
Journal of Automated Reasoning (2021) 65:599–645
https://doi.org/10.1007/s10817-020-09583-8

Schematic Refutations of Formula Schemata

David M. Cerna1,2 · Alexander Leitsch3 · Anela Lolic3

Received: 19 December 2019 / Accepted: 29 October 2020 / Published online: 19 November 2020
© The Author(s) 2020

Abstract
Proof schemata are infinite sequences of proofs which are defined inductively. In this paper
we present a general framework for schemata of terms, formulas and unifiers and define a
resolution calculus for schemata of quantifier-free formulas. The new calculus generalizes
and improves former approaches to schematic deduction. As an application of the method
we present a schematic refutation formalizing a proof of a weak form of the pigeon hole
principle.

Keywords Schematic proofs · Resolution · Induction · Schematic formulas

1 Introduction

Recursive definitions of functions play a central role in computer science, particularly in
functional programming. While recursive definitions of proofs are less common they are of
increasing importance in automated proof analysis. Proof schemata, i.e. recursively defined
infinite sequences of proofs, serve as an alternative formulation of induction. Prior to the
formalization of the concept, an analysis of Fürstenberg’s proof of the infinitude of primes
[5] suggested the need for a formalismquite close to the type of proof schematawewill discuss
in this paper. The underlying method for this analysis was CERES [6] (cut-elimination by
resolution) which, unlike reductive cut-elimination, can be applied to recursively defined
proofs by extracting a schematic unsatisfiable formula and constructing a recursively defined
refutation.Moreover, Herbrand’s theorem can be extended to an expressive fragment of proof
schemata, that is those formalizing k-induction [11,14]. Unfortunately, the construction of
recursively defined refutations is a highly complex task. In previouswork [14] a superposition

B Anela Lolic
anela@logic.at

David M. Cerna
dcerna@cas.cs.cz; david.cerna@risc.jku.at

Alexander Leitsch
leitsch@logic.at

1 The Czech Academy of Science, Institute of Computer Science (CAS ICS), Prague, Czechia

2 Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria

3 Institute of Logic and Computation, TU Wien, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-020-09583-8&domain=pdf
http://orcid.org/0000-0002-6352-603X
http://orcid.org/0000-0002-4753-7302

600 D. Cerna et al.

calculus for certain types of formulas was used for the construction of refutation schemata,
but only works for a weak fragment of arithmetic and is hard to use interactively.

The key to proof analysis using CERES in a first-order setting is not the particularities
of the method itself, but the fact that it provides a bridge between automated deduction and
proof theory. In the schematic setting, where the proofs are recursively defined, a bridge
over the chasm has been provided [11,14], but there has not been much development on
the other side to reap the benefits of. The few existing results about automated deduction
for recursively defined formulas barely provide the necessary expressive power to anal-
yse significant mathematical argumentation. Applying the earlier constructions to a weak
mathematical statement such as the eventually constant schema required much more work
than the value of the provided insights [10]. The resolution calculus we introduce in this
work generalizes resolution and the first-order language in such a way that it provides an
excellent environment for carrying out investigations into decidable fragments of schematic
propositional formulas beyond those that are known. Furthermore, concerning the general
unsatisfiability problem for schematic formulas, our formalism provides a perfect setting for
interactive proof construction.

Proof schema is not the first alternative formalization of induction with respect to Peano
arithmetic [17]. However, all other existing examples [8,9,15] that provide calculi for induc-
tion together with a cut-elimination procedure do not allow the extraction of Herbrand
sequents1 [12,17] and thus Herbrand’s theorem cannot be realized. In contrast, in [14] finite
representations of infinite sequences of Herbrand sequents are constructed, so-called Her-
brand systems. Of course, such objects do not describe finite sets of ground instances, though
instantiating the free parameters (i.e. variables that can be instantiated with numerals) of
Herbrand systems does result in sequents derivable from a finite set of ground instances.

The formalism developed in this paper extends and improves the formal framework for
refuting formula schemata in [11,14] in several ways: 1. The new calculus can deal with
arbitrary quantifier-free formula schemata (not only with clause schemata), 2. we extend the
schematic formalism tomultiple parameters (in [11] and in [14] only schemata defined via one
parameterwere admitted); 3.we strongly extend the recursive proof specifications by allowing
mutual recursion (formalizable by so-called called point transition systems). Note that in
[11] a complicated schematic clause definition was used, while the schematic refutations in
[14] were based on negation normal forms and on a complicated translation to the n-clause
calculus. Moreover, the new method presented in this paper provides a simple, powerful and
elegant formalism for interactive use. The expressivity of the method is illustrated by an
application to a (weak) version of the pigeon hole principle.

2 AMotivational Example

In [10], proof analysis of amathematically simple statement, theEventuallyConstant Schema,
was performed using an early formalism developed for schematic proof analysis [11]. The
Eventually Constant Schema states that any monotonically decreasing function with a finite
range is eventually constant. The property of being eventually constant may be formally
written as follows:

∃x∀y(x ≤ y → f (x) = f (y)), (1)

1 Herbrand sequents allow the representation of the propositional content of first-order proofs.

123

Schematic Refutations of Formula Schemata 601

where f is an uninterpreted function symbol with the following property

∀x
(

n∨
i=0

f (x) = i

)

for some n ∈ N. The method defined in [11] requires a strong quantifier-free end sequent,
thus implying the proof must be skolemized. The skolemized formulation of the eventually
constant property is ∃x(x ≤ g(x) → f (x) = f (g(x))) where g is the introduced Skolem
function. The proof presented in [10] used a sequence of Σ2-cuts

∃x∀y(((x ≤ y) ⇒ n + 1 = f (y)) ∨ f (y) < n + 1).

Also, the Skolem function was left uninterpreted for the proof analysis. The resulting cut-
structure, when extracted as an unsatisfiable clause set, has a fairly simple refutation. Thus,
with the aid of automated theorem provers, a schema of refutations was constructed.

The use of an uninterpreted Skolem function greatly simplified the construction presented
in [10]. In this paper we will interpret the function g as the successor function. Note that
using the axioms presented in [10] the following statement

∀x
(

n∨
i=0

f (x) = i

)
	 ∃x(f (x) = f (suc(x)))

is not provable. Note that we drop the implication of Equation 1 and the antecedent of the
implication given that x ≤ suc(x) is a trivial property of the successor function. However,
using an alternative set of axioms and aweaker cutwe can prove this statement. The additional
axioms are as follows:

f (x) = i 	 f (x) < s(k) , for 0 ≤ i ≤ k < n

f (suc(x)) = i 	 f (x) < s(k) , for 0 ≤ i ≤ k < n

f (x) = k, f (suc(x)) = k 	 f (x) = f (suc(x)) , for 0 ≤ k ≤ n

f (0) < 0 	
f (suc(x)) < s(k) 	 f (suc(x)) = k, f (x) < k , for 0 ≤ k ≤ n

f (x) < s(k) 	 f (x) = k, f (x) < k, for 0 ≤ k < n

For the most part these axioms are harmless, however the axiom f (suc(x)) < s(k) 	
f (suc(x)) = k, f (x) < k implies that f has some monotonicity properties similar to the
eventually constant schema.
Note that the mentioned axiom f (x) < s(k) 	 f (x) = k, f (x) < k is equivalent to

f (k) ≥ k 	 f (suc(x)) ≥ k

in the standard model. Thus this axiom describes an increase of values, not a decrease! For
example consider the following interpretation of f for n = 2:

f (0) = 0, f (1) = 1, f (2) = 2, f (z) = 2 for all z > 1.

Here we have f (1) < 2, but f (2) = 2 and f (z) = 2 for all z > 1.
Being that our proof enforces this property using the following Δ2-cut formula we are guar-
anteed to reach a value in the domain above which f is constant. The cut formula is:

∃x(f (x) = k ∧ k = f (suc(x))) ∨ ∀x(f (x) < k) , for 0 ≤ k ≤ n.

123

602 D. Cerna et al.

Fig. 1 Output of Peltier et al.’s Prover9 extension [13]

One additional point which the reader might notice is that we use what seems to be the less
than relation and equality relation of the natural numbers, but do not concern ourselves with
substitutivity of equality nor transitivity of <. While including these properties will change
the formal proof we present below, the argument will still require a free numeric parameter
denoting the size of the range of f and the number of positions we require to map to the
same value.

We will refer to this version of the eventually constant schema as the successor eventually
constant schema. While this results in a new formulation of the eventually constant schema
under an interpretation of the Skolem function as the successor function, we have not taken
complete advantage of this new interpretation taking into account that this re-formulation is
actually of lower complexity than the eventually constant schema. For example in Fig. 1 we
provide the output of Peltier’s superposition induction prover [3] when ran on the clausified
form of the cut structure of the successor eventually constant schema. The existence of this
derivation implies that the proof analysis method of [14] may be applied to the successor
eventually constant schema. Unfortunately, the prover does not find the invariant discovered
in [10], but this may have more to do with the choice of axioms rather than the statement
being beyond the capabilities of the prover.

We can strengthen the successor eventually constant schema beyond the capabilities of
[13] easily by adding a second parameter as follows:

∀x
(

n∨
i=0

f (x) = i

)
	 ∃x

(
m∧
i=0

f (x) = f (suci (x))

)
.

We refer to this problem as the m-successor eventually constant schema. Applying this
transformation to the eventually constant schema of [10] is not so trivial being that the axioms
used to construct the proof do not easy generalize. However, for the successor eventually

123

Schematic Refutations of Formula Schemata 603

constant schema the generalization is trivial and is provided below:

f (sucr (x)) = i 	 f (x) < s(k) , for 0 ≤ i ≤ k ≤ n and 0 ≤ r ≤ m,

f (x) = k, f (sucr (x)) = k 	 f (x) = f (sucr (x)) , for 0 ≤ k ≤ n, and 0 < r ≤ m,

f (0) < 0 	,

f (sucr (x)) < s(k) 	 f (sucr (x)) = k, f (x) < k , for 0 ≤ k ≤ n and 0 ≤ r ≤ m,

where suc0(x) = x .

Similar to the previous case, the last axiom may be interpreted as

f (x) ≥ k 	 f (sucr (x)) ≥ k for 0 ≤ k ≤ n, 0 ≤ r ≤ m

over the standard model, where sucr (x) = x + r . Again, it describes an increase of values.
Furthermore, the cut formula can be trivially extended as follows:

∃x
(

m∧
i=0

f (suci (x)) = k

)
∨ ∀x(f (x) < k) , for 0 ≤ k ≤ n.

Given that the m-successor eventually constant schema contains two parameters it is beyond
the capabilities of [13]. Interesting enough, the prover can find invariants for each value ofm
in terms of n, though, these invariants get impressively large quite quickly. The cut structure
of the m-successor eventually constant schema may be extracted as an inductive definition
of an unsatisfiable negation normal form formula. We provide this definition below:

O(n,m) = D(n,m) ∧ P(n,m),

C(y, n, 0) = f (S(0, y)) � n,

C(y, n, s(m)) = f (S(s(m), y)) � n ∨ C(y, n,m),

T (n, 0) = ∀x(f (S(0, x)) �< s(n) ∨ f (S(0, x)) ∼ n ∨ f (x) < n),

T (n, s(m)) = ∀x(f (S(s(m), x)) �< s(n) ∨ f (S(s(m), x)) ∼ n ∨ f (x) < n)

∧ T (n,m),

P(0,m) = ∀x(C(x, 0,m)) ∧ f (a) �< 0,

P(s(n),m) = ∀xC(x, s(n),m) ∧ T (n,m) ∧ P(n,m),

D(n, 0) = ∀x(f (S(0, x)) ∼ n ∨ f (x) < n),

D(n, s(m)) = ∀x(f (S(s(m), x)) ∼ n ∨ f (x) < n) ∧ D(n,m),

S(0, y) = y,

S(s(n), y) = suc(S(n, y)).

where a is some arbitrary constant. We will show how our new formalism can provide a
finite representation of the refutations of the inductive definition even though our refutation
requires the use of mutual recursion as well as multiple parameters (six in total).

3 Schematic Language

Large parts of mathematics can be formalized in a natural way in second-order logic [16].
However, most methods for proof analysis and transformation are particularly suited for first-
order logic and thus, second-order formalizations have to be projected to first-order ones.
The most appropriate way to deal with this projection is the introduction of a many-sorted
language. As in [11,14] we choose to work in a two-sorted version of classical first-order
logic with one sort for a standard first-order term language and one for numerals.

123

604 D. Cerna et al.

The first sort we consider is ω, in which every ground term normalizes to a numeral, i.e. a
term inductively constructable over the signature Σω = {0, s(·)} as follows N ⇒ s(N) | 0,
s.t. s(N) �= 0 and s(N) = s(N ′) → N = N ′. Natural numbers (N) will be denoted by
lower-case Greek letters (α, β, γ , etc); The numeral sα0, α ∈ N, will be written as ᾱ. The set
of numerals is denoted by Num. When describing sequences of objects such as t1, · · · , tα , if
it is possible to avoid confusion, we will abbreviate the sequence by −→

t α .
Furthermore, the ω sort includes a countable set of variablesN called parameters. Param-

eters are denoted by k, l, n,m, k1, k2, . . . , l1, l2, . . . , n1, n2, . . . ,m1,m2, The set of
parameters occurring in an expression E is denoted by N (E). The set of free ω-terms,
denoted by T ω

0 contains all terms inductively constructable over Σω and N as follows:

– If t ∈ N or t ∈ Num, then t ∈ T ω
0

– If t ∈ T ω
0 , then s(t) ∈ T ω

0

In addition to the signature Σω, the ω sort allows defined function symbols, the set of which
will be denoted by Σ̂ω. These symbols will be denoted using ·̂ and have a fixed finite arity.
The set of ω-terms, denoted by T ω contains all terms inductively constructable overΣω, Σ̂ω,
and N , i.e.

– If t ∈ T ω
0 , then t ∈ T ω

– If t1, · · · tα ∈ T ω and f̂ ∈ Σ̂ω, s.t. f̂ has arity α ≥ 1 , then f̂ (
−→
t α) ∈ T ω

The second sort, the ι-sort (individuals), also has two associated signatures, the set of free
function symbols,Σι, and the set of defined function symbols, Σ̂ι. Similarly, defined symbols
will be denoted by ·̂ and have a fixed finite arity. Variables of the ι-sort are what we refer
to as global variables, that is variables which take numeric arguments, i.e. X(

−→
t α) where−→

t α ∈ T ω for α ≥ 0. Note that α is fixed and finite. The set of all global variables will be
denoted by VG , and terms of the form X(

−→
t α) will be referred to as V-terms over X . The set

of V -terms whose arguments are numerals (from Num) will be denoted by V ι. Such terms
are referred to as individual variables. We will often denote the set of individual variables
contained in some object T by V ι(T), e.g. a substitution, an ι term, a set of ι terms, etc. A
similar construction will be used for other types of objects defined in this section.

Thus, the set of free ι-terms, denoted by T ι
0 is inductively constructed from Σι and VG as

follows:

– If ᾱ1, · · · , ᾱβ ∈ Num and X ∈ VG , then X(
−→̄
αβ) ∈ T ι

0

– If t1, · · · , tα ∈ T ι
0 and f ∈ Σι s.t. f has arity α ≥ 0, then f (

−→
t α) ∈ T ι

0

The set of ι-terms, denoted by T ι is inductively constructed from Σι, Σ̂ι, and VG as
follows:

– If t ∈ T ι
0 , then t ∈ T ι

– If t1, · · · , tα ∈ T ω and X ∈ VG , then X(
−→
tα) ∈ T ι

– If t1, · · · , tα ∈ T ι, f̂ ∈ Σ̂ι,
−→
Xβ ∈ VG , and −−→nα+1 ∈ N s.t. f̂ has arity α + β + 1 for

α, β ≥ 0, then f̂ (
−→
Xβ,

−−→nα+1) ∈ T ι

Remark 1 In this work we will define schematic refutations and schematic unifiers. In previ-
ous work (see [14]) in principle only an implicit representation of unification schemata could
be obtained, an explicit representation was impossible due to the restrictions of the formal-
ism. If we however allow for the use of indexed variables, we obtain a stronger formalism
in the sense that schematic variables, and thus unifiers, can be defined. The use of global
variables will be vital for the definition of schematic substitutions and unifiers later in the
paper.

123

Schematic Refutations of Formula Schemata 605

The third and final sort we consider is that of formulas which will be denoted by o.
Formulas are constructed using the signature Σo = {¬,∧,∨}, a countably infinite set of
predicate symbols P with fixed and finite arity, and a countably infinite set of formula
variables V F . The set of formula terms, denoted by T o

V is constructed inductively as follows:

– if t ∈ V F , then t ∈ T o
V

– if t1, . . . , tα ∈ T ι and P ∈ P s.t. P has arity α ≥ 0, then P(
−→
tα) ∈ T o

V .
– if t ∈ T o

V , then ¬t ∈ T o
V

– if t1, t2 ∈ T o
V and 	 ∈ {∨,∧}, then t1	t2 ∈ T o

V

We refer to Boolean expressions as the subset of T o
V constructed without symbols of V F.

For t ∈ T o
V , by V F (t) ⊂ V F we denote the set of formula variables occurring in t . The set

of Boolean expressions will be denoted by T o
0 and is constructed as follows:

– if t1, . . . , tα ∈ T ι and P ∈ P s.t. P has arity α ≥ 0, then P(
−→
tα) ∈ T o

0 .
– if t ∈ T o

0 , then ¬t ∈ T o
0

– if t1, t2 ∈ T o
0 and 	 ∈ {∨,∧}, then t1	t2 ∈ T o

0

Formula schemata are constructed using formula terms by allowing defined predicate
symbols to occur. Similarly as in the previous cases, defined symbols will be denoted by ·̂
and have a fixed finite arity. The set of defined predicate symbols is denoted by P̂ . The set of
formula schemata is denoted by To(Σo,P, V F , VG ,N , P̂) and is constructed inductively
as follows:

– if t ∈ T o
V , then t ∈ T o

– If t1, · · · , tα ∈ T o, P̂ ∈ P̂ ,
−→
Xβ ∈ VG , and −−→nα+1 ∈ N s.t. P̂ has arity α + β + 1 for

α, β ≥ 0, then P̂(
−→
Xβ,

−−→nα+1) ∈ T o

– if t ∈ T o, then ¬t ∈ T o

– if t1, t2 ∈ T o and 	 ∈ {∨,∧}, then t1	t2 ∈ T o

Furthermore, for x ∈ {ω, ι, o}, Σ̂x has an associated irreflexive, transitive, and Noetherian
order <x .

For every defined symbol f̂ ∈ Σ̂ω ∪ Σ̂ι ∪ Σ̂o there exists a set of defining equations D(f̂)
which expresses a primitive recursive definition of f̂ .

Definition 1 (Defining equations) Let x ∈ {ω, ι, o}, α, β ≥ 0, and • is a member ofN ,V ι, or
V F depending on x . For every f̂ ∈ Σx , we define a set D(f̂) consisting of two equations:

f̂ (
−→
X α,

−→n β, 0) = t f̂B , f̂ (
−→
X α

−→n β, s(m)) = t f̂S {• ← f̂ (
−→
X α

−→n β,m)}, where

(1) If f̂ is minimal:

(a) if x ∈ {ω, ι}, then t f̂B , t f̂S ∈ T x
0

(b) if x = o, then t f̂B ∈ T o
0 , t

f̂
S ∈ T o

V , and |V F (t f̂S)| ≤ 1.

