
Journal of Automated Reasoning (2022) 66:93–139
https://doi.org/10.1007/s10817-021-09607-x

Predicate Transformer Semantics for Hybrid Systems

Verification Components for Isabelle/HOL

Jonathan Julián Huerta y Munive1 · Georg Struth1

Received: 14 September 2019 / Accepted: 15 September 2021 / Published online: 31 October 2021
© The Author(s) 2021

Abstract
We present a semantic framework for the deductive verification of hybrid systems with
Isabelle/HOL. It supports reasoning about the temporal evolutions of hybrid programs in the
style of differential dynamic logic modelled by flows or invariant sets for vector fields. We
introduce the semantic foundations of this framework and summarise their Isabelle formal-
isation as well as the resulting verification components. A series of simple examples shows
our approach at work.

Keywords Hybrid systems · Predicate transformers · Modal Kleene algebra · Hybrid
program verification · Interactive theorem proving

1 Introduction

Hybrid systems combine continuous dynamics with discrete control. Their verification is
receiving increasing attention as the number of computing systems controlling real-world
physical systems is growing. Mathematically, hybrid system verification requires integrating
continuous system dynamics, often modelled by systems of differential equations, and dis-
crete control components into hybrid automata, hybrid programs or similar domain-specific
modelling formalisms, and into analysis techniques for these. Such techniques include state
space exploration, reachability or safety analyses by model checking and deductive verifica-
tion with domain-specific logics [10].

One of the most prominent deductive approaches is differential dynamic logic dL [47], an
extension of dynamic logic [21] to hybrid programs for reasoning with autonomous systems
of differential equations, their solutions and invariant sets. It is supported by the KeYmaera X
tool [14] and has proved its worth in numerous case studies [33,40,47]. KeYmaera X verifies
partial correctness specifications for hybrid programs using a combination of domain-specific
sequent andHilbert calculi, which itself is based on an intricate uniform substitution calculus.

B Jonathan Julián Huerta y Munive
jonathan.munive@di.ku.dk

Georg Struth
g.struth@sheffield.ac.uk

1 Department of Computer Science, University of Sheffield, Sheffield, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-021-09607-x&domain=pdf
http://orcid.org/0000-0003-3279-3685
http://orcid.org/0000-0001-9466-7815

94 J. J. Huerta y Munive, G. Struth

For pragmatic reasons, its language is restricted to differential terms of real arithmetic [14]
(that of hybrid automata is usually restricted to polynomial or linear constraints [10]).

Our initial motivation for this work has been the formalisation of a dL-style approach to
hybrid program verification in the Isabelle/HOL proof assistant [28] by combining Isabelle’s
mathematical components for analysis and ordinary differential equations [23,29–31] with
verification components for modal Kleene algebras [17]. We are using a shallow embedding
that, in general, encodes semantic representations of domain-specific formalisms within a
host-language (deep embeddings start from syntactic representations using data types to
program abstract syntax trees). This benefits not only from the well-known advantages of
shallowness: more rapid developments and simpler, more adaptable components. It has also
shifted our focus from encoding dL’s complex syntactic proof system to developing denota-
tional semantics for hybrid systems and supporting the natural style inwhichmathematicians,
physicists or engineers reason about them—without proof-theoretic baggage. After all, we
get Isabelle’s own proof system and proof methods for free, and our expressive power is only
limited by its type theory and higher-order logic.

Our main contribution is an open compositional semantic framework for the deductive
verification of hybrid programs in a general purpose proof assistant. In a nutshell, hybrid
programs are while programs, or simply programs with control loops, in which an evolu-
tion command for the continuous system dynamics complements the standard assignment
command for the discrete control. Evolution commands roughly specify vector fields (via
systems of ordinary differential equations) together with guards that model boundary condi-
tions. Here, we restrict our attention to abstract predicate transformer algebras using modal
Kleene algebras [9], quantales of lattice endofunctions or quantaloids of functions between
lattices [5]. They are instantiated first to intermediate relational or state transformer semantics
for dL-style hybrid programs, and then to concrete semantics over program stores for hybrid
programs: for dynamical systems with global flows, Lipschitz continuous vector fields with
local flows and continuous vector fields with multiple solutions. Another verification compo-
nent is based directly on flows. This array of components demonstrates the compositionality
and versatility of our framework. Figure 1 shows its basic anatomy.

modal Kleene
algebras

state transformers

predicate trans-
former quantales

binary relations

predicate trans-
former quantaloids

dynamical systems Lipschitz continuous
vector fields

continuous
vector fields

hybrid store dynamics

Fig. 1 Isabelle framework for hybrid systems verification

123

Predicate Transformer Semantics for Hybrid Systems 95

Our framework benefits from compositionality and algebra in various ways. Using alge-
bra allows us to derive most of the semantic properties needed for verification by equational
reasoning, and it reduces the overhead of developing different concrete semantics to a mini-
mum. Using modal Kleene algebras and predicate transformer algebras, in particular, makes
large parts of verification condition generation equational, and thus accessible to Isabelle’s
simplifiers. Compositionality of our extant framework for classical programs allows us to
localise the development of concrete semantics for hybrid programs to the specification and
formalisation of a semantics for evolutions commands. We only need to replace standard
models of the program store by a hybrid store model. In our denotational state transformer
semantics, evolution commands are interpreted as unions of all orbits of solutions of the
vector field at some initial value, subject to the guards constraining the durations of evolu-
tions. This covers situations beyond the remits of the Picard–Lindelöf theorem [22,66] and
supports general reasoning about guarded invariant sets. Ultimately, we can simply plug the
predicate transformers for evolution commands into the generic algebras for while programs
and their rules for verification condition generation.

Verification condition generation for evolution commands is supported by threeworkflows
that are inspired by dL, but work differently in practice:

– The first one asks users to supply a flow and a Lipschitz constant for the vector field spec-
ified by the evolution command. We usually obtain this data using an external computer
algebra system (integrating one into Isabelle seems routine and is left for future work).
After certifying the flow conditions and checking Lipschitz continuity of the vector field,
as dictated by the Picard–Lindelöf theorem, the orbit for the flow can be used to compute
the weakest liberal preconditions for the evolution command. This workflow deviates
from dL in allowing users to supply an interval of interest as domain of the flow.

– The secondworkflowworksmore generally in situations where unique solutions need not
exist or are difficult to work with. It requires users to supply an invariant set for the vector
field in the sense of dynamical systems theory [22,66]. After certifying the properties for
invariant sets, a correctness specification for the evolution command and the invariant set
is used in place of a weakest liberal precondition. Here, beyond dL, we support working
with solutions defined over chosen intervals and using dL-style inference rules as well
as arbitrary higher-order logic.

– The third workflow uses flows ab initio in the specification and semantic analysis of
evolution commands. This circumvents checking any continuity, existence, uniqueness
or invariant conditions of vector fields mentioned. This is not at all supported by dL.

With all three workflows, hybrid program verification is ultimately performed within
the concrete semantics. But, as with classical program verification, verification condition
generation eliminates all structural conditions automatically so that proof obligations are
entirely about the dynamics of the hybrid program store. They can be calculated in mathe-
matical textbook style by equational reasoning, and of course by external solvers and decision
procedures for arithmetic. (Their integration, as oracles or as verified components, is very
important, but left for future work.) For the introductory examples presented, we have merely
formalised some simple tactics that help automating the computation of derivatives in multi-
variate Banach spaces or that of polynomials and transcendental functions. Yet for those who
prefer dL-style reasoning, we have formalised a rudimentary set of its inference rules that
are sound relative to our semantics. Overall, unlike dL, which prescribes its domain-specific
set of inference rules, we grant users the freedom of choice between various workflows and
even of developing their own one within our semantic framework.

123

96 J. J. Huerta y Munive, G. Struth

The entire framework, including the mathematical development in this article, has been
formalised with Isabelle/HOL. All Isabelle components can be found in the Archive of
Formal Proofs [16,18,25,65]. We are currently using them to verify hybrid programs post
hoc in the standard weakest liberal precondition style outlined above. Yet the approach is
flexible enough to support the verification of hybrid systems usingHoare logic [11], symbolic
execution with strongest postconditions, program refinement with predicate transformers in
the style of Back and von Wright [5] and Morgan [11], and reasoning about hybrid program
equivalences in the elegant equational style of Kleene algebra with tests [37].

While our approach is powerful enough to tackle most problems of a recent systems
competition [45], the work documented in this article focuses mainly on the semantic foun-
dations and the proof of concept that the approach works. A more user-friendly specification
language, a less simplistic hybrid store model, enhanced tactics for reasoning with flows
and invariants, and mathematical background theories for reasoning about affine and linear
systems of differential equations have been added, while this article has been under review
[12,26]. The doctoral dissertation of the first author contains a more comprehensive descrip-
tion of the framework and further generalisations [27].

The remainder of this article is organised as follows: Sects. 2–6 introduce the algebras of
relations, state and predicate transformers needed. Section 7 explains the shallow embedding
used to formalise verification components for while programs. After recalling the basics
of differential equations in Sect. 8, we introduce our semantics for evolution commands in
Sects. 9–11 and explain our procedures for computing weakest liberal preconditions and
reasoning with differential invariants for them. Sections 13–15 summarise the corresponding
Isabelle components. Sections 12 and 16 briefly list the derivation and formalisation of
semantic variants of dL inference rules. Section 17 presents four verification examples in
our framework using the main two workflows. Section 18 presents our third workflow and
a brief example for it. Sections 19 and 20 discuss related work and conclude the article. A
glossary of cross-references between theorems in the text and the Isabelle theories is presented
in Appendix A.

2 Kleene Algebra

This section summarises the mathematical foundations of our simplest and most developed
predicate transformer algebra—modal Kleene algebra. It introduces the basics of Kleene
algebras, and the state transformer model and relational model used. The relational model is
standard for Kleene algebra. The state transformer model has so far received less attention
and is therefore explained in detail.

A dioid (S,+, ·, 0, 1) is an additively idempotent semiring, α + α = α holds for all
α ∈ S. The underlying abelian monoid (S,+, 0) is therefore a semilattice with order defined
by α ≤ β ↔ α + β = β. The order is preserved by · and + in both arguments; 0 is its least
element.

A Kleene algebra (K ,+, ·, 0, 1,∗) is a dioid expanded by the Kleene star (−)∗ : K → K
that satisfies the left and right unfold and induction axioms

1+ α · α∗ ≤ α∗, γ + α · β ≤ β → α∗ · γ ≤ β,

1+ α∗ · α ≤ α∗, γ + β · α ≤ β → γ · α∗ ≤ β.

By these axioms, α∗ · γ is the least fixpoint of the function γ + α · (−) and γ · α∗ that of
γ + (−) ·α, where we use− as a wildcard for function arguments. The fixpoint α∗ arises as a

123

Predicate Transformer Semantics for Hybrid Systems 97

special case. Themore general induction axioms combine its definitionwith sup-preservation
or continuity of left and right multiplication.

Opposition is an important duality ofKleene algebras: swapping the order ofmultiplication
in any Kleene algebra yields another one. The class of Kleene algebras is therefore closed
under opposition.

Kleene algebras were conceived as algebras of regular expressions. But here we interpret
their elements as programs. Addition models their nondeterministic choice, multiplication
their sequential composition and the Kleene star their unbounded finite iteration. The element
0 models abort; 1 models the ineffective program. Two programs are deemed equal if they
lead from the same inputs to the same outputs. These intuitions are grounded in concrete
program semantics.

With the relational composition of R ⊆ X × Y and S ⊆ Y × Z defined as (R; S) x z if
R x y and S y z for some y ∈ Y , with Id X x y if x = y, and the reflexive-transitive closure
of R ⊆ X × X defined as R∗ = ⋃

i∈N Ri , where R0 = Id X and Ri+1 = R; Ri , where we
write R x y instead of (x, y) ∈ R, the following holds.

Proposition 2.1 Let X be a set. Then, Rel X = (P (X × X),∪, ; ,∅, Id X ,∗) forms a Kleene
algebra—the full relation Kleene algebra over X.

A relation Kleene algebra over X is thus any subalgebra of Rel X .
Opposition can be expressed in Rel X by conversion, where the converse of relation R is

defined by R� x y ↔ R y x . It satisfies in particular (R; S)� = S�; R�.
The isomorphism P (X × Y) ∼= (P Y)X between categories of relations and non-

deterministic functions—so-called state transformers—yields an alternative representation.
It is given by the bijectionsF : P (X ×Y) → (P Y)X andR : (P Y)X → P(X ×Y) defined
by F R x = {y ∈ Y | R x y} and by R f x y ⇔ y ∈ f x . Following Isabelle syntax, we use
juxtaposition with a space to denote function application. State transformers f : X → P Y
and g : Y → P Z are composed by the (forward) Kleisli composition of the powerset monad

(f ◦K g) x =
⋃

{g y | y ∈ f x}.

The function ηX = {−} is a unit of this monad. The functorsF andR preserve arbitrary sups
and infs, extended pointwise to state transformers, and stars f ∗K x = ⋃

i∈N f iK x , which
are defined with respect to Kleisli composition.

Proposition 2.2 Let X be a set. Then, Sta X = ((P X)X ,∪, ◦K , λx . ∅, ηX ,∗K) forms a
Kleene algebra—the full state transformer Kleene algebra over X.

A state transformer Kleene algebra over X is any subalgebra of Sta X . Opposition is now
expressed using the (contravariant) functor (−)op = F ◦(−)� ◦R that associates f op : Y →
P X with every f : X → P Y .

The category Rel, with relations of type X × Y or state transformers of type X → P Y
as arrows, is beyond mono-type Kleene algebra.

For a more refined hierarchy of variants of Kleene algebras, their calculational properties
and themost important computational models, see our formalisation in the Archive of Formal
Proofs [3]. The state transformer model has been formalised with Isabelle for this article.

123

98 J. J. Huerta y Munive, G. Struth

3 Modal Kleene Algebra

Kleene algebrasmust be extended to express conditionals or while loopsmore faithfully. This
requires tests, which are not prima facie actions, but propositions. Assertions and correctness
specifications cannot be expressed directly either.

Two standard extensions bringKleene algebra closer to programsemantics.Kleene algebra
with tests [37] yields a simple algebraic semantics forwhile programs and a partial correctness
semantics for these in terms of an algebraic propositionalHoare logic—ignoring assignments.
Predicate transformer semantics, however, cannot be expressed [61]. Alternatively, Kleene
algebras can be enriched by modal box and diamond operators in the style of propositional
dynamic logic (PDL), which yields test and assertions as well as predicate transformers.
Yet once again, assignments cannot be expressed within the algebra. We outline the second
approach.

An antidomain semiring [9] is a semiring S expanded by an antidomain operation ad :
S → S axiomatised by

ad α · α = 0, ad α + ad2 α = 1, ad (α · β) ≤ ad (α · ad2 β).

By opposition, an antirange semiring [9] is a semiring S expanded by an antirange operation
ar : S → S axiomatised by

α · ar α = 0, ar α + ar2 α = 1, ar (α · β) ≤ ar (ar2 α · β).

Antidomain and antirange semirings are a fortiori dioids.
The antidomain ad α of program α models the set of those states from which α cannot

be executed. The operation d = ad2 thus defines the domain of a program: the set of those
states from which it can be executed. By opposition, the antirange ar α of α yields those
states into which α cannot be executed and r = ar2 defines the range of α: those states into
which it can be executed.

A modal Kleene algebra (MKA) [9] is a Kleene algebra that is both an antidomain and an
antirange Kleene algebra in which d ◦ r = r and r ◦ d = d .

In a MKA K , the set P ad K—the image of K under ad—models the set of all tests
or propositions. We henceforth often write p, q, . . . for its elements. Moreover, P ad K =
P d K = P r K = P ar K = Kd = Kr , where K f = {α ∈ S | f α = α} for f ∈ {d, r}.
Hence, p ∈ P ad K ↔ d p = p. It follows that the classMKA is closed under opposition. In
addition, Kd forms a Boolean algebra with least element 0, greatest element 1, join +, meet
· and complementation ad—the algebra of propositions, assertions or tests.

AxiomatisingMKA based on domain and range would lack the power to express comple-
mentation: Kd would only be a distributive lattice.

The programming intuitions for MKA are once again grounded in concrete semantics.

Proposition 3.1 If X is a set, then Rel X is the full relation MKA over X with

ad R x x ↔ ¬∃y ∈ X . R x y and ar R = ad R�.

Every subalgebra of a full relation MKA is a relation MKA.
Similarly, ar = ad ◦ (−)�, d = r ◦ (−)� and r = d ◦ (−)�. Furthermore,

(P (X × X))d = {P | P ⊆ Id X }.
Henceforth, we often identify such relational subidentities, sets and predicates and their types
via the isomorphisms (P (X × X))d ∼= X → B ∼= P X .

123

Predicate Transformer Semantics for Hybrid Systems 99

Proposition 3.2 Let X be a set. Then, Sta X is the full state transformer MKA over X with

ad f x =
{

ηX x, if f x = ∅,

∅, otherwise,
and ar f = ad f op.

