, H1 ⊆ H2.
Any selector sci : struct→ σ in Σ ′ is interpreted in H2 as follows:

– for any struct-sorted a ∈ H1, H2[sci ](a) = H1[sci ](a);
– for any struct-sorted a′ ∈ H2\H1, H2[sci ](a′) = a′i if a′ = H2[c](a′1, . . . , a′n),

otherwise H2[sci ](a′) = uσ .

By construction,HΣ∪C
2 is T (Σ ∪ C ∪ D′) /=E . We can check thatH2 is a model of Ts :

– Let ψ be any axiom in Ts . By assigning all variables in ψ to values in H1, ψ evaluates
to true in H2 sinceH1 is a model of Ts .

– Let ψ be any axiom in AFDSΣ ∪ ProjΣ ′ . By assigning some variable in ψ to a value in
H2\H1, ψ evaluates to true in H2.

Since Ts is included in AFDSΣ ∪ ProjΣ ′ , all axioms in Ts evaluate to true for any assignment
in H2, which means that H2 is a model of Ts . Furthermore, all literals in G are also true in
H2, and so H2 is a model of Ts = Ts ∪ G. ��

Since any polished Σs-theory is polite with respect to the set of sorts that are free in Σs , it
can be combined with an arbitrary disjoint theory of elements whose sorts are free inΣs , and
a satisfiability procedure for the resulting combined theory is provided by the combination
procedure known for polite theories [13,20]. In the following, we show that combining a
polished theory with a target theory and a bridging theory is a way to build a new polished
theory T . A T -satisfiability procedure is given by the combination procedure presented in
Sect. 4.
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6.2 Completeness of the Combination Procedure

The combination of a polished source theory Ts with a target theory Tt (and a bridging theory
T f ) results in an extension of Ts with new function symbols in Σt , and a new bridging
function f . To build on the politeness of Ts , we assume that Tt provides a theory of elements
for Elem-sorts that are free in Ts . The assumption on signatures used in Sect. 4 corresponds
to a particular case where the Σs-theory Ts is the polished theory AFDSΣ , in which all
Elem-sorts are free.

In what follows, we study the satisfiability problem modulo T = Ts ∪ T f ∪ Tt where T f

is a bridging theory between a polished theory Ts and a theory Tt sharing only free sorts with
Ts (cf. Definition 11). The combination procedure described in Sect. 4 is sound and complete
also here. We prove the completeness of the combination procedure thanks to a combined
model constructed using rewriting techniques. Given a bridging function f : struct→ t
where t is a sort from the target theory, a bridging theory provides a convergent term rewrite
system F such that for any term s of sort struct, its normal form f (s) ↓F corresponds
to a term that can be interpreted in a model of the target theory. To prove completeness, we
carefully study the interplay between the equational theory E related to a basic Herbrand
model and the term rewrite system F .

For convenience, we will consider theory extensions including the sets of ground literals
rather than handling literals and theories separately.

Assumption 1 (Input theories) Let Ts be a polished Σs-theory and Tt a Σt -theory sharing
only free sorts with Ts . Let C and Ct be two finite sets of constants such that Σs ∪ C and
Σt ∪Ct are constant expansions of Σs and Σt , respectively, where Cσ ⊆ (Ct )σ for any sort
σ occurring in Σs ∩Σt . Let α be an arrangement over C ∩ Ct .

1. Ts is a consistentΣs∪C-theory includingα, corresponding to awitnessable Ts-extension.
It admits a basic Herbrand model H such thatHΣ∪C is T (Σ ∪ C ∪ D) /=E .

2. Tt is a consistentΣt ∪Ct -theory defined as the union of Tt and some finite set of ground
Σt ∪ Ct -literals including α.

Notice that the arrangement α is over the set of constants in C whose sorts are shared by Σs

and Σt . From now on, we consider that Assumption 1 holds.
A bridging theory T f (Definition 2) is an equational theory that can naturally be oriented

as a term rewrite system F .

Proposition 11 Let T f be a bridging theory as introduced in Definition 2, and let TF =
T f ∪{ f (x) = fx | x ∈ Cstruct}. The term rewrite system F = { f (l) → r | f (l) = r ∈ TF }
is convergent and satisfies the following properties:

– f (c(e; t1, . . . , tn))↓F= fc(e; f (t1)↓F , . . . , f (tn)↓F ) for any non-constant constructor
c ∈ Σ;

– f (c)↓F= fc for any constant c in Σ , where fc is a constant in Σt ;
– f (x)↓F= fx for any struct-sorted constant x ∈ C, where fx ∈ Ct .