(2) If f̂ is non-minimal: t f̂B , t f̂S ∈ T x where t f̂B , t f̂S maycontain only defined function symbols

smaller than f̂ in <x . If x = o, then |V F (t f̂S)| ≤ 1 and |V F (t f̂B)| = 0.

Additionally, N (t f̂B) ⊆ {n1, . . . , nβ}, N (t f̂S) ⊆ {n1, . . . , nβ} ∪ {m, •} (if • ∈ N), and

the only global variables occurring in tB and tS are
−→
X α ∪ {•} (if • ∈ V ι). We define

Dx = ⋃{D(f̂) | f̂ ∈ Σ̂x }.

123

606 D. Cerna et al.

Remark 2 We frequently write tB instead of t f̂B and tS instead of t
f̂
S when the defined symbol

is clear from the context.

Definition 2 (Closed symbol set) Let S be a finite set of symbols in Σ̂ω ∪ Σ̂ι ∪ Σ̂o. We call

S closed if for any f̂ ∈ S all defined symbols occurring in t f̂B and in t f̂S belong to S.

Definition 3 (Theory) Let S be a closed set of symbols. Then the tuple (S, f̂ ,D) is a theory
of f̂ if

– f̂ ∈ S and f̂ is maximal in S,
– D = ⋃{D(f̂) | f̂ ∈ S}.

Example 1 For p̂ ∈ Σω, D(p̂) = {
p̂(0̄) = 0̄, p̂(s(m)) = m

}
, tB = 0̄, ts = m.

Let f̂ , ĝ ∈ Σω s.t. f̂ is minimal and f̂ <ω ĝ. We define D(f̂) as

f̂ (n, 0̄) = tB , f̂ (n, s(m)) = tS{• ← f̂ (n,m)}
for tB = n and tS = s(•). Then, obviously, f̂ defines +. Now we define D(ĝ) as

ĝ(n, 0̄) = t ′B , ĝ(n, s(m)) = t ′S{• ← ĝ(n,m)}
where t ′B = 0̄ and t ′S = f̂ (n, •). Then ĝ defines ∗. In both cases • is any fresh parameter in

N . The corresponding theory is
(
{ p̂, f̂ , ĝ}, {ĝ}, D(p̂) ∪ D(f̂) ∪ D(ĝ)

)
.

Example 2 As a second example consider g ∈ Σι and f̂ ∈ Σ̂ι. We define D(f̂) as

f̂ (X , 0) = X(0), f̂ (X ,m + 1) = g(X(m + 1), f̂ (X ,m)).

Here, tB = X(0), tS = g(X(m + 1), •).

It is easy to see that, given any parameter assignment, all terms in T ω evaluate to numerals.
The defined symbols in our language introduce an equational theory and without restrictions
on the use of these equalities the word problem is undecidable. Furthermore, the evaluation
of equations can be nonterminating. However, in this work the equations can be oriented to
terminating and confluent rewrite systems and thus termination of the evaluation procedure
is easily verified.

Definition 4 (Rewrite systems) Let x ∈ {ω, ι, o}, and f̂ ∈ Σx . Then R(f̂) is the set of the
following rewrite rules obtained from D(f̂):

f̂ (
−→
X α,

−→n β, 0) → tB , f̂ (
−→
X α

−→n β, s(m)) → tS{• ← f̂ (
−→
X α

−→n β,m)},
Rx = ⋃{R(f̂) | f̂ ∈ F̂x }. When a term s ∈ T x rewrites to t under Rx we write s →x t . for
a term s ∈ T x , such thatN (s) = ∅, we denote exhaustive application of Rx to s by s↓x , i.e.
normalization of s.

Definition 4 implies that parameters ought to be replaced by numerals prior to normalization.

Definition 5 (Parameter assignment) Afunctionσ : N → Num is called aparameter assign-
ment. σ is extended to T ω homomorphically:

– σ(β̄) = β̄ for numerals β̄.
– σ(s(t)) = s(σ (t))
– σ(f̂ (

−→
tα)) = f̂ (σ (

−→
tα))↓ω for f̂ ∈ Σω and −→

tα ∈ T ω.

123

Schematic Refutations of Formula Schemata 607

The set of all parameter assignments is denoted by S.

Note that parameter assignments (Definition 5) can be extended to ι and o terms in an
obvious way. While numeric terms evaluate to numerals under parameter assignments, terms
in T ι evaluate to terms in T ι

0, i.e. to ordinary first-order terms, and terms in T o evaluate to
terms in T o

0 , i.e. Boolean expressions. Like for the terms in T ω the evaluation is defined via
a rewrite system. To evaluate a term t ∈ T ι under σ ∈ S we have to combine →ω and →ι.

Definition 6 (Evaluation of T ι) Let σ ∈ S and t ∈ T ι. We define σ(t)↓ι:

– t = X(
−→sα) for X ∈ VG then σ(X(

−→sα))↓ι= X(
−−→
σ(sα)↓ω).

– t = f (−→sα) for f ∈ Σι,then σ(f (−→s α))↓ι= f (σ (
−→s α)↓ι).

– t = f̂ (
−→
X α,

−→
t β+1) for f̂ ∈ Σ̂ι, then σ(f̂ (

−→
X α,

−→
t β+1))↓ι= f̂ (

−→
X α, σ (

−→
t β+1)↓ω)↓ι .

Remark 3 Concerning global variables and normalization, we should consider the following:
Let t1, · · · tα, s1, · · · sα ∈ ω, X , Y ∈ VG , then we say X(t1, · · · tα) = Y (s1, · · · sα) iff X = Y
and for any parameter assignment σ we have σ(ti)↓ω= σ(si)↓ω for 1 ≤ i ≤ α.

Example 3 Let us consider the evaluation of the term g(X(n), f̂ (X ,m + 1)) with respect to
the parameter assignment σ(m) = 2, σ(n) = 2, using the defining equations provided in
Example 2.

σ(g(X(n), f̂ (X ,m + 1)))↓ι = g(σ (X(n))↓ι, σ (f̂ (X ,m + 1))↓ι)

= g(X(σ (n)↓ω), f̂ (X , σ (m + 1)↓ω)↓ι)

= g(X(2), f̂ (X , 3)↓ι)

= g(X(2), g(X(3), f̂ (X , 2)↓ι))

= g(X(2), g(X(3), g(X(2), f̂ (X , 1)↓ι)))

= g(X(2), g(X(3), g(X(2), g(X(1), f̂ (X , 0)↓ι))))

= g(X(2), g(X(3), g(X(2), g(X(1), X(0)))))

To evaluate a term t ∈ T o under σ ∈ S we have to combine →ω, →ι, and →o.

Definition 7 (Evaluation of T o) Let σ ∈ S; we define σ(t)↓o for t ∈ T o.

– t ∈ V F , then σ(t)↓o= t .
– t = P(

−→
tα) for P ∈ Σo, then σ(P(

−→
tα))↓o= P(

−−→
σ(tα)↓ι).

– t = P̂(
−→
X α,

−→
t β+1) for P̂ ∈ Σ̂o, then P̂(

−→
X α, σ (

−→
t β+1)↓ω)↓o

– t = ¬t ′, then σ(¬t ′)↓o= ¬σ(t ′)↓o.
– t = t1 ◦ t2, then σ(t)↓o= σ(t1)↓o ◦σ(t2)↓o for ◦ ∈ {∧,∨}.

Proposition 1 .

– Rx is a canonical rewrite system for x ∈ {ω, ι, o}.
– Let t ∈ T x and σ ∈ S. Then the (unique) normal form of σ(t) under Rx , σ(t)↓x , is a

member of T x
0 .

Proof Concerning Rω, termination and confluence are well known, see e.g. [4]. In particular,
0̄, s and R(Σ̂ω) define a language for computing the set of primitive recursive functions; in
particular the recursions are well founded. A formal proof of termination requires double

123

608 D. Cerna et al.

induction on <ω and the value of the recursion parameter. The proofs for Rι and Ro are
slightly more complex. Given the similarity of the two rule sets we will only provide formal
proof for Rι. In particular, we show that given t ∈ T ι and σ ∈ S then σ(t)↓ι∈ T ι

0. We
proceed according to Definition 6.

– if t = X(
−→sα) then σ(

−→sα)↓ω= −→̄
γα for γ̄α ∈ Num and σ(X(

−→sα))↓ι= X(
−→̄
γα) ∈ V ι.

– if t = f (−→sα) for f ∈ Σι, then σ(f (−→sα))↓ι= f (
−−→
σ(sα)↓ι). By induction we may assume

that
−→
s′
α = −−→

σ(sα)↓ι∈ T ι
0, thus f (s′

1, . . . , s
′
α) ∈ T ι

0.

– if f̂ (
−→
X α,

−→
tβ , tβ+1) for f̂ ∈ Σ̂ι and f̂ is minimal in <ι, then we distinguish two cases

1. σ(tβ+1)↓ω= 0̄. Then, σ(f̂ (
−→
X α,

−→
tβ , tβ+1))↓ι)) = f̂ (

−→
X α,

−→̄
γβ , 0̄) for

−→̄
γi ∈ Num.

According to Definition 4 f̂ (
−→
X α,

−→̄
γβ , 0̄) rewrites to tB ∈ T ι

0.

2. σ(tβ+1)↓ω= ¯p + 1 for p > 0. Then f̂ (
−→
X α,

−→̄
γβ , ¯p + 1) rewrites to the term tS{• ←

f̂ (
−→
X α,

−→̄
γβ , p̄)}where tS ∈ T ι

0. By induction on pwe infer that f̂ (
−→
X α,

−→̄
γβ , p̄)↓ι∈ T ι

0

and so f̂ (
−→
X α, γ̄β , ¯p + 1) rewrites to a term in T ι

0.

– if f̂ (
−→
X α,

−→
tβ , tβ+1) for f̂ ∈ Σ̂ι and f̂ is not minimal in<ι, then we have to add induction

on <ι with the base cases shown above.

��
Example 4 We consider the theory ({ f̂ }, f̂ ,D) where D = {D(f̂)} for D(f̂) defined below.
Let X , Y ∈ VG , g ∈ Σι, and n,m parameters. Assume f̂ is defined as follows: Let D(f̂)
consist of the two equations

f̂ (X , Y , n, 0̄) = Y ,

f̂ (X , Y , n, s(m)) = g(X(n,m), f̂ (X , Y , n,m)).

We evaluate f̂ (X , Y , n,m) under σ , where σ(n) = 1̄, σ (m) = 2̄ and σ(k) = 0̄ for k /∈
{n,m}.
σ(f̂ (X , Y , n,m))↓ι = f̂ (X , Y , 1̄, 2̄)↓ι= g(X(1̄, 1̄), f̂ (X , Y , 1̄, 1̄)↓ι)

= g(X(1̄, 1̄), g(X(1̄, 0̄), f̂ (X , Y , 1̄, 0̄)↓ι) = g(X(1̄, 1̄), g(X(1̄, 0̄), Y)).

When we write x1 for X(1̄, 1̄) and x2 for X(1̄, 0̄) and y for Y we get the term in the common
form g(x1, g(x2, y)).

The last point we would like to make concerning terms T o is that we designed the language
to finitely express infinite sequences of quantifier free first-order formula. In particular, we
are interested in infinite sequences of unsatisfiable formula whose refutations are finitely
describable using the resolution calculus introduced later in this paper. We end this section
with examples of such formulas.

Definition 8 (Unsatisfiable schemata) Let F ∈ T o. Then F is called unsatisfiable if for all
σ ∈ S the formula σ(F)↓o is unsatisfiable.

Example 5 Let a ∈ Σι, P ∈ Σo, f̂ as in Example 2, P̂, Q̂ ∈ Σ̂o such that P̂ <o Q̂. We
consider the theory ({P̂, Q̂, f̂ }, Q̂, {D(P̂), D(Q̂), D(f̂)}). The defining equations for P̂ and
Q̂ are:

P̂(X , 0̄) = ¬P(X(0̄), f̂ (a, 0)), P̂(X , s(n)) = P̂(X , n) ∨ ¬P(X(s(n)), f̂ (a, s(n))),

123

Schematic Refutations of Formula Schemata 609

Q̂(X , Y , n, 0̄) = P(f̂ (Y (0̄), 0̄), Y (1̄)) ∧ P̂(X , n) and

Q̂(X , Y , n, s(m)) = P(f̂ (Y (0̄), s(m)), Y (1̄)) ∧ P̂(X , n).

It is easy to see that the schema Q̂(X , Y , n,m) is unsatisfiable. Let us consider
σ(Q̂(X , Y , n,m))↓o for σ with σ(m) = 2̄, σ (n) = 3̄:

σ(Q̂(X , Y , n,m))↓o = P(f̂ (Y (0), 2), Y (1)) ∧ P̂(X , 3)↓o)

= P(f̂ (Y (0), 2), Y (1)) ∧ (P̂(X , 2)↓o ∨¬P(X(3), f̂ (a, 3)↓ι)

= P(f̂ (Y (0), 2), Y (1)) ∧ (P̂(X , 1)↓o ∨¬P(X(2), f̂ (a, 2)↓ι) ∨
¬P(X(3), f̂ (a, 3)↓ι))

= . . . P(g(g(Y (0)), Y (1)) ∧
(¬P(X(0), a) ∨ ¬P(X(1), g(a)) ∨ ¬P(X(2), g(g(a))) ∨
¬P(X(3), g(g(g(a))))).

Note that for σ(n) = ᾱ the number of different variables in σ(Q̂(X , Y , n,m))↓o is α + 2;
so the number of variables increases with the parameter assignments.

Example 6 Let us now consider the schematic formula representation of the inductive def-
inition extracted from the m-successor eventually constant schema presented in Sect. 2.
This requires us to define five defined predicate symbols F̂1, F̂2, F̂3, F̂4, and F̂5 such that
F̂5 <o F̂4 <o F̂3 <o F̂2 <o F̂1. Furthermore, the defining equations associated with these
defined predicate symbols contain the symbols ∼,<∈ Σo, a, f , suc ∈ Σι, and n,m ∈ N .
We also require a defined function symbol Ŝ ∈ Σ̂ι. Note that in this case the sort ι is identical
to ω. Using these symbols we can rewrite the inductive definition provided in Sect. 2 into
the theory (S, F̂1,D) where S = {F̂1, . . . , F̂5, Ŝ} and D consists of the equations below
(X = (X1, X2, X3)):

F̂1(X, n,m) = F̂2(X, n,m) ∧ F̂3(X, n,m)

F̂2(X, n, 0) = f (Ŝ(X1(n, 0), 0)) ∼ n ∨ f (X1(n, 0)) < n

F̂2(X, n, s(m)) = (f (Ŝ(X1(n, s(m)), s(m))) ∼ n ∨ f (X1(n, s(m))) < n) ∧
F̂2(X, n,m)

F̂3(X, 0,m) = F̂5(X, 0,m) ∧ f (a) �< 0

F̂3(X, s(n),m) = (F̂5(X, s(n),m) ∧ (F̂4(X, n,m)) ∧ F̂3(X, n,m)

F̂4(X, n, 0) = f (Ŝ(X2(n, 0), 0)) �< s(n) ∨ f (Ŝ(X2(n, 0), 0)) ∼ n ∨
f (X2(n, 0)) < n

F̂4(X, n, s(m)) = f (Ŝ(X2(n, s(m)), s(m))) �< s(n) ∨
f (Ŝ(X2(n, s(m)), s(m))) ∼ n ∨ f (X2(n, s(m))) < n ∧
F̂4(X, n,m)

F̂5(X, n, 0) = f (Ŝ(X3(n), 0)) � n

F̂5(X, n, s(m)) = f (Ŝ(X3(n), s(m))) � n ∨ F̂5(X, n,m)

Ŝ(Z , 0) = Z

Ŝ(Z , s(n)) = suc(Ŝ(Z , n))

In dealing with term schemata we have to consider schematic substitutions, particularly
when we are interested in unification. Below we develop some formal tools to describe
such schemata. Note that for two term schemata to be unifiable, they have to be unifiable

123

610 D. Cerna et al.

for all parameter assignments. Here the use of global variables plays a vital role. Although
there are unifiable term schemata that are defined without global variables, allowing this
kind of indexed variables in the construction of term schemata simplifies the formalism. As
shown below in Example 7, there are term schemata (which are defined without using global
variables) that are unifiable for some, but not all parameter assignments.

Example 7 Let us consider f̂ , f̂1, and ĝ with the defining equations

f̂ (x, 0) = h(a, a), f̂ (x, s(n)) = h(x, f̂ (x, n))

f̂1(x, y, 0) = h(a, a), f̂1(x, y, s(n)) = h(x, f̂ (y, n))

ĝ(x, y, 0) = h(a, a), ĝ(x, y, s(n)) = h(ĝ(x, y, n), y)

Note that f̂1 > f̂ . Consider the parameter assignment σ = {n → 2} and the evaluation of
f̂1(x, y, n):

f̂1(x, y, n)↓σ = f̂1(x, y, 2)↓
= h(x, f̂ (y, 1)↓) = h(x, h(y, f̂ (x, 0)↓)) = h(x, h(y, h(a, a)).

We can define unification problems such as

f̂ (x, n)
?= ĝ(y, y, n)

Consider σ0 = {n → 0} and σ1 = {n → 1}. Then, the unification problem evaluates to

f̂ (x, n)↓σ0
?= ĝ(y, y, n)↓σ0 ⇒ h(a, a)

?= h(a, a)

f̂ (x, n)↓σ1
?= ĝ(y, y, n)↓σ1 ⇒ h(x, h(a, a))

?= h(h(a, a), y),

both of which are unifiable. However, for σ2 = {n → 2} the unification problem evaluates
to

h(x, h(x, h(a, a)))
?= h(h(h(a, a), y), y).

After two steps unification fails due to occurs check.
On the other hand,

f̂1(x, y, s(n))
?= ĝ(z, z, s(n))

is a unifiable unification problem. The evaluation for σ2 = {n → 2} is
h(x, h(y, h(y, h(a, a)))) = h(h(h(h(a, a), z), z), z).

A unifier for this problem is θ =
{x ← h(h(h(a, a), h(y, h(y, h(a, a)))), h(y, h(y, h(a, a)))), z ← h(y, h(y, h(a, a)))}.
The substitution schema is

ϑ̂(n) = {x ← ĝ(f̂ (y, n), f̂ (y, n), n), z ← f̂ (y, n)}.
As term schemata that are defined without the use of global variables repeat a finite set of
variables arbitrarily often, in many cases the unification problem of term schemata will result
in occurrence check failure. We can tackle this problem by using global variables. Usually,
we do not desire all variables occurrences to be the same nor do we desire them to all be

123

Schematic Refutations of Formula Schemata 611

different. These extreme cases can be described through quantification. Let P be a one-place
predicate symbol, then P(f̂ (x, n)) can be interpreted as

∀x P(h(x, h(x, . . . , h(x, h(a, a)) . . .))), or as
∀x1, . . . xn P(h(x1, h(x2, . . . , h(xn, h(a, a)) . . .))).