Every subalgebra of a full relation MKA is a state transformer MKA. Similarly,

d f x =
{
∅, if f x = ∅,

ηX x, otherwise,
and r f = d f op.

These propositions generalise again beyond mono-types, but algebras of such typed relations
and state transformers cannot be captured by MKA.

In every MKA, p · α and α · p model the domain and range restriction of α to states
satisfying p. Conditionals and while loops can thus be expressed:

if p then α else β = p · α + p̄ · β and while p do α = (p · α)∗ · p̄,

where we write p̄ = ad p = ar p. Together with sequential composition α;β = α · β, this
yields an algebraic semantics of while programs without assignments. It is grounded in the
relational and the state transformer semantics. A more refined hierarchy of variants ofMKAs,
starting from domain and antidomain semigroups, their calculational properties and the most
important computational models, can be found in the Archive of Formal Proofs [16]. The
state transformer model of MKA has been formalised with Isabelle for this article.

4 Modal Kleene Algebra, Predicate Transformers and Invariants

MKA can express the modal operators of PDL, both with a relational Kripke semantics and a
coalgebraic state transformer semantics.

|α〉p = d (α · p), |α]p = ad (α · ad p), 〈α|p = r (p · α), [α|p = ar (ar p · α).

This is consistent with Jónsson and Tarski’s Boolean algebras with operators [35]: Each of
|α〉, 〈α|, |α] and [α| is an endofunction Kd → Kd on the Boolean algebra Kd . Yet another
view of modal operators is that of predicate transformers. The function |−]− yields the
weakest liberal precondition operator wlp; 〈−|− the strongest postcondition operator.

The boxes and diamonds of MKA are related by De Morgan duality:

|α〉p = |α] p̄, |α]p = |α〉 p̄, 〈α|p = [α| p̄, [α|p = 〈α| p̄ ;
their dualities are captured by the adjunctions and conjugations

|α〉p ≤ q ↔ p ≤ [α|q, 〈α|p ≤ q ↔ p ≤ |α]q,

|α〉p · q = 0 ↔ p · 〈α|q = 0, |α]p + q = 1 ↔ p + [α|q = 1.

In Rel X , as in standard Kripke semantics of modal logics in general, and of PDL in
particular,

|R〉P = {x | ∃y ∈ X . R x y ∧ P y} and |R]P = {x | ∀y ∈ X . R x y → P y},
where we identify predicates and subidentity relations. For the remaining two modalities,
〈−| = |−〉 ◦ (−)� and [−| = |−] ◦ (−)�. Hence, |R〉P is the preimage of P under R and
〈R|P the image of P under R. The isomorphism between subidentities, predicates and sets

123

100 J. J. Huerta y Munive, G. Struth

also allows us to see |R〉, 〈R|, |R] and [R| as operators on the complete atomic Boolean
algebra P X , which carries algebraic structure beyond Kd that is reminiscent of a module.

In Sta X , alternatively,

〈 f |P = {y | ∃x . y ∈ f x ∧ P x} and | f]P = {x | f x ⊆ P}.
Moreover, |−〉 = 〈−| ◦ (−)op and [−| = |−] ◦ (−)op. Here, 〈 f | is the Kleisli extension of f
for the powerset monad and | f 〉 that of the opposite function (see Sect. 6).

The isomorphism P (X × X) ∼= (P X)X makes the approaches coherent:

| f 〉 = |R f 〉, |R〉 = |F R〉, | f] = |R f], |R] = |F R],
and, dually, 〈 f | = 〈R f |, 〈R| = 〈F R|, [f | = [R f | and [R| = [F R|.

Predicate transformers are useful for specifying program correctness conditions and for
verification condition generation. The identity

p ≤ |α]q
captures the standard partial correctness specification for programs: if α is executed from
states where precondition p holds, and if it terminates, then postcondition q holds in the states
where it does. Verifying it amounts to computing |α]q recursively over the program structure
from q and checking that the result is greater or equal to p. Intuitively, |α]q represents the
largest set of states from which one must end up in set q when executing α, or alternatively
the weakest precondition from which postcondition q must hold when executing α.

Calculating |α]q for straight-line programs is completely equational, but loops require
invariants. To this end, one usually adds annotations to loops,

while p inv i do α = while p do α,

where i is the loop invariant for α and calculates wlps as follows [17,18]. For all p, q, i, t ∈
Kd and α, β ∈ K ,

|α · β]q = |α]|β]q, (wlp-seq)

|if p then α else β]q = (p̄ + |α]q) · (p + |β]q) = p · |α]q + p̄ · |β]q, (wlp-cond)

i ≤ |α]i → i ≤ |α∗]i, (wlp-star)

p ≤ i ∧ i · t ≤ |α]i ∧ i · t̄ ≤ q → p ≤ |while t inv i do α]q. (wlp-while)

In the rule (wlp-star), i is an invariant for the star as well. In addition, we support a while
rule without an invariant annotation.

More generally, beyond loops, an element i ∈ Kd is an invariant for α if it is a postfixpoint
of |α] in Kd :

i ≤ |α]i .
By the adjunction between boxes and diamonds, this is the case if and only if 〈α|i ≤ i ; that
is, i is a prefixpoint of 〈α| in Kd . We return to this equivalence in the context of differential
invariants and invariant sets of vector fields in Sect. 11.Wewrite Invα for the set of invariants
of α.

Lemma 4.1 In every MKA, if i, j ∈ Invα, then i + j, i · j ∈ Invα.

123

Predicate Transformer Semantics for Hybrid Systems 101

As a generalisation of the rule (wlp-while) for annotated while loops, we can derive a
rule for commands annotated with tentative invariants α inv i = α. For all i, p, q ∈ Kd and
α ∈ K ,

p ≤ i ∧ i ≤ |α]i ∧ i ≤ q → p ≤ |α inv i]q. (wlp-cmd)

Combining (wlp-cmd) with (wlp-star) then yields, for loopα inv i = α∗,

p ≤ i ∧ i ≤ |α]i ∧ i ≤ q → p ≤ |loopα inv i]q. (wlp-loop-inv)

We use such annotated commands for reasoning about differential invariants and loops of
hybrid programs below.

The modal operators of MKA have, of course, a much richer algebra beyond verification
condition generation. For a comprehensive list, see the Archive of Formal Proofs [16]. We
have already derived the rules of propositional Hoare logic, which ignores assignments, and
those for verification condition generation for symbolic execution with strongest postcon-
ditions in this setting [18]. A component for total correctness is also available. It supports
refinement proofs in the style of Back and von Wright [5]. But this is beyond the scope of
this article. The other two abstract predicate transformer algebras from Fig. 1 are surveyed
in the following two sections.

5 Predicate Transformers à la Back and vonWright

While MKA has so far been our most developed setting for verifying (hybrid) programs, our
framework is compositional and supports other predicate transformer algebras as well. Two
of them are outlined in this and the following section. Their Isabelle formalisation [65] is
discussed in Sect. 6.

The first approach follows Back and von Wright [5] in modelling predicate transformers,
or simply transformers, as functions between complete lattices. Readers not familiar with
lattice theory can freely skip this section. To obtain useful laws for program construction or
verification, conditions are imposed.

A function f : L1 → L2 between two complete lattices (L1,≤1) and (L2,≤2) is order-
preserving if x ≤1 y → f x ≤2 f y, sup-preserving if f ◦⊔ = ⊔ ◦P f and inf-preserving
if f ◦ � = � ◦P f . All sup- or inf-preserving functions are order-preserving.

We write T (L) for the set of transformers over the complete lattice L , and T≤(L), T�(L),
T�(L) for the subsets of order-, sup- and inf-preserving transformers. Obviously, T�(L) =
T�(Lop). The following fact is well known [5,15].

Proposition 5.1 Let X be a set, and let L be a complete lattice. Then, L X forms a complete
lattice with order and sups extended pointwise.

Infs, least and greatest elements can then be defined from sups on L X as usual. Function
spaces L L , in particular, form monoids with respect to function composition ◦ and idL . In
addition, ◦ preserves sups and infs in its first argument, but not necessarily in its second one.
Algebraically, this is captured as follows.

A near-quantale (Q,≤, ·) is a complete lattice (Q,≤) with an associative composition ·
that preserves sups in its first argument. It is unital if composition has a unit 1.A prequantale is
a near-quantale in which composition is order-preserving in its second argument. A quantale
is a near quantale in which composition preserves sups in its second argument. See [56] for
more information about quantales.

123

102 J. J. Huerta y Munive, G. Struth

Proposition 5.2 Let L be a complete lattice. Then,

1. T (L) and T (Lop) form unital near-quantales;
2. T≤(L) (T≤(Lop)) forms a unital sub-prequantale of T (L) (T (Lop));
3. T�(L) (T�(L)) forms a unital subquantale of T≤(L) (T≤(Lop)).

Transformers for while loops are obtained by connecting quantales with Kleene algebras.
This requires fixpoints of ϕαγ = γ � α · (−) and ϕα = 1 � α · (−) as well as the Kleene
star α∗ = ⊔

i∈N αi . A left Kleene algebra is a dioid in which ϕ has a least fixpoint that
satisfies lfp ϕαγ = lfp ϕα · γ . Hence, ϕα satisfies the left unfold and left induction axioms
1 � α · ϕα ≤ ϕα and γ � α · β ≤ β → ϕα · γ ≤ β. By opposition, a right Kleene algebra is
a dioid in which the least fixpoint of a dual function 1� (−) · α satisfies the right unfold and
right induction axioms.

Proposition 5.3

1. Every near-quantale is a right Kleene algebra with lfp ϕα = α∗.
2. Every prequantale is also a left Kleene algebra.
3. Every quantale is a Kleene algebra with lfp ϕα = α∗.

The proofs of (1) and (3) use sup-preservation and Kleene’s fixpoint theorem. That of (2)
uses the Knaster–Tarski fixpoint theorem to show that ϕαγ has a least fixpoint, and fixpoint
fusion [44] to derive lfp ϕαγ = lfp ϕα · γ , which yields the left Kleene algebra axioms. In
prequantales, lfp ϕα · γ ≤ α∗ · γ ; equality generally requires sup-preservation in the first
argument of composition.

The fixpoint and iteration laws on functions spaces, which follow from Propositions 5.3
and 5.2, still need to be translated into laws for transformers operating on the underlying
lattice. This is achieved again by fixpoint fusion [5]. In T≤(L),

lfp (λg. idL � f ◦ g) x = lfp (λy. x � f y),

and lfp preserves isotonicity. In T�(L), moreover,

f x ≤ x → f ∗ x ≤ x,

idL� f ◦ f ∗ = f ∗ = f ∗◦ f �idL and (−)∗ preserves sups.All results dualise to inf-preserving
transformers.

Relative toMKA, backward diamonds correspond to sup-preserving forward transformers
and forward boxes to inf-preserving backward transformers in the opposite quantale, where
the lattice has been dualised and the order of composition been swapped. An analogous
correspondence holds for forward diamonds and backward boxes. Sup- and inf-preserving
transformers over complete lattices are less general thanMKA in that preservation of arbitrary
sups or infs is required, whereas that of MKA is restricted to finite sups and infs. Isotone
transformers, however, are more general, as not even finite sups or infs need to be preserved,
and finite sup- or inf-preservation implies order preservation.

We are mainly using the wlp operator for verification condition generation and hence
briefly outline wlps for conditionals and loops in this setting. We assume that the underlying
lattice L is a complete Boolean algebra, that is, a complete lattice as well as a complemented
distributive lattice. We can then lift elements of L to wlps as |p]q = p → q and define, in
T≤(Lop),

if p then f else g = |p] ◦ f � | p̄] ◦ g and while p do f = lfp ϕ|p] f ◦ | p̄].

123

Predicate Transformer Semantics for Hybrid Systems 103

In T�(L), we even obtain

while p do f = (|p] ◦ f)∗ ◦ | p̄].
These equations allow generating verification conditions as with (wlp-cond) and (wlp-while)
from Sect. 4. Overall, our Isabelle components for lattice-based predicate transformers in the
Archive of Formal Proofs [65] contain essentially the same equations and rules for verification
condition generation as those for MKA.

We have so far restricted the approach to endofunctions on a complete lattice to relate it
to MKA. Yet it generalises to functions in L L1

2 and hence to categories [5]. The correspond-
ing poly-typed generalisations of quantales are known as quantaloids [55]. In particular,
composition is then a partial operation.

6 Predicate Transformers from the Powerset Monad

A second, more coalgebraic approach to predicate transformers starts from monads [41]. In
addition, it details the relational and state transformer semantics of MKA in a more modern
algebraic approach. We need to assume basic knowledge of categories and monads. Once
again, readers unfamiliar with these concepts can freely skip it.

Recall that (P, ηX , μX), for P : Set → Set, ηX : X → P X defined by ηX = {−} and
μX : P2 X → P X defined by μX = ⋃

is the monad of the powerset functor in the category
Set of sets and functions. The morphisms η and μ are natural transformations. They satisfy,
for every f : X → Y ,

ηY ◦ id f = P f ◦ ηX and μY ◦ P2 f = P f ◦ μX .

From the monadic point of view, state transformers X → P Y are arrows X → Y in the
Kleisli category SetP of P over Set. They are composed by (forward) Kleisli composition
f ◦K g = μ ◦ P g ◦ f as explained before Proposition 2.2 in Sect. 2. The category SetP is
known to be isomorphic to Rel, the category of sets and binary relations.

The isomorphism between state and forward predicate transformers is based on the con-
travariant functor (−)† : SetP (X ,P Y) → SetP (P X ,P Y)—the Kleisli extension. Its
definition f † = μ ◦ P f implies that (−)† = 〈−| on morphisms, which is the strongest
postcondition operator.

The structure of state spaces—Boolean algebras for MKA, complete lattices in Back and
vonWright’s approach—is captured by theEilenberg–Moore algebras of the powersetmonad.
It is well known that (−)† embeds SetP into their category. Its objects are complete (sup-
semi)lattices; its morphisms sup-preserving functions, hence transformers. More precisely,
(−)† embeds into powerset algebras, complete atomic Boolean algebras that are the free
objects in this category.

The isomorphism SetP (X ,P Y) ∼= Set�(P X ,P Y) between state transformers and
sup-preserving predicate transformers then arises as follows. The embedding 〈−| has an
injective inverse 〈−|−1 on the subcategory of sup-preserving transformers. It is defined by
〈−|−1 = (−) ◦ η, which can be spelled out as 〈ϕ|−1 x = {y | y ∈ ϕ {x}}. The isomorphism
preserves the quantaloid structures of state and predicate transformers that is, compositions
(contravariantly), units and sups, hence least elements, but not necessarily infs and greatest
elements. These results extend to Set�(P X ,P Y) ∼= Rel(X , Y) via SetP ∼= Rel. In addition,
predicate transformers 〈 f | : P X → P Y preserve of course sups in powerset lattices, hence
least elements, but not necessarily infs and greatest elements.

123

104 J. J. Huerta y Munive, G. Struth

Forward boxes or wlps can be obtained from state transformers via a (covariant) functor
|−] : SetP (X ,P Y) → Set(P Y ,P X), embedding Kleisli arrows into the opposite of
the category of Eilenberg–Moore algebras formed by complete (inf-semi)lattices and inf-
preserving functions. It is defined on morphisms as |−] = ∂F ◦ 〈−| ◦ (−)op, where ∂F f =
∂ ◦ f ◦∂ and ∂ dualises the lattice. Unfolding definitions, once again | f] P = {x | f x ⊆ P}.

Furthermore, its inverse |−]−1 on the subcategory of inf-preserving transformers is
|ϕ]−1 x = ⋂{P | x ∈ ϕ P}. The duality SetP (X ,P Y) ∼= Set�(P Y ,P X) reverses Kleisli
arrows and preserves the quantaloid structures up to lattice duality, mapping sups to infs and
vice versa. It extends to relations as before. In addition, predicate transformers | f] preserve
of course infs of powerset lattices, hence greatest elements, but not necessarily sups and least
elements.

The remaining transformers |−〉 and [−| and their inverses arise from 〈−| and |−] by
opposition: |−〉 = 〈−| ◦ (−)op, |−〉−1 = (−)op ◦ 〈−|−1, [−| = |−] ◦ (−)op and [−|−1 =
(−)op◦|−]−1. Taken together, the fourmodal operators satisfy the laws of theMKAmodalities
outlined in Sect. 4 and those of the abstract sup/inf-preserving transformers discussed in
Sect. 5. They give in fact semantics to the algebraic developments, when restricted to mono-
types, and once again yield the same rules for verification condition in the state transformer
and the relational semantics, albeit in a more general categorical setting.

The categorical approach to predicate transformers outlined is not new, apart perhaps
from the emphasis on quantales and quantaloids. The emphasis on monads is due at least
to Manes [43]. More recently, Jacob’s work on state-and-effect triangles [32] has explored
similar connections and their generalisation beyond sequential programs. A formalisation
with Isabelle, which is further discussed in Sect. 13, is a contribution of this article.

7 Assignments

Two important ingredients for concrete program semantics and verification condition gener-
ation are still missing: a mathematical model of the program store and program assignments,
and rules for calculating wlps for these basic commands. To prepare for hybrid programs (see
Sect. 9 for a syntax), we model stores and assignments as discrete dynamical systems over
state spaces.