Example 13 Consider the length function � over lists of integers, and let Σ = {cons :
int × struct → struct, nil : struct}, Σ ′ = ∅, C = {x, y, z, e, e′}. The theory
Ts = {x = cons(e, y), y = cons(e′, z), z = nil, x 
= z, e 
= e′} is a consistent witnessable
Ts-extension for the empty Σ-theory Ts = ∅, which is polished since it belongs to DST+.
Assume the theory of integers Tt , a finite set of constants Ct ⊇ {�x , �y, �z, e, e′}, and Tt =
Tt ∪ {e 
= e′}. Given the bridging theory

T� = {�(cons(X , Y )) = 1+ �(Y ), �(nil) = 0},
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the corresponding rewrite system is F = {�(cons(X , Y )) → 1+�(Y ), �(nil)→ 0}∪{�(x) →
�x , �(y) → �y, �(z) → �z}. ��

While building a Ts ∪TF ∪Tt -model, to get a well-defined interpretation for the bridging
function f , we need a Tt -model in which f returns the same value for all E-equal input
terms of sort struct. This motivates the following definition of E-compatibility. Below,
a constructor-based term denotes a term only built over constructors in Σ together with
constants, and such that all struct-sorted free constants occurring in the term belong to C .

Definition 15 (E-Compatibility) F is E-compatible in amodelA ofTt if for any constructor-
based terms s and t , s =E t ⇒ A[ f (s)↓F ] = A[ f (t)↓F ].
Proposition 12 Under Assumption 1, Ts ∪ TF ∪ Tt is consistent if F is E-compatible in a
model of Tt .

Proof We know that F is E-compatible in a model A of Tt , and there exists a model H of
Ts such that HΣ∪C is T (Σ ∪ C ∪ D ∪ D′) /=E where

– D′ is a set of elements of shared sorts,
– H[σ ] = A[σ ] for each shared sort.

Given A andH, let us define an interpretation M as follows. The domains ofM are:

– M[σ ] = A[σ ] for any sort σ in Σt

– M[σ ] = H[σ ] for any sort σ in Σs

The function symbols are interpreted as follows:2

– For any g in Σt ∪ Ct , M[g] = A[g] and for any g in Σs ∪ C , M[g] = H[g]; this is
well-defined due to the arrangement α over C ∩ Ct

– For any constructor-based term t , M[ f ]([[t]]) = A[ f (t)↓F ]
M is well-defined due to the assumption that F is E-compatible in A. Let us check thatM
is a model of Ts ∪ TF ∪ Tt .

– MΣs∪C = H, which is a model of Ts by assumption.
– MΣt∪Ct = A, which is a model of Tt by assumption.
– For any constructor-based term t , we have that

M[ f (t)] =M[ f ]([[t]]) = A[ f (t)↓F ] =M[ f (t)↓F ]
by definition ofM. Therefore M is a model of TF .

��
Themissing piece of the method is to provide a way to check the E-compatibility of F in a

model of Tt . In the following, we show that this property can be reduced to a Tt -satisfiability
problem.

Proposition 13 F is E-compatible in a model of Tt if the theory Tt ∪ CPE is consistent,
where CPE is the target encoding of E (Definition 4).

Proof LetA be a model ofTt ∪CPE . Let R be the convergent term rewrite system associated
to E . Since α ⊆ Tt , A satisfies α, and we have that A[e↓R] = A[e] for any constant e of
sort in Σs ∩Σt . We first prove by structural induction that for any constructor-based term u,
A[ f (u↓R)↓F ] = A[ f (u)↓F ].
(Inductive case) Assume u = c(e; u1, . . . , un).
2 For any constructor-based term t , [[t]] is the equivalence class of t modulo =E .
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– If c(e; u1, . . . , un)↓R= c(e↓R; u1↓R, . . . , un ↓R), then we have:

A[ f (c(e; u1, . . . , un)↓R)↓F ]
= A[ f (c(e↓R; u1↓R, . . . , un ↓R))↓F ]
= A[ fc(e↓R; f (u1↓R)↓F , . . . , f (un ↓R)↓F )]
= fc(A[e↓R];A[ f (u1↓R)↓F ], . . . ,A[ f (un ↓R)↓F ])
= fc(A[e];A[ f (u1↓R)↓F ], . . . ,A[ f (un ↓R)↓F ])
= fc(A[e];A[ f (u1)↓F ], . . . ,A[ f (un)↓F ])
= A[ fc(e; f (u1)↓F , . . . , f (un)↓F )]
= A[ f (c(e; u1, . . . , un))↓F ]

– Otherwise, c(e; u1, . . . , un) ↓R is necessarily a constant x ′, and the terms u1 ↓R

, . . . , un ↓R are constants x1, . . . , xn . By assumption on A, we have

A[ f (x ′)↓F ] = A[ fx ′ ]
= A[ fc(e; fx1 , . . . , fxn )]
= A[ fc(e; f (x1)↓F , . . . , f (xn)↓F )]
= A[ fc(e; f (u1↓R)↓F , . . . , f (un ↓R)↓F )]
= fc(A[e];A[ f (u1↓R)↓F ], . . . ,A[ f (un ↓R)↓F ])
= fc(A[e];A[ f (u1)↓F ], . . . ,A[ f (un)↓F ])
= A[ fc(e; f (u1)↓F , . . . , f (un)↓F )]
= A[ f (c(e; u1, . . . , un))↓F ]

(Base case) Assume u is a constant x . If x ↓R= x , then f (x ↓R) ↓F= f (x) ↓F , and so
A[ f (x ↓R)↓F ] = A[ f (x)↓F ]. Otherwise, we have x ↓R= x ′. Then, by assumption on A,
we have A[ f (x ′)↓F ] = A[ fx ′ ] = A[ fx ] = A[ f (x)↓R].

To conclude the proof, let s and t be any constructor-based terms. If s =E t , then s↓R=
t ↓R and A[ f (s)↓F ] = A[ f (s ↓R)↓F ] = A[ f (t ↓R)↓F ] = A[ f (t)↓F ]. This means F is
E-compatible in the model A of Tt . ��
Example 14 (Example 13 continued) For the given Ts , we have that E = {x =
cons(e, y), y = cons(e′, z), z = nil} and so CPE = {�x = 1 + �y, �y = 1 + �z, �z = 0}.
Since Tt ∪CPE is consistent, Ts ∪TF ∪Tt is consistent thanks to Propositions 12 and 13. ��

As a side remark, in the trivial case of F = { f (xk)→ fxk }k∈K , the combination becomes
disjoint, and the consistency of Ts ∪TF ∪Tt corresponds to the consistency of the union of
three disjoint theories, including the theory of equality for f .

Propositions 12 and 13 are instrumental to prove the completeness of the combination
procedure. To relate the case of polished theories with the procedure presented in Sect. 4, it
is sufficient to notice that separate forms correspond to witnessable Ts-extensions. Then, the
following result subsumes Theorem 1:

Theorem 4 Let T = Ts ∪ T f ∪ Tt , where Ts is a polished theory, Tt shares only free sorts
with Ts and T f is a bridging theory. A combinable separate form ϕs ∪ϕt ∪ϕ f is T -satisfiable
if and only if ϕs is Ts-satisfiable and ϕt is Tt -satisfiable.

Proof Soundness is straightforward just like in Sect. 4. Let us focus on the completeness.
Consider ϕ = ϕs ∪ ϕt ∪ ϕ f and the sets of variables V = Var(ϕs), and Vt = {x | x ∈
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Varσ (ϕ), σ is a sort in Σt }. We can consider without loss of generality that V includes a
variable v for each sort in Elem ∪ {struct} (it can be enforced by adding the trivial
equality v = v to the input).

By assumption, ϕ is a combinable separate form and so there exist arrangements α, α′ as
introduced in Definition 4 such that α∪α′ ⊆ ϕs and α∪CPE ⊆ ϕt . By viewing ϕ as a set of
ground literals in a constant expansion of Σs ∪Σ f ∪Σt , we can introduce the same theories
Ts , Tt and TF as in Assumption 1 and Proposition 11. Consider C = V and Ct = Vt . Then,
the theories are defined as follows:

– the Σs ∪ C-theory Ts is Ts ∪ ϕs ,
– the Σt ∪ Ct -theory Tt is Tt ∪ ϕt ,
– TF = T f ∪ ϕ f .