The use of global variables allows for the syntactic description of properties of the quantifier
prefix. Moreover, it reduces unwanted occurrence check failure. The domain of a unifier
of term schemata, that are constructed using global variables, is by construction dependent
on the numeric parameter. These kind of unifiers are called s-unifiers. Before introducing
s-unification formally, we need some preliminaries.
The class T ω

0 which represents the free algebra based on s and 0̄ is not very expressive while
T ω is too strong (many properties are undecidable). For our proof analysis in Sect. 6 we need
a slight extension of T ω

0 ; besides the successor, we add the predecessor in order to define
recursive calls. For this reason we extend our class T ω

0 by adding the defined function symbol
p̂ as defined in Example 1.

Definition 9 (T ω
1) Let p̂ ∈ Σ̂ω and D(p̂) as in Example 1. The class T ω

1 is defined inductively
as follows.

– 0̄ ∈ T ω
1 ,

– N ⊆ T ω
1 ,

– if t ∈ T ω
1 then s(t) ∈ T ω

1 ,
– if t ∈ T ω

1 then p̂(t) ∈ T ω
1 .

Definition 10 (Essentially distinct) Let −→s 1 = (s1, . . . , sα) for s1, . . . , sα ∈ T ω
1 and −→s 2 =

(s′
1, . . . , s

′
β) for s′

1, . . . , s
′
β ∈ T ω

1 . −→s 1 and
−→s 2 are called essentially distinct if either α �= β

or for all σ ∈ S there exists an i ∈ {1, . . . , α} such that σ(si)↓ω �= σ(s′
i)↓ω.

Proposition 2 Let α ≥ 0, −→s 1 = (s1, . . . , sα) for s1, . . . , sα ∈ T ω
1 and −→s 2 = (s′

1, . . . , s
′
α)

for s′
1, . . . , s

′
α ∈ T ω

1 , and Γ = {s1 ?= s′
1, · · · , sα

?= s′
α}. Then Γ is unifiable over T ω

1 (i.e. in
the theory ({ p̂}, { p̂}, {D(p̂)}) over T ω

1) iff −→s 1 and
−→s 2 are not essentially distinct.

Proposition 3 It is decidable whether −→s ,
−→
t are essentially distinct for term tuples −→s ,

−→
t

in T ω
1 .

Proof If the arity of−→s and−→
t is different the problem is trivial. Therefore we consider terms

of the form

−→s = (s1, . . . , sα),
−→
t = (t1, . . . , tα).

By Proposition 2 −→s ,
−→
t are not essentially distinct iff

Γ : {{s1 ?= t1, · · · , sα
?= tα}

is solvable over T ω
1 . We present an algorithm for deciding solvability of such a system Γ .

Let t be a term in T ω
1 . Then t is either of the form f1 · · · fβn for n ∈ N or f1 · · · fβ 0̄

where f1, . . . , fβ ∈ {s, p̂}. To each such term and σ ∈ S we assign an arithmetic expression
π(σ, t):

– If t = f1 · · · fβ 0̄ then π(σ, t) = α for f1 · · · fβ 0̄↓ω= ᾱ.
– If t = f1 · · · fβn we define

– νs(t) = number of occurrences of s in t ,

123

612 D. Cerna et al.

– ν p̂(t) = number of occurrences of p̂ in t .

π(σ, t) = n + νs(t) − ν p̂(t) for σ(n) ≥ ν p̂(t),

= αi for ᾱi = f1 · · · fβ ī↓ω and σ(n) = ī, i < ν p̂(t).

Now let T (n) be all terms of the form f1 · · · fβn in Γ . Select the t in T (n) where ν p̂(t) is
maximal and define r(n) = ν p̂(t). If n1, . . . , nγ are all the variables in Γ we obtain numbers
r(n1), . . . , r(nγ). For all terms t of the form f1 · · · fβn we define now

π(σ, t) = n + νs(t) − ν p̂(t) for σ(n) ≥ r(n),

= αi for ᾱi = f1 · · · fβ ī and σ(n) = ī, i < r(n).

Now consider the valid formula⎛
⎝r(n1)−1∨

i=0

n1 = i ∨ n1 ≥ r(n1)

⎞
⎠ ∧ · · · ∧

⎛
⎝r(nγ)−1∨

i=0

nγ = i ∨ nγ ≥ r(nγ)

⎞
⎠

and transform it into an equivalent DNF F . Then every conjunct C in F defines a condition
on σ such that the π(σ, si), π(σ, ti) are uniquely defined and every C defines a system

E(C, σ) = {π(σ, s1)
?= π(σ, t1), . . . , π(σ, sα)

?= π(σ, tα)}.
The solvability of E(C, σ) is easy to check as all equations are of the form m ◦ i = n	 j ,
m◦i = j or i = j for ◦, 	 ∈ {+,−},m, n integer variables and i, j ∈ IN. ButΓ is solvable iff
all the E(C, σ) are solvable. Hence the decision algorithm consists in checking all equational
systems E(C, σ) for solvability. ��
Example 8 Let −→s = (p̂sn,m, n),

−→
t = (p̂ p̂n, n, sk). For m, k we get π(σ,m) =

m, π(σ, sk) = k + 1. We have two terms “ending” with n, namely p̂sn and p̂ p̂n. Here
we get

π(σ, p̂sn) = n for σ(n) ≥ 1̄, π(σ, p̂sn̄) = 0 for σ(n) = 0̄,

π(σ, p̂ p̂n) = 0 for σ(n) < 2̄, π(σ, p̂ p̂n) = n − 2 for σ(n) ≥ 2̄.

We obtain r(n) = 2 and obtain the formula n = 0∨ n = 1∨ n ≥ 2 which is already in DNF.
The corresponding equation systems are

E1 = {0 = 0, m = 0, 0 = k + 1},
E2 = {1 = 0, m = 1, 1 = k + 1},
E3 = {n = n − 2, m = n, n = k + 1}.

All equation systems are unsolvable and thus −→s ,
−→
t are essentially distinct. It is easy to see

that the first equation system is solvable if we change the term −→
t to

−→
t ′ = (p̂ p̂n, n, k). So

−→s ,
−→
t ′ are not essentially distinct.

Definition 11 (s-substitution) LetΘ be a finite set of pairs (X(
−→s α), t)where X(

−→s α) ∈ T ι
V ,−→s α a tuple of terms in T ω

1 and t ∈ T ι. Note that the global variables occurring inΘ need not

be of the same type. Θ is called an s-substitution if for all (X(
−→s α), t) , (Y (

−→
s′

α), t ′) ∈ Θ

either X �= Y or the tuples −→s α and
−→
s′

α are essentially distinct. For σ ∈ S we define
Θ[σ] = {X(σ (

−→s α)↓ω) ← tσ↓ι| (X(
−→s α), t) ∈ Θ}.

We define dom(Θ) = {X(
−→s α) | (X(

−→s α), t) ∈ Θ} and rg(Θ) = {t | (X(
−→s α), t) ∈ Θ}.

123

Schematic Refutations of Formula Schemata 613

Proposition 4 For all σ ∈ S and every s-substitution Θ , Θ[σ] is a (first-order) substitution.

Proof It is enough to show that for all (X(
−→s α), t), (Y (

−→
s′

α′), t ′) ∈ Θ X(σ (
−→s α) ↓ω) �=

Y (σ (
−→
s′

α′) ↓ω) and σ(t) ↓ι, σ (t ′) ↓ι∈ T ι
0 (follows from Proposition 1), for all σ ∈ S. If

X �= Y this is obvious; if X = Y then, by definition of Θ , −→s α and
−→
s′

α are essentially

distinct and so for each σ ∈ S we have X(σ (
−→s α)↓ω) �= X(σ (

−→
s′

α′)↓ω). Thus Θ[σ] is
indeed a substitution as for X(

−→s α) ∈ T ι
V X(σ (

−→s α)) ∈ V ι. ��

Example 9 The following expression is an s-substitution

Θ = {(X(n,m), Ŝ(Y (m), n)), (X(s(n),m), Ŝ(Y (m), s(n))), (X(0, 0), Y (0))}.
for Ŝ as in Example 6.

The application of an s-substitutionΘ to terms in T ι is defined inductively on the complexity
of term definitions as usual.

Definition 12 Let Θ be an s-substitution and σ a parameter assignment. We define tΘ[σ]
for terms t ∈ T ι:

– if t is a constants of type ι, then tΘ[σ] = t ,

– if t = X(
−→s α) and (X(

−→
s′

α), t ′) ∈ Θ such that X(σ (
−→
s′

α)) = X(σ (
−→s α)), then

X(
−→s α)Θ[σ] = σ(t ′)↓ι, otherwise X(

−→s α)Θ[σ] = X(σ (
−→s α));

– if f ∈ Fι, f : ια → ι, s1, . . . , sα ∈ T ι then f (s1, . . . , sα)Θ[σ] = f (s1Θ[σ], . . . ,
sαΘ[σ]),

– if f̂ ∈ Σ̂ι, f̂ : τ(γ (1), . . . , γ (α1)) × ωβ+1 → ι, then

f̂ (
−→
X α1 , t1, . . . , tβ+1)Θ[σ] = f̂ (

−→
X α1 , σ (t1)↓ω, . . . , σ (tβ+1)↓ω)↓ι Θ[σ].

Example 10 Let us consider the following defined function symbol:

ĝ(X , n, 0̄) = X(n, 0),

ĝ(X , n, s(m)) = g(X(n,m), ĝ(X , s(n),m)).

and the parameter assignment σ = {n ← 0,m ← s(0)}. Then the evaluation of the term
ĝ(X , n,m) by the s-substitution Θ from Example 9 proceeds as follows:

ĝ(X , n,m)Θ[σ] = ĝ(X , σ (n)↓ω, σ (m)↓ω)↓ω Θ[σ]
= ĝ(X , 0, s(0))↓ω Θ[σ]
= g(X(0, s(0)), ĝ(X , s(0), 0)↓ω)Θ[σ]
= g(X(0, s(0)), X(s(0), 0))Θ[σ] = g(Y (s(0)), X(s(0), 0)).

where

Θ[σ] = {(X(0, s(0)), Y (s(0))), (X(s(0), s(0)), suc(Y (s(0)))), (X(0, 0), Y (0))}.
for Ŝ as in Example 6.

The composition of s-substitutions is not trivial as, in general, there is no uniform represen-
tation of composition under varying parameter assignments.

123

614 D. Cerna et al.

Example 11 Let Θ1 = {(X1(n), f (X1(n))} and Θ2 = {(X1(0), g(a))}. Then, for σ ∈ S s.t.
σ(n) = 0 we get

Θ1[σ] ◦ Θ2[σ] = {X1(0) ← f (X1(0))} ◦ {X1(0) ← g(a)} = {X1(0) ← f (g(a))}.
On the other hand, for σ ′ ∈ S with σ ′(n) = 1 we obtain

Θ1[σ ′] ◦ Θ2[σ ′] = {X1(1) ← f (X1(1))} ◦ {X1(0) ← g(a)} = {X1(1) ← f (X1(1)),

X1(0) ← g(a)}.
Or take Θ ′

1 = {(X1(n), X2(n))} and Θ ′
2 = {(X2(m), X1(m))}.

Let σ(n) = σ(m) = 0 and σ ′(n) = 0, σ ′(m) = 1. Then

Θ ′
1[σ] ◦ Θ ′

2[σ] = {X2(0) ← X1(0)},
Θ ′

1[σ ′] ◦ Θ ′
2[σ ′] = {X1(0) ← X2(0), X2(1) ← X1(1)}.

The examples above suggest the following restrictions on s-substitutions with respect to
composition. The first definition ensures that domain and range are variable-disjoint.

Definition 13 Let Θ be an s-substitution. Θ is called normal if for all σ ∈ S dom(Θ[σ]) ∩
V ι(rg(Θ[σ])) = ∅.
Example 12 The s-substitution in Example 9 is normal. The substitutions Θ ′

1 and Θ ′
2 in

Example 11 are normal. Θ1 in Example 11 is not normal.

Proposition 5 It is decidable whether a given s-substitution is normal.

Proof Let Θ be an s-substitution. We search for equal global variables in dom(Θ) and in
rg(Θ); if there are none then Θ is trivially normal. So let X ∈ VG(dom(Θ)) ∩VG(rg(Θ)).
For every X(

−→s α) ∈ dom(Θ) and for every X(
−→
t α) occurring in rg(Θ) we test unifiability

of the arguments in the sense of Proposition 2.Θ is normal iff for no pair X(
−→s α and X(

−→
t α)

are the arguments unifiable in the sense of Proposition 2. ��
Example 11 shows also that normal s-substitutions cannot always be composed to an s-
substitution; thus we need an additional condition.

Definition 14 Let Θ1,Θ2 be normal s-substitutions. (Θ1,Θ2) is called composable if for all
σ ∈ S

1. dom(Θ1[σ]) ∩ dom(Θ2(σ)) = ∅,
2. dom(Θ1[σ]) ∩ V ι(rg(Θ2[σ])) = ∅.
Proposition 6 It is decidable whether (Θ1,Θ2) is composable for two normal s-substitutions
Θ1,Θ2.

Proof Like in Proposition 5we use Proposition 2 to test unifiability of arguments for variables
X(

−→s), X(
−→
t) occurring in the sets under consideration. ��

Definition 15 Let Θ1,Θ2 be normal s-substitutions and (Θ1,Θ2) composable. Assume that

Θ1 = {(X1(
−→s1), t1), . . . , (Xα(

−→sα), tα)}, Θ2 = {(Y1(−→w1), r1), . . . , (Yβ(−→wβ), rβ)}.
Then the composition Θ1	Θ2 is defined as

{(X1(
−→s1), t1Θ2), . . . , (Xα(

−→sα), tαΘ2), (Y1(
−→w1), r1), . . . , (Yβ(−→wβ), rβ)}.

123

Schematic Refutations of Formula Schemata 615

The following proposition shows that Θ1	Θ2 really represents composition.

Proposition 7 Let Θ1,Θ2 be normal s-substitutions and (Θ1,Θ2) be composable then for
all σ ∈ S (Θ1	Θ2)[σ] = Θ1[σ] ◦ Θ2[σ].
Proof Let

Θ1 = {(X1(
−→s1), t1), . . . , (Xα(

−→sα), tα)}, Θ2 = {(Y1(−→w1), r1), . . . , (Yβ(−→wβ), rβ)}.
Then Θ1	Θ2 is defined as

{(X1(
−→s1), t1Θ2), . . . , (Xα(

−→sα), tαΘ2), (Y1(
−→w1), r1), . . . , (Yβ(−→wβ), rβ)}.

We write xi for Xi (σ (
−→si))) and y j for Y j (σ (−→w j)), θ1 for Θ1[σ] and θ2 for Θ2[σ]. Moreover

let t ′i = σ(ti)↓ι, r ′
j = σ(r j)↓ι. Then

θ1 = {x1 ← t ′1, . . . , xα ← t ′α}, θ2 = {(y1 ← r ′
1, . . . , yα′ ← r ′

β}.
As (Θ1,Θ2) is composable we have

1. {x1, . . . , xα} ∩ {y1, . . . , yβ} = ∅, and
2. {x1, . . . , xα} ∩ V ι({r ′

1, . . . , r
′
β}) = ∅.

So θ1θ2 = {x1 ← t ′1, . . . , xα ← t ′α)}θ2 = {x1 ← t ′1θ2, . . . , xα ← t ′αθ2} ∪ θ2. The last
substitution is just (Θ1	Θ2)[σ]. ��
Proposition 8 LetΘ1,Θ2 be normal s-substitutions and (Θ1,Θ2) composable. ThenΘ1	Θ2

is normal.

Proof Like in the proof of Proposition 7 let Θ1[σ] = θ1,Θ2[σ] = θ2. We have to show that
dom(θ1θ2) ∩ V ι(rg(θ1θ2) = ∅. We have

θ1θ2 = {x1 ← t ′1θ2, . . . , xα ← t ′αθ2} ∪ θ2.

As θ1 is normal we have V ι(t ′i) ∩ {x1, . . . , xα} = ∅ for i = 1, . . . , α. By definition of
composability rg(θ2) ∩ {x1, . . . , xα} = ∅, and therefore

V ι({t ′1θ2, . . . , t ′αθ2}) ∩ {x1, . . . , xα} = ∅.

So {x1 ← t ′1θ2, . . . , xα ← t ′αθ2} is normal. As also Θ2 is normal we have dom(θ2) ∩
V ι(rg(θ2) = ∅. Hence we obtain dom(θ1θ2) ∩ V ι(rg(θ1θ2)) = ∅. ��
Definition 16 (s-unifier) Let t1, t2 ∈ T ι. An s-substitution Θ is called an s-unifier of t1, t2 if
for all σ ∈ S (t1σ ↓ι)Θ[σ] = (t2σ ↓ι)Θ[σ]. We refer to t1, t2 as s-unifiable if there exists
an s-unifier of t1, t2. s-unifiability can be extended to more than two terms and to formula
schemata (to be defined below) in an obvious way.

Example 13 Consider the following theory
(
{ f̂ , ĝ}, { f̂ }, D(f̂) ∪ D(ĝ)

)
where

D(f̂) = { f̂ (X , 0) = h(a, X(0)) , f̂ (X , s(n)) = h(X(s(n)), f̂ (X , n))}
and

D(ĝ) = { ĝ(X , 0) = h(X(0), a) , ĝ(X , s(n)) = h(ĝ(X , n), X(s(n)))}
Using these schemata we can define the unification problem

{ f̂ (X , s(n)), ĝ(X , s(n))}

123

616 D. Cerna et al.

which has as a unification schema Θ̂ :
{
X(n) ← ĥ(n)

}
where ĥ(n) is as follows:

D(ĥ) = {ĥ(0) = X(0), ĥ(s(n)) = h(ĥ(n), ĥ(n))}.
Θ̂(n) is an s-unifier within the extended theory(

{ f̂ , ĝ, ĥ}, { f̂ }, D(f̂) ∪ D(ĝ) ∪ D(ĥ)
)

.

Definition 17 An s-unifier Θ of t1, t2 is called restricted to {t1, t2} if T ι
V (Θ) ⊆ T ι

V ({t1, t2}).
Remark 4 It is easy to see that for any s-unifier Θ of {t1, t2} there exists an s-unifier Θ ′ of
{t1, t2} which is restricted to {t1, t2}.

Most general unification is defined modulo the set of parameter substitutions S.

Definition 18 A restricted s-unifier Θ of {t1, t2} is a most general unifier if for all parameter
substitutions σ ∈ S, Θ [σ] is a most general unifier of {σ(t1)↓ι, σ (t2)↓ι}.
Remark 5 For example, the s-unifier from Example 13 is a most general unifier. Note that it
is not clear if a most general unifier always exists. We do not have a decision procedure for
the unification problem, not even for restricted classes.

4 The Resolution Calculus

The basis of our calculus for refuting formula schemata is a calculus RPL0 for quantifier-free
formulas, which combines dynamic normalization rules (a la Andrews, see [1]) with the
resolution rule. In contrast to [1] we do not restrict the resolution rule to atomic formulas. We
denote as PL0 the set of quantifier-free formulas in predicate logic; for simplicity we omit
→ and represent it by ¬ and ∨ in the usual way. Sequents are objects of the form Γ 	 Δ

where Γ and Δ are multisets of formulas in PL0.