Formally, a dynamical system [4,66] is an action of a monoid (M, 	, u) on a set or state
space S, that is, a monoid morphism ϕ : M → S → S into the transformation monoid
(SS, ◦, idS) on SS . Thus, by definition,

ϕ (m 	 n) = (ϕ m) ◦ (ϕ n) and ϕ u = idS .

The first action axiom captures the inherent determinism of dynamical systems. Conversely,
each transformation monoid (SS, ◦, idS) determines a monoid action in which the action
ϕ : SS → S → S is function application.

States of simple while programs can be modelled simply as maps s : V → E from
program variables in V to values in E . State spaces for such discrete dynamical systems are
function spaces S = E V .

An update function fa : V → (S → E) → S → S for assignment commands can be
defined as

fa v e s = s[v �→ e s],
where f [a �→ b] updates f : A → B by associating a ∈ A with b and every y �= a with
f y. The “expression” e : S → E is evaluated in state s to e s. The maps fa v e generate a

123

Predicate Transformer Semantics for Hybrid Systems 105

transformation monoid, hence a monoid action SS → S → S on SS . They also connect
the concrete program store semantics with the wlp semantics used for verification condition
generation.

We lift fa v e : S → S to a state transformer v :=F e : S → P S as

(v :=F e) = ηS ◦ (fa v e) = λs. { fa v e s},
thus creating a semantic illusion for syntactic assignment commands in the MKA Sta S. For
Rel S, the isomorphism between SetP and Rel yields

(v :=R e) = R (v :=F e),

hence (v :=R e) = {(s, fa v e s) | s ∈ E V } = {(s, s[v �→ e s]) | s ∈ E V }. Alternatively,
we could have defined the state transformer semantics from the relational one via (v :=F
e) = F (v :=R e).

The wlps for assignment commands in Rel S and Sta S are of course the same. Hence, we
drop the indices F and R and write

|v := e]Q = λs. Q (s[v �→ e s]) = λs. Q (fa v e s). (wlp-asgn)

Adding the wlp law for assignments in either semantics to the algebraic ones for the
program structure suffices to generate data-level verification conditions for while programs.

The approach outlined so far is suited for building verification components via shallow
embeddings with proof assistants such as Isabelle. The predicate transformer algebras of the
previous sections, as shown in the first row of Fig. 1, can all be instantiated to intermediate
state transformer and relational semantics, as shown in Propositions 3.1 and 3.2 for MKA.
These form the second row in Fig. 1. Each of these can be instantiated further to concrete
semantics with predicate transformers for assignments, as described in this section.

In Isabelle, these instantiations are enabled by type polymorphism. If modal Kleene
algebras have type ′a, then the intermediate semantics have the type of relations or state
transformers over ′a, and Propositions 3.1 and 3.2 can be formalised, so that all facts known
for MKA are available in the intermediate semantics. The concrete semantics then require
another simple instantiation of the types of relations or state transformers to those of pro-
gram stores. All facts known forMKA and the two intermediate semantics are then available
in the concrete predicate transformer semantics for while programs. A particularity of the
semantic approach and the shallow embedding is that assignment semantics are based on
function updates instead of substitutions—see the rule (wlp-asgn)—so that an explicit sub-
stitution calculus like that of dL is not needed. We can simply rely on that of Isabelle/HOL.

The use of algebra and the modularity of the shallow semantics simplify the construction
of program verification components [18] considerably. The overall approach discussed has
been developed initially for Hoare logics in [2]. It has been extended to predicate transformer
semantics based on MKA in [17].

8 Ordinary Differential Equations

Before developing relational and state transformer models for the basic evolution commands
of hybrid programs in the next section, we briefly review some basic facts about continuous
dynamical systems and ordinary differential equations.

Continuous dynamical systemsϕ : T → S → S are flows, which often represent solutions
to systems of ordinary differential equations (ODEs) [4,22,66]. They are called continuous

123

106 J. J. Huerta y Munive, G. Struth

because T , which models time, is assumed to form a non-discrete submonoid of (R,+, 0),
and the state space or phase space S is usually a manifold with topological structure. By
definition, flows are monoid actions. Hence, ϕ satisfies, for all t1, t2 ∈ T ,

ϕ (t1 + t2) = ϕ t1 ◦ ϕ t2 and ϕ 0 = id.

We always assume that T is an open interval in R and S an open subset of Rn . Beyond that,
one usually assumes that actions are compatible with the structure on S. As S is a manifold,
we assume that flows are continuously differentiable.

The trajectory of ϕ through state s ∈ S is the function ϕs : T → S defined by ϕs =
λt . ϕ t s, that is, ϕs t = ϕ t s. It describes the system’s evolution in time passing through state
s.

The orbit of s is the set of all states on the trajectory passing through s, but not necessarily
starting in this state. We model it as the function γ ϕ : S → P S defined by

γ ϕ s = P ϕs T ,

the canonical map sending each s ∈ S to its equivalence class γ ϕ s. Orbit functions are state
transformers, as their type indicates. They form our basic semantics for evolution commands
and hybrid programs.

Flows arise from ODEs as follows. In a system of ODEs

x ′
i t = fi (t, (x1 t), . . . , (xn t)), (1 ≤ i ≤ n),

each fi is a continuous real-valued function and t ∈ T ⊆ R. Any such system can be made
time-independent—or autonomous—by adding the equation x ′

0 t = 1.We henceforth restrict
our attention to autonomous systems and write

X ′ t =

⎛

⎜
⎜
⎜
⎝

x ′
1 t

x ′
2 t
...

x ′
n t

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

f1 (x1 t) . . . (xn t)
f2 (x1 t) . . . (xn t)

...

fn (x1 t) . . . (xn t)

⎞

⎟
⎟
⎟
⎠

= f (X t).

The continuous function f : S → S on S ⊆ R
n is a vector field. It assigns a vector to each

point in S.
An autonomous system of ODEs is thus simply a vector field f , and a solution a continu-

ously differentiable function X : T → S that satisfies X ′ t = f (X t) for all t ∈ T , or more
briefly X ′ = f ◦ X .

An initial value problem (IVP) is a pair (f , s) of a vector field f and an initial value
(0, s) ∈ T × S [22,66], where t0 = 0 and s represent the initial time and initial state of the
system. A solution to the IVP (f , s) satisfies

X ′ = f ◦ X and X 0 = s.

If solutions X to an IVP (f , s) are unique and T = R, then it is easy to show that X = ϕ
f

s

is the trajectory of the flow ϕ f through s.
Geometrically, ϕ f

s is the unique curve in S that is parametrised by t , passes through s and is
tangential to f at any point.As trajectories arise from integrating both sides of (ϕ f

s)′ = f ◦ϕ f
s ,

they are also called integral curves. We henceforth write ϕs when the dependency on f is
clear.

The following example provides some physical intuition for readers unfamiliar with these
concepts.

123

Predicate Transformer Semantics for Hybrid Systems 107

Example 8.1 (Particles in fluid) We use the autonomous system of ODEs

x ′ t = v, y′ t = 0, z′ t = − sin (x t),

where v ∈ R \ {0} is a constant, as a simple model for the movement of particles in a
three-dimensional fluid. Its vector field f : R3 → R

3,

f

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
v

0
− sin x

⎞

⎠ ,

associates a velocity vector with each point of S = R
3 (vectors in Fig. 2).

For each point s = (s1, s2, s3)T , the solutions ϕs : R → R
3 of the IVP (f , s) are uniquely

defined. They are the trajectories of particles through time passing through state s (dot and
line in Fig. 2), given by

ϕs t =
⎛

⎝
s1
s2
s3

⎞

⎠ +
⎛

⎝
vt
0

cos (s1+vt)
v

− cos s1
v

⎞

⎠ ,

where we use juxtaposition without spaces as multiplication of real numbers.
Checking that they are indeed solutions to the IVP requires simple calculations:

ϕ′
s t =

⎛

⎝
v

0
− sin (s1 + vt)

⎞

⎠ = f

⎛

⎝
s1 + vt

s2
s3 + cos (s1+vt)

v
− cos s1

v

⎞

⎠ = f (ϕs t),

ϕs 0 =
⎛

⎝
s1
s2
s3

⎞

⎠ +
⎛

⎝
v0
0

cos (s1+v0)
v

− cos s1
v

⎞

⎠ =
⎛

⎝
s1
s2
s3

⎞

⎠ = s.

Checking that ϕ : R → R
3 → R

3, ϕ t s = ϕs t , is a flow is calculational, too:

ϕ t1(ϕ t2 s) =
⎛

⎝
s1 + vt2

s2
s3 + cos (s1+vt2)

v
− cos s1

v

⎞

⎠ +
⎛

⎝
vt1
0

cos (s1+vt2+vt1)
v

− cos (s1+vt2)
v

⎞

⎠

=
⎛

⎝
s1
s2
s3

⎞

⎠ +
⎛

⎝
v(t1 + t2)

0
cos (s1+v(t1+t2))

v
− cos s1

v

⎞

⎠

= ϕ (t1 + t2) s.

The condition ϕ 0 s = s has already been checked. ��
It is well known that not all IVPs admit flows: not all of them have unique solutions, and in

many situations, flows exist locally on a subset ofR that does not form a submonoid. Peano’s
theorem guarantees the local existence of solutions for systems of ODEs whose associated
vector field is continuous. Conditions for local existence and uniqueness are provided by
the Picard–Lindelöf theorem [22,66], which we briefly discuss, as we use it for our first
workflow.

By the fundamental theorem of calculus, any solution to an IVP must satisfy

X t − X 0 =
∫ t

0
f (X τ) dτ.

123

108 J. J. Huerta y Munive, G. Struth

Fig. 2 Vector field and trajectory for a particle in a fluid (Example 8.1)

It can be shown that this equation holds if, for X 0 = s, the function

h x t = s +
∫ t

0
f (x τ) dτ

has a fixpoint. This, in turn, is the case if the limit X of the sequence (hn)n∈N, defined by
h0 x t = s and hn+1 = h ◦ hn , exists. Indeed, with this assumption,

X t = lim
n→∞

(

s +
∫ t

0
f (hn−1 τ)dτ

)

= s +
∫ t

0
f (X τ) dτ,

using continuity of addition, integration and f in the second step. Finally, existence of the
limit of (hn)n∈N is guaranteed by constraining the domain of the hn , and by Banach’s fixpoint
theorem, there must be a Lipschitz constant � ≥ 0 such that

‖ f s1 − f s2‖ ≤ �‖s1 − s2‖,
for any s1, s2 ∈ S, where ‖−‖ is the Euclidean norm on R

n . Vector fields satisfying this
condition are called Lipschitz continuous.

Theorem 8.2 (Picard–Lindelöf) Let S ⊆ R
n be an open set and f : S → S a Lipschitz

continuous vector field. The IVP (f , s) then has a unique solution X : Ts → S on some open
interval Ts ⊆ R.

The Picard–Lindelöf theorem makes it possible to patch together intervals Ts to a set
U = ⋃

s∈S Ts × {s} ⊆ R× S, from which a largest interval of existence T = ⋃
s∈S Ts can

be extracted. One can then define a local flow ϕ : T → S → S such that ϕs t is the maximal
integral curve at s. The monoid action identities ϕ 0 = id and ϕ (t1 + t2) s = ϕ t1(ϕ t2 s)
can thus be shown for all t2, t1 + t2 ∈ Ts [66], but U need not be closed under addition. The
Picard–Lindelöf theorem, in the form presented, thus provides sufficient conditions for the
existence and uniqueness of local flows for autonomous systems of ODEs. Flows are global
and hence monoid actions if T is equal to R or its nonnegative or non-positive subset.

123

Predicate Transformer Semantics for Hybrid Systems 109

Hybrid systems often deal with dynamical systems where T = Ts = R for any s ∈ S and
S is isomorphic to R

n for some n ∈ N. Our approach supports local flows with T ⊂ R and
S ⊂ R

n as well, and even IVPs with multiple solutions beyond the realm of Picard–Lindelöf.

9 Evolution Commands for Lipschitz Continuous Vector Fields

Simple hybrid programs of dL [47] are defined by the syntax

C :: = x := e | x ′ = f & G |?P | C; C | C + C | C∗,

which adds evolution commands x ′ = f & G to the program syntax of dynamic logic.
Intuitively, evolution commands introduce a vector field f for an autonomous system of
ODEs and a guard G, which models boundary conditions or similar constraints that restrict
temporal evolutions. Guards are also known as evolution domain restrictions or invariants in
the hybrid automata literature [10], but henceforth we consistently refer to them as “guards”.
Nondeterministic choice and finite iteration can be adapted for modelling conditionals and
while loops as with MKA or predicate transformer semantics.

We are only interested in the semantics of hybrid programs. Relative to the semantics
of standard while programs, it thus remains to define the wlps for evolution commands.
This requires relational and state transformer semantics for evolution commands over hybrid
program stores. In this section, we describe our first workflow that certifies solutions using
the Picard–Lindelöf theorem. We thus assume that vector fields are Lipschitz continuous,
such that the Picard–Lindelöf theorem guarantees at least local flows. This is more general
than needed for dynamical systems. A further generalisation to continuous vector fields is
presented in the next section in preparation for our second, more powerful workflow.

We begin with hybrid program stores for dL [46]. These are maps s : V → R that assign
real numbers to program variables in V . Variables may appear both in differential equations
and the discrete control of a hybrid system. One usually assumes that |V | = n for some
n ∈ N, which makes RV isomorphic to the vector space Rn . The results from Sect. 8 then
apply to any state space S ⊆ R

V .
Next, we describe a state transformer semantics and a dL-style relational semantics of

evolution commands with Lipschitz continuous vector fields. Intuitively, the semantics of
x ′ = f & G in state s ∈ S ⊆ R

V is the longest segment of the trajectory ϕ
f

s at s along which
all points satisfy G.

For the remainder of this section, we fix a Lipschitz continuous vector field f : S → S
and a guard G : S → B, for S ⊆ R

V . We freely consider G, and any other function of that
type, as a set or a predicate. As explained in Sect. 8, there is a (local) flow ϕ : T → S → S
defined on a maximal interval T ⊆ R with 0 ∈ T . Thus, we can pick any interval U ⊆ T
with 0 ∈ U to compute wlps over subintervals of the interval of existence T . In examples,
we typically use the subinterval [0, t], from the time at which the system dynamics starts to
a maximal time t of interest, or the subinterval R+, the set of nonnegative real numbers.

For each t ∈ U , let ↓t = {t ′ ∈ U | t ′ ≤ t}. The G-guarded orbit on U at s ∈ S is then
defined as γ

ϕ
G,U : S → P S by

γ
ϕ
G,U s =

⋃
{P ϕs ↓t | t ∈ U ∧ P ϕs ↓t ⊆ G}.

Intuitively, γ ϕ
G,U s is the orbit at s defined along the longest interval of time inU that satisfies

guard G. This intuition is more apparent in the following lemma.

123

110 J. J. Huerta y Munive, G. Struth

Lemma 9.1 Let s ∈ S. Then,

1. γ
ϕ
G,U s = ⋃{γ ϕ|↓t s | t ∈ U ∧ γ ϕ|↓t s ⊆ G},

2. γ
ϕ
G,U s = {ϕs t | t ∈ U ∧ ∀τ ∈ ↓t . G (ϕs τ)}.

We have not formalised (1) with Isabelle because reasoning with partial functions may be
tedious. As a special case, for U = T+, any subinterval of R+,

γ
ϕ
G,T+ s = {ϕs t | t ∈ T+ ∧ ∀τ ∈ [0, t]. G (ϕs τ)}.

We can now define the state transformer semantics of x ′ = f & G simply as

(x ′ =F f & G)U = γ
ϕ
G,U .

Hence, the denotation of an evolution command in state s is the guarded orbit at s in time
interval U . Alternatively, in Rel S,

(x ′ =R f &G)U = R (x ′ =F f & G)U = {(s, ϕ t s) | t ∈ U ∧ ∀τ ∈ ↓t . G (ϕs τ)}
like in Sect. 7. Restricting this further to U = R+ yields the standard semantics of

evolution commands of dL.
It remains to derive the wlps for evolution commands. These are the same in Rel S and

Sta S, so we drop F and R.

Proposition 9.2 Let Q : S → B. Then,

|(x ′ = f &G)U]Q = λs ∈ S. {s | ∀t ∈ U . P ϕs ↓t ⊆ G → P ϕs ↓t ⊆ Q}.

By Lemma 9.1, alternatively,

|(x ′ = f &G)U]Q = λs ∈ S. {s | ∀t ∈ U . γ ϕ|↓t s ⊆ G → γ ϕ|↓t s ⊆ Q}.
For verification condition generation, the following variant is most useful.

Lemma 9.3 Let Q : S → B. Then,

|(x ′ = f & G)U]Q = λs ∈ S.∀t ∈ U . (∀τ ∈ ↓t . G (ϕs τ)) → Q (ϕs t). (wlp-evl)

In particular, for T = R and U = R+,

|(x ′ = f & G)R+]Q = λs ∈ S.∀t ∈ R+. (∀τ ∈ [0, t]. G (ϕs τ)) → Q (ϕs t).