By assumption, ϕs is Ts-satisfiable and ϕt is Tt -satisfiable. Since ϕt = ϕt ∪CPE , ϕt ∪CPE

is Tt -satisfiable. Thus, ϕs is Ts-satisfiable and ϕt ∪ CPE is Tt -satisfiable. Equivalently, Ts

and Tt ∪CPE are consistent. By applying Propositions 12 and 13, we get that Ts ∪TF ∪Tt

is consistent, and so Ts ∪ T f ∪ Tt ∪ ϕ is consistent, or equivalently, ϕ is T -satisfiable. ��
The following example illustrates the application of the procedure when the target theory

is not stably infinite with respect to the sorts that are free in the signature of the source theory.

Example 15 Let Tt be the theory of Booleans and a theory of binary trees over Booleans, with
Elem = {bool}, constructorsΣ = {nil : struct, cons : bool×struct×struct→
struct}, and selectors val, left, right, formally defined by Ts = {val(cons(I , X , Y )) =
I , left(cons(I , X , Y )) = X , right(cons(I , X , Y )) = Y }. Assume the bridging theory for the
function and : struct → bool is Tand = {and(nil) = true, and(cons(I , X , Y )) =
I ∧ and(X) ∧ and(Y )}.

Let T = Ts ∪ Tand ∪ Tt , and consider the T -satisfiability problem ϕ = {v1 
= v2, v1 
=
v3, x = cons(e, y, z), v1 = val(y), v3 = val(z), and(x) 
= v3, val(x) = true, v2 =
and(y), and(z) = true}, or in separate form:

– ϕs = {x = cons(e, y, z), val(x) = b, v1 = val(y), v3 = val(z)}
– ϕt = {v1 
= v2, v1 
= v3, andx 
= v3, v2 = andy, andz = true, b = true}
– ϕand = {andx = and(x), andy = and(y), andz = and(z)}

The T -unsatisfiability of ϕ follows from Theorem 4:

– Assume an arrangement α containing e = b. In the target theory, the equality e = b
implies e = true since b = true is in ϕt . Since e = andz = true, the equality
andx = e ∧ andy ∧ andz in CPE reduces to andx = andy . Then, andx 
= v3 becomes
v2 
= v3 since andx = andy = v2. Finally, {v1 
= v2 
= v3} is Tt -unsatisfiable.

– If α is an arrangement containing e 
= b, then ϕs ∪ α is Ts-unsatisfiable.

��

6.3 Modularity Results

The combined model constructed for the proof of Theorem 4 is a basic Herbrand model
of the combined theory T , actually showing that T remains a polished theory, albeit with
fewer free sorts. Compared to the source polished theory Ts , the combined polished theory T
includes an extended theory of elements. To state this modularity result, let us introduce the
data signature of a polished Σs-theory Ts defined as the subsignature Ω of Σs comprising
all function symbols f : σ1 × · · · × σn → σn+1, with σ1, . . . , σn+1 ∈ Elem. Then, the
Ω-theory T e

s = TΩ
s is called the data theory of Ts .
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Proposition 14 The combined theory T from Theorem 4 is a polished theory whose data
theory is T e

s ∪ Tt .

Proof The fact that T is a polished theory is a consequence of the model construction used
in the proof of Theorem 4. Let us prove that the data theory of T is T e

s ∪ Tt . The combined
model built in Theorem 4 shows that any model of T e

s ∪ Tt can be expanded to a model of
T , and conversely any model of T can be reduced to a model of T e

s ∪ Tt .
Let Ω be the data signature of Ts . For any Ω ∪ Σt -sentence ϕ, we can now show that

T e
s ∪ Tt |� ϕ iff T |� ϕ. This is proved by contradiction. ��
Theorem 4 shows that a new polished theory is built by considering simultaneously two

“dimensions”: the addition of a target theory, and the addition of a bridging theory. It is also
possible to consider these two dimensions separately, as discussed below.

The combined model construction seen in Sect. 6.2 also holds in the case T f = ∅ and
T = Ts ∪ Tt . Similarly to the case of a non-empty bridging theory T f , T is polished and
a T -satisfiability procedure is provided by the combination method, where for any separate
form ϕ, the sets of literals ϕ f and CPE are both empty. Since any separate form is its own
witness, we retrieve exactly the combination method known for unions of polite theories Ts
and arbitrary theories Tt [13,20], already applied in Sect. 5. Thus, this leads to the following
modularity result:

Corollary 1 The class of polished theories with a decidable satisfiability problem is closed
by combination with a decidable theory sharing only free sorts.