Definition 19 (RPL0) The axioms of RPL0 are sequents 	 F for F ∈ PL0. The rules are the
elimination rules for the connectives

Γ 	 Δ, A ∧ B
Γ 	 Δ, A

∧r1
Γ 	 Δ, A ∧ B

Γ 	 Δ, B
∧r2

A ∧ B, Γ 	 Δ

A, B, Γ 	 Δ
∧l

Γ 	 Δ, A ∨ B
Γ 	 Δ, A, B

∨r
A ∨ B, Γ 	 Δ

A, Γ 	 Δ
∨l1

A ∨ B, Γ 	 Δ

B, Γ 	 Δ
∨l2

Γ 	 Δ,¬A
A, Γ 	 Δ

¬r
¬A, Γ 	 Δ

Γ 	 Δ, A
¬l

the introduction rules for the connectives

Γ 	 Δ, A Γ 	 Δ, B
Γ 	 Δ, A ∧ B

∧+
r

A, Γ 	 Δ

A ∧ B, Γ 	 Δ
∧+
l1

B, Γ 	 Δ

A ∧ B, Γ 	 Δ
∧+
l2

Γ 	 Δ, A
Γ 	 Δ, A ∨ B

∨+
r1

Γ 	 Δ, B
Γ 	 Δ, A ∨ B

∨+
r2

A, Γ 	 Δ B, Γ 	 Δ

A ∨ B, Γ 	 Δ
∨+
l

123

Schematic Refutations of Formula Schemata 617

A, Γ 	 Δ

Γ 	 Δ,¬A
¬+
r

Γ 	 Δ, A
¬A, Γ 	 Δ

¬+
l

the resolution rule

Γ 	 Δ, A1, . . . , Ak B1, . . . , Bm,Π 	 Λ

Γ ϑ,Πϑ 	 Δϑ,Λϑ
res

ϑ is an m.g.u. of {A1, . . . , Ak, B1, . . . , Bl}, V ({A1, . . . , Ak}) ∩ V ({B1, . . . , Bl}) = ∅.
We will extend RPL0 by rules handling schematic formula definitions. But we have to con-
sider another aspect as well: in inductive proofs the use of lemmas is vital, i.e. an ordinary
refutational calculus (which has just a weak capacity of lemma generation) may fail to derive
the desired invariant. To this aimwe added introduction rules for the connectives, which gives
us the potential to derive more complex formulas. Note that our aim is to use the calculi in
an interactive way and not fully automatic, which justifies this process of “anti-refinement”.

Proposition 9 RPL0 is sound and refutationally complete, i.e.

(1) all rules in RPL0 are sound and
(2) for any unsatisfiable formula ∀F and F ∈ PL0 there exists a RPL0-derivation of 	 from

axioms of the form 	 Fϑ where ϑ is a renaming of V (F).

Proof (1) is trivial: ifM is a model of the premise(s) of a rule thenM is also a model of the
conclusion.
For proving (2) we first derive the standard clause set C of F . Therefore, we apply the rules
of RPL0 to 	 F , decomposing F into its subformulas, until we cannot apply any rule other
than the resolution rule res. The last subformula obtained in this way is atomic and hence a
clause. The standard clause set C of F is comprised of the clauses obtained in this way. As
∀F is unsatisfiable, its standard clause set is refutable by resolution. Thus, we apply res to
the clauses and obtain 	. The whole derivation lies in RPL0. ��
In extending RPL0 to a schematic calculus we have to replace unification by s-unification.
Formallywe have to define how s-substitutions are extended to formula schemata and sequent
schemata.

Definition 20 LetΘ be an s-substitution.We define FΘ for all F ∈ T o which do not contain
formula variables.

– Let P(t1, . . . , tα) ∈ T o and P ∈ P . Then P(t1, . . . , tα)Θ = P(t1Θ, . . . , tαΘ).
– Let P̂ ∈ P̂ and P̂(X1, . . . , Xα, t1, . . . , tβ+1) ∈ T o, then

P̂(X1, . . . , Xα, t1, . . . , tβ+1)Θ = P̂(X1, . . . , Xα, t1Θ, . . . , tβ+1Θ).

– (¬F)Θ = ¬FΘ .
– If F1, F2 ∈ T o then

(F1 ∧ F2)Θ = F1Θ ∧ F2Θ, (F1 ∨ F2)Θ = F1Θ ∨ F2Θ.

Let S : A1, . . . , Aα 	 B1, . . . , Bβ be a sequent schema. Then

SΘ = A1Θ, . . . , AαΘ 	 B1Θ, . . . , BβΘ.

123

618 D. Cerna et al.

In the resolution rule we have to ensure that the sets of variables in {A1, . . . , Ak} and
{B1, . . . , Bl} are pairwise disjoint. We need a corresponding concept of disjointness for
the schematic case.

Definition 21 (Essentially disjoint) Let A,B be finite sets of schematic variables in T ι
V . A

and B are called essentially disjoint if for all σ ∈ S A[σ] ∩ B[σ] = ∅.
Definition 22 (RPLΨ

0) Let Ψ : (S, Q̂,D) be a theory of the schematic predicate symbol Q̂
then, for all schematic predicate symbols P̂ ∈ S for

D(P̂) = {P̂(Y,n, 0) = tB , P̂(Y,n, s(m)) = tS{• ← P̂(Y,n,m)},
elimination of defined symbols

Γ 	 Δ, P̂(Y,n, 0)
Γ 	 Δ, tB B P̂r

Γ 	 Δ, P̂(Y,n, s(m))

Γ 	 Δ, tS{• ← P̂(Y,n,m)} S P̂r

P̂(Y,n, 0), Γ 	 Δ

tB , Γ 	 Δ B P̂l
P̂(Y,n, s(m)), Γ 	 Δ

tS{• ← P̂(Y,n,m)}, Γ 	 Δ
S P̂l

introduction of defined symbols

Γ 	 Δ, tB

Γ 	 Δ, P̂(Y,n, 0)
B P̂r+ Γ 	 Δ, tS{• ← P̂(Y,n,m)}

Γ 	 Δ, P̂(Y,n, s(m))
S P̂r+

tB , Γ 	 Δ

P̂(Y,n, 0), Γ 	 Δ
B P̂l+

tS{• ← P̂(Y,n,m)}, Γ 	 Δ

P̂(Y,n, s(m)), Γ 	 Δ
S P̂l+

We also adapt the resolution rule to the schematic case:
Let T ι

V ({A1, . . . , Aα}), T ι
V ({B1, . . . , Bβ}) be essentially disjoint sets of schematic variables

and Θ be an s-unifier of {A1, . . . , Aα, B1, . . . , Bβ}. Then the resolution rule is defined as

Γ 	 Δ, A1, . . . , Aα B1, . . . , Bβ,Π 	 Λ

Γ Θ,ΠΘ 	 ΔΘ,ΛΘ
res

The refutational completeness of RPLΨ
0 is not an issue as already RPL0 is refutationally

complete for PL0 formulas [3,14]. Note that this is not the case any more if parameters occur
in formulas. Indeed, due to the usual theoretical limitations, the logic is not semi-decidable
for schematic formulas [2]. RPLΨ

0 is sound if the defining equations are considered.

Proposition 10 Let the sequent S be derivable in RPLΨ
0 for Ψ = (S′, P̂,D). Then D |� S.

Proof The introduction and elimination rules for defined predicate symbols are sound with
respect to D; also the resolution rule (involving s-unification) is sound with respect to D. ��
Definition 23 AnRPLΨ

0 derivation� is called a cut-derivation if the s-unifiers of all resolution
rules are empty.

Remark 6 A cut-derivation is an RPLΨ
0 derivation with only propositional rules. Such a

derivation can be obtained by combining all unifiers to a global unifier.

123

Schematic Refutations of Formula Schemata 619

In computing global unifiers we have to apply s-substitutions to proofs. However, not every s-
substitution applied to a RPLΨ

0 derivation results in a RPLΨ
0 derivation again. Just assume that

an s-unifier in a resolution is of the form (X1(s), X2(s′)); if Θ = {(X1(s), a), (X2(s′), b)}
for different constant symbols a, b then X1(s)Θ and X2(s′)Θ are no longer unifiable and
the resolution is blocked.

Definition 24 Let ρ be a derivation in RPLΨ
0 which does not contain the resolution rule; then

for any s-substitutionΘ ρΘ is the derivation in which every sequent occurrence S is replaced
by SΘ . We say that Θ is admissible for ρ. Now let ρ =

(ρ1)
Γ 	 Δ, A1, . . . , Aα

(ρ2)
B1, . . . , Bβ,Π 	 Λ

Γ Θ ′,ΠΘ ′ 	 ΔΘ ′,ΛΘ ′ res

where Θ ′ is an s-unifier of {A1, . . . , Aα, B1, . . . , Bβ}. Let us assume that Θ is admissible
for ρ1 and ρ2. We define that Θ is admissible for ρ if the set

U : {A1Θ, . . . , AαΘ, B1Θ, . . . , BβΘ}
is s-unifiable. If Θ∗ is an s-unifier of U then we can define ρΘ as

(ρ1Θ)
Γ Θ 	 ΔΘ, A1Θ, . . . , AαΘ

(ρ2Θ)
B1Θ, . . . , BβΘ,ΠΘ 	 ΛΘ

Γ ΘΘ∗,ΠΘΘ∗ 	 ΔΘΘ∗,ΛΘΘ∗ res

Definition 25 Let � be an RPLΨ
0 derivation and Θ be an s-substitution which is admissible

for �. Θ is called a global unifier for � if �Θ is a cut-derivation.

In order to compute global unifiers we need RPLΨ
0 derivations in some kind of “normal

form”. Below we define two necessary restrictions on derivations.

Definition 26 An RPLΨ
0 derivation � is called normal if all s-unifiers of resolution rules in

� are normal and restricted.

Remark 7 Note that, in case of s-unifiability, we can always find normal and restricted s-
unifiers; thus the definition above does not really restrict the derivations, it only requires
some renamings.

Definition 27 An RPLΨ
0 derivation � is called regular if for all subderivations �′ of � of the

form

(�′
1)

Γ 	 Δ

(�′
2)

Π 	 Λ

Γ ′,Π ′ 	 Δ′,Λ′ χ

we have VG(�′
1) ∩ VG(�′

2) = ∅.
Note that the condition VG(�′

1) ∩ VG(�′
2) = ∅ in Definition 27 guarantees that, for all

parameter assignments σ , �′
1[σ] and �′

2[σ] are variable-disjoint.
We write �′ ≤ss � if there exists an s-substitution Θ s.t. �′Θ = �.

Proposition 11 Let � be a normal RPLΨ
0 derivation. Then there exists a RPLΨ

0 derivation �′
s.t. �′ ≤ss � and �′ is normal and regular.

Proof By renaming of variables in subproofs and in s-unifiers. ��

123

620 D. Cerna et al.

Proposition 12 Let � be a normal and regular RPLΨ
0 derivation. Then there exists a global

s-unifier Θ for � which is normal and V G(Θ) ⊆ VG(�).

Proof By induction on the number of inferences in �.
Induction base: � is an axiom. ∅ is a global s-unifier which trivially fulfils the properties.
For the induction step we distinguish two cases.

– The last rule in � is unary. Then � is of the form

(�′)
Γ ′ 	 Δ′
Γ 	 Δ

ξ

By induction hypothesis there exists a global substitution Θ ′ which is a global unifier
for �′ s.t. Θ ′ is normal and VG(Θ ′) ⊆ VG(�′). We define Θ = Θ ′. Then, trivially, Θ
is normal and a global unifier of �. Moreover, by definition of the unary rules in RPLΨ

0 ,
we have VG(�′) = VG(�) and so VG(Θ) ⊆ VG(�).

– � is of the form

(�1)
Γ 	 Δ, A1, . . . , Aα

(�2)
B1, . . . , Bβ,Π 	 Λ

Γ Θ,ΠΘ 	 ΔΘ,ΛΘ
res(Θ)

As � is a normal RPLΨ
0 derivation the unifier Θ is normal. By regularity of � we have

VG(�1) ∩ VG(�2) = ∅.
By induction hypothesis there exist global normal unifiers Θ1,Θ2 for �1 and �2 s.t.
VG(Θ1) ⊆ VG(�1) and VG(Θ2) ⊆ VG(�2). By VG(�1) ∩ VG(�2) = ∅ we also have
VG(Θ1) ∩ VG(Θ2) = ∅.
We show now that (Θ1,Θ) and (Θ2,Θ) are composable. As Θ1 is normal we have for
all σ ∈ S

V ι({A1, . . . , Aα}[σ]) ∩ dom(Θ1[σ]) = ∅.

Similarly we obtain

V ι({B1, . . . , Bβ}[σ]) ∩ dom(Θ2[σ]) = ∅.

As Θ is normal and restricted we have for all σ ∈ S

V ι(Θ[σ]) ⊆ V ι(σ {A1, . . . , Aα, B1, . . . , Bβ}↓o).

Therefore (Θ1,Θ) and (Θ2,Θ) are both composable. As Θ1,Θ2,Θ are normal so are
Θ1	Θ and Θ2	Θ . As Θ1,Θ2 are essentially disjoint we can define

Θ(�) = Θ1	Θ ∪ Θ2	Θ.

Θ(�) is a normal s-substitution and VG(Θ(�)) ⊆ VG(�).
Θ(�) is also a global unifier of �. Indeed, �1Θ(�) =

(�1Θ(�))

Γ Θ 	 ΔΘ, A1Θ, . . . , A1Θ

and �2Θ(�) =
(�2Θ(�))

A1Θ, . . . , A1Θ,ΠΘ 	 ΛΘ

123

Schematic Refutations of Formula Schemata 621

So we obtain the derivation

�1Θ(�) �2Θ(�)

Γ Θ,ΠΘ 	 ΔΘ,ΛΘ
cut

which is an instance of � and a cut derivation (note that every instance of a cut derivation
is a cut derivation as well).

– � is of the form

(�1)

Γ 	 Δ

(�2)

Π 	 Λ χ
Γ ′,Π ′ 	 Δ′,Λ′

where χ is a binary rule different from resolution.
As � is a normal RPLΨ

0 derivation all occurring s-unifiers in �1 and �2 are normal. By
regularity of � we have that VG(�1) ∩ VG(�2) = ∅.
By induction hypothesis there exist global normal unifiers Θ1,Θ2 for �1 and �2 s.t.
VG(Θ1) ⊆ VG(�1) and VG(Θ2) ⊆ VG(�2). By VG(�1) ∩ VG(�2) = ∅ we also have
VG(Θ1) ∩ VG(Θ2) = ∅. Moreover, there is no overlap between the domain variables of
the unifiers Θ1 and Θ2, i.e. dom(Θ1[σ]) ∩ dom(Θ2(σ)) = ∅ for all σ ∈ S. Therefore,
we can define Θ = Θ1 ∪ Θ2, which is obviously a global s-unifier of �. Furthermore,
VG(Θ) = VG(Θ1)∪VG(Θ2), therefore VG(Θ) ⊆ VG(�1)∪VG(�2) and by definition
of binary introduction rules in RPLΨ

0 , we have V
G(Θ) ⊆ VG(�). ��

Example 14 We provide a simple RPLΨ
0 refutation using the schematic formula constructed

in Example 6. We will only cover the RPLΨ
0 derivation of the base case and wait for the

introduction of proof schemata to provide a full refutation. We abbreviate X1, X2, X3 by X.(
δ10, (0, 0)

)
	 F̂1(X, 0, 0)

SF̂1r	 F̂2(X, 0, 0) ∧ F̂3(X, 0, 0) ∧ : r
	 F̂2(X, 0, 0)

BF̂2r	 f (X1(0, 0)) < 0 ∨ f (X1(0, 0)) ∼ 0 ∨ : r	 f (X1(0, 0)) < 0, f (X1(0, 0)) ∼ 0
(2)

(2)

(
δ20, (0, 0)

)
	 F̂1(X, 0, 0)

SF̂1r	 F̂2(X, 0, 0) ∧ F̂3(X, 0, 0) ∧ : r
	 F̂3(X, 0, 0)

SF̂3r	 F̂5(X, 0, 0) ∧ f (a) �< 0

	 F̂5(X, 0, 0)
BF̂5r	 f (Ŝ(X3(0, 0), 0)) � 0
BŜr	 f (X3(0, 0)) � 0 ¬ : r

f (X3(0, 0)) ∼ 0 	
res

({
X3(0, 0) ← X1(0, 0)

})
	 f (X1(0, 0)) < 0

(1)

123

622 D. Cerna et al.

(1)
	 f (X1(0, 0)) < 0

(
δ30, (0, 0)

)
	 F̂1(X, 0, 0)

SF̂1r	 F̂2(X, 0, 0) ∧ F̂3(X, 0, 0) ∧ : r
	 F̂3(X, 0, 0)

BF̂3r	 F̂5(X, 0, 0) ∧ f (a) �< 0 ∧ : r2	 f (a) �< 0 ¬ : r
f (a) < 0 	

res ({X1(0, 0) ← a})	
(δ0, 0, 0)

The labels (δ10, (0, 0)), . . . , (δ
3
0, (0, 0) canbe ignored for themoment. Theybecome important

when the derivation above becomes part of a proof schema to be defined in Sect. 6.

RPLΨ
0 -derivations can be evaluated under parameter assignments. Let ϕ be an RPLΨ

0 -
derivation and σ a parameter assignment, then ϕ ↓σ denotes the RPL0-derivation defined
by ϕ under σ . Note that, if the parameters are all replaced by numerals then occurrences and
introductions of defined symbols can be treated as instances of definition rules (see Section
7.3 [7]). Removal of defined symbols can be treated as definition rule elimination (a cosmetic
change) and thus ϕ↓σ is indeed an RPL0-derivation.

5 Point Transition Systems

For our specification of schematic proofswewill use complex call structures beyond primitive
recursion. To characterize such complex recursion types we develop an abstract framework.
Consider, e.g., the primitive recursive definitions of + and ∗ (we write p for +, t for ∗ and s
for successor):

t(n, 0) = 0,

t(n,m + 1) = p(t(n,m), n),

p(n, 0) = n,

p(n,m + 1) = s(p(n,m)).

In defining t we assume that p has been defined “before”, while p is defined via recursion
and the successor s (which is a base symbol). In fact we can order the function symbols
t and p by defining p < t , where < is irreflexive and transitive. The relation < prevents
that both p < t and t < p holds, as then we would get p < p contradicting irreflexivity.
So primitive recursion, being based on orderings of function symbols, excludes the use of
mutual recursion.However,mutual recursion is a very powerful specification principlewhich,
even when equivalent primitive recursive specifications exist, may provide simpler and more
elegant representations.