Accordingly, and consistently with dL, Q is no longer a postcondition in the traditional
sense: by definition, it is supposed to hold along the trajectory and therefore on any orbit at
any particular initial condition s guarded by G.

For a more categorical view on the wlp of evolution commands, remember from Sect. 6
that 〈(x ′ = f & G)U | = (γ

ϕ
G,U)†, where (−)† is the Kleisli extension map, and that the wlp

of (x ′ = f & G)U is its right adjoint. It therefore satisfies

123

Predicate Transformer Semantics for Hybrid Systems 111

|(x ′ = f & G)U]P =
⋃

{Q | (γ
ϕ
G,U)† Q ⊆ P} = {s | γ

ϕ
G,U s ⊆ P}.

The identity in Proposition 9.2 can then be calculated from there.
The wlp laws in Proposition 9.2 and Lemma 9.3 complete the laws for verification con-

dition generation for hybrid programs in the relational and state transformer semantics. In
practice, Proposition 9.2, Lemma 9.3 and the Picard–Lindelöf theorem support our first work-
flow for computing the wlp of an evolution command x ′ = f & G on a set U for a Lipschitz
continuous vector field:

1. check that the vector field f is indeed Lipschitz continuous and S ⊆ RV open;
2. supply the (local) flow ϕ for f with U , a subinterval of the interval of existence around

0;
3. certify that ϕs is indeed the unique solution for (f , s) for any s ∈ S and for U :

(a) ϕ′
s = f ◦ ϕs on U for any s ∈ S,

(b) ϕs 0 = s for any s ∈ S,
(c) U is subset of open set T with 0 ∈ U ;

4. if successful, apply the identity in Proposition 9.2 or Lemma 9.3.

In practice, computer algebra tools are helpful for finding flows. Their integration into proof
assistants for this purpose is routine and therefore not pursued in this article. The existence
of unique solutions can be guaranteed uniformly, for instance, for affine or linear systems
of ordinary differential equations. See [26] for the formalisation of such an approach with
Isabelle.

The following classical example illustrates our algebraic approach and gives a first glimpse
of the mathematics involved. It should be noted that we are not embellishing our natural
semantical notation with any façade program syntax in this article; see [12] for such an
extension. A formal verification with Isabelle can be found in Example 17.1.

Example 9.4 (Bouncing ball) A ball of mass m is dropped from height h ≥ 0. Its state space
is s ∈ R

V for V = {x, v}, where x denotes its position and v its velocity. Its kinematics is
specified by the vector field f : RV → R

V with

f

(
sx

sv

)

=
(

sv

−g

)

,

where g is the acceleration due to gravity and we abbreviate sx = s x and sv = s v. The
ball is assumed to bounce back from the ground in an elastic collision. This is modelled
using a discrete control, which checks for sx = 0 and then flips the velocity. A guard
G = (λs. sx ≥ 0) precludes any motion below the ground. The system is modelled by the
hybrid program [47]

Cntrl = if (λ s. sx = 0) then v := (λ s. − sv) else skip,

Ball = (x ′ = f & G ;Cntrl)∗,
where skip denotes the program that maps each state to itself (represented by 1 in MKA). Its
correctness specification is

P ≤ |Ball]Q for P = (λs. sx = h ∧ sv = 0) and Q = (λs. 0 ≤ sx ≤ h).

123

112 J. J. Huerta y Munive, G. Struth

We also need the loop invariant

I =
(

λs. 0 ≤ sx ∧ 1

2
s2v = g(h − sx)

)

,

which uses a variant of energy conservation with m cancelled out.
The first step of our verification proof shows that P ≤ I and I ≤ Q. The first inequality

holds because 1
20

2 = 0 = h − h; the second one because 0 ≤ sx appears both in I and
in Q and because sx ≤ h is guaranteed by g(h − sx) ≥ 0, which holds as 1

2 s2v ≥ 0. With
transitivity and isotonicity of boxes, we can thus bring the correctness specification into the
form I ≤ |Ball]I .

Applying (wlp-star) then yields the proof obligation I ≤ |x ′ = f & G ;Cntrl]I . To dis-
charge it, we use (wlp-seq) to calculate the wlps

J = |if (λ s. sx = 0) then v := (λ s. − sv) else skip]I ,
K = |x ′ = f &G]J

incrementally and finally show that I ≤ K .
For the first wlp, we calculate, with (wlp-cond) and for T = (λ s. sx = 0),

J = (T → |v := (λ s. − sv)]I) · (T → I)

=
(

T → |v := (λ s. − sv)]
(

λs. 0 ≤ sx ∧ 1

2
s2v = g(h − sx)

))

· (T → I)

=
(

T →
(

λs. 0 ≤ sx ∧ 1

2
(−sv)

2 = g(h − sx)

))

· (T → I)

= (T → I) · (T → I)

= I .

For the second wlp, we wish to apply (wlp-evl). This requires checking that f is Lipschitz
continuous—� = 1 does the job, supplying a flow and checking that it solves the IVP (f , s)
for all s ∈ S and satisfies the flow conditions for T = R and S = R

V . We leave it to the
reader to verify that ϕ : R → R

V → R
V defined by

ϕs t =
(

sx

sv

)

+
(

sv

−g

)

t − 1

2

(
g
0

)

t2

meets the requirements in the procedure outlined above, cf. Example 8.1. Then, expanding
definitions and applying (wlp-evl) from Lemma 9.3,

K s

=
(

∀t ∈ R+. (∀τ ∈ [0, t]. 0 ≤ ϕs τ x) → 0 ≤ ϕs t x ∧ 1

2
(ϕs t v)2 = g(h − ϕs t x)

)

=
(

∀t . (∀τ ∈ [0, t]. 0 ≤ ϕs τ x) → 1

2
(ϕs t v)2 = g(h − ϕs t x)

)

=
(

∀t .

(

∀τ ∈ [0, t]. 0 ≤ sx + sv t − 1

2
gτ 2

)

→ 1

2
(sv − gt)2 = g

(

h − sx − svt + 1

2
gt2

))

.

123

Predicate Transformer Semantics for Hybrid Systems 113

Finally, for I ≤ K , suppose 0 ≤ sx , 1
2 s2v = g (h − sx) and 0 ≤ sx + svτ − 1

2 gτ 2 for all
τ ∈ [0, t]. It remains to show that 1

2 (sv − gt)2 = g
(
h − sx − svt + 1

2 gt2
)
. Indeed, using

the second assumption in the second step,

1

2
(sv − gt)2 = 1

2
s2v − g

(

sv t + 1

2
gt2

)

= g(h − sx) − g

(

sv t + 1

2
gt2

)

= g

(

h − sx + svt + 1

2
gt2

)

.

The verification with Isabelle described in Example 17.1 is far more automatic than this proof
on paper suggests, and there is ample scope for further automation. As already pointed out,
the main purpose of this example is to illustrate our first workflow and give an impression of
the mathematical reasoning involved. ��

Certifying solutions of systems of ODEs can be tedious and hard to automate, and many
ODEs do not admit analytic solutions. It is possible to circumvent these obstacles to practical
verification applications in various ways. One approach, using invariant sets for systems of
ODEs, is pursued by dL and described in the following sections. It constitutes the second
workflow supported by our framework. Another approach aims at particular types of vector
fields for which (global) flows always exist and are easy to compute. A classical example
is linear systems of ODEs [22,66], for which the first author has already developed meth-
ods in a successor article [26]. A final approach abandons differential equations and vector
fields altogether and starts from flows—as known from hybrid automata [10]. This requires
changing the syntax of hybrid programs. The approach is outlined in Sect. 18. It constitutes
the third workflow supported by our framework.

10 Evolution Commands for Continuous Vector Fields

As the semantic approach to evolution commands developed in the previous section depends
mainly on orbits, which are nothing but sets of states, it can be generalised beyond trajectories
and flows. In this section, we drop the requirement of uniqueness of solutions to IVPs and
hence assume that vector fields are merely continuous. In fact, if vector fields are non-
continuous, the set of solutions defined below will simply be empty. We therefore generalise
the definitions in the previous section to obtain weakest liberal preconditions for evolution
commands that do not admit unique solutions, for instance, IVPs of the form x ′ t = k

√
x t

with x 0 = 0 for any k ∈ R [24]. Our second workflow using invariant sets is based on this
generalisation.

Consider the IVP (f , s) for continuous vector field f : S → S and initial state s ∈ S ⊆
R

V . Let

Sols f T s = {X | ∀t ∈ T . X ′ t = f (X t) ∧ X 0 = s}
denote its set of solutions on T ⊆ R with 0 ∈ T . Here, T is no longer the maximal interval
of existence defined by the Picard–Lindelöf theorem; it can be changed like the set U in the
previous section. Then, each solution X is still continuously differentiable and thus f ◦ X
integrable in T .

123

114 J. J. Huerta y Munive, G. Struth

For all X ∈ Sols f T s and G : S → B, we define the G-guarded orbit of X along T in s
via the function γ X

G : S → P S as

γ X
G s =

⋃
{P X ↓t | t ∈ T ∧ P X ↓t ⊆ G},

which simplifies to γ X
G s = {X t | t ∈ T ∧ ∀τ ∈ ↓t . G (X τ)}. By Kneser’s theorem [36],

when non-uniqueness occurs at some point, infinitely many solutions exist for it. Thus, we
define the G-guarded orbital of f along T in s via the function γ

f
G : S → P S as

γ
f

G s =
⋃

{γ X
G s | X ∈ Sols f T s}.

We thus patch the guarded orbit of each solution to the associated IVP together so that
γ

f
G s represents all possible evolutions in time that pass through s. This is evident from the

following result.

Lemma 10.1 Let f : S → S be continuous and G : S → B. Then,

γ
f

G s = {X t | t ∈ T ∧ P X ↓t ⊆ G ∧ X ∈ Sols f T s}.
If G = �, the constantly true predicate on S or the set S itself, we simply write γ f instead
of γ

f
� .
The state transformer semantics of the evolution command for a continuous vector field

f can then be defined as

(x ′ =F f & G) = γ
f

G .

The corresponding relational semantics is

(x ′ =R f &G) = {(s, X t) | t ∈ T ∧ ∀τ ∈ ↓t . G (X τ) ∧ X ∈ Sols f T s}.

Once again, 〈x ′ = f & G| = (γ
f

G)†. This leads to a wlp for evolution commands.

Proposition 10.2 Let S ⊆ R
V and T ⊆ R. Let f : S → S be a continuous vector field and

G, Q : S → B. Then,

|x ′ = f &G]Q = λs ∈ S. {s | ∀X ∈ Sols f T s.∀t ∈ T . P X ↓t ⊆ G → P X ↓t ⊆ Q}.
This identity can be rewritten, for predicates, as

|x ′ = f &G]Q = λs ∈ S.∀X ∈ Sols f T s.∀t ∈ T . (∀τ ∈ ↓t . G (X τ)) → Q (X t).

Whether this fact is useful for verification applications, as outlined above, remains to be
seen. Yet the next section shows that it is certainly useful for reasoning with invariant sets.
The following corollary is important for verification proofs with invariants as well.

Corollary 10.3 Let f : S → S, S ⊆ R
V , be a continuous vector field, T ⊆ R and G, Q :

S → B. Then,

|x ′ = f &G]Q = |x ′ = f & G](G · Q).

123

Predicate Transformer Semantics for Hybrid Systems 115

11 Invariants for Evolution Commands

In dL, differential invariants are predicates I that satisfy I ≤ |x ′ = f & G]I [46]. In the
terminology of Sect. 4, they are simply invariants for evolution commands. They play a
crucial role in dL and KeYmaera X because of the limited support for solving ODEs and
their greater generality.

In dynamical systems theory, when all guards are � and global flows exist, and in
(semi)group theory, invariant sets for actions or flows ϕ : T → S → S are sets I ⊆ S
satisfying γ ϕ s ⊆ I for all s ∈ I [66]. Based on the results from Sect. 10, we generalise both
notions uniformly.

A predicate or set I : S → B is an invariant of the continuous vector field f : S → S
and guard G : S → B along T ⊆ R if

(γ
f

G)† I ⊆ I .

Note that the parameter T is hidden in the definition of γ
f

G . For G = �, when (γ f)† I ⊆ I ,
we call I simply an invariant of f along T .

The following proposition yields a structural insight in the relationship between invariant
sets of dynamical systems and differential invariants of dL in terms of an adjunction.

Proposition 11.1 Let f : S → S be continuous, G : S → B and T ⊆ R. Then, the following
are equivalent.

1. I is an invariant for f and G along T ;
2. 〈x ′ = f &G|I ⊆ I ;
3. I ⊆ |x ′ = f &G]I .

Proof

(γ
f

G)† I ⊆ I ↔ 〈x ′ = f &G|I ⊆ I ↔ I ⊆ |x ′ = f & G]I .
The first step uses the definition of backward diamonds as Kleisli extensions in Sect. 6 and
that of the semantics of evolution commands in Sect. 10. The final step uses the adjunction
between boxes and diamonds from Sect. 4. ��
For ourwlp-calculus, condition (3) is of coursemost useful. Yet instead of checking that a flow
is a solution to a vector field, as previously, we now need to check whether a predicate is an
invariant—without having to solve the system of ODEs. This may in some case be a condicio
sine qua non and in others a considerable simplification of reasoning. The following lemmas
lead to our second workflow. We show some proofs although they have been formalised with
Isabelle, as they explain why the approach works.

First, towards Corollary 11.4, we may ignore guards when checking for invariants and we
can use a simple second-order formula.

Lemma 11.2 Let f : S → S be continuous and I : S → B. Then,

1. I ⊆ |x ′ = f &�]I → I ⊆ |x ′ = f & G]I ,
2. I ⊆ |x ′ = f &�]I ↔ (I s → ∀X ∈ Sols f T s.∀t ∈ T . I (X t)).

Proof For (1), γ
f

G ⊆ γ f for all G and hence 〈x ′ = f & G|I ⊆ 〈x ′ = f &�|I ⊆ I . The
proof of (2) is a simple calculation. ��
Second, we can recurse over predicates as follows.

123

116 J. J. Huerta y Munive, G. Struth

Lemma 11.3 Let f : S → S be a continuous vector field, μ, ν : S → R differentiable and
T ⊆ R with 0 ∈ T .

1. If (μ ◦ X)′ = (ν ◦ X)′ for all X such that X ′ t = f t (X t) and G (X t) when t ∈ T , then
μ = ν is an invariant for f along T ,

2. if (μ ◦ X)′ τ ≤ (ν ◦ X)′ τ when τ > 0, and (μ ◦ X)′ τ ≥ (ν ◦ X)′ τ when τ < 0, for all
X such that X ′ t = f t (X t) and G (X t), then both μ < ν and μ ≤ ν are invariants for
f along T ,

3. if μ < ν and ν < μ are invariants for f along T , then μ �= ν is too (and conversely if 0
is the least element in T),

4. μ �≤ ν is an invariant for f along T if and only if ν < μ is too.

Proof We only show the proof of (1), as it reveals the main idea of the procedure outlined
below. By definition, μ = ν is an invariant for f along T if and only if μ s = ν s implies
μ (X t) = ν (X t) for all X ∈ Sols f T s. It is a well-known consequence of the mean
value theorem that two continuously differentiable functions are the same if and only if they
intersect at some point and have the same derivative. Hence, (μ◦X)′ = (ν◦X)′ andμ s = ν s
imply μ (X t) = ν (X t) for all X ∈ Sols f T s. ��

Proposition 10.3, the properties in this section—in particular Lemma 11.3—and
Lemma 4.1 about invariants that are conjunctions or disjunctions support our second work-
flow for proving a correctness specification P ≤ |x ′ = f & G]Q.

1. Check whether a candidate predicate I is a differential invariant:

(a) transform I into negation normal form;
(b) if I is complex, reduce it with Lemma 4.1, and Proposition 11.3(3) and (4);
(c) if I is atomic, apply Proposition 11.3(1) and (2);

(if successful, I ≤ |x ′ = f & G]I holds by Proposition 11.1(3) and Lemma 11.2);

2. if successful, prove P ≤ I and |x ′ = f & G](G · I) ≤ |x ′ = f & G]Q.

For G = � and Lipschitz continuous vector fields, the notions of invariant can be strength-
ened.

Corollary 11.4 Let f : S → S be Lipschitz continuous. Then, the following are equivalent.

1. I is an invariant for f along T ;
2. 〈x ′ = f &�|I = I ;
3. I = |x ′ = f &�]I .

The identities (2) and (3) hold because 0 ∈ T .
Next, we revisit the bouncing ball example from Sect. 9 to illustrate our second work

flow that reasons with differential invariants. Once again, we give detailed mathematical
calculations to indicate the kind of mathematical reasoning involved. A verification with
Isabelle, which is much more automatic, can be found in Example 17.2.

Example 11.5 (Bouncing ball with differential invariant) We can avoid solving the system of
ODEs in Example 9.4 using a differential invariant to show that

I ≤ |x ′ = f & G]I
for the loop invariant I and vector field f (sx , sv)

T = (sv,−g)T . The most natural candidate
for a differential invariant is of course energy conservation. Cancelling the mass, we use

Id =
(

λs.
1

2
s2v = g(h − sx)

)

.