It is important to notice that the number of free sorts strictly decreases when a polished
theory is combined with a theory sharing only free sorts, if there is indeed at least one shared
free sort. Hence, a polished theory can be repeatedly combined with such theories but only
finitely many times before reaching a final “fully instantiated” polished theory with an empty
set of free sorts.

A combination Ts ∪ T f ∪ Tt is said to be direct when Ts is polished, Tt = T e
s and T f is

a bridging theory. In that case T e
s ∪ Tt = T e

s and the combined model construction seen in
Sect. 6.2 also holds in a simplified version not relying on the politeness of Ts .

Corollary 2 The class of polished theories with a decidable satisfiability problem is closed
by direct combination with a bridging theory.

The above modular approach is particularly useful when several bridging functions are
defined on the same target theory. To build the combined theory in that case, the target
theory is first added to the data structure theory, and then each bridging theory is added in an
incremental way.

Notice that there is no restriction on the (decidable) target theory. Actually, Tt could be also
a polished theory obtained from a previous application of the combination method. Consider
the case

T = (Ttree ∪ Tt ) ∪ Tsz

where Ttree denotes a polished theory of trees and Tsz denotes the bridging theory defining
the size of trees thanks to a target theory

Tt = (Tlist ∪ TZ) ∪ T�

corresponding to a theory of lists extended with a bridging function � computing the length of
lists. Applying twice the combination method is a way to build a T -satisfiability procedure
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where T corresponds to the union of two disjoint polished theories extended with their
respective bridging functions to TZ:

T = (Ttree ∪ Tsz ∪ TZ) ∪ (Tlist ∪ T� ∪ TZ).

In the same vein, the combination method applied twice yields a satisfiability procedure for a
theory of lists of trees extendedwith tree size sz and list length �. The above examples illustrate
the generality of our combination method. To conclude this discussion on the applications
of Theorem 4, we may remark that any Σs-theory Ts can be considered as a polished theory
for Σ = ∅. In that case, T f reduces to the theory of equality over the function symbol
f : struct → t, and our combination method leads to a satisfiability procedure for a
disjoint union of (many-sorted) theories Ts ∪ T f ∪ Tt .

7 RelatedWork

7.1 Axiomatized Data Structures

One particular aspect of our work is that the sorts for elements and for the data structure are
distinct. This is crucial for our politeness results. Data structure theoriesDST+ do not include
function or constant symbols over sorts for elements; these are supposed to be defined by an
additional, separate, theory of elements. In [34] the elements are denoted using a finite or
infinite set of constants. In our work, any separate theory can be used to define how elements
are interpreted.

The theory of Absolutely Free Data Structures is essentially the theory of finite trees.
Syntactic unification thus naturally provides a solver for the equalities. For instance, the
procedure given in [24] is based on syntactic unification to solve equations over trees, while
disequalities are processed one by one thanks to the convexity of this theory. The theory of
finite of trees is indeed a typical example of a Shostak theory. We build on this to present a
clean, abstract satisfiability procedure, by applying a solver (for equalities) together with a
canonizer (for disequalities). In practice, an efficient implementation of this satisfiability pro-
cedure would use (bidirectional) congruence closure, similarly to [18,34] for the satisfiability
of ground literals.