Example 15 We assume that+ is already defined (e.g. as p above). We define three functions
f , g, h, where f is defined via f and g and g via f and h making an ordering of the symbols
f , g impossible.

f (n + 1,m + 1) = f (n,m + 1) + g(n + 1,m),

g(n + 1,m) = f (n,m) + h(n + 1, n,m),

123

Schematic Refutations of Formula Schemata 623

f (0,m + 1) = 1, f (n + 1, 0) = 0,

f (0, 0) = 0,

g(0,m) = m,

h(0, n,m) = m + 1, h(k + 1,m, n) = h(k,m, n) + 1.

f and g are not defined via primitive recursion and therefore it is not so simple to prove
that f and g are indeed total and thus recursive. That the above type of mutual recursion is
terminating is based on (n + 1,m + 1) > (n + 1,m), (n + 1,m + 1) > (n + 1,m) and
(n + 1,m) > (n,m) where > is the lexicographic tuple ordering. That the definition is also
well defined (we obtain a value for all (n,m) ∈ N

2) follows from the following partitions of
N
2:

{(n,m) | n > 0,m > 0}, {(n,m) | n = 0,m > 0}, {(n,m) | n > 0,m = 0},
{(n,m) | n = 0,m = 0} for f , and
{(n,m) | n > 0}, {(n,m) | n = 0} for g,
{(k,m, n) | k > 0}, {(k,m, n) | k = 0} for h.

In this section we abstract from the computation of functions and even of values of any kind.
Instead our aim is to focus on the underlying recursion itself. For Example 15 above we
choose a symbol δ1 for f , δ2 for g, δ3 for h and δ4, . . . , δ8 as termination symbols. Then the
recursion of the example can be represented by the following conditional reduction rules:

(δ1, (n,m)) → {(δ1, (n − 1,m)), (δ2, (n,m − 1))} for m > 0 ∧ n > 0,

(δ1, (n,m)) → {(δ4, (n,m))} for m > 0 ∧ n = 0,

(δ1, (n,m)) → {(δ5, (n,m))} for m = 0 ∧ n > 0,

(δ1, (n,m)) → {(δ6, (n,m))} for m = 0 ∧ n = 0,

(δ2, (n,m)) → {(δ1, (n − 1,m)), (δ3, (n, n − 1,m))} for n > 0,

(δ2, (n,m)) → {(δ7, (n,m))} for n = 0,

(δ3, (k, n,m)) → {(δ3, (k − 1, n,m))} for k > 0,

(δ3, (k, n,m)) → {(δ8, (k, n,m)} for k = 0.

We call such a system a point transition system; the formal definitions are given below.

Definition 28 (Point) A point is an element of Pα for P ⊆ T ω and some α ≥ 1.

Definition 29 (Labeled point) Let Δ be an infinite set of symbols called labels. A labeled
point is a pair (δ, p) where p is a point and δ ∈ Δ.

Definition 30 (Condition) An atomic condition is either �, ⊥ or of the form s < t , s > t ,
s = t , s �= t for s, t ∈ T ω

0 . Let ATC be the set of all atomic conditions. We define the set
COND of all conditions inductively:

– ATC ⊆ COND,
– if C ∈ COND then ¬C ∈ COND,
– if C1,C2 ∈ COND then C1 ∧ C2 ∈ COND and C1 ∨ C2 ∈ COND.

Example 16 k = 0 and m < n are atomic conditions. k = 0 ∧ m < n and (k = 0 ∧ m <

n) ∨ m = n are conditions.

Definition 31 (Semantics of conditions) For every C ∈ COND and σ ∈ S we define σ [C] ∈
{�,⊥}:

123

624 D. Cerna et al.

– σ [�] = �, σ [⊥] = ⊥.
– σ [s = t] = � if s↓σ = t↓σ , and ⊥ otherwise.
– σ [s < t] = � if s↓σ < t↓σ , and ⊥ otherwise.
– σ [s > t] = � if s↓σ > t↓σ , and ⊥ otherwise.
– σ [s �= t] = � iff σ [s = t] = ⊥.
– σ [C1 ∧ C2] = � if σ [C1] = � and σ [C2] = �, and ⊥ otherwise.
– σ [C1 ∨ C2] = � if σ [C1] = � or σ [C2] = �, and ⊥ otherwise.

A condition C is called valid if for all σ ∈ S : σ [C] = �. C is called unsatisfiable if for all
σ ∈ S : σ [C] = ⊥.

Definition 32 (Point transition) A point transition is an expression of the form (δ, p) →
P : C where (δ, p) is a labeled point and P is a nonempty finite set of labeled points and C is
a condition.We define functions l, r , c on point transitions t as follows: if t = (δ, p) → P : C
then l(t) = (δ, p), r(t) = P, c(t) = C .

Definition 33 (Point transition cluster) A finite set of point transitions P is called a point
transition cluster if for all δ ∈ Δ and points p, q such that (δ, p) and (δ, q) occur in P (as
l(t) or in r(t) for a t ∈ P) there exists an α ≥ 1 such that p, q ∈ Pα . That means for all δ

occurring in P (for this set we write Δ(P)) the corresponding points are all of the same arity;
this arity is denoted by A(δ).

Example 17 Let

P1 = {(δ, (m, n)) → {(δ, (m, s(n))), (δ′, (m,m,m))} : 0 < m,

(δ, (k, l)) → (δ′, (k, l, l)) : 0 < k ∧ l = 0}.
Then P1 is a point transition cluster. Here we have A(δ) = 2, A(δ′) = 3. The following set
P2 of point transitions for

P2 = (δ, (m, n)) → {(δ, (m,m, n))} : 0 < m,

(δ, (k, l)) → {(δ′, (k, l, l))} : 0 < k ∧ l = 0}.
is not a point transition cluster as A(δ) cannot be defined consistently.

Point transition systems are restricted forms of point transition clusters where the labeled
points and the conditions are subject to further restrictions.

Definition 34 (Partition) Let C = {C1, . . . ,Cα} be a set of conditions. C is called a partition
if C1 ∨ · · · ∨ Cα is valid and for all i, j ∈ {1, . . . , α} and i �= j Ci ∧ C j is unsatisfiable.

Definition 35 (Regular point transition) Let p : (δ, p) → P : C be a point transition in a
point transition cluster and p ∈ Pα . p is called regular if

– p = (n1, . . . , nα) for distinct parameters n1, . . . , nα ,
– for all (δ′, q) ∈ P V (q) ⊆ {n1, . . . , nα},
– V (C) ⊆ {n1, . . . , nα}.

Definition 36 (Point transition system) Let P be a point transition cluster δ0 ∈ Δ(P). Then
the tuple P	 : (δ0,Δ

∗,Δe,P) is called a point transition system if the following conditions
are fulfilled:

1. δ0 ∈ Δ∗,
2. Δ∗ = Δ(P)

123

Schematic Refutations of Formula Schemata 625

3. All point transitions in P are regular.
4. Let t1, t2 ∈ P with l(t1) = (δ, p) and l(t2) = (δ, q); then p = q . That means every

left-hand side of a point transition with δ is related to a unique point p; we call p the
source of δ.

5. Let P(δ) be the set {(δ, p) → P1 : C1, . . . , (δ, p) → Pα : Cα} consisting of all t ∈ P
with l(t) = (δ, p) (for the source p of δ). Then, in case P(δ) �= ∅, {C1, . . . ,Cα} is a
partition.

6. P(δ0) �= ∅.
7. P(δ) = ∅ for δ ∈ Δe.

The label δ0 is called the start label of P	, the δ in Δe are called end labels.

Every point transition system defines a kind of computation for a given σ ∈ S.

Definition 37 (σ -trees) Let P	 : (δ0,Δ
∗,Δe,P) be a point transition system, σ ∈ S and

(δ, p) be a labeled point in P . We define the σ -tree on a labeled point (δ, p) inductively:

– T (P, (δ, p), σ, 0) is the tree consisting only of a root node labeled with
(δ, σ (p)↓).

– Let us assume that T (P, (δ, p), σ, α) is already defined. For every leaf ν of Tα labeled
with (δ′, q) we check whether P(δ′) = ∅; if this is the case then ν remains a leaf node.
If P(δ′) �= ∅ then

P(δ′) = {(δ′, p′) → P1 : C1, . . . , (δ
′, p′) → Pβ : Cβ}

Let us assume that q ∈ Pα and q is a tuple of numerals . Then, as P(δ′) is a set of regular
point transitions, p′ = (n1, . . . , nα) for distinct parameters n1, . . . , nα . As q is a tuple of
numerals (q1, . . . , qα) q = σ ′(p′)↓ for a parameter assignment σ ′ where σ ′(ni) = qi for
i = 1, . . . , α. As all point transitions inP(δ′) are regular we have V (Ci) ⊆ {n1, . . . , nα}
for i = 1, . . . , β. Now, {C1, . . . ,Cβ} is a partition, thus there exists exactly one i ∈
{1, . . . , β} such that σ ′[Ci] = �. Let Pi = {(δi1, qi1), . . . , (δir(i), qir(i))}. Then we create
new nodes μ1, . . . , μr(i) labeled with the labeled points

(δi1, σ
′(qi1)↓), . . . , (δir(i), σ

′(qir(i))↓) and add the edges

(ν, μ1), . . . , (ν, μr(i)) to T (α)

By the regularity of P	 the points σ ′(qij)↓ are all tuples of numerals. We call the tree
obtained from T (P, (δ, p), σ, α) via the procedure above
T (P, (δ, p), σ, α + 1).

Let T (P, (δ, p), σ, α) = (Vα, Eα) for all α ∈ IN. Note that for all α we have Vα ⊆ Vα+1 and
Eα ⊆ Eα+1. So, when we define V∞ = ⋃

α∈IN Vα and E∞ = ⋃
α∈IN Eα , then (V∞, E∞) is

a tree; we call this tree the σ -tree on (δ, p) and denote it by T (P, (δ, p), σ). Note that the
tree T (P, (δ, p), σ)may be infinite. It is finite if there exists an α such that T (α) = T (α+1)
The result of a computation of P	 with respect to σ is defined by TP	 [σ] = T (P, (δ0, p0), σ).

We have seen that for every point transition system P	 and σ ∈ S TP	 [σ] is a tree with nodes
labeled by labeled points describing the computation of P	 on input σ . However, TP	 [σ]may
be infinite what means that the computation is nonterminating.

Example 18 Let P	 = (δ, {δ, δ′}, {δ′},P) for

P = {(δ, n) → {(δ, s(n))} : n > 0, (δ, n) → {(δ′, n)} : n = 0}.

123

626 D. Cerna et al.

P	 is a point transformation system. The source of δ is n and {0 < n, n = 0} is a partition.
For σ with σ(n) = 0̄ we obtain TP	 [σ] =

(δ′, 0̄)
(δ, 0̄)

But for every σ with σ(n) = ᾱ > 0̄ we obtain the infinite tree
. . .

(δ, α + 1)
(δ, ᾱ)

Indeed, for every i ∈ IN, T (i + 1) �= T (i) for T (i) as defined in Definition 37. So the
computation of P	 on σ is nonterminating.

Definition 38 Let P	 be a point transition system. P	 is called terminating if TP	 [σ] is finite
for all σ ∈ S.

To ensure termination of a point transition system we have to define a well-founded order on
the set of labeled points. The ordering <P defined below will be used in Sect. 6 for recursive
definitions of proofs.

Definition 39 (<P) We define an order on the set of all labeled points (δ, p) where δ ∈ Δ0

for a finite subset Δ0 of Δ. We partition Δ0 in two disjoint subsets Δ1,Δ2 where Δ2 will be
reserved for mutual recursion and Δ1 stands for primitive recursive order types. We define
an irreflexive, transitive relation <Δ0 on Δ0 such that δ <Δ0 δ′ for all δ ∈ Δ1 and δ′ ∈ Δ2.
Let α > 0 and Pα

0 be the subspace of the point space Pα consisting of α-tuples of numerals
only. For Pα

0 we have a well-founded total order <α . We extend <α to Pα by defining

for p, q ∈ Pα : p <α q if for all σ ∈ S : σ(p)↓<α σ(q)↓ .

We are now extending the orderings to an order <P of labeled points over Δ0. Let
(δ, p), (δ′, q) two such points. We define (δ, p) <P (δ′, q) if

(P1) δ, δ′ ∈ Δ2, A(δ) = A(δ′) and p <α q for α = A(δ) or
(P2) δ, δ′ ∈ Δ2 and A(δ′) < A(δ) or
(P3) δ ∈ Δ1, δ′ ∈ Δ2 or
(P4) δ, δ′ ∈ Δ1 and δ <Δ0 δ′ or
(P5) δ, δ′ ∈ Δ1, δ = δ′ and p <α q for α = A(δ).

It is easy to see that the conditions (P1)–(P5) exclude each other. Note that (P3) implies
δ <Δ0 δ′.

The relation <P is stable under parameter assignments and is well founded.

Proposition 13 Let (δ, p) <P (δ′, q) and σ ∈ S. Then (δ, σ (p)↓) <P (δ′, σ (q)↓).

Proof For (P1), (P5) this follows directly from the definition of <α on Pα . (P2)–(P4) are
invariant under parameter assignments. ��
Proposition 14 <P is well-founded.

Proof We show first that <P is irreflexive and transitive. That <P is irreflexive can be
immediately read of from the conditions (P1)–(P5). It remains to show transitivity. To this
aim we have to check all combinations of (P1)–(P5). Let us assume (δ, p) <P (δ′, q) and
(δ′, q) <P (δ′′, r).

123

Schematic Refutations of Formula Schemata 627

(P1)–(P1): Here we have A(δ) = A(δ′) = A(δ′′) and p <α q , q <α r . By transitivity of <α

we obtain p <α r and (δ, p) <P (δ′′, r) by (P1).
(P1)–(P2): wehave A(δ) = A(δ′) and A(δ′′) < A(δ′); so A(δ′′) < A(δ) and (δ, p) <P (δ′′, r)

by (P2).
(P1)–(P3), (P1)–(P4) and (P1)–(P5) are impossible as Δ1 ∩ Δ2 = ∅ and thus
δ′ ∈ Δ1 and δ′ ∈ Δ2 is impossible.

(P2)–(P1): A(δ′) < A(δ) and A(δ′′) = A(δ′) gives A(δ′′) < A(δ) and so (δ, p) <P (δ′′, r)
by (P2).

(P3)–(P1): Here we have δ ∈ Δ1, δ′, δ′′ ∈ Δ2. Therefore (δ, p) <P (δ′′, r) by (P3).
(P4)–(P1), (P5)–(P1) and (P2)–(P4), (P2)–(P5) are impossible.

(P3)–(P2): δ ∈ Δ1, δ′, δ′′ ∈ Δ2 and so (δ, p) <P (δ′′, r) by (P3).
The combinations (P4)–(P2), (P5)–(P2), (P3)–(P3), (P3)–(P4) and (P3)–(P5) are
all impossible.

(P4)–(P3): we have δ, δ′ ∈ Δ1 and δ′′ ∈ Δ2 and therefore (δ, p) <P (δ′′, r) by (P3).
(P5)–(P3): the same as for (P4)–(P3).
(P4)–(P4): <Δ0 is transitive.
(P4)–(P5): We have δ <Δ0 δ′ and δ′′ = δ′; so (δ, p) <P (δ′′, r) by (P4).
(P5)–(P4): δ = δ′ and δ′ <Δ0 δ′′; therefore (δ, p) <P (δ′′, r) by (P4).
(P5)–(P5): Here δ = δ′ = δ′′, p <α q , q <α r . By transitivity of <α we get p <α r and

(δ, p) <P (δ′′, r) by (P5).

Now assume that <P is not well-founded. Then there exists an infinite sequence
η : (δi , pi)i∈IN such that (δi+1, pi+1) <P (δi , pi) for all i ∈ IN. As Δ0 is finite there exists
a δ ∈ Δ0 appearing infinitely often in η. That means there exists an infinite subsequence η∗
of η which is of the form

(δ, q0), (δ, q1), . . . (δ, qi), (δ, qi+1), . . .

and (δ, qi+1) <∗
P (δ, qi) for i ∈ IN and the transitive closure <∗

P of <P . We have shown that
<P is transitive and therefore <P=<∗

P , hence (δ, qi+1) <P (δ, qi) for i ∈ IN.
It remains to distinguish two cases:

– δ ∈ Δ1: then, for all i ∈ IN, (δ, qi+1) <P (δ, qi) by (P5) and (for A(δ) = α) qi+1 <α qi
for all i ∈ IN. But this is impossible because <α is well-founded.

– δ ∈ Δ2: analogous to δ ∈ Δ1 with (P1) instead of (P5). Again we obtain a contradiction
to the well-foundedness of <α .

We have shown that η does not exist and <P is well-founded. ��
Definition 40 (Canonic point transition system) Let P	 : (δ0,Δ

∗,Δe,P) be a point transition
system. P	 is called canonic

if for all (δ, p) → P : C ∈ P we have (δ′, p′) <P (δ, p) for all (δ′, p′) ∈ P.

Theorem 1 (Termination) Canonic point transition systems are terminating, i.e. if P	 is a
canonic point transition system and σ ∈ S then TP	 [σ] is finite.
Proof By contradiction. Assume that P	 is a canonic point transition system and TP	 [σ] is
infinite for some σ ∈ S. Then TP	 [σ] is an infinite tree with finite node degree. By König’s
lemma TP	 [σ] has an infinite path η for

η = (δ0, p0), . . . , (δn, pn), (δn+1, pn+1), . . .

123

628 D. Cerna et al.

By definition of TP	 [σ], for each (δi , pi), (δi+1, pi+1) in η, there exists a point transition
(δi , p) → P : C in P “matching” (δi , pi). More precisely, there exists a parameter assign-
ment σ ′ such that σ ′(p)↓= pi , σ ′[C] = � and (δi+1, pi+1) is obtained via a (δi+1, q) ∈ P
and pi+1 = σ ′(q)↓. As P∗ is canonic we have (δi+1, q) <P (δi , p). By Proposition 13
we obtain (δi+1, σ

′(q)↓) <P (δi , σ
′(p)↓) what yields just (δi+1, pi+1) <P (δi , pi) for all

i ∈ IN. But by Proposition 14<P is a well-ordering contradicting the existence of the infinite
chain η. Therefore there exists no infinite σ -chain in P∗ and TP	 [σ] is finite. ��

Example 19 Let P	 : (δ1,Δ
∗,Δe,P) be the point transition system corresponding to Exam-

ple 15 for Δ∗ = {δ1, . . . , δ8} and Δe = {δ4, . . . , δ8}. Here P consists of the following point
transition rules:

1 : (δ1, (n,m)) → {(δ1, (n − 1,m)), (δ2, (n,m − 1))} : m > 0 ∧ n > 0,

2. : (δ1, (n,m)) → {(δ4, (n,m))} : m > 0 ∧ n = 0,

3 : (δ1, (n,m)) → {(δ5, (n,m))} : m = 0 ∧ n > 0,

4 : (δ1, (n,m)) → {(δ6, (n,m))} : m = 0 ∧ n = 0,

5 : (δ2, (n,m)) → {(δ1, (n − 1,m)), (δ3, (n, n − 1,m))} : n > 0,

6 : (δ2, (n,m)) → {(δ7, (n,m))} : n = 0,

7 : (δ3, (k, n,m)) → {(δ3, (k − 1, n,m))} : k > 0,

8 : (δ3, (k, n,m)) → {(δ8, (k, n,m)} : k = 0.