123

Predicate Transformer Semantics for Hybrid Systems 117

We now apply our procedure for reasoning with differential invariants.

1. We use Proposition 11.3 with μ s = 1
2 s2v and ν s = g(h − sx) to check that Id is indeed

an invariant. We thus need to show that (μ◦ X)′ = (ν ◦ X)′ for all X ∈ Sols f T s, which
unfolds to

(
1

2
(X t v)2

)′
= g(h − X t x)′,

because s = X t and therefore sv = X t v and sx = X t x . And indeed,
(
1

2
(X t v)2

)′
= (X t v)(X ′ t v) = (X t v)(f (X t) v) = −(X t v)g

= −g(f (X t) x) = −g(X ′ t x) = (g(h − X t x))′ .

By Proposition 11.3(1), Id is thus an invariant for f along R
V . Proposition 11.1(3) and

Lemma 11.2 then imply that

Id ≤ |x ′ = f & G]Id .

2. It remains to show that I ≤ Id and |x ′ = f & G]Id ≤ |x ′ = f & G]I .
– The first inequality is trivial.
– For the second one, we calculate

(G · Id) s =
(

0 ≤ sx ∧ 1

2
s2v = g(h − sx)

)

= I s.

By Corollary 10.3, therefore,

|x ′ = f & G]Id = |x ′ = f & G](G · Id) = |x ′ = f & G]I .
This shows that I ≤ |x ′ = f &G]I . The remaining proof of P ≤ |Ball]Q is the same as in
Example 9.4. ��

This example shows that one can reason about invariants of evolution commands in a
natural mathematical style as it can be found in textbooks on differential equations [4,22,
66]. By contrast, dL relies on syntactic substitution-based reasoning in the term algebra of
differential rings [46] to check invariants, and complex domain-specific inference rules to
manipulate them. The following section shows that we can derive semantic variants of most
of the dL inference rules for those who like this style of reasoning, see [12] for a complete
list.

Next, we briefly specialise our approach to dL-invariants, the invariants sets used in
dynamical systems theory and those in (semi)group theory. We assume a setting where
global flows exist and indices U can be dropped.

Corollary 11.6 Let f : S → S be Lipschitz continuous. Then, I : S → B is a dL-invariant
for x ′ = f &� if and only if I is an invariant set for ϕ f .

Proof It is easy to check that (∀s ∈ I . I s → γ ϕ s ⊆ I) ↔ (γ ϕ)† I ⊆ I . The claim then
follows fromProposition 11.1. In theLipschitz continuous case, of course,Sols f T s = {ϕ f }.
��

It remains to point out that the difference between the definition of invariant sets for
dynamical systems and that for (semi)group actions is merely notational: In group theory,

123

118 J. J. Huerta y Munive, G. Struth

an invariant set I of a (semi)group action ϕ : T → S → S satisfies T · I ⊆ I , where
T · I = {ϕ t s | t ∈ T ∧ s ∈ I }. In the presence of a unit, therefore T · I = I . Yet of course
(γ ϕ)† I = {ϕ t s | t ∈ T ∧ s ∈ I } as well.

At the end of this section, we summarise the two main workflows presented. Both use the
standard laws for predicate transformer algebras for automating verification condition gen-
eration with respect to the structural part of hybrid programs. For straight-line programs, this
requires only equational reasoning and can be dealt with by Isabelle’s simplifiers. The remain-
ing verification conditions for basic commands—evolution and assignment commands—are
generated by equational reasoning in the concrete semantics of the hybrid program store. In
fact, only this concrete semantics had to be added to a standard Isabelle verification compo-
nent to make our verification components work.

The verification conditions generated are then at the level of reasoning with functions over
R

n , and in some cases in linear algebra [26]. At this level, by contrast with dL, we do not
require any domain-specific inference rules and can rely on Isabelle’s support for semantic
reason about the hybrid dynamics within its higher-order logic, an approach that has allowed
us to verify a large number of benchmark examples [45]. Yet our approach is versatile enough
to derive inference rules in the style of dL, as the following section shows.

12 Derivation of dL Inference Rules

As a proof of concept, we derive semantic variants of some axioms and inference rules of
dL, thus proving their soundness with respect to our semantics. The first one introduces
solutions of IVPs with constant vector fields [6]. It is a trivial instance of Proposition 9.2
with f = λs. c for some c ∈ R. Such vector fields are Lipschitz continuous; their flows are
ϕ t s = s + ct . Hence,

|x ′ = (λs. c) & G]Q = λs ∈ S. ∀t ∈ T . (∀τ ≤ t . G (s + cτ)) → Q (s + ct). (DS)

For a second dL inference rule, we simply rewrite the wlp in Proposition 9.2 as a Hoare-style
inference rule.

Lemma 12.1 Let S ⊆ R
V and T = R. Let ϕ : T → S → S be the flow for the Lipschitz

continuous vector field f : S → S, and G, Q : S → B. Then,

∀s ∈ S. P s → (∀t ∈ T . (∀τ ≤ t . G(ϕs τ)) → Q (ϕs t))

P ≤ |x ′ = f & G]Q (dSolve)

To apply this rule in our setting, the procedure in Sect. 9 must be followed.
Next, we derive five semantic counterparts of the dL axioms and inference rules for

differential invariants in the setting of Sect. 11. The differential cut axiom (DC) and rule
(dC), differential weakening, (DW) and (dW), and the differential induction rule (dI). These
rules are typically applied backwards as follows: dC introduces an invariant. Its left premise is
discharged via dI , Proposition 11.1 and logical reasoning,while its right premise is discharged
via dW . Note that the conclusions of all these rules are semantically equivalent to Hoare
triples. Verification examples using these rules and the dL approach can be found in our
Isabelle components.

Lemma 12.2 Let P, G, I , Q : S → B, T ⊆ R and f : S → S be a continuous vector field.
Then, with ηS the unit of the powerset monad,

|x ′ = f &G]I = ηS → |x ′ = f & (λ s. G s ∧ I s)]Q = |x ′ = f &G]Q, (DC)

123

Predicate Transformer Semantics for Hybrid Systems 119

P ≤ |x ′ = f &G]I P ≤ |x ′ = f & (λ s. G s ∧ I s)]Q
P ≤ |x ′ = f & G]Q (dC)

|x ′ = f & G](λ s. G s → Q s) = |x ′ = f & G]Q, (DW)

G ≤ Q

P ≤ |x ′ = f & G]Q (dW)

Finally, if I is a differential invariant for f along T , then

P ≤ I I ≤ Q

P ≤ |x ′ = f & G]Q (dI)

Axiom (DC) and rule (dC) introduce differential invariants in guards of evolution commands.
Axiom and rule (DW) and (dW) summarise the fact that if a guard is strong enough to imply
a postcondition, then no invariant or solution needs to be found. Finally, the differential
induction rule follows from Proposition 11.1(3), transitivity and isotonicity of boxes.

A differential ghost rule [51] (dG) and sometimes a differential effect axiom [48] have
also been proposed for reasoning with invariants in dL. Our semantics approach has so far
no need for these [45]—we do not anticipate any reason why we should not be able to freely
introduce ghost variables for the continuous dynamics as we have so far done for the discrete
one using Isabelle’s higher-order logic—but see [12] for a derivation of (dG) within our
semantic framework.

13 Isabelle Components for MKA and Predicate Transformers

The entire mathematical development ofMKA in Sects. 2–4 has been formalised with Isabelle
[3,16]. Verification components for Isabelle and the relational storemodel in Sect. 7 have been
developed, too [17,18], using the shallow embedding approach discussed in Sects. 1 and 7.
Predicate transformers à la Back and vonWright have been formalised previously in Isabelle
by Preoteasa [52,53]. Our alternative formalisation emphasises the quantalic structure of
transformers [64,65], as in Sect. 5, andwe have added a third component based on quantaloids
[65]. It is based on a formalisation of the powerset monad [65], as outlined in Sect. 6. Our
formalisation is compositional in that all three approaches to predicate transformers can be
combinedwith relational and state transformer semantics and different models of the (hybrid)
program store, as shown in Fig. 1.

This section summarises the Isabelle components for predicate transformers and the ver-
ification component based on MKA. More detailed information can be found in the proof
documents for these components [18,65].

TheMKA component is integrated into the Kleene algebra hierarchy that formalises vari-
ants of Kleene algebras [3] and modal Kleene algebras [16], as outlined in Sects. 2 and 3.
In these mathematical components, algebras are formalised as type classes, their models
via instantiation and interpretation statements. For Kleene algebras, many computationally
interesting models have been formalised; forMKA, only the relational model is present in the
Archive of Formal Proofs. The state transformer model has been formalised for quantales in
a different component [65].

Instantiation and interpretation statements have several purposes in Isabelle. They make
algebraic facts available in all models, establish soundness of algebraic hierarchies and ulti-
mately make the axiomatic approaches consistent with respect to Isabelle’s small trustworthy
core. Finally, they unify developments of multiple concrete semantics.

123

120 J. J. Huerta y Munive, G. Struth

In our MKA-based verification components [18], program syntax is absent and semantic
illusions of program syntax are provided in the concrete program semantics, as outlined
in Sect. 7. Consequently, verification conditions for the control structure of programs are
generated within the algebra; those for assignments in the concrete store semantics. We
currently model stores simply as functions from strings representing variables to values of
arbitrary type. Expressions are simulated by functions from stores to values, as outlined in
Sect. 7; storeswith poly-typed values aremodelled via sum-types.An extension to verification
components for hybrid programs is described in the following sections.

A second component is based on predicate transformers à la Back and von Wright [5],
for which we have built special purpose components with advanced features for orderings
and lattices [63] and for quantales [64]. These structures are once again formalised as type
classes. Predicate transformers, however, are modelled as global functions that may have
different source and target types. Isabelle’s simple type system can infer most general types
for definitions. These can be associated with predicate transformers by sort constraints; def-
initions can often be declared in the point-free style of functional programming. This makes
the formalisation of quantaloids of transformers with partial compositions straightforward.
Mono-typed transformer algebras are obtained from these via subtyping. They are linked
with quantales and Kleene algebras by interpretation or instantiation.

Isabelle’s type system is too weak for a deep embedding of general categorical concepts,
but formalising instances such as the powerset monad, its Kleisli category and Eilenberg–
Moore algebras is straightforward. We have formalised the isomorphisms and dualities
between relations, state transformers and the four predicate transformers corresponding to
backward and forward boxes and diamonds in this setting. Using these dualities to transport
theorems automatically requires Isabelle’s transfer package, which is ongoing work.

We have created a second verification component for hybrid systems based on Back
and von Wright’s approach, using the monadic transformers to obtain a concrete semantics.
Finally, we have once again restricted the categorical approach to the mono-typed case
in a third component. Via subtyping, we can then show that the categorical transformers
form quantales, and more specifically MKAs. Everything Isabelle knows about MKA is then
available in this instance.

14 Isabelle Components for ODEs and Orbits

This section and the two following ones describe the formalisation of the material in Sects. 8–
12 in Isabelle, frommathematical components forODEs andorbits to verification components
for hybrid programs based on (local) flows, differential invariants and dL-style inference
rules.

We begin with summarising Immler and Hölzl’s formalisation of the Picard–Lindelöf
theorem based on the Isabelle hierarchy for analysis and ordinary differential equations [23,
29–31]. We have adapted their results to show that unique solutions to IVPs for autonomous
systems of ODEs guaranteed by this theorem satisfy the local flow conditions, as discussed
in previous sections.

Hölzl and Immler have proved the Picard–Lindelöf theorem for time-dependent vector
fields of type real ⇒ (′a::{heine-borel,banach}) ⇒ ′a [30]. They have called their theorem
unique-solution and have formalised it within a locale called unique-on-bounded-closed to
bundle the assumptions for the local existence of unique solutions within a closed interval in
R. They have specialised and hence extended this locale in various ways.

Our approach builds on top of their extension ll-on-open-it that bundles more or less the
conditions of Theorem 8.2, but for the time-dependent case. In our formalisation, we add the

123

Predicate Transformer Semantics for Hybrid Systems 121

condition t0 ∈ T to have this parameter available in the following developments. Thus, we
have generated the following variant.

locale picard-lindeloef =
fixes f ::real ⇒ (′a::{heine-borel,banach}) ⇒ ′a
and T ::real set
and S:: ′a set
and t0::real

assumes open-domain: open T open S
and interval-time: is-interval T
and init-time: t0 ∈ T
and cont-vec-field: ∀ s ∈ S. continuous-on T (λt. f t s)
and lipschitz-vec-field: local-lipschitz T S f

begin

sublocale ll-on-open-it T f S t0
〈proof〉

lemma unique-solution:
assumes xivp: D X = (λt. f t (X t)) on {t0−−t} X t0 = s X ∈ {t0−−t} → S
and t ∈ T
and yivp: D Y = (λt. f t (Y t)) on {t0−−t} Y t0 = s Y ∈ {t0−−t} → S
and s ∈ S

shows X t = Y t
〈proof〉

end

The locale declaration lists the assumptions of the Picard–Lindelöf theorem: the vector field
f —which is still time-dependent—is defined on an open time interval T that contains the
initial time t0, and an open subset S of the state space. The vector field f is continuous in time
and, for each (t, s) ∈ T × S, Lipschitz continuous on a closed subset of T × S around (t, s).
The sublocale statement shows that these assumptions imply those of the locale ll-on-open-it.
Lemma unique-solution ensures that the Picard–Lindelöf theorem is derivable within this
locale. The notation D X stands for X ′, and g ∈ A → B indicates that function g maps
from the set A into the set B, as opposed to the type of g, which can be larger. The notation
{t0−−t} indicates the set of real numbers between t0 and t (including both), where t may
be above or below t0. The formalisation of the Picard–Lindelöf theorem comprises a formal
definition of solutions to IVPs of system of ODEs in Isabelle. As an abbreviation, we have
defined the set Sols f T s of Sect. 10 with the additional requirement that X ∈ T → S.

definition ivp-sols :: (real ⇒ ′a ⇒ (′a :: real-normed-vector)) ⇒ real set ⇒ ′a set ⇒
real ⇒ ′a ⇒ (real ⇒ ′a) set (Sols)
where Sols f T S t0 s = {X |X. (D X = (λt. f t (X t)) on T) ∧ X t0 = s ∧ X ∈ T → S}
We restrict locale picard-lindeloef to autonomous systems and to t0 = 0, while introducing
the variable ϕ for the local flow of the vector field. In support of our open approach to hybrid
program verification, this allows users to supply any characterisation of the flow that suits
them best, as a successor paper illustrates [26].

locale local-flow = picard-lindeloef (λ t. f) T S 0
for f :: ′a::{heine-borel,banach} ⇒ ′a
and T S L +

fixes ϕ :: real ⇒ ′a ⇒ ′a
assumes ivp:∧

t s. t ∈ T �⇒ s ∈ S �⇒ D (λt. ϕ t s) = (λt. f (ϕ t s)) on {0−−t}∧
s. s ∈ S �⇒ ϕ 0 s = s∧
t s. t ∈ T �⇒ s ∈ S �⇒ (λt. ϕ t s) ∈ {0−−t} → S

123

122 J. J. Huerta y Munive, G. Struth

The assumptions ivp force T to coincide with its largest subinterval (ex-ivl) where solutions
exist (lemma ex-ivl-eq below). Thus, ϕ is the unique solution on the whole of T —and not
only on its subsets {0−−t} unlike picard-lindeloef or ll-on-open-it. This allows users of the
locale to choose T as small as they wish.

lemma ex-ivl-eq: s ∈ S �⇒ ex-ivl s = T
〈proof〉

lemma has-vderiv-on-domain: s ∈ S �⇒ D (λt. ϕ t s) = (λt. f (ϕ t s)) on T
〈proof〉

lemma in-ivp-sols: s ∈ S �⇒ (λt. ϕ t s) ∈ Sols (λt. f) T S 0 s
〈proof〉

lemma eq-solution: X ∈ Sols (λt. f) T S 0 s �⇒ t ∈ T �⇒ s ∈ S �⇒ X t = ϕ t s
〈proof〉

Finally, in this locale we can prove that if the maximal interval of existence T equals R, then
the flow ϕ is global and hence a proper monoid action.

lemma ivp-sols-collapse: T = UNIV �⇒ s ∈ S �⇒ Sols (λt. f) T S 0 s = {(λt. ϕ t s)}
〈proof〉

lemma is-monoid-action:
assumes s ∈ S
and T = UNIV

shows ϕ 0 s = s
and ϕ (t1 + t2) s = ϕ t1 (ϕ t2 s)

〈proof〉

We have not generated a locale for this case, as the assumptions needed to remain unchanged.
Locale picard-lindeloef thus guarantees the existence of unique solutions for IVPs of time-
dependent systems. Locale local-flow specialises it to autonomous systems with Lipschitz
continuous vector fields and local flows. It covers dynamical systems with global flows
and thus the verification of hybrid systems. This provides the basic Isabelle infrastructure
for formalising the concrete semantics for hybrid systems with Lipschitz continuous vector
fields from Fig. 1.