While Absolutely Free Data Structures are nicely handled by a solver and a canonizer,
other axiomatized theories in DST+ do not fit this schema, but their decision procedures
can still be described in an abstract way as inference systems. The abstract congruence
closure procedure given in Fig. 2 for theories inDST+ is defined as a superposition calculus.
As illustrated for instance in [6], superposition calculi are well-suited to develop abstract
decision procedures for axiomatized data structure theories. In the same vein, a dedicated
superposition calculus has been developed in [17] for an AFDS theory whose constructors
are the successor and 0, and a standard superposition calculus is applied in [2], e.g, for a
theory of lists defined by projection axioms {car(cons(E, Y )) = E, cdr(cons(E, Y )) = Y }.
In our framework, selectors car and cdr, are partially defined by these projection axioms.
Then, the extension to a total function is achieved similarly to [23] by using an arbitrary
but fixed constant (of sort elem for car : struct → elem, and of sort struct for
cdr : struct→ struct). In [34], car and cdr are defined as functions from trees to trees
such that car(nil) = cdr(nil) = nil. Such a definition is not possible here since distinct sorts
are used for the elements and for the data structure.
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Our combination approach is strongly inspired by the locality approach, andmany notions
and model constructions we use are borrowed from [22,23]. All the theories in DST+ cor-
respond to subtheories of Absolutely Free Data Structures successfully considered in [23].
In our many-sorted framework, the output sort for the data structure, say struct, is dis-
tinguished from the input sorts for elements (Elem) that are possibly shared with the target
theory. This crucial hypothesis enables new politeness results, leading to satisfiability pro-
cedures for unions of theories sharing sorts that are not covered by [23], e.g., the one in
Example 15. With respect to the locality approach, we here trade the expressiveness of bridg-
ing theories for a simpler combination schema. In our context, the bridging theory T f is
exhaustive in the sense that f is defined for each constructor in Σ . Moreover, T f is simply
defined by a set of equalities. In [23], further bridging theories are successfully considered,
by using guarded equalities and by relaxing the exhaustivity assumption to allow constants
in Σ that are undefined for f . Extending our approach to bridging theories expressed by
guarded equalities may be done at the cost of using a conditional term rewrite system in the
completeness proof of Sect. 6.2.

To prove locality properties, a classical approach [22,23] amounts to build (total) models
from some particular weak partial models. A couple of models built in this paper can be
related to models used in [23] for showing locality results:

– the combined model constructed in the proof of Theorem 1 corresponds to the model
used in the proof of Theorem 13 in [23], showing that the non-disjoint combination
AFDSΣ ∪T f ∪Tt satisfies some locality property with respect to the disjoint combination
AFDSΣ ∪ Tt ;

– the term-generated model constructed in the proof of Proposition 10 corresponds to the
model used in the proof of Theorem 10 in [23], showing that theories in DST+ are local.

The decision procedures developed here and in [22,23] are correct for essentially the same
reasons. Thus, proofs are naturally based on similar model constructions.

7.2 Standard Interpretations

The restriction to standard interpretations is presented in [22,23] as a restriction to term-
generated models built without struct-sorted free constants, where additional constraints
are used to express for instance the fact that the length of any list is positive. As noticed in [22,
23], these constraints are not sufficient when the domain for elements is finite and struct-
sorted disequalities are allowed in satisfiability problems. Actually, the main difficulty is to
decide the satisfiability of a formula

(SC) x1 
= · · · 
= xn ∧ f (x1) = · · · = f (xn) = v

where n > 1, x1, . . . , xn are struct-variables and f is a bridging function with arity
f : struct→ t. To tackle this problem, one can explore various assumptions on f .

– First, if f is bijective, then the formula SC is unsatisfiable.
– Second, if f is infinitely surjective, the formula SC is satisfiable in general, except for

some particular values of f . In that case, there are usually infinitely many struct-
elements mapped by f to the same value, except for some particular cases.

– Sufficient surjectivity [19,24] is a generalization of infinite surjectivity where the formula
SC is satisfiable because there are at least n distinct struct-elements mapped by f to
the same value, except for some particular values of f .
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– Our notion of gently growing function refines the case of a sufficiently surjective function
for t = int. In that case, the formula SC is satisfiable if v is large enough (greater or
equal than b(n) according to Definition 9), and possibly unsatisfiable for strictly smaller
values. From our point of view, the restriction t = int allows us to express sufficient
surjectivity in a simple way by using natural numbers. When f is gently growing in
some theory T , any T -satisfiability problem can be reduced to a satisfiability problem in
AFDSΣ ∪TZ by a non-deterministic procedure guessing finitely many range constraints.
This reduction can be viewed as away to build a finitewitness of any T -satisfiability prob-
lem, showing that T is polite. Hence, T is combinable with an arbitrary (non-necessarily
stably infinite) theory of elements Telem thanks to a combination method à la Nelson–
Oppen [13,20].