It is easy to see that P	 is canonic when we define Δ1 = {δ4, . . . , δ8} and Δ2 = {δ1, δ2, δ3}.
Then, by definition of <P , we have δi <P δ j for i ∈ {4, . . . , 8}, j ∈ {1, 2, 3}. Therefore the
transitions 2,3,4,6 and 8 are decreasing via (P3). Transition 1 is decreasing via (P1), transition
5 via (P1) and (P2); finally transition 7 is decreasing via (P1). Therefore TP	 [σ] is finite for
all σ ∈ S and, in particular, the function f in Example 15 is total and thus recursive. Also
T (P, (δ2, (n,m)), σ) is finite for all σ ∈ S, so the function g is recursive as well.

6 Schematic RPL90 Derivations

Schematic RPLΨ
0 derivations are extension of RPLΨ

0 derivations where, besides the formulas
to be refuted, new kinds of axioms (in the form of labeled sequents) are included. These
labeled sequents serve the purpose to establish recursive call structures in the proof. For
constructing schematic RPLΨ

0 derivations we introduce a countably infinite set Δ of proof
symbols which are used to label the individual proofs of a proof schema. A particular proof
schema uses a finite set of proof symbolsΔ∗ ⊂ Δ. Like for point transition systems we assign
an arity A(δ) to every δ ∈ Δ∗; A(δ) is just the arity of the input parameters for the proof
labeled by δ. Also, we need a concept of proof labels which serve the purpose to relate some
leafs of the proof tree to recursive calls.

Definition 41 (Proof label) Let δ ∈ Δ and ϑ be a parameter substitution. Then the pair (δ, ϑ)

is called a proof label.

We will need to locate specific occurrences of sequents in a proof π ; to this aim we define
Λπ as the set of all sequent occurrences in π . By |π |λ we denote the sequent occurring at
position λ for λ ∈ Λπ . Furthermore, let ρ be a proof with the end-sequent |π |λ; then by
π[ρ]λ we denote the proof which results from replacing in π the derivation at λ by ρ.

123

Schematic Refutations of Formula Schemata 629

Definition 42 (Labeled sequents and derivations) Let S be a sequent and (δ, ϑ) a proof label,
them (δ, ϑ) : S is a labeled sequent. A labeled RPLΨ

0 derivation is an RPLΨ
0 derivation π

where all leaves are labeled.We distinguish axiom labels and nonaxiom labels. ByAxiom(π)

we denote the set of occurrences of leaves labeled by axiom labels, the set of the occurrences
of leaves with nonaxiom labels is denoted by Naxiom(π). The set of all occurrences of leaves
in π is denoted by leaves(π); so leaves(π) = Axiom(π) ∪ Naxiom(π) and Axiom(π) ∩
Naxiom(π) = ∅.
We will define proof schemata in the spirit of point transition systems. Before giving a formal
definition the following example should serve the purpose to reveal the intuition behind the
concept.

Example 20 We define a refutation schema for the theory

Ψ = ({P̂, Q̂, f̂ }, Q̂, {D(P̂), D(Q̂), D(f̂)})
provided in Example 5. The defining equations for P̂ and Q̂ are:

P̂(X , 0̄) =¬P(X(0̄), f̂ (a, 0))

P̂(X , s(n)) =P̂(X , n) ∨ ¬P(X(s(n)), f̂ (a, s(n)))

Q̂(X , Y , n, 0̄) =P(f̂ (Y (0̄), 0̄), Y (1̄)) ∧ P̂(X , n)

Q̂(X , Y , n, s(m)) =P(f̂ (Y (0̄), s(m)), Y (1̄)) ∧ P̂(X , n)

For f̂ we have f̂ (X , 0) = X(0), f̂ (X ,m + 1) = g(X(m + 1), f̂ (X ,m)).
We create a proof symbol δ0 which stands for the refutation of Q̂(X , Y , n,m). For this
refutation we consider the partition n = 0 (base case) and n > 0 (step case). In order
to refute Q̂(X , Y , n,m) for n > 0 we will need an auxiliary deduction which deduces
Q̂(X , Y , 0,m) from the axioms Q̂(X , Y , n,m). In defining this derivation, which we give
the label δ1, we will need additional parameters k, l which do not occur in the definition of Q̂
but are needed to control the recursions. For every proof symbol we have a parameter tuple,
it is (n,m) for δ0 and (n,m, k, l) for δ1. For δ0 we define the proof schema via the reduction
system Π(δ0, X , Y , n,m) and the specification of the end-sequent S(δ0, X , Y , n,m) = 	.
We define

Π(δ0, X , Y , n,m) = {(δ0, X , Y , n,m) → ρ0(δ0, X , Y , n,m) : n = 0,

(δ0, X , Y , n,m) → ρ1(δ0, X , n,m) : n > 0}.
which means that for n = 0 we select the proof ρ0(δ0, X , Y , n,m) for n > 0 the proof
ρ1(δ0, X , n,m). By ρ0(δ0, X , Y , n,m) we denote the following derivation:

	 (δ′
1, (0,m)) : Q̂(X , Y , 0,m)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P(f̂ (Y (0),m), Y (1))
∧r1

	 (δ′
1, (0,m)) : Q̂(X , Y , 0,m)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P̂(X , 0)
∧r2

	 ¬P(X(0), f̂ (a, 0))
B P̂r

P(X(0), f̂ (a, 0)) 	 ¬ : l

	 res(σ1)

where σ1 = {X(0) ← f̂ (Y (0),m), Y (1) ← f̂ (a, 0)}.Obviously, ρ(δ0, X , Y , 0,m) is a
RPLΨ

0 refutation of Q̂(X , Y , 0,m). The label (δ′
1,∅) means that δ′

1 is an axiom label for the

123

630 D. Cerna et al.

case (0,m). By ρ1(δ0, X , Y , n,m) we denote the following derivation:

(δ1, (n,m, n, 0))

	 Q̂(X , Y , 0,m)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P(f̂ (Y (0),m), Y (1))
∧r1

(δ1, (n,m, n, 0))

	 Q̂(X , Y , 0,m)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P̂(X , 0)
∧r2

	 ¬P(X(0), f̂ (a, 0))
B P̂r

P(X(0), f̂ (a, 0)) 	 ¬ : l

	
resσ1

In contrast to ρ0(δ0, X , Y , n,m) Q̂(X , Y , 0,m) is not an axiom in the proof but rather the
end-sequent. The label (δ1, (n,m, n, 0)) represents a call of the proof ρ(δ1, X , Y ,m, n, k, l)
where k is replaced by n and l by 0. For the proof symbol δ1 we select the partition {n =
0, n > 0 ∧ l < n, n > 0 ∧ l ≥ n}, define a reduction system Π(δ1, X , Y ,m, n, k, l) and a
sequent S(δ1, X , Y , n,m, k, l) = Q̂(X , Y , l,m). We define Π(δ1, X , Y , n,m, k, l) =

{(δ1, X , Y , n,m, k, l) → ρ0(δ1, X , Y , n,m, k, l) : n = 0,

(δ1, X , Y , n,m, k, l) → ρ1(δ1, X , Y , n,m, k, l) : n > 0 ∧ l < n,

(δ1, X , Y , n,m, k, l) → ρ2(δ1, X , Y , n,m, k, l) : n > 0 ∧ l ≥ n}.

where

ρ0(δ1, X , Y , n,m, k, l) = (δ′
2, (n,m, k, l)) : Q(X , Y , n,m),

ρ2(δ1, X , Y , n,m, k, l) = (δ′
3, (n,m, k, l)) : Q(X , Y , n,m).

(δ′
2, (n,m, k, l)) and (δ′

3, (n,m, k, l)) are axiom labels where the computation of the
proof stops. The most involved proof is ρ1(δ1, X , Y ,m, n, k, l) which performs the real
induction. It derives the end sequent 	 Q̂(X , Y , l,m) from the sequent (δ1, (m, n, p(k),
s(l))) : Q̂(X , Y , s(l),m). If l < n then (m, n, p(k), s(l)) represents a further call of
ρ1(δ1, X , Y ,m, n, k, l). By this call the leaf Q̂(X , Y , s(l),m) is replaced by a derivation
of Q̂(X , Y , s(l),m) with leaves Q̂(X , Y , ss(l),m) and so on. If the counter reaches l = n
the computation stops and we have reached the axioms Q̂(X , Y , n,m). Note that, in the
whole proof system, we start with l = 0 and k = n via the call from δ0. That is, via the
initiation given by the call from δ0, we obtain a derivation of 	 Q̂(X , Y , 0,m) from axioms
	 Q̂(X , Y , n,m). Putting δ0 and δ1 together where δ0 is the main symbol we eventually
obtain a refutation of 	 Q̂(X , Y , n,m).

By ρ1(δ1, X , Y ,m, n, k, l) we denote the following derivation:

(δ1, (n,m, p(k), s(l)))

	 Q̂(X , Y , s(l),m)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , s(l))
SQ̂r

	 P(f̂ (Y (0),m), Y (1))
(2)

∧r1

123

Schematic Refutations of Formula Schemata 631

(2)
	 P(f̂ (Y (0),m), Y (1))

(δ1, (n,m, p(k), s(l)))

	 Q̂(X , Y , s(l),m)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , s(l))
SQ̂r

	 P̂(X , s(l))
∧r2

	 ¬P(X(l), f̂ (a, l)) ∨ P̂(X , l)
S P̂r

	 ¬P(X(l), f̂ (a, l)), P̂(X , l)
∨r

P(X(l), f̂ (a, l)) 	 P̂(X , l)
¬r

	 P̂(X , l)
(1)

res(σ2)

where σ2 = {X(l) ← f̂ (Y (0),m), Y (1) ← f̂ (a, l)}.
(2)

	 P(f̂ (Y (0),m), Y (1))
(1)

	 P̂(X , l)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , l)
∧ : I r

	 Q̂(X , Y , l,m)
SQ̂r+

Definition 43 (RPLΨ
0 schema) Let D be the tuple (Ψ , δ0,Δ

∗,Δa,X,Π). D is called an
RPLΨ

0 schema if the following conditions are fulfilled:

– Ψ : (S, P̂, T) is a theory as in Definition 3.
– Δ∗ be a finite subset of Δ.
– δ0 ∈ Δ∗, δ0 is called the main symbol.
– Δa ⊆ Δ∗, the axiom symbols.
– X is a tuple of global variables.
– To every δ ∈ Δ∗ we assign a parameter tuple nδ of pairwise different parameters and a

partition Cδ = {Cδ
1, . . . ,C

δ
k(δ)} of S where the Cδ

i contain only parameters in nδ .

– Π is a set of pairs {(Π(δ,X,nδ), S(δ,X,nδ)) | δ ∈ Δ∗} where S(δ,X,nδ) is a sequent
over the global variables X and the parameters in nδ , and Π(δ,X,nδ) is defined as
follows:

{(δ,X,nδ) → ρ1(δ,X,nδ) : Cδ
1, . . . , (δ,X,nδ) → ρk(δ)(δ,X,nδ) : Cδ

k(δ)}
Note the following, for each i ∈ {1, . . . , k(δ)} ρi (δ,X,nδ) is a labeled RPLΨ

0 derivation
of S(δ,X,nδ) and for each leaf λ ∈ leaves(ρi (δ,X,nδ)) we have

– |ρi (δ,X,nδ)|λ = (δ′,nδ) : 	 P̂(Z, r) for λ ∈ Axiom(ρi (δ,X,nδ)) where P̂(Z, r)
is a variant of the main atom of Ψ , δ′ ∈ Δa , A(δ′) = A(δ) and Z is a tuple of global
variables which is a subtuple of X.

– |ρi (δ,X,nδ)|λ = (δ′, s) : S(δ′,X, s) for λ ∈ Naxiom(ρi (δ,X,nδ)) where δ′ ∈
Δ∗\Δa , and s is an A(δ′) tuple of terms in T ω

1 containing only parameters in nδ .

Furthermore,

– nδ = (r,mδ), the first part being the parameter tuple r for the main symbol of the theory
Ψ . The arity ofmδ depends on δ.

– Π(δ0,X,nδ0) �= ∅,
– for all δ ∈ Δa Π(δ,X,nδ) = ∅,

D is called a refutation schema of Ψ if S(δ0,X,nδ0) = 	.

123

632 D. Cerna et al.

Remark 8 In defining n = (r,mδ) we distinguish the static parameters in r (which are used
in the recursive formula definition) and the dynamic parameters in mδ which are used for
carrying out the inductive steps. In Example 20 δ0 has no dynamic parameters, but δ1 has the
dynamic parameters k and l. In a recursive call only dynamic parameters are substituted. The
tuple Z of global variables is chosen in a way to guarantee essential disjointness of global
variables in the resolution steps.

Given a parameter assignment σ , every proof schema defines a sequence of proofs in the
following way: either we arrive at an axiom and stop or we find a leaf in the proof of the
form (δ,p) : S(δ,X,p); in the latter case we identify the right condition Cδ

i and the proof
ρi (δ,X,p) and replace the leaf by the derivation ρi (δ, X ,p). If this sequence converges we
obtain an RPLΨ

0 proof corresponding to σ . The formal definition is given below.

Definition 44 (Semantics of proof schemata) Let D be a proof schema

(Ψ , δ0,Δ
∗,Δa,X,Π).

Let σ ∈ S; we define define a sequence D(σ, α)α∈IN and call it the proof sequence corre-
sponding to σ . Let

Π(δ0,X,nδ0) = {(δ0,X,nδ0) → ρ1(δ0,X,nδ0) : Cδ0
1 ,

. . . , (δ,X,nδ0) → ρk(δ0)(δ0,X,nδ0) : Cδ0
k(δ0)

}.
As {Cδ0

1 , . . . ,Cδ0
k(δ0)

} is a partition there is exactly one i ∈ {1, . . . , k(δ0)} such that σ [Cδ0
i] =

�. Let σ(nδ0) = k where k = (r0, s) for σ(r)↓ω= r0. Then we define

D(σ, 0) = ρi (δ0,X,k).

Note that ρi (δ0,X,k) is an RPLΨ
0 derivation of S(δ0, X ,k) and the leaves of ρi (δ0,X,k)

are either axioms of the form (δ′
0,k) : P̂(X, r0) for δ′

0 ∈ Δa , or they are of the form
(δ, l) : S(δ,X, l) where δ ∈ Δ∗\Δa and l is a ground term tuple obtained in replacing the
original one by substituting parameters by numerals.
Assume that D(σ, α) is already defined. We distinguish two cases:

(a) All leaves in D(σ, α) are of the form (δ,p) : P̂(Z, s) for δ ∈ Δa where P̂ is the main
symbol of Ψ . Then we define D(σ, α + 1) = D(σ, α).

(b) There are leaves of the form (δ,k) : S(δ,X,k) for an A(δ) ground term tuple k and
δ ∈ Δ∗\Δa . For each leaf of this form we consider

Π(δ,X,nδ) = {(δ,X,nδ) → ρ1(δ,X,nδ) : Cδ
1,

. . . , (δ,X,nδ) → ρk(δ)(δ,X,nδ) : Cδ
k(δ)}.

Let σ ′ ∈ S such that σ ′(nδ) = k. As {Cδ
1, . . . ,C

δ
k(δ)} is a partition there is exactly one

i ∈ {1, . . . , k(δ)} such that σ ′[Cδ
i] = �. Now we have to select the production

(δ,X,nδ) → ρi (δ,X,nδ) : Cδ
i

from Π(δ,X,nδ). Finally we replace the leaf (δ,k) : S(δ,X,k) by the RPLΨ
0 derivation

ρi (δ,X,k). We perform this transformation for all leaves with δ ∈ Δ∗\Δa and obtain a
new RPLΨ

0 derivation which we call D(σ, α + 1).

If the sequence converges, i.e. D(σ, α) = D(σ, α + 1) for some α we obtain an RPLΨ
0

proof as a result. Of course it is desirable to obtain such a proof for all parameter assignments
σ .

123

Schematic Refutations of Formula Schemata 633

Definition 45 Let ϕ = D(σ, α)whereD(σ, α) = D(σ, α+1). Then we say thatD(σ, α)α∈IN
converges and converges to ϕ.D is called convergent if, for all σ ∈ S,D(σ, α)α∈IN converges.

If D(σ, α)α∈IN converges then it converges to a proof ϕ ∈ RPLΨ
0 which is parameter free.

But ϕ can be further reduced to an RPL0 derivation ϕ↓ via the method defined in Sect. 4. We
can now extend the semantics to RPL0-proofs:

Definition 46 LetD be a proof schema which, for a σ ∈ S, converges to an RPLΨ
0 derivation

ϕ(σ). Then ϕ(σ)↓ is called the RPL0 proof defined by D under σ . If D converges for all σ
then {ϕ(σ)↓| σ ∈ S} is called the RPL0 proof set defined by D.