Next, we describe our formalisation of the orbits and orbitals from Sect. 10. These form
the basis for our verification components for continuous vector fields beyond the scope of the
Picard–Lindelöf theorem, as shown in Fig. 1. Yet we can instantiate all concepts to settings
where (local) flows exist. First, we have formalised the G-guarded orbit γ X

G of X along T ,
with down T t standing for ↓t .

definition g-orbit :: (real ⇒ ′a) ⇒ (′a ⇒ bool) ⇒ real set ⇒ ′a set (γ)

where γ X G T = ⋃ {P X (down T t) |t. P X (down T t) ⊆ {s. G s}}
lemma g-orbit-eq: γ X G T = {X t |t. t ∈ T ∧ (∀ τ∈down T t. G (X τ))}
〈proof〉

We have also formalised the G-guarded orbital of f along T in s (as γ
f

G s) together with
Lemma 10.1.

definition g-orbital :: (′a ⇒ ′a) ⇒ (′a ⇒ bool) ⇒ real set ⇒ ′a set ⇒ real ⇒
(′a::real-normed-vector) ⇒ ′a set
where g-orbital f G T S t0 s = ⋃ {γ X G T |X. X ∈ Sols (λt. f) T S t0 s}

123

Predicate Transformer Semantics for Hybrid Systems 123

lemma g-orbital-eq: g-orbital f G T S t0 s =
{X t |t X. t ∈ T ∧ P X (down T t) ⊆ {s. G s} ∧ X ∈ Sols (λt. f) T S t0 s }
〈proof〉

We have shown that their counterparts from dynamical systems are special cases by instanti-
ating our definitions to the parameters of the locale local-flow. Hence, the�-guarded orbital
of f along T in s becomes the standard orbit of s, and its G-guarded version is the set in
Lemma 9.1.

context local-flow
begin

definition orbit :: ′a ⇒ ′a set (γ ϕ)

where γ ϕ s = g-orbital f (λs. True) T S 0 s

lemma orbit-eq[simp]: s ∈ S �⇒ γ ϕ s = {ϕ t s |t. t ∈ T}
〈proof〉

lemma g-orbital-collapses:
s ∈ S �⇒ g-orbital f G T S 0 s = {ϕ t s |t. t ∈ T ∧ (∀ τ∈down T t. G (ϕ τ s))}
〈proof〉

end

Overall, the set-theoretic concepts introduced in Sect. 10 are easily definable in Isabelle.
Similarly, lemmas formalising their properties and relating them are often proved automati-
cally in one or two lines. Analytical properties like the existence of derivatives in a region of
space or the uniqueness of solutions for IVPs are harder to prove. Such lemmas often require
long structured proofs with proofs by cases and explicit calculations, that is, a considerable
amount of user interaction. Yet most proofs remain at least roughly at the level of textbook
reasoning.

15 Isabelle Components for Hybrid Programs

This section describes the integration of the state transformer and relational semantics for
dynamical systems and Lipschitz-continuous vector fields from Sect. 9 and the continuous
vector fields from Sect. 10 into the three verification components for predicate transformers
outlined in Sect. 13 and Fig. 1. This requires formalising hybrid stores and the semantics of
evolution commands for dynamical systems, Lipschitz continuous vector fields with local
flows and continuous vector fields. As explained in Sect. 9 and 11, this supports two different
workflows using the procedures introduced in these sections: the first one is for reasoning
with (local) flows and orbits, the second, more general one, for reasoning with invariants.

First, we explain our formalisation of the hybrid store type R
V . We use Isabelle’s type

(real, ′n) vec (abbreviated as realˆ ′n) of real valued vectors of dimension n, formalised as the
type ′n ⇒ real of functions from the finite type ′n intoR. This represents hybrid stores inRV

with |V | = n. Isabelle uses the notation s$i for the i th coordinate of a vector s and hence the
value of store s at variable i .Moremathematically, $ is the bijection from realˆ ′n to ′n ⇒ real.
Its inverse is written using a binder χ that replaces λ-abstraction. Thus, (χ i . s)$i = s for
any s::realˆ ′n and (χ i . x)$i = x for any x ::real. As a consequence of this simple approach,
variables are formalised as natural numbers. More general namespaces have been included
in our framework more recently [11,12] to make it more user friendly.

123

124 J. J. Huerta y Munive, G. Struth

Our state transformer semantics uses functions of type realˆ ′n ⇒ (realˆ ′n) set, which we
abbreviate as (realˆ ′n) nd-fun (for non-deterministic functions). These are instances of the
more general type ′a nd-fun of nondeterministic endofunctions.

Alternatively, we use relations of type (realˆ ′n) rel, which are instances of ′a rel. For both
intermediate semantics, we have shown with Isabelle that they formMKAs, but we have also
integrated them into the two quantalic predicate transformer semantics in Fig. 1.

interpretation rel-aka: antidomain-kleene-algebra Id {} (∪) (;) (⊆) (⊂) rtrancl rel-ad
〈proof〉

instantiation nd-fun :: (type) antidomain-kleene-algebra
〈proof〉

After these proofs, all statements proved in Isabelle’sMKA components are available for state
transformers and relations. We have formalised wlps for both models, where − ! ambigu-
ously denotes the isomorphism between predicates and binary relations or nondeterministic
functions.

lemma wp-rel: wp R P! = λ x. ∀ y. (x,y) ∈ R −→ P y!
〈proof〉

lemma wp-nd-fun: wp F P! = λ x. ∀ y. y ∈ (F x) −→ P y!
〈proof〉

Alternatively, we use the categorical forward box operator fbF for Kleisli arrows of type
F :: ′a ⇒ ′b set described in Sect. 6,

lemma ffb-eq: fbF F X = {x. ∀ y. y ∈ F x −→ y ∈ X}
〈proof〉

or its relational counterpart fbR.
We now switch to the categorical approach to predicate transformers based on state trans-

formers and the Kleisli monad of the powerset functor, as a preliminaryMKA-based one with
relations has already been described elsewhere [28]. Apart from typing and some minor syn-
tactic differences, the other approaches—predicate transformers based onMKA and quantales,
and an intermediate relational semantics for these—yield analogous results and are equally
suitable for verification. This evidences the compositionality of our approach.

The state and predicate transformer semantics of assignment commands is based on store
update functions, as described in Sect. 7. For hybrid programs, it must be adapted to type
′aˆ ′n.

definition vec-upd :: ′aˆ ′n ⇒ ′n ⇒ ′a ⇒ ′aˆ ′n
where vec-upd s i a = (χ j. ((($) s)(i := a)) j)

definition assign :: ′n ⇒ (′aˆ ′n ⇒ ′a) ⇒ ′aˆ ′n ⇒ (′aˆ ′n) set ((2- ::= -) [70, 65] 61)

where (x ::= e) = (λs. {vec-upd s x (e s)})
lemma ffb-assign[simp]: fbF (x ::= e) Q = {s. (χ j. ((($) s)(x := (e s))) j) ∈ Q}
〈proof〉

The ($) applies the bijection $ as a function in prefix notation.
We write (x ::= e) for the semantic illusion for a syntactic assignment commands, as

Isabelle uses f (i := a) for function update f [i �→ a]. Lemma ffb-assign is then a direct
consequence of ffb-eq, and it coincides with (wlp-asgn) in Sect. 7 up to minor syntactic

123

Predicate Transformer Semantics for Hybrid Systems 125

differences. In the verification examples that feature in this article, we have not attempted to
hide the functions that impersonate syntactic expressions and the lambda abstractions they
require. This may be unwieldy for users. It is nevertheless routine to program more elegant
notation with Isabelle [12].

Similarly, wlps for the control structure commands of hybrid programs (Eqs. wlp-seq,
wlp-cond, wlp-star) are easily derivable.

lemma ffb-kcomp[simp]: fbF (G ; F) P = fbF G (fbF F P)

〈proof〉
lemma ffb-if-then-else[simp]: fbF (IF T THEN X ELSE Y) Q =
{s. T s −→ s ∈ fbF X Q} ∩ {s. ¬ T s −→ s ∈ fbF Y Q}
〈proof〉

lemma ffb-loopI: P ≤ {s. I s} �⇒ {s. I s} ≤ Q �⇒ {s. I s} ≤ fbF F {s. I s} �⇒
P ≤ fbF (LOOP F INV I) Q
〈proof〉

In these lemmas, ; is syntactic sugar for the forwardKleisli composition ◦K and LOOP stands
for the Kleene star for state transformers with its annotated loop-invariant after the keyword
INV , along the lines of Sect. 4.

As in Sect. 10, the general semantics of evolution commands for continuous vector fields
is given by G-guarded orbitals of f along T .We have formalised thewlps in Proposition 10.2,
and a specialisation to local flows in the context of our locale local-flow given by Lemma 9.3
[Eq. (wlp-evl)].

notation g-orbital ((1x´=- & - on - - @ -))

lemma ffb-g-orbital:
fbF (x´= f & G on T S @ t0) Q =
{s. ∀X∈Sols (λt. f) T S t0 s. ∀ t∈T . (∀ τ∈down T t. G (X τ)) −→ (X t) ∈ Q}

〈proof〉
lemma (in local-flow) ffb-g-ode:

fbF (x´= f & G on T S @ 0) Q =
{s. s ∈ S −→ (∀ t∈T . (∀ τ∈down T t. G (ϕ τ s)) −→ (ϕ t s) ∈ Q)}

〈proof〉

As Lemma ffb-g-ode is defined in locale local-flow, users are required to check the conditions
of the Picard–Lindelöf theorem to access this locale and certify that ϕ is indeed a solution of
the IVP as part of our first workflow.

Finally, we describe our component for reasoningwith differential invariants in the general
setting of continuous vector fields, using our second workflow. We start with definitions and
a basic property from Proposition 11.1.

definition diff-invariant :: (′a ⇒ bool) ⇒ ((′a::real-normed-vector) ⇒ ′a) ⇒ real set ⇒
′a set ⇒ real ⇒ (′a ⇒ bool) ⇒ bool
where diff-invariant I f T S t0 G = (((g-orbital f G T S t0)

†) {s. I s} ⊆ {s. I s})
lemma ffb-diff-inv:

diff-invariant I f T S t0 G = ({s. I s} ≤ fbF (x´= f & G on T S @ t0) {s. I s})
〈proof〉

We have formalised the most important rules for reasoning with differential invariants,
including those for the procedure of Sect. 11 via Corollary 10.3 and Lemmas 4.1 and 11.3.

123

126 J. J. Huerta y Munive, G. Struth

The formalisation of the first two is straightforward. We have proved the clauses of 11.3 in
various lemmas and bundled them under the name diff -invariant-rules. We show one of these
clauses as an example.

named-theorems diff-invariant-rules compilation of rules for differential invariants.

lemma [diff-invariant-rules]:
assumes is-interval T
and t0 ∈ T
and ∀X. (D X = (λτ . f (X τ)) on T) −→ (D (λτ . μ (X τ) − ν (X τ)) = ((∗R) 0) on T)

shows diff-invariant (λs. μ s = ν s) f T S t0 G
〈proof〉

lemma ffb-g-odei: P ≤ {s. I s} �⇒ {s. I s} ≤ fbF (x´= f & G on T S @ t0) {s. I s} �⇒
{s. I s ∧ G s} ≤ Q �⇒ P ≤ fbF (x´= f & G on T S @ t0 DINV I) Q
〈proof〉

Lemma ffb-g-odei completes the procedure of Sect. 11 by formalising step 2, which annotates
invariants in evolution commands, following the approach outlined for loops and general
commands in MKA at the end of Sect. 4. With Isabelle, we use the DINV keyword.

The two workflows for proving partial correctness specifications with evolution com-
mands require users to discharge proof obligations for derivatives. In the case of flows, these
must be solutions for vector fields; in the case of differential invariants, the procedure of
Sect. 11 requires proving the assumptions of Lemma 11.3. To increase proof automation
when reasoning about derivatives, we have bundled several derivative properties under the
name poly-derivatives as a proof method.

named-theorems poly-derivatives compilation of optimised miscellaneous derivative rules.

declare has-vderiv-on-const [poly-derivatives]
and has-vderiv-on-id [poly-derivatives]
and has-vderiv-on-add [THEN has-vderiv-on-eq-rhs, poly-derivatives]
and has-vderiv-on-diff [THEN has-vderiv-on-eq-rhs, poly-derivatives]
and has-vderiv-on-mult [THEN has-vderiv-on-eq-rhs, poly-derivatives]

lemma [poly-derivatives]: D f = f ′ on T �⇒ g = (λt. − f ′ t) �⇒ D (λt. − f t) = g on T
〈proof〉

lemma [poly-derivatives]: (a::real) �= 0 �⇒ D f = f ′ on T �⇒ g = (λt. (f ′ t)/a) �⇒
D (λt. (f t)/a) = g on T
〈proof〉

lemma [poly-derivatives]: n ≥ 1 �⇒ D (f ::real ⇒ real) = f ′ on T �⇒
g = (λt. n ∗ (f ′ t) ∗ (f t)ˆ(n−1)) �⇒ D (λt. (f t)ˆn) = g on T
〈proof〉

lemma [poly-derivatives]: D (f ::real ⇒ real) = f ′ on T �⇒
g = (λt. − (f ′ t) ∗ sin (f t)) �⇒ D (λt. cos (f t)) = g on T
〈proof〉

lemma [poly-derivatives]: D (f ::real ⇒ real) = f ′ on T �⇒ g = (λt. (f ′ t) ∗ cos (f t)) �⇒
D (λt. sin (f t)) = g on T
〈proof〉

lemma [poly-derivatives]: D (f ::real ⇒ real) = f ′ on T �⇒ g = (λt. (f ′ t) ∗ exp (f t)) �⇒
D (λt. exp (f t)) = g on T
〈proof〉

123

Predicate Transformer Semantics for Hybrid Systems 127

Isabelle can now apply rules iteratively and check, for pairs of functions, if one is a
derivative of the other. This is often fully automatic. The following lemma shows an example
that involves a mix of polynomials and transcendental functions beyond differential fields
with a0 to a5 being constants and t the polynomial variable.

lemma c �= 0 �⇒ D (λt. a5 ∗ tˆ5 + a3 ∗ (tˆ3 / c) − a2 ∗ exp (tˆ2) + a1 ∗ cos t + a0)
= (λt. 5 ∗ a5 ∗ tˆ4 + 3 ∗ a3 ∗ (tˆ2 / c) − 2 ∗ a2 ∗ t ∗ exp (tˆ2) − a1 ∗ sin t) on T
by(auto intro!: poly-derivatives)

The formalisation of more advanced heuristics for such functions, and the integration of
decision procedures for suitable classes, is left for future work.

The complete Isabelle formalisation, including the other two predicate transformer alge-
bras and the relational semantics, can be found in the Archive of Formal Proofs [25].

Webriefly reflect onour experiencewith the Isabelle formalisationof our framework.MKA,
its relational model and the concrete relational semantics for traditional while programs are
so far the most developed and versatile starting point for our hybrid systems verification
components. The full formalisation of a rudimentary Hoare logic component for this setting
using a generalised Kleene algebra from Isabelle’s main libraries fits on two A4 pages [62]; a
similar development for a Hoare logic for hybrid programs is discussed in a successor paper
[11]. Our standalone MKA-based verification component for traditional while programs fills
about seven A4 pages. For hybrid programs, in theory, only a concrete semantics for hybrid
programs needs to be plugged in as a replacement of the semantics described in Sect. 7. In
practice, however, Isabelle’s instantiations often make theory hierarchies non-compositional
as each type can only be instantiated in one way. We faced such a clash of instances between
Isabelle’s Kleene algebra and analysis hierarchies and hence had to customise the former for
our purposes.

Replacing the intermediate relational semantics by state transformers required some back-
ground work, simply because the former are well supported by Isabelle, whereas the latter are
new. Interestingly, it is possible to propagate theorems automatically along the isomorphisms
between these semantics like for type classes, locales and their instantiations and interpreta-
tion. Isabelle’s transfer and lifting packages provide an infrastructure for this, which remains
by and large unexplored. We leave this for future work.

The categorical approach to transformer quantaloids is more complex—both conceptually
and from a formalisation point of view—than the MKA based one, in particular when state
transformers are integrated via the powerset monad. At the level of verification conditions
generation, however, there are almost no differences. Once again a stripped down component
can be generated that just suffices for verification condition generation, and we are using it
in subsequent work [12]. Relative to Isabelle’s main libraries, it fills merely four pages [25].
Working with quantales instead of quantaloids might seem mathematically simpler, but with
Isabelle it is actually more tedious, as subtypes for endofunctions need to be created.

In sum, for simple verification tasks, the lightweight stripped down predicate transformer
algebras obtained from MKA or quantaloids seem preferable; for more complex program
transformations or refinements, the integration into the full MKA hierarchy or categorical
predicate transformer component is certainly beneficial.

16 Isabelle Support for dL-Style Reasoning

This section lists our formalisation of semantic variants of the most important axioms and
inference rules of dL in Isabelle outlined in Sect. 12. It covers all three predicate transformer

123

128 J. J. Huerta y Munive, G. Struth

semantics as well as the relational and state transformer model. Once again, we only show
state transformers in the categorical approach.