Our approach for standard interpretations presents some similarities with the ad hoc deci-
sion procedure presented in [34] for the particular case of trees combined with integer
constraints via the standard length function. In [34], the theory of trees includes selec-
tors, where a selector for a given type α is defined as expected for trees of type α and
as the identity otherwise. In the case of lists, the two possible types are nil and cons, and
car(nil) = cdr(nil) = nil. This definition of selectors requires an additional predicate to
check the type of a term. The approach followed in [34] includes a type completion, to guess
whether a list is of type nil or cons. This guessing is sound and complete in [34] since the
underlying theory includes the axiom of extensionality (called IsC in [22,23])

∀x . x 
= nil⇒ x = cons(car(x), cdr(x)).

Similarly, the formula

∀x . x 
= nil⇒ ∃e, y. x = cons(e, y)

stating that any list is constructed, holds in the case of standard interpretations, and the
guessing of range constraints actually provides a guessing of types: the length 0 corresponds
to nil, and any length ≥ 1 corresponds to the cons type.

In [34], the decision procedure for the existential fragment is based on a reduction to TZ
via the computation of a length constraint completion. This is sufficient when the length
function is infinitely surjective due to an infinite constant domain. We state a similar result in
Proposition 3, where the length constraint completion corresponds to the target encoding for
the length function (cf. Definition 4) together with range constraints bounded by n = 1. To go
beyond the case of infinite surjective length, [34] also introduces a general notionof relativized
length constraint completion to capture the existence of a reduction inTZ. In [34], an algorithm
is given to compute the relativized length constraint completion in the particular case of a
finite constant domain of cardinality n. To reuse this relativized length constraint completion
in our framework, we would have to consider the particular combination T si

tree ∪ Telem where
Telem = {∃e1, . . . , en . e1 
= · · · 
= en∧∀x . x = e1∨· · ·∨x = en}. Our approach, based on a
reduction toAFDSΣ∪TZ instead of a reduction to TZ as in [34], ismore flexible and is suitable
for a combinationwith any arbitrary theory of elements Telem. The possibility of a richer theory
on the constant domain, say Telem, has been briefly outlined in [34] (cf. Sect. 5.5). The idea,
recasted in our framework, would be to reduce any T si

tree ∪ Telem-satisfiability problem into
a TZ ∪ Telem-satisfiability problem, and then to apply a Nelson–Oppen combination method
for TZ ∪ Telem. In this paper, we show that a combination method à la Nelson–Oppen is
applicable when combining T si

tree with any arbitrary theory of elements Telem since T si
tree is

indeed a polite theory.
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8 Conclusion

This paper describes (Sect. 4) a non-deterministic combination method à la Nelson–Oppen
for unions of constructor-based theories connected to target theories via bridging functions.
Similarly to the classical Nelson–Oppen method, implementations of this non-deterministic
method should be based on practical refinements of the guessing phases. But this lightweight
approach is in the line with disjoint combination procedures embedded in SMT solvers, and
is thus amenable to integration in those tools.

We reuse the notions of witness and politeness (Sect. 5), already introduced for non-stably
infinite disjoint combinations, to adapt satisfiability procedures to standard interpretations.
Hence, the combination method for polite theories is applicable to combine the theory of
standard interpretations of lists (trees) with an arbitrary disjoint theory for elements.

To go beyond the case of absolutely free data structures, we have investigated in Sect. 6
more data structure theories with bridging functions. The combination method of Sect. 4
is indeed sound and complete for a large class of source data structure theories, ranging
from the theory of equality to the theory of absolutely free data structures. Thanks to the
politeness of these source theories, one can consider any arbitrary target theory, including
a non-stably infinite one sharing some sorts with the source. Hence, we have identified two
significant applications of politeness to non-disjoint combinations of theories. First, we have
studied theories defined as classes of standard interpretations. Second, we have introduced
the class of polished theories, including well-known axiomatized theories. Using the finite
axiomatization of these theories, the satisfiability problem can be solved by applying an
off-the-shelf equational theorem prover [1,2].

We envision several further investigations. First, we would like to consider the case of
non-absolutely free constructors, e.g., associative-commutative constructors. Second, we
want to continue the study of saturation-based satisfiability procedures as a mean to build
finite witnesses of polite theories. By introducing polished theories, we have focused on a
basic case related to absolutely free data structures. We believe it is possible to go further,
for instance to cope with data structure theories that are non-convex over the struct sort.

Finally, to go beyond the considered bridging axioms, a natural continuation is to identify
other “simple” connecting axioms that could be compiled into a combination method à la
Nelson–Oppen.
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