Example 21 Let D be the proof schema from Example 20. We compute D(σ, α) for two
different σ ∈ S. Let σ0(n) = 0̄, σ0(m) = 2̄ and σ0(k) = 1̄ for all parameters k /∈ {n,m}.
We start with D(σ0, 0). As σ0(n) = 0̄ we have to replace (δ0, X , Y , (n,m)) by the proof
ρ0(δ0, X , Y , (0̄, 2̄)). So we define D(σ0, 0) =

	 (δ′
1, (0̄, 2̄)) : Q̂(X , Y , 0̄, 2̄)

	 P(f̂ (Y (0̄), 2̄), Y (1̄)) ∧ P̂(X , 0̄)
BQ̂r

	 P(f̂ (Y (0̄), 2̄), Y (1̄))
∧r1

	 (δ′
1, (0̄, 2̄)) : Q̂(X , Y , 0̄, 2̄)

	 P(f̂ (Y (0̄), 2̄), Y (1̄)) ∧ P̂(X , 0̄)
BQ̂r

	 P̂(X , 0̄)
∧r2

	 ¬P(X(0), f̂ (a, 0̄))
B P̂r

P(X(0̄), f̂ (a, 0̄)) 	 ¬ : l

	 res(σ ′
1)

for σ ′
1 = {X(0) ← f̂ (Y (0), 2), Y (1) ← f̂ (a, 0)}. In ρ0(δ0, X , Y , (0̄, 2̄)) all leaves are

labeled by the axiom labels δ′
1 and there is no leaf to expand; thus D(σ0, 1) = D(σ0, 0) and

D(σ0, α)α∈IN converges to ρ0(δ0, X , Y , (0, 2)).
Now let σ1(p) = σ0(p) for p �= n and σ1(n) = 1. In this case the condition n > 0 holds and
we have to choose the proof ρ1(δ0, X , Y , 1, 2). We obtain D(σ1, 0) =

(δ1, (1, 2, 1, 0))

	 Q̂(X , Y , 0, 2)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P(f̂ (Y (0), 2), Y (1))
∧r1

(δ1, (1, 2, 1, 0))

	 Q̂(X , Y , 0, 2)

	 P(f̂ (Y (0), 2), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P̂(X , 0)
∧r2

	 ¬P(X(0), f̂ (a, 0))
B P̂r

P(X(0), f̂ (a, 0)) 	 ¬ : l

	 res(σ ′
1)

Now both leaves in ρ1(δ0, X , Y , 1, 2) represent a call to the proof labeled by δ1. In
Π(δ1, X , Y , n,m, k, l) we have to choose the proof ρ1(δ1, X , Y , 1, 2, 1, 0) via σ ′(n) =
1, σ ′(m) = 2, σ ′(k) = 1, σ ′(l) = 0 (the second condition applies). So we obtain
D(σ1, 1) =

ρ1(δ1, X , Y , (1, 2, 1, 0))

	 Q̂(X , Y , 0, 2)

	 P(f̂ (Y (0),m), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P(f̂ (Y (0), 2), Y (1))
∧r1

ρ1(δ1, X , Y , (1, 2, 1, 0))

	 Q̂(X , Y , 0, 2)

	 P(f̂ (Y (0), 2), Y (1)) ∧ P̂(X , 0)
BQ̂r

	 P̂(X , 0)
∧r2

	 ¬P(X(0), f̂ (a, 0))
B P̂r

P(X(0), f̂ (a, 0)) 	 ¬ : l

	
resσ1

123

634 D. Cerna et al.

Now ρ1(δ1, X , Y , (1, 2, 1, 0)) =
(δ1, (1, 2, 0, 1))

	 Q̂(X , Y , 1, 2)

	 P(f̂ (Y (0), 2), Y (1)) ∧ P̂(X , 1)
SQ̂r

	 P(f̂ (Y (0), 2), Y (1))
(2)

∧r1

(2)
	 P(f̂ (Y (0), 2), Y (1))

(δ1, (1, 2, 0, 1))

	 Q̂(X , Y , 1, 2)

	 P(f̂ (Y (0), 2), Y (1)) ∧ P̂(X , 1)
SQ̂r

	 P̂(X , 1)
∧r2

	 ¬P(X(0), f̂ (a, 0)) ∨ P̂(X , 0)
S P̂r

	 ¬P(X(0), f̂ (a, 0)), P̂(X , 0)
∨r

P(X(0), f̂ (a, 0)) 	 P̂(X , 0)
¬r

	 P̂(X , 0)
(1)

res(σ2)

where σ2 = {X(0) ← f̂ (Y (0), 2), Y (1) ← f̂ (a, 0)}.
(2)

	 P(f̂ (Y (0), 2), Y (1))
(1)

	 P̂(X , 0)

	 P(f̂ (Y (0), 2), Y (1)) ∧ P̂(X , 0)
∧ : I r

	 Q̂(X , Y , 0, 2)
SQ̂r+

In D(σ, 1) we have the leaves 	 (δ1, (1, 2, 0, 1)) : Q̂(X , Y , 1, 2). Again we have to call δ1,
this time via σ ′′ for σ ′′(n) = 1, σ ′′(m) = 2, σ ′′(k) = 0, σ ′′(l) = 1. As now σ ′′(l) = σ ′′(n)

we have to call ρ2(δ1, X , Y , (1, 2, 0, 1)). But

ρ2(δ1, X , Y , 1, 2, 0, 1) = (δ′
3, (1, 2, 0, 1)) : Q(X , Y , 1, 2)

where δ′
3 ∈ Δa . So we obtain D(σ1, 2) from D(σ1, 1) by replacing the leaves 	

(δ1, (1, 2, 0, 1)) : Q̂(X , Y , 1, 2) by the axiom leaves (δ′
3, (1, 2, 0, 1)) : Q(X , Y , 1, 2). In

D(σ1, 2) all leaves are axiom leaves and soD(σ1, 3) = D(σ1, 2). Therefore alsoD(σ1, α)α∈IN
converges. It is easy to see that D itself is convergent. The means to prove this formally will
be developed below.

The concept of proof schema D is defined in a way that the skeleton of D is, in fact, a point
transition system: we just strip the schema of its logical part and obtain the remaining “call
part” of the schema.

Definition 47 LetD : (Ψ , δ0,Δ
∗,Δa,X,Π) be a proof schema. Assume that for δ ∈ Δ∗ we

have

Π(δ,X,nδ) = {(δ,X,nδ) → ρ1(δ,X,nδ) : Cδ
1,

. . . , (δ,X,nδ) → ρk(δ)(δ,X,nδ) : Cδ
k(δ)}.

Let t : (δ,X,nδ) → ρi (δ,X,nδ) : Cδ
i be a production in Π(δ,X,nδ). Let Λ(δ, i) the set

of all leaves in the proof ρi (δ,X,nδ) . For every λ ∈ Λ(δ, i) of the form λ : (δ′,p) : F we
define pts(λ) = (δ′,p).

123

Schematic Refutations of Formula Schemata 635

Then we replace the production t in Π(δ,X,nδ) by

pts(t) = (δ,nδ) → {pts(λ) | λ ∈ Λ(δ, i)}
and Π(δ,X,nδ) by

pts(Π(δ,X,nδ)) = {pts(t) | t ∈ Π(δ,X,nδ)}.
Finally we define P(δ) = pts(Π(δ,X,nδ)) for all δ ∈ Δ∗ and set

pts(D) = (δ0,Δ
∗,Δa,P).

Proposition 15 Let D : (Ψ , δ0,Δ
∗,Δa,X,Π) be a proof schema. Then pts(D) is a point

transition system.

Proof Immediate by the Definitions 36, 43 and 47. ��
Example 22 Let D be the proof schema in Example 20. Then pts(D) is the point transition
system (δ0,Δ

∗,Δa,P), where Δ∗ = {δ0, δ1, δ′
1, δ

′
2, δ

′
3}, Δa = {δ′

1, δ
′
2, δ

′
3} and P defined

below:

P(δ0) = {(δ0, (n,m)) → {(δ′
1, (0,m))} : n = 0,

(δ0, (n,m)) → {(δ1, (n,m, n, 0))} : n > 0}
P(δ1) = {(δ1, (n,m, k, l)) → {(δ′

2, (n,m, k, l))} : n = 0,

(δ1, (n,m, k, l)) → {(δ1, (n,m, p(k), s(l)))} : n > 0 ∧ l < n,

(δ1, (n,m, k, l)) → {(δ′
3, (n,m, k, l))} : n > 0 ∧ l ≥ n},

P(δ′
1) = P(δ′

2) = P(δ′
3) = ∅.

Note that the righthandsides of the productions in pts(D) are sets—not multisets. Therefore
we count different leaves with the same labels just once. It is easy to see that pts(D) is a
canonic point transition system and thus terminating. We will prove below that this implies
that D is convergent.

Lemma 1 Let D(σ, α) be as in Definition 44 and T (P	, (δ, p), σ, α) as in Definition 37.
Then, for any α ∈ IN:

(a) if (δ,k) : S is a leaf node in D(σ, α) then (δ,k) is a leaf node in
T (pts(D), (δ0,nδ0), σ, α + 1);

(b) if (δ,k) is a leaf node in T (pts(D), (δ0,nδ0), σ, α +1) then there exists a sequent S such
that (δ,k) : S is a leaf node in D(σ, α).

Proof We prove (a) by induction on α. Let α = 0. Let us consider

Π(δ0,X,nδ0) = {(δ0,X,nδ0) → ρ1(δ0,X,nδ0) : Cδ0
1 ,

. . . , (δ,X,nδ0) → ρk(δ0)(δ0,X,nδ0) : Cδ0
k(δ0)

},
and σ [Cδ0

i] = �. Then D(σ, 0) is defined as ρi (δ0,X, σ (nδ0)). Now let (δ j ,p j) : Fj be
the leaves in in ρi (δ0,X,nδ0) for j = 1, . . . , β; then (δ j , σ (p j)) : σ(Fj)) are the leaves in
ρi (δ0,X, σ (nδ0)). By Definition 47 pts(Π(δ0,X,nδ0)) contains the production

(δ0,nδ0) → {(δ1,p1), . . . , (δβ,pβ)}.

123

636 D. Cerna et al.

Hence, by Definition 37 T (pts(D), (δ0,nδ0), σ, 1) has exactly the leaves (δ j , σ (p j)). This
concludes the case α = 0.
Now assume that, for any leaf (δ,k) : F in D(σ, α) there exists a leaf (δ,k) in
T (pts(D), (δ0,nδ0), σ, α+1). If δ ∈ Δa then, by definition, (δ,k) : F is a leaf inD(σ, α+1)
and (δ,k) is a leaf in T (pts(D), (δ0,nδ0), σ, α +2). Otherwise assume thatΠ(δ,X,nδ) �= ∅
and

Π(δ,X,nδ) = {(δ,X,nδ) → ρ1(δ,X,nδ) : Cδ
1,

. . . , (δ,X,nδ) → ρk(δ)(δ,X,nδ) : Cδ
k(δ)}.

Let σ ′ ∈ S such that σ ′(nδ) = k and σ ′[Cδ
i] = �. Now we have to select the production

(δ,X,nδ) → ρi (δ,X,nδ) : Cδ
i

from Π(δ,X,nδ). Again, assume that (δ j ,p j) : Fj are the leaves in ρi (δ,X,nδ) for j =
1, . . . , γ , and so (δ j , σ

′(p j)) : σ ′(Fj) are the leaves in in ρi (δ,X, σ ′(nδ)). By Definition 47
pts(Π(δ,X,nδ)) contains the production

(δ,nδ) → {(δ1,p1), . . . , (δβ,pγ)}.
By Definition 37 , T (pts(D), (δ0,nδ0), σ, α + 2) contains (new) leaves of the form
(δ j , σ

′(p j)).
The proof of (b) is analogous to that of (a). ��
Theorem 2 Let D be a proof schema. D is convergent iff pts(D) is terminating.

Proof D is convergent ⇒:
For all σ ∈ S there exists an α such that D(σ, α) = D(σ, α + 1). By definition of D this
happens only if for all leaves (δ,k) : S in D(σ, α) we have δ ∈ Δa . By Lemma 1 all leaves
in T (pts(D), (δ0,nδ0), σ, α + 1) are of the form (δ,k) for δ ∈ Δa . As Δa is the set of all end
labels in pts(D) we get

T (pts(D), (δ0,nδ0), σ, α + 1) = T (pts(D), (δ0,nδ0), σ, α + 2)

and, for all σ , pts(D) terminates on σ ; thus pts(D) is terminating.
pts(D) is terminating ⇒:
For all σ ∈ S there exists an α such that

T (pts(D), (δ0,nδ0), σ, α) = T (pts(D), (δ0,nδ0), σ, α + 1).

For all α > 0 this implies that, for all leaves (δ,k) in T (pts(D), (δ0,nδ0), σ, α), δ ∈ Δa . Now
let (δ′,p) : S be a leaf inD(σ, α−1); by Lemma 1 (δ′,p) is a leaf in T (pts(D), (δ0,nδ0), σ, α)

and, by assumption, δ′ ∈ Δa . Therefore, by definition ofD(σ, α + 1), we getD(σ, α + 1) =
D(σ, α) and D converges on σ . ��
We can now characterize the convergence of proof schemata via point transition systems:

Theorem 3 Let D be a proof schema. Then D is convergent if pts(D) is canonic.

Proof Immediate by the Theorems 1 and 2. ��
Now it is easily verified that the proof schema D from Example 20 is convergent. The point
transition system pts(D) shown in Example 22 is canonic: for the ordering <P we use the
lexicographic tuple ordering and we partition Δ∗ into Δ1, Δ2 by Δ1 = Δa , Δ2 = {δ0, δ1}.

123

Schematic Refutations of Formula Schemata 637

Example 23 Below is the complete refutation schema for the schematic formula provided in
Example 6. In addition to the construction provided in Example 6 we require an additional
global variable Y with a two arguments. Let D = (Ψ , δ0,Δ

∗, Δa,X∪ {Y },Π) be an RPLΨ
0

schemawhereΨ is the theorypresented inExample6,Δ∗={δ0, · · · , δ6, δ
1
0, δ

2
0, δ

3
0, δ

4
0, δ

′
4, δ

′
5},

Δa = {δ10, δ20, δ30, δ40, δ′
4, δ

′
5}, and

Π =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Π0(δ0,X, Y , n,m),)

(Π1(δ1,X, Y , n,m, w, k, r , q),	 f (Y (w, k)) < k)(
Π2(δ2,X, Y , n,m, w, k, r , q),	 f (Y (w, k)) < k, F̂5(X, k, q)

)
(
Π3(δ3,X, Y , n,m, w, k, r , q),	 F̂4(X, k, q)

)
(
Π4(δ4,X, Y , n,m, w, k, r , q),		 F̂2(X, k, q)

)
(
Π5(δ5,X, Y , n,m, w, k, r , q),	 F̂3(X, k, q)

)
(Π6(δ6,X, Y , n,m, w, k, r , q),	 f (Y (w, k)) < k))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where,

– Π0(δ0,X, Y , n,m) =⎧⎪⎪⎨
⎪⎪⎩

(δ0,X, Y , n,m) → ρ1(δ0,X, Y , n,m) : n > 0 ∧ m > 0
(δ0,X, Y , n,m) → ρ2(δ0,X, Y , n,m) : n = 0 ∧ m > 0
(δ0,X, Y , n,m) → ρ3(δ0,X, Y , n,m) : n > 0 ∧ m = 0
(δ0,X, Y , n,m) → ρ4(δ0,X, Y , n,m) : n = 0 ∧ m = 0

⎫⎪⎪⎬
⎪⎪⎭ .

ρ4(δ0,X, Y , n,m) is defined in Example 14.
The other proofs are as follows:

• ρ1(δ0,X, Y , n,m)

(δ1, (n,m, n, n, s(m), 0))

	 f (Y (n, 0)) < 0

(δ5, (n,m, n, n, 0,m))

	 F̂3(X, 0,m)
BF̂3r	 F̂5(X, 0,m) ∧ f (a) �< 0 ∧ : r2	 f (a) �< 0 ¬ : r

f (a) < 0 	
Res(μ)	

where μ = {Y (n, 0) ← a}.
• ρ2(δ0,X, Y , n,m)

(δ1, (0,m, 0, 0, s(m), 0))

	 f (Y (0, 0)) < 0

(
δ40 , (0,m)

)
	 F̂1(X, 0,m)

SF̂1r	 F̂2(X, 0,m) ∧ F̂3(X, 0,m) ∧ : r
	 F̂3(X, 0,m)

BF̂3r	 F̂5(,X, Y (0), 0,m) ∧ f (a) �< 0 ∧ : r2	 f (a) �< 0 ¬ : r
f (a) < 0 	

Res(μ)	
where μ = {Y (0, 0) ← a}.
• ρ3(δ0,X, Y , n,m)

123

638 D. Cerna et al.

(δ6, (n, 0, n, n, s(0), 0))

	 f (Y (n, 0)) < 0

(δ5, (n, 0, n, n, 0, 0))

	 F̂3(X, 0, 0)
BF̂3r	 F̂5(X, 0, 0) ∧ f (a) �< 0 ∧ : r2	 f (a) �< 0 ¬ : r

f (a) < 0 	
Res(μ)	

where μ = {Y (n, 0) ← a}.
– Π1(δ1,X, Y , n,m, w, k, r , q) =

{
(δ1,X, Y , n,m, w, k, r , q) → ρ1(δ1,X, Y , n,m, w, k, r , q) : w > 0
(δ1,X, Y , n,m, w, k, r , q) → ρ2(δ1,X, Y , n,m, w, k, r , q) : w = 0

}
.

• ρ1(δ1,X, Y , n,m, w, k, r , q)

(δ3, (n,m, w, k, p(r), 0))

	 F̂4(X, k, 0)
BF̂4r	 f ((X2(k, 0)) �< s(k) ∨ f (X2(k, 0)) < k ∨ f (X2(k, 0)) ∼ k ∨ : r	 f (X2(k, 0)) �< s(k), f (X2(k, 0)) < k ∨ f (X2(k, 0)) ∼ k ∨ : r	 f (X2(k, 0)) �< s(k), f (X2(k, 0)) < k, f (X2(k, 0)) ∼ k ¬ : r

f (X2(k, 0)) < s(k) 	 f (X2(k, 0)) < k, f (X2(k, 0)) ∼ k

(2)

(δ1, (n,m, p(w), s(k), r , 0))

	 f (Y (p(w), s(k))) < s(k) (2)
Res(μ1)	 f (Y (p(w), s(k))) < k, f (Y (p(w), s(k))) ∼ k

(1)

(1)

(δ2, (n,m, w, k, p(p(r)), 0))

	 f (Y (w, k)) < k, F̂5(X, k, 0)
BF̂5r	 f (Y (w, k)) < k, f (Ŝ(X3(k), 0)) � k
BŜr	 f (Y (w, k)) < k, f (X3(k)) � k ¬ : r

f (X3(k)) ∼ k 	 f (Y (w, k)) < k
Res(μ2)	 f (Y (w, k)) < k

where μ1 = {
X2(k, 0) ← Y (p(w), s(k))

}
and

μ2 = {
Y (p(w), s(k)) ← Y (w, k), X3(k) ← Y (w, k)

}
.
• ρ2(δ1,X, Y , n,m, w, k, r , q)

(δ4, (n,m, w, k, p(r), 0))

	 F̂2(X, k, 0)
BF̂2r	 f (X1(k, 0)) < k ∨ f (X1(k, 0)) ∼ k ∨ : r	 f (X1(k, 0)) < k, f (X1(k, 0)) ∼ k
BŜr	 f (X1(k, 0)) < k, f (X1(k, 0)) ∼ k

(1)

123

Schematic Refutations of Formula Schemata 639

(1)

(δ2, (n,m, 0, k, p(p(r)), 0))

	 f (Y (0, k)) < k, F̂5(X, k, 0)
BF̂5r	 f (Y (0, k)) < k, f (Ŝ(X3(k), 0)) � k
BŜr	 f (Y (0, k)) < k, f (X3(k)) � k ¬ : r

f (X3(k)) ∼ k 	 f (Y (0, k)) < k
Res(μ)	 f (Y (0, k)) < k

where μ = {
X1(k, 0) ← Y (0, k) , X3(k) ← Y (0, k)

}
.

– Π2(δ2,X, Y , n,m, w, k, r , q) =
{

(δ2,X, Y , n,m, w, k, r , q) → ρ1(δ2,X, Y , n,m, w, k, r , q) : r > 0
(δ2,X, Y , n,m, w, k, r , q) → ρ2(δ2,X, Y , n,m, w, k, r , q) : r = 0

}
.

• ρ1(δ2,X, Y , n,m, w, k, r , q)

(
δ3, (n,m, w, k, p(r), s(q))

)
	 F̂4(X, k, s(q))

SF̂4r	 (f (Ŝ(X2(k, s(q)), s(q))) �< s(k) ∨ f (X2(k, s(q))) < k ∨ f (Ŝ(X2(k, s(q)), s(q))) ∼ k) ∧ F̂4(X, k, q) ∧ : r2	 f (Ŝ(X2(k, s(q)), s(q))) �< s(k) ∨ f (X2(k, s(q))) < k ∨ f (Ŝ(X2(k, s(q)), s(q))) ∼ k ∨ : r
	 f (Ŝ(X2(k, s(q)), s(q))) �< s(k), f (X2(k, s(q))) < k ∨ f (Ŝ(X2(k, s(q)), s(q))) ∼ k ∨ : r
	 f (Ŝ(X2(k, s(q)), s(q))) �< s(k), f (X2(k, s(q))) < k, f (Ŝ(X2(k, s(q)), s(q))) ∼ k

¬ : r
f (Ŝ(X2(k, s(q)), s(q))) < s(k) 	 f (X2(k, s(q))) < k, f (Ŝ(X2(k, s(q)), s(q))) ∼ k

(2)

(δ1, (n,m, p(w), s(k), s(m), 0))

	 f (Y (p(w), s(k))) < s(k) (2)
Res(μ1)	 f (Y (w, k)) < k, f (Ŝ(Y (w, k), s(q))) ∼ k

(1)

(1)

(δ2, (n,m, w, k, p(r), s(q)))

	 f (Y1(w, k)) < k, F̂5(X, k, s(q))
SF̂5r	 f (Y1(w, k)) < k, f (X3(k)) � k ∨ F̂5(X, k, q) ∨ : r

	 f (Y1(w, k)) < k, f (X3(k)) � k, F̂5(X, k, q) ¬ : r
f (X3(k)) ∼ k 	 f (Y1(w, k)) < k, F̂5(X, k, q)

Res(μ2)	 f (Y (w, k)) < k, F̂5(X, k, q)

where

μ1 = {
X2(k, s(q)) ← Y (w, k), Y (p(w), s(k)) ← Ŝ(Y (w, k), s(q))

}
,

and

μ2 = {
Y1(w, k) ← Y (w, k), X3(k) ← Ŝ(Y (w, k), s(q))

}
.