We have formalised a generalised version of the dL-rules with parameters T , S and t0
with intervalsU and for orbitals. We can easily instantiate them toR,RV and 0, respectively.
This enables users to perform verification proofs in the style of dL and establishes soundness
of these rules relative to our semantics as a side effect. First, we show our formalisations of
(DS) and (dSolve).

lemma DS:
fixes c:: ′a::{heine-borel, banach}
shows fbF (x´= (λs. c) & G) Q = {x. ∀ t. (∀ τ≤t. G (x+τ ∗R c)) −→ (x+t ∗R c) ∈ Q}
〈proof〉

lemma solve:
assumes local-flow f UNIV UNIV ϕ

and ∀ s. s ∈ P −→ (∀ t. (∀ τ≤t. G (ϕ τ s)) −→ (ϕ t s) ∈ Q)

shows P ≤ fbF (x´= f & G) Q
〈proof〉

Next, we list semantic variants of the five dL axioms and inference rules for reasoning
with differential invariants discussed in Sect. 12. Recall that due to our semantic approach,
evolution commands in these rules only require the vector field f :: ′a ⇒ ′a and guard G :: ′a
⇒ bool, while the x´= is just syntactic sugar to resemble ODEs.

lemma DW : fbF (x´= f & G) Q = fbF (x´= f & G) {s. G s −→ s ∈ Q}
〈proof〉

lemma dW : {s. G s} ≤ Q �⇒ P ≤ fbF (x´= f & G) Q
〈proof〉

lemma DC:
assumes fbF (x´= f & G) {s. C s} = UNIV
shows fbF (x´= f & G) Q = fbF (x´= f & (λs. G s ∧ C s)) Q
〈proof〉

lemma dC:
assumes P ≤ fbF (x´= f & G) {s. C s}
and P ≤ fbF (x´= f & (λs. G s ∧ C s)) Q

shows P ≤ fbF (x´= f & G) Q
〈proof〉

lemma dI:
assumes P ≤ {s. I s}
and diff-invariant I f UNIV UNIV 0 G
and {s. I s} ≤ Q

shows P ≤ fbF (x´= f & G) Q
〈proof〉

Additional dL rules can easily be formalised. More recent work features, for instance, a
ghost rule [12], which is heavily used for reasoning with invariants in dL, but seems less
relevant to our semantic approach [45].

123

Predicate Transformer Semantics for Hybrid Systems 129

17 Verification Examples

This section explains the formalisation of the bouncing ball examples from Sect. 9 and 11
with Isabelle, andwe add two further verification examples using a simple circular pendulum.
All four of them use Isabelle’s type 2 of two elements. It denotes the set of variables V of
hybrid programs over the state space R

V for |V | = 2. We follow Isabelle’s notation and
write 0::2 and 1::2 for the two variables and their type. As such a formalisation of variables
is rather unwieldy, more recent extensions to our framework support more general name
spaces, more sophisticated store models and a more user-friendly specification language for
hybrid programs and assertions [12]. The examples in this section should therefore be taken
cum grano salis.

Example 17.1 (Bouncing Ball via Flow) First, we formalise Example 9.4with our verification
components for flows, using our first workflow. We write 0::2 for the ball’s position starting
from height h, 1::2 for its velocity, and s$0 and s$1 for sx and sv . We formalise the vector
field f (sx , sv)

T = (sv,−g)T for the ball as

abbreviation fball :: real ⇒ realˆ2 ⇒ realˆ2 (f)
where f g s ≡ (χ i. if i=0 then s$1 else g)

We can now state the partial correctness specification for the bouncing ball in Isabelle,
where the loop invariant I is that of Sect. 9, but written slightly differently to enhance proof
automation.

lemma bouncing-ball: g < 0 �⇒ h ≥ 0 �⇒
{s. s$0 = h ∧ s$1 = 0} ≤ fbF
(LOOP (

(x´=(f g) & (λ s. s$0 ≥ 0)) ;
(IF (λ s. s$0 = 0) THEN (1 ::= (λs. − s$1)) ELSE skip))

INV (λs. 0 ≤ s$0 ∧2 · g · s$0 − 2 · g · h − s$1 · s$1 = 0))

{s. 0 ≤ s$0 ∧ s$0 ≤ h}

The proof of this lemma is shown below. It follows that in Example 9.4, but requires some
intermediate lemmas. For example, if we first apply rule ffb-loopI (wlp-star), the subgoals
P ≤ I and I ≤ Q, for P = (λs. sx = h ∧ sv = 0) and Q = (λs. 0 ≤ sx ≤ h), need to
be proven. They can be discharged automatically after supplying some lemmas about real
arithmetic, which have been bundled under the name bb-real-arith. We show one of them
below to give an impression.

named-theorems bb-real-arith real arithmetic properties for the bouncing ball.

lemma [bb-real-arith]: 0 > g �⇒ 2 · g · x − 2 · g · h = v · �⇒ (x::real) ≤ h
〈proof〉

These properties depend on distributivity and commutativity properties that Isabelle cannot
simplify immediately. As we are not working within a well-defined language, such as dif-
ferential rings or fields, we have not attempted to automate them any further, so that proofs
require some user interaction.

The remaining rules, that is, ffb-kcomp (wlp-seq), ffb-if-then-else (wlp-cond), and
ffb-assign (wlp-asgn), have been added to Isabelle’s automatic proof tools. It then remains to
compute the wlp for the evolution command of the bouncing ball. To use local-flow.ffb-g-ode
(wlp-evl), we follow the procedure in Sect. 9. We need to check that the vector field is Lip-

123

130 J. J. Huerta y Munive, G. Struth

schitz continuous, supply the local flow as in Example 9.4 and check that it solves the IVP
and satisfies the flow conditions.

abbreviation ball-flow :: real ⇒ real ⇒ realˆ2 ⇒ realˆ2 (ϕ)

where ϕ g t s ≡ (χ i. if i=0 then g · t ˆ 2/2 + s$1 · t + s$0 else g · t + s$1)

lemma local-flow-ball: local-flow (f g) UNIV UNIV (ϕ g)

〈proof〉

The arithmetic computations with real numbers at the end of Example 9.4 are then discharged
automatically by adding the rules in bb-real-arith to Isabelle’s automatic tools. The resulting
two-line proof of the bouncing ball is shown below.

apply(rule wp-loopI, simp-all add: local-flow.wp-g-ode[OF local-flow-ball])
by (auto simp: bb-real-arith)

Overall, the verification proof covers less than a page and a half in the proof document—
and this is mainly due to the few arithmetic calculations in the background that require user
interaction. All other proofs make heavy use of Isabelle’s simplifiers and are by and large
automatic. ��

Example 17.2 (Bouncing Ball via Invariant) This example formalises the invariant-based
proof from Example 11.5 using our second workflow. The correctness specification changes
in that we annotate the differential invariant ab initio.

lemma bouncing-ball-invariants: g < 0 �⇒ h ≥ 0 �⇒
{s. s$0 = h ∧ s$1 = 0} ≤ fbF
(LOOP (

(x´=(f g) & (λ s. s$0 ≥ 0) DINV (λs. 2 · g · s$0 − 2 · g · h − s$1 · s$1 = 0)) ;
(IF (λ s. s$0 = 0) THEN (1 ::= (λs. − s$1)) ELSE skip))

INV (λs. 0 ≤ s$0 ∧2 · g · s$0 − 2 · g · h − s$1 · s$1 = 0))

{s. 0 ≤ s$0 ∧ s$0 ≤ h}
apply(rule ffb-loopI, simp-all)
apply(force, force simp: bb-real-arith)

by(rule ffb-g-odei) (auto intro!: diff-invariant-rules poly-derivatives)

As before, the first line of the proof applies the non-evolution wlp-rules; the sec-
ond one discharges P ≤ I and I ≤ Q for loop invariant I . It remains to show that
I ≤ |x ′ = f &G DINV Id]I for differential invariant Id .

For this, we unfold the annotated invariant rule ffb-g-odei, which performs step (2) of
Example 11.5 and generates the proof obligation Id ≤ |x ′ = f & G]Id . The proof of this
fact is automatic because the rule ffb-diff-inv (Lemma 11.2) has been added to Isabelle’s
simplifiers. Step (1) is checked with our rules for derivatives poly-derivatives and differential
invariants diff-invariant-rules (Proposition 11.3). The full verification covers less than a page
in the proof document. ��

Example 17.3 (Circular Pendulum via Invariant) The ODEs

x ′ t = y t and y′ t = −x t,

which correspond to the vector field f : RV → R
V ,

f

(
sx

sy

)

=
(

0 1
−1 0

) (
sx

sy

)

,

123

Predicate Transformer Semantics for Hybrid Systems 131

for V = {x, y}, describe the kinematics of a circular pendulum. All orbits are “governed” by
the separable differential equation

dy

dx
= y′

x ′ = − x

y
,

obtained by parametric derivation. Rewriting it as x dx + y dy = 0 and integrating both sides
yield x2+ y2 = r2, for some constant r > 0, which describes the circular orbits of the ODEs.
This leads to the differential invariant

I =
(
λs. s2x + s2y = r2

)
, (r ≥ 0).

Once again, we apply our procedure from Sect. 11 to prove

I = |x ′ = f &�]I
using Lemma 11.4, as the guard is trivial.

1. Using Proposition 11.3 with μ s = s2x and ν s = r2 − s2y , we check that I is an invariant,
showing that (μ ◦ X)′ = (ν ◦ X)′ for all X ∈ Sols f T s, and hence

(
(X t x)2

)′ = (
r2 − (X t y)2

)′
.

We calculate
(
(X t x)2

)′ = 2(X t x)(X ′ t x) = −2(X ′ t y)(X t y) = (
r2 − (X t y)2

)′
.

It therefore follows from Proposition 11.3(1) that I is an invariant for f along R
V ;

I = |x ′ = f & �]I holds by Lemma 11.4.
2. As P = I = Q, there is nothing to show.

In the Isabelle formalisation, we introduce a name for the vector field and show that I is
an invariant for it—as the invariant is the pre- and postcondition, an annotation is not needed.
The verification is straightforward following the workflow of the previous example, and even
simpler because the pre- and postconditions are just the differential invariant.

abbreviation fpend :: realˆ2 ⇒ realˆ2 (f)
where f s ≡ (χ i. if i=0 then s$1 else −s$0)

lemma pendulum: {s. r2 = (s$0)2 + (s$1)2} ≤ fbF (x´= f & G) {s. r2 = (s$0)2 + (s$1)2}
by (auto intro!: diff-invariant-rules poly-derivatives)

The Isabelle proof is automatic if we supply the tactic for derivative rules. ��
Example 17.4 (Circular Pendulum via Flow) Alternatively, the kinematic equations for the
circular pendulum from Example 17.4 can of course be solved using linear combinations
of trigonometric functions. Yet first we need to show that the vector field f is Lipschitz
continuous with constant 1. Next, we supply the flow

ϕs t =
(

cos t sin t
− sin t cos t

) (
sx

sy

)

.

We need to check that it solves the IVP (f , s) for all s ∈ R
V and that it satisfies the flow

conditions for T = R and S = R
V . As an example calculation,

ϕ′
s t =

(− sin t cos t
− cos t − sin t

)(
sx

sy

)

=
(

0 1
−1 0

) (
cos t sin t
− sin t cos t

)(
sx

sy

)

= f (ϕs t).

123

132 J. J. Huerta y Munive, G. Struth

The remaining conditions are left to the reader.
To compute |x ′ = f &�]I , we expand (wlp-evl). This yields

|x ′ = f &�]I s = ∀t . I (ϕs t)

= (∀t . (ϕs t x)2 + (ϕs t y)2 = r2
)

= (∀t . (sx cos t + sy sin t)2 + (sy cos t − sx sin t)2 = r2
)

=
(
∀t . s2x (sin2 t + cos2 t) + s2y(sin

2 t + cos2 t) = r2
)

= I s.

In the Isabelle proof along these lines, we first prove that the vector field satisfies the con-
ditions of the Picard–Lindelöf theorem. To this end, we need to unfold the locale definitions,
then introduce the Lipschitz constant and call Isabelle’s simplifiers. Next, to prove that the
solution supplied is a flow and a solution to the IVP, we unfold definitions and finish the
proof by checking that the derivative of the flow in each coordinate coincides with the vector
field in that coordinate. The introduction of the flow and these lemmas are shown below.

abbreviation pend-flow :: real ⇒ realˆ2 ⇒ realˆ2 (ϕ)

where ϕ t s ≡ (χ i. if i = 0 then s$0 · cos t + s$1 · sin t else s$1 · cos t − s$0 · sin t)

lemma local-flow-pend: local-flow f UNIV UNIV ϕ

〈proof〉

The proof of the correctness specification requires only an application of the wlp rule
local-flow.ffb-g-ode (wlp-evl) and Isabelle’s simplifier.

lemma pendulum: {s. r2 = (s$0)2 + (s$1)2} ≤ fbF (x´=f & G) {s. r2 = (s$0)2 + (s$1)2}
by (force simp: local-flow.ffb-g-ode[OF local-flow-pend])

��
All four examples have been based on the categorical approach and the state transformer

semantics. Alternative formalisations for the other predicate transformer algebras and the
relational semantics can be found in other verification components [25]. In the MKA-based
component, the proofs using the relational and the state transformer semantics are precisely
the same, which underpins the modularity of our approach. In the other components, we
could certainly achieve the same effect by simply rewriting names and adjusting some types.

Transcendental functions cannot be expressed directly in dL’s term language, yet we can
use them smoothly and easily with Isabelle with the tactic outlined in Sect. 15. Both the
differential invariant workflow and the flow-based workflow benefit from these rules. In fact,
both approaches are very similar for the pendulum example: both need a handful of lemmas
to prove the partial correctness specification I = |x ′ = f & �]I , and both require a creative
step in the form of introducing a differential invariant or the flow for the system.

We have presented the pendulum example in matrix notation as this points to a common
feature of many applications: their dynamics can be described by linear systems of ODEs that
are representable by matrices and have uniform solutions given by a matrix exponential that
can be computed with standard methods from linear algebra. The development of domain-
specific techniques for linear systems with Isabelle has been the subject of a successor article
[26]. Beyond these simple examples, our approach has successfully tackled a large set of
benchmarks from a systems competition [45] and been fine-tuned for proof automation,
so that the size of proofs and level of user interaction reported in this article is no longer
representative.More information about the background theory developmentwith Isabelle and

123

Predicate Transformer Semantics for Hybrid Systems 133

themethods and heuristics programmed can be found in the first author’s doctoral dissertation
[27]. A more far-reaching integration of solvers and decision procedures, or procedures
for invariant learning, as oracles or with correctness guarantees, is of course crucial to the
applicability of this framework, but beyond the semantic considerations of this article. It is
left for future work.

18 Outlook: A Flow-Based Verification Component

The verification components presented so far adhered verymuch to the pessimistic interactive
theorem proving mindset that prefers the internal reconstruction of all external results. This
section briefly outlines a fourth, more optimistic verification component that deviates entirely
from the vector-field-based approach ofdL andworks directlywith flows or solutions to IVPs.
It shifts responsibility for the correctness of solutions entirely to users—or the computer
algebra system they could or should use. This is common practice for instance when working
with hybrid automata [10], and of course it simplifies proofs considerably.

For this third workflow supported by our framework, the topological or differentiable
structure of the underlying state space is of secondary interest. With Isabelle, this kind
of structure and additional conditions can always be imposed by instantiating types with
sort constraints as they arise. Hence, we start from a setting that covers both discrete and
continuous evolutions and use a general type for time instead of real, rat or int. The evolution
commands now specify arbitrary guarded ϕ-type functions instead of vector fields. The type
of time needs to admit an order relation, which is indicated by the sort constraint ord below,
yet specific properties, such as reflexivity or transitivity, need not be imposed ab initio.

Apart from that, the definition of the guarded-orbit semantics and thewlp rule are as before,
but side conditions on Lipschitz continuity or the Picard–Lindelöf theorem are superfluous.

definition g-evol :: ((′a::ord) ⇒ ′b ⇒ ′b) ⇒ ′b pred ⇒ ′a set ⇒ (′b ⇒ ′b set) (EVOL)

where EVOL ϕ G T = (λs. g-orbit (λt. ϕ t s) G T)

lemma fbox-g-evol[simp]:
fixes ϕ :: (′a::preorder) ⇒ ′b ⇒ ′b
shows fbF (EVOL ϕ G T) Q = {s. (∀ t∈T . (∀ τ∈down T t. G (ϕ τ s)) −→ (ϕ t s) ∈ Q)}
unfolding g-evol-def g-orbit-eq ffb-eq by auto

Using the flows of the bouncing ball and the circular pendulum from previous examples,
verification proofs are now fully automatic.

lemma pendulum-dyn:
{s. r2 = (s$0)2 + (s$1)2} ≤ fbF (EVOL ϕ G T) {s. r2 = (s$0)2 + (s$1)2}
by force

lemma bouncing-ball-dyn: g < 0 �⇒ h ≥ 0 �⇒
{s. s$0 = h ∧ s$1 = 0} ≤ fbF
(LOOP (

(EVOL (ϕ g) (λ s. s$0 ≥ 0) T) ;
(IF (λ s. s$0 = 0) THEN (1 ::= (λs. − s$1)) ELSE skip))

INV (λs. 0 ≤ s$0 ∧2 · g · s$0 − 2 · g · h − s$1 · s$1 = 0))

{s. 0 ≤ s$0 ∧ s$0 ≤ h}
by (rule ffb-loopI) (auto simp: bb-real-arith)

123

134 J. J. Huerta y Munive, G. Struth

These examples no longer link flowswith initial specifications in terms of systemofODEs,
from which a user might have started. Hence, there is no longer any formal guarantee from
Isabelle that the function ϕ specified satisfies any continuity of differentiability assumptions
such as those of local-flow.