123

640 D. Cerna et al.

• ρ2(δ2,X, Y , n,m, w, k, r , q)

(
δ3, (n,m, w, k, 0, s(q))

)
	 F̂4(X, k, s(q))

SF̂4r	 (f (Ŝ(X2(k, s(q)), s(q))) �< s(k) ∨ f (X2(k, s(q))) < k ∨ f (Ŝ(X2(k, s(q)), s(q))) ∼ k) ∧ F̂4(X, k, q) ∧ : r2	 f (Ŝ(X2(k, s(q)), s(q))) �< s(k) ∨ f (X2(k, s(q))) < k ∨ f (Ŝ(X2(k, s(q)), s(q))) ∼ k ∨ : r
	 f (Ŝ(X2(k, s(q)), s(q))) �< s(k), f (X2(k, s(q))) < k ∨ f (Ŝ(X2(k, s(q)), s(q))) ∼ k ∨ : r
	 f (Ŝ(X2(k, s(q)), s(q))) �< s(k), f (X2(k, s(q))) < k, f (Ŝ(X2(k, s(q)), s(q))) ∼ k

¬ : r
f (Ŝ(X2(k, s(q)), s(q))) < s(k) 	 f (X2(k, s(q))) < k, f (Ŝ(X2(k, s(q)), s(q))) ∼ k

(2)

(δ1, (n,m, p(w), s(k), s(m), 0))

	 f (Y (p(w), s(k))) < s(k) (2)
Res(μ1)	 f (Y (w, k)) < k, f (Ŝ(Y (w, k), s(q))) ∼ k

(1)

(1)

(δ5, (n,m, w, k, 0, s(q)))

	 F̂3(X, k, s(q))
SF̂3r	 F̂5(X, k, s(q)) ∧ F̂4(X, k, s(q)) ∧ F̂3(X, p(k), s(q)) ∧ : r

	 F̂5(X, k, s(q)) ∧ F̂4(X, p(k), s(q)) ∧ : r
	 F̂5(X, k, s(q))

SF̂5r	 f (X3(k)) � k ∨ F̂5(X, k, q) ∨ : r
	 f (X3(k)) � k, F̂5(X, k, q) ¬ : r
f (X3(k)) ∼ k 	 F̂5(X, k, q)

Res(μ2)	 f (Y (w, k)) < k, F̂5(X, k, q)

where

μ1 = {
X2(k, s(q)) ← Y (w, k), Y (p(w), s(k)) ← Ŝ(Y (w, k), s(q))

}
,

and

μ2 = {
X3(k) ← Ŝ(Y (w, k), s(q))

}
.

– Π3(δ3,X, Y , n,m, w, k, r , q) ={
(δ3,X, Y , n,m, w, k, r , q) → ρ1(δ3,X, Y , n,m, w, k, r , q) : r > 0
(δ3,X, Y , n,m, w, k, r , q) → ρ2(δ3,X, Y , n,m, w, k, r , q) : r = 0

}
.

• ρ1(δ3,X, Y , n,m, w, k, r , q)

(δ3, (n,m, w, k, p(r), s(q)))

	 F̂4(X, k, s(q))
SF̂4r	 M ∧ F̂4(X, k, q) ∧ : r

	 F̂4(X, k, q)

where M denotes

(¬ f (Ŝ(X2(k, s(q)), s(q))) < s(k) ∨ f (X2(k, s(q))) < k ∨
f (Ŝ(X2(k, s(q)), s(q))) ∼ k).

• ρ2(δ3,X, Y , n,m, w, k, r , q)

123

Schematic Refutations of Formula Schemata 641

(δ5, (n,m, p(w), s(k), 0, q))

	 F̂3(X, s(k), q)
SF̂3r	 F̂5(X, s(k), q) ∧ F̂4(X, k, q) ∧ F̂3(X, k, q) ∧ : r

	 F̂5(X, s(k), q) ∧ F̂4(X, k, q) ∧ : r
	 F̂4(X, k, q)

– Π4(δ4,X, Y , n,m, w, k, r , q) =
{

(δ4,X, Y , n,m, w, k, r , q) → ρ1(δ4,X, Y , n,m, w, k, r , q) : r > 0
(δ4,X, Y , n,m, w, k, r , q) → ρ2(δ4,X, Y , n,m, w, k, r , q) : r = 0

}
.

• ρ1(δ4,X, Y , n,m, w, k, r , q)

(δ4, (n,m, w, k, p(r), s(q)))

	 F̂2(X, k, s(q))
SF̂2r	 (f (Ŝ(X1(k, s(q)), s(q))) ∼ k ∨ f (X1(k, s(q))) < k) ∧ F̂2(X, k, q) ∧ : r

	 F̂2(X, k, q)

• ρ2(δ4,X, Y , n,m, w, k, r , q)

(
δ′
4, (n,m, w, k, r , q)

)
	 F̂1(X, k, q)

SF̂1r	 F̂2(X, k, q) ∧ F̂3(X, k, q) ∧ : r
	 F̂2(X, k, q)

– Π5(δ5,X, Y , n,m, w, k, r , q) =
{

(δ5,X, Y , n,m, w, k, r , q) → ρ1(δ5,X, Y , n,m, w, k, r , q) : w > 0
(δ5,X, Y , n,m, w, k, r , q) → ρ2(δ5,X, Y , n,m, w, k, r , q) : w = 0

}
.

• ρ1(δ5,X, Y , n,m, w, k, r , q)

(δ5, (n,m, p(w), s(k), r , q))

	 F̂3(X, s(k), q)
SF̂3r	 F̂5(X, s(k), q) ∧ F̂4(X, k, q) ∧ F̂3(X, k, q) ∧ : r

	 F̂3(X, k, q)

• ρ2(δ5,X, Y , n,m, w, k, r , q)

(
δ′
5, (n,m, w, k, r , q)

)
	 F̂1(X, k, q)

SF̂1r	 F̂2(X, k, q) ∧ F̂3(X, k, q) ∧ : r
	 F̂3(X, k, q)

– Π6(δ6,X, Y , n,m, w, k, r , q) =
{

(δ6,X, Y , n,m, w, k, r , q) → ρ1(δ6,X, Y , n,m, w, k, r , q) : w > 0
(δ6,X, Y , n,m, w, k, r , q) → ρ2(δ6,X, Y , n,m, w, k, r , q) : w = 0

}
.

• ρ1(δ6,X, Y , n,m, w, k, r , q) denotes

123

642 D. Cerna et al.

(δ3, (n,m, w, k, p(r), 0))

	 F̂4(X, k, 0)
BF̂4r	 f (X2(k, 0) �< s(k) ∨ f (X2(k, 0)) < k ∨ f (X2(k, 0)) ∼ k ∨ : r	 f (X2(k, 0)) �< s(k), f (X2(k, 0)) < k ∨ f (X2(k, 0)) ∼ k ∨ : r	 f (X2(k, 0)) �< s(k), f (X2(k, 0)) < k, f (X2(k, 0)) ∼ k ¬ : r

f (X2(k, 0)) < s(k) 	 f (X2(k, 0)) < k, f (X2(k, 0)) ∼ k

(2)

(δ1, (n,m, p(w), s(k), r , 0))

	 f (Y (p(w), s(k))) < s(k) (2)
Res(μ1)	 f (Y (p(w), s(k))) < k, f (Y (p(w), s(k))) ∼ k

(1)

(1)

(δ5, (n,m, w, k, p(r), 0))

	 F̂3(X, 0,m)
BF̂3r	 F̂5(X, k, 0) ∧ f (a) �< 0 ∧ : r2	 F̂5(X, k, 0)

BF̂5r	 f (Ŝ(X3(k), 0)) � k
BŜr	 f (X3(k)) � k ¬ : r

f (X3(k)) ∼ k 	
Res(μ2)	 f (Y (w, k)) < k

where

μ1 = {
X2(k, 0) ← Y (p(w), s(k))

}
,

and

μ2 = {
Y (p(w), s(k)) ← Y (w, k) , X3(k) ← Y (w, k)

}
.

• ρ2(δ6,X, Yn,m, w, k, r , q)

(δ4, (n,m, w, k, p(r), 0))

	 F̂2(X, k, 0)
BF̂2r	 f (X1(k, 0)) < k ∨ f (X1(k, 0)) ∼ k ∨ : r	 f (X1(k, 0)) < k, f (X1(k, 0)) ∼ k
BŜr	 f (X1(k, 0)) < k, f (X1(k, 0)) ∼ k

(δ5, (n,m, w, k, p(r), 0))

	 F̂3(X, k, 0)
BF̂3r	 F̂5(X, k, 0) ∧ f (a) �< 0 ∧ : r2	 F̂5(X, k, 0)

BF̂5r	 f (Ŝ(X3(k), 0)) � k
BŜr	 f (X3(k)) � k ¬ : r

f (X3(k)) ∼ k 	
Res(μ)	 f (Y (w, k)) < k

where μ = {
X1(k, 0) ← Y (w, k) , X3(k) ← Y (w, k)

}
.

In Example 23 we constructed an RPLΨ
0 refutationD. From this refutation wemay extract

a point transition system following the construction outlined in Definition 47.

Example 24 The point transition system for D, as defined in Example 23, is pts(D) =
(δ0,Δ

∗,Δa,P), for P = ⋃
Pδi where the Pδi ’s are defined as follows:

123

Schematic Refutations of Formula Schemata 643

– Pδ0 = pts(Π0(δ0,X, Y , n,m)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ0, (n,m)) →
{

(δ1, (n,m, n, n, s(m), 0))
(δ5, (n,m, n, n, 0,m))

}
: n > 0 ∧ m > 0

(δ0, (n,m)) →
{

(δ1, (0,m, 0, 0, s(m), 0))
(δ40, (0,m))

}
: n = 0 ∧ m > 0

(δ0, (n,m)) →
{

(δ5, (n, 0, n, n, 0, 0)),
(δ6, (n, 0, n, n, s(0), 0))

}
: n > 0 ∧ m = 0

(δ0, (n,m)) →
⎧⎨
⎩

(δ10, (0, 0))
(δ20, (0, 0))
(δ30, (0, 0))

⎫⎬
⎭ : n = 0 ∧ m = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

– Pδ1 = pts(Π1(δ1,X, Y , n,m, w, k, r , q)) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ1, (n,m, w, k, r , q)) →
⎧⎨
⎩

(δ1, (n,m, p(w), s(k), r , 0)),
(δ2, (n,m, w, k, p(p(r)), 0)),

(δ3, (n,m, w, k, p(r), 0))

⎫⎬
⎭ : w > 0

(δ1, (n,m, w, k, r , q)) →
{

(δ4, (n,m, 0, k, p(r), 0)),
(δ2, (n,m, 0, k, p(p(r)), 0))

}
: w = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

– Pδ2 = pts(Π2(δ2,X, Y , n,m, w, k, r , q)) =⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(δ2, (n,m, w, k, r , q)) →
⎧⎨
⎩

(δ2, (n,m, w, k, p(r), s(q))),

(δ1, (n,m, p(w), s(k), s(m), 0)),
(δ3, (n,m, w, k, p(r), s(q)))

⎫⎬
⎭ : r > 0

(δ2, (n,m, w, k, r , q)) →
⎧⎨
⎩

(δ1, n,m, p(w), s(k), s(m), 0),
(δ3, n,m, w, k, 0, s(q)),

(δ5, n,m, w, k, 0, s(q))

⎫⎬
⎭ : r = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

– Pδ3 = pts(Π3(δ3,X, Y , n,m, w, k, r , q)) ={
(δ3, (n,m, w, k, r , q)) → {

(δ3, n,m, w, k, p(r), s(q)),
} : r > 0

(δ3, (n,m, w, k, r , q)) → {
(δ5, n,m, p(w), s(k), 0, q)

} : r = 0

}

– Pδ4 = pts(Π4(δ4,X, Y , n,m, w, k, r , q)) ={
(δ4, (n,m, w, k, r , q)) → {

(δ4, n,m, w, k, p(r), s(q)),
} : r > 0

(δ4, (n,m, w, k, r , q)) → {
(δ′

4, n,m, w, k, r , q)
} : r = 0

}

– Pδ5 = pts(Π5(δ5,X, Y , n,m, w, k, r , q)) ={
(δ5, (n,m, w, k, r , q)) → {

(δ5, n,m, p(w), s(k), r , q),
} : w > 0

(δ5, (n,m, w, k, r , q)) → {
(δ′

5, n,m, w, k, r , q)
} : w = 0

}

– Pδ6 = pts(δ6,X, Y , n,m, w, k, r , q)) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(δ6, n,m, w, k, r , q) →
⎧⎨
⎩

(δ1, n,m, p(w), s(k), r , 0),
(δ5, n,m, w, k, p(r), 0),
(δ3, n,m, w, k, p(r), 0)

⎫⎬
⎭ : w > 0

(δ6, n,m, w, k, r , q) →
{

(δ4, n,m, 0, k, p(r), 0),
(δ5, n,m, 0, k, p(r), 0)

}
: w = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

By inspection one can see that pts(D) is in fact a point transition system.

Theorem 4 LetΨ be the theory inExample6. ThenD inExample23 is a convergent refutation
schema of Ψ .

123

644 D. Cerna et al.

Proof ThatD is a refutation schema of Ψ is easy to see as S(δ0, X , Y , n,m) = 	. It remains
to show that D is convergent. By the Theorems 1 and 2 it is sufficient to prove that pts(D)

(see Example 24) is canonic. We haveΔ∗ = {δ0, . . . , δ6}∪Δa forΔa = {δ10, . . . , δ14, δ′
4, δ

′
5}.

According to Definition 39 we have to partition Δ∗ into Δ1,Δ2 for defining the order <P .
We define Δ2 = {δ0, . . . , δ6} and Δ1 = Δa . Then it is easy to check that pts(D) is canonic.
��

7 FutureWork and Applications

The initial intention of this research was to develop a schematic resolution calculus and
thus allowing interactive proof analysis using CERES-like methods [5] in the presence of
induction. More precisely, the resolution calculus introduced in this work will provide the
basis for a schematic CERESmethod more expressive than the methods proposed in [11,14].
As already indicated, the key to proof analysis using CERES lies in the fact that it provides
a bridge between automated deduction and proof theory. In the schematic setting a bridge
has been provided [11,14], and the formalism presented here provides a setting to study
automated theorem proving for schematic first-order logic.

Our recursive semantics (defined in Sect. 5) separates local resolution derivations from the
global “shape” of the refutation, an essential characteristic of induction. While constructing
a recursive resolution refutation for a recursive unsatisfiable formula schema is incomplete,
it is not clear whether the problem remains incomplete when the point transition system is
fixed. In other words, we may instead ask: “Is providing a recursive resolution refutation,
with respect to a given point transition system, for recursive formulas complete?”The answer
to this question is not so clear in that it depends on the resolution calculus itself as well as
on the associated unification problem. Both concepts are developed in this paper.

Concerning the resolution calculus presented in Sect. 4, both the Andrew’s calculus-like
sequent rules and the introduction of global variables provide the necessary extensions to
resolution accommodating the recursive nature of our formulas. The unification problem
discussed in Sect. 3 has not been addressed so far, and furthermore it may have interesting
decidable fragments impacting schematic proof analysis as well as other fields.

Overall, the avenues we leave for future investigations provide ample opportunities for
studying schematic theorem proving.

Acknowledgements This work was partially supported by the Linz Institute of Technology (LIT) MathLP
project (LIT- 2019-7-YOU-213) funded by the state of upper Austria.

Funding Open access funding provided by TU Wien (TUW).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Schematic Refutations of Formula Schemata 645

References

1. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3), 414–432 (1971)
2. Aravantinos,V.,Caferra,R., Peltier,N.:Decidability andundecidability results for propositional schemata.

J. Artif. Intell. Res. 40(1), 599–656 (2011)
3. Aravantinos, V., Mnacho, E., Nicolas, P.: A resolution calculus for first-order schemata. Fundam. Inform.

125, 101–133 (2013)
4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
5. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: an analysis of Fürstenberg’s proof of the

infinity of primes. Theor. Comput. Sci. 403(2–3), 160–175 (2008)
6. Baaz, M., Leitsch, A.: Cut-elimination and redundancy-elimination by resolution. J. Symb. Comput. 29,

149–176 (2000)
7. Baaz, M., Leitsch, A.: Methods of Cut-elimination, vol. 34. Springer, Berlin (2011)
8. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In: TABLEAUX. Lecture

Notes in Computer Science, vol. 3702, pp. 78–92. Springer, Berlin (2005)
9. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Logic Comput. 21(6),

1177–1216 (2010)
10. Cerna, D.M., Leitsch, A.: Schematic cut elimination and the ordered pigeonhole principle. In: Automated

Reasoning—8th International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27–July 2, 2016,
Proceedings, pp. 241–256 (2016). Peer Reviewed

11. Dunchev, C., Leitsch, A., Rukhaia, M., Weller, D.: Cut-elimination and proof schemata. In: TbiLLC.
Lecture Notes in Computer Science, vol. 8984 , pp. 117–136. Springer (2013)

12. Hetzl, S., Leitsch, A., Weller, D., Paleo, B.W.: Herbrand sequent extraction. In: Intelligent Computer
Mathematics, pp. 462–477. Springer (2008)

13. Kersani, A.: Preuves par induction dans le calcul de superposition. (Induction proof in superposition
calculus). PhD thesis, Grenoble Alpes University, France (2014)

14. Leitsch, A., Peltier, N., Weller, D.: CERES for first-order schemata. J. Log. Comput. 27(7), 1897–1954
(2017)

15. Mcdowell, R.: Cut-elimination for a logicwith definitions and induction. Theor. Comput. Sci. 232, 91–119
(1997)

16. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical Logic. Springer,
Berlin (1999)

17. Takeuti, G.: Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 81. American
Elsevier Pub., New York (1975)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Schematic Refutations of Formula Schemata
	Abstract
	1 Introduction
	2 A Motivational Example
	3 Schematic Language
	4 The Resolution Calculus
	5 Point Transition Systems
	6 Schematic RPL0Ψ Derivations
	7 Future Work and Applications
	Acknowledgements
	References