Further elaboration of this approach, in particular towards discrete systems or in the
direction of hybrid automata, is left for future work.

19 RelatedWork

Methods for automated verification condition generation for partial and total correctness
assertions with proof assistants date back to the early days of hardware and software verifi-
cation by Gordon and colleagues [19]. Discussions on the benefits of shallow embeddings
of verification methods in proof assistants—among them faster developments and increased
modularity—can be traced back to the same group of researchers. We generally follow an
approach described in [2] that starts from algebras of programs to generate verification con-
ditions for the structural commands of programs, while developing those for basic commands
in concrete semantics of the program store dynamics.

Mathematical components for classical real analysis have been developed for the Coq
proof assistant in the Coquelicot library [7], others for constructive analysis in the CoRN
library [8]. The Picard–Lindelöf theorem seems to be available only in the latter [42]. The
proof assistant HOL-light includes a librarywith formalised n-dimensional Euclidean spaces.
The first formalisation of the Picard–Lindelöf theorem in Isabelle, which we rewrite for our
purposes and specialise to local flows, can be found in the AFP entry for ordinary differential
equations [30].

Hybrid systems verification in general-purpose proof assistants has also been investigated.
Examples in PVS include semantic invariant reasoning with hybrid automata [1] and, after
submissionof this article andpublicationof its precursor [28],dL-style verificationwith semi-
algebraic sets and real analytic functions [59]. An earlier formalisation of the control function
of an inverted pendulum [57] uses the Coquelicot library. Also in Coq, the robot operating
system (ROSCoq) framework uses a shallowly embedded logic of events to reason about
hybrid systems but onlywithdL’s differential induction rule. TheHHLprover [67] formalises
a Hoare-logic for hybrid systems verification within its calculus of hybrid communicating
sequential processes in Isabelle [38]; part of their approach has been deeply embedded. Their
semantics is very different from ours. An integration of their LZZ method [39] for finding
semi-algebraic invariants for polynomial dynamical systems could probably be integrated
into our framework to increase proof automation. Finally, a term-checker for KeYmaera X
[6] and, after submission of this article, a formalisation of differential game logic (dGL) [50]
have been deeply embedded recently in Isabelle/HOL. None of them aim at hybrid program
verification.

For an in-depth description of dL see [49], a thorough study of differential invariants has
been pursued in [46].

In theory, our own framework should therefore allow the integration of much of the
related work mentioned, so long as it is consistent with our hybrid store semantics. It is
not even necessary to delegate every task to the proof assistant. One can use external tools
implementing decision procedures as oracles or at least certify their outputs with Isabelle.
The oracle-based approach, however, may jeopardise the desirable conservative extension
property relative to Isabelle’s own kernel. Translations between different proof assistantsmay

123

Predicate Transformer Semantics for Hybrid Systems 135

not always be straightforward. For instance, it is yet to be seen if dependent types or multi-
parameter type classes are needed for more flexible implementations of functions spaces
(bounded, linear and continuous) or complex vector spaces, or if alternative formalisations
of Picard–Lindelöf theorem and other existence theorems might help us to alleviate some of
the requirements in our workflows.

20 Conclusion

Wehave presented a new semantic framework for the deductive verification of hybrid systems
with the Isabelle/HOL proof assistant. The approach is inspired by differential dynamic logic,
but the design of our verification components, the focus of our framework and the workflows
for verifying hybrid systems are different.

First of all, as we use a shallow embedding, the basic verification components generated
are quite minimalist and conceptually simple. They merely require the integration of a wlp
semantics for basic evolution commands of hybrid programs into standard predicate trans-
former algebras. Our preferred semantics for such commands are state transformers, which in
most cases simply map states to the guarded orbits of their temporal evolutions. Beyond that,
no domain-specific inference rules are needed, verification condition generation is fully auto-
matic, and even our approach to differential invariants is based entirely on general purpose
algebraic invariance laws. Our examples show that mathematical reasoning about differential
equations follows standard textbook style and hence comes close to the way mathematicians,
physicists or control engineers have been trained to reason about such systems. Whether this
is preferable to the proof-theoretic approach advocated by KeYmaera X remains to be seen.

Secondly, our approach aims at an open experimental platform that is only limited by
Isabelle’s ODE and analysis components, the expressivity of its higher-order logic and type
system and the proof methods it provides. We could, for instance, have developed our seman-
tics for time-dependent vector fields, but the restriction to autonomous systems, which does
not affect generality, seems preferable in practice. The integration of internal or external
solvers for differential algebras, transcendental functions or computer algebra systems for
computing Lipschitz constants or flows in the style of Isabelle’s Sledgehammer tactic is cer-
tainly interesting and a very important avenue for future work, but not a main concern in this
article. So far, our open approach simply offers semantic alternatives that users may explore,
adapt and extend.

Two specialisations of our framework are the topic of successor papers. The first one
restricts our approach to linear systems of differential equations, where exponential solu-
tions exist and can be computed with standard methods from linear algebra [26]. The second
one [11] specialises the predicate transformer semantics to algebraic variants of Hoare logics
and to refinement calculi for hybrid programs along the lines of previous components for
traditional while programs [2]. This shows that our denotational semantics for hybrid pro-
grams are compatible with any Hoare logic, which constitutes another significant conceptual
simplification relative to dL and KeYmaera X.

Beyond that we expect that a recent formalisation of Poincaré maps with Isabelle [31]
might allow us to extend our framework to discrete dynamical systems and more computa-
tional approaches to hybrid systems.

Moreover, differential-algebraic systems of equations [20], which mix differential equa-
tions and algebraic equations, and partial differential equations [34] are important for many
applications in control engineering and physics. Extending our approach is likely to require

123

136 J. J. Huerta y Munive, G. Struth

significant background work on mathematical components with Isabelle. While, in both set-
tings, some simple cases can be reduced to systems of ODEs, numerical methods are usually
needed for working with such systems. Whether the workflow of mathematicians, physicists
and engineers with such more computational approaches can be approximated easily with
Isabelle remains to be seen.

Finally, much work is needed to transform our framework into an applicable verification
tool for hybrid systems. First steps have meanwhile been taken [12] with respect to more
refined hybrid stores and a more user-friendly specification language for hybrid programs
and their correctness properties, as already mentioned. More important, however, seems
the integration of external solvers and decision procedures, to which much work in the
hybrid systems community has already been devoted [13,39,54,58,60]. Such procedures
already increase the proof automation of KeYmaera X, and we foresee no reason why similar
integrations should not lead to similar benefits within our own framework.

Acknowledgements We are grateful to Ana Cavalcanti, Achim Brucker, Thao Dang, Simon Foster, Sergey
Goncharov, Peter Höfner, Sergio Mover, André Platzer, Andrei Popescu, Dmitriy Traytel as well as the partic-
ipants of the RAMiCS 2018 conference and our Oslo lecture series on Isabelle/HOL for fruitful discussions.
We would also like to thank our referees for pointers to related work and many suggestions that helped us to
improve the presentation of this work and reflect on its contributions. The first author acknowledges support
by scholarship no. 440404 of the Mexican Consejo Nacional de Ciencia y Tecnología (CONACyT).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Cross-References to Isabelle Lemmas

Result in article Formalisation in Isabelle [25]

Proposition 2.1 Implied by interpretation rel-aka in Sect. 15
Proposition 2.2 Implied by instantiation nd-fun in Sect. 15
Proposition 3.1 interpretation rel-aka in Sect. 15
Proposition 3.2 instantiation nd-fun in Sect. 15
wlp for sequential composition (wlp-seq) ffb-kcomp in Sect. 15
wlp rule for if-then-else (wlp-cond) ffb-if-then-else in Sect. 15
wlp rule for finite iterations (wlp-while) In the proof of ffb-loopI in Sect. 15
Lemma 4.1 Part of named-theorems diff-invariant-rules of Sect. 15
Update functions from Sect. 7 definition vec-upd in Sect. 15
Semantics for assignments from Sect. 7 definition assign in Sect. 15
wlp for assignments from Sects. 7 (wlp-asgn) ffb-assign in Sect. 15
Orbits in Sect. 8 definition orbit in Sect. 15
Picard–Lindelöf Theorem 8.2 picard-lindeloef-closed-ivl.unique-solution in Sect. 14
Monoid action identities for flows from Sect. 8 local-flow.is-monoid-action in Sect. 14

123

http://creativecommons.org/licenses/by/4.0/

Predicate Transformer Semantics for Hybrid Systems 137

Result in article Formalisation in Isabelle [25]

G-guarded orbit (γ ϕ
G) in Sect. 9 instance of definition g-orbit of Sect. 14

Lemma 9.1 g-orbital-collapses in Sect. 14
Semantics for evolution commands in Sect. 9 notation g-orbital of Sect. 15
Proposition 9.2 implied by ffb-g-ode in Sect. 15
Lemma 9.3 (wlp-evl) ffb-g-ode in Sect. 15
Example 9.4 Example 17.1
Sols f t0 s in Sect. 10 definition ivp-sols in Sect. 14
G-guarded orbit γ X

G of X along T in Sect. 10 definition g-orbit of Sect. 14

G-guarded orbital γ f
G of f along T in Sect. 10 definition g-orbital of Sect. 14

Lemma 10.1 ffb-g-orbital-eq in Sect. 14
Semantics for evolution commands in Sect. 10 notation g-orbital of Sect. 15
Proposition 10.2 ffb-g-orbital of Sect. 15
Invariant of IVP (f , s) definition diff-invariant in Sect. 15
Proposition 11.1 ffb-diff-inv in Sect. 15
Proposition 11.3 named-theorems diff-invariant-rules of Sect. 15
Example 11.5 Example 17.2
dL-axiom (DS) in Sect. 12 DS in Sect. 16
Proposition 9.2 (dL-rule (dSolve)) solve in Sect. 16
Lemma 12.2 (DC) DC in Sect. 16
Lemma 12.2 (dC) dC in Sect. 16
Lemma 12.2 (DW) DW in Sect. 16
Lemma 12.2 (dW) dW in Sect. 16
Lemma 12.2 (dI) dI in Sect. Sect. 16

References

1. Ábrahám-Mumm, E., Steffen, M., Hannemann, U.: Verification of hybrid systems: Formalization and
proof rules in PVS. In: ICECCS 2001, pp. 48–57. IEEE Computer Society (2001)

2. Armstrong, A., Gomes, V.B.F., Struth, G.: Building program construction and verification tools from
algebraic principles. Formal Aspects Comput. 28(2), 265–293 (2016)

3. Armstrong, A., Struth, G., Weber, T.: Kleene algebra. Archive of Formal Proofs (2013). https://isa-afp.
org/entries/Kleene_Algebra.html

4. Arnol’d, V.I.: Ordinary Differential Equations. Springer, New York (1992)
5. Back, R., von Wright, J.: Refinement Calculus—A Systematic Introduction. Springer, New York (1998)
6. Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic logic. In:

CPP 2017, pp. 208–221. ACM (2017)
7. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: a user-friendly library of real analysis for Coq. MCS

9(1), 41–62 (2015)
8. Cruz-Filipe, L., Geuvers, H., Wiedijk, F.: C-corn, the constructive Coq repository at Nijmegen. In: MKM

2004, volume 3119 of LNCS, pp. 88–103. Springer (2004)
9. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput. Program. 76(3), 181–203

(2011)
10. Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems. In: Handbook of Model

Checking., pp. 1047–1110. Springer (2018)
11. Foster, S., Huerta y Munive, J.J., Struth, G.: Differential Hoare logics and refinement calculi for hybrid

systems with Isabelle/HOL. In: RAMiCS 2020, pp. 169–186 (2020)
12. Foster, S., y Munive, J.J.H., Gleirscher, M., Struth, G.: Hybrid systems verification with isabelle/HOL:

simpler syntax, better models, faster proofs. CoRR, abs/2106.05987 (2021)
13. Fulton, N., Mitsch, S., Bohrer, B., Platzer, A.: Bellerophon: Tactical theorem proving for hybrid systems.

In: ITP 2017, LNCS, pp. 207–224. Springer (2017)
14. Fulton, N., Mitsch, S., Quesel, J., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem

prover for hybrid systems. In: CADE-25, volume 9195 of LNCS, pp. 527–538. Springer (2015)
15. Gierz,G.,Hofmann,K.H., Lawson, J.D.,Mislove,M., Scott,D.S.:ACompendiumofContinuousLattices.

Springer, New York (1980)

123

https://isa-afp.org/entries/Kleene_Algebra.html
https://isa-afp.org/entries/Kleene_Algebra.html

138 J. J. Huerta y Munive, G. Struth

16. Gomes, V.B.F., Guttmann, W., Höfner, P., Struth, G., Weber, T.: Kleene algebras with domain. Archive
of Formal Proofs (2016). https://isa-afp.org/entries/KAD.html

17. Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness. In: FM 2016, volume
9995 of LNCS, pp. 310–325 (2016)

18. Gomes, V.B.F., Struth, G.: Program construction and verification components based on Kleene algebra.
In: Archive of Formal Proofs (2016)

19. Gordon, M.J.C.: Mechanizing Programming Logics in Higher Order Logic, pp. 387–439. Springer, New
York (1989)

20. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Prob-
lems. Springer, New York (1996)

21. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
22. Hirsch,M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and Linear Algebra.

Academic Press, London (1974)
23. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis in Isabelle/HOL. In:

ITP 2013, volume 7998 of LNCS, pp. 279–294. Springer (2013)
24. Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach. Springer, New York

(1991)
25. Huerta y Munive, J.J.: Verification components for hybrid systems. Archive of Formal Proofs (2019).

https://isa-afp.org/entries/Hybrid_Systems_VCs.html
26. Huerta y Munive, J.J.: Affine systems of ODEs in Isabelle/HOL for hybrid-program verification. In:

SEFM 2020, volume 12310 of LNCS, pp. 77–92. Springer (2020)
27. Huerta y Munive, J.J.: Algebraic verification of hybrid systems in Isabelle/HOL. PhD thesis, University

of Sheffield (2021)
28. Huerta yMunive, J.J., Struth, G.: Verifying hybrid systems with modal Kleene algebra. In: Desharnais, J.,

Guttmann, W., Joosten, S. (eds.) Relational and Algebraic Methods in Computer Science, pp. 225–243.
Springer (2018)

29. Immler, F., Hölzl, J.: Numerical analysis of ordinary differential equations in Isabelle/HOL. In: ITP 2012,
volume 7406 of LNCS, pp. 377–392. Springer (2012)

30. Immler, F., Hölzl, J.: Ordinary differential equations. Archive of Formal Proofs (2012). https://isa-afp.
org/entries/Ordinary_Differential_Equations.html

31. Immler, F., Traut, C.: The flow of ODEs: formalization of variational equation and Poincaré map. J.
Autom. Reason. 62(2), 215–236 (2019)

32. Jacobs, B.: A recipe for state-and-effect triangles. In: Logical Methods in Computer Science, vol. 13, no.
2 (2017)

33. Jeannin, J., Ghorbal, K., Kouskoulas, Y., Schmidt, A., Gardner, R., Mitsch, S., Platzer, A.: A formally
verified hybrid system for safe advisories in the next-generation airborne collision avoidance system.
STTT 19(6), 717–741 (2017)

34. John, F.: Partial Differential Equations. Springer, New York (1986)
35. Jónsson, B., Tarski, A.: Boolean algebras with operators, Part I. Americal. J. Math. 73(4), 207–215 (1951)
36. Kneser, H.: Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen, das der Lips-

chitzschen Bedingung nicht genügt. Sitz.ber. Preuß, pp. 58–61 (1923)
37. Kozen, D.: Kleene algebra with tests. ACM TOPLAS 19(3), 427–443 (1997)
38. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP. In: APLAS

2010, volume 6461 of LNCS, pp. 1–15. Springer (2010)
39. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical systems.

In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds) EMSOFT 2011, pp. 97–106. ACM
(2011)

40. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now formally verified.
In: FM 2011, volume 6664 of LNCS, pp. 42–56. Springer (2011)

41. MacLane, S.: Categories for the Working Mathematician. Springer, New York (1971)
42. Makarov, E., Spitters, B.: The Picard algorithm for ordinary differential equations in Coq. In: ITP 2013,

volume 7998 of LNCS, pp. 463–468. Springer (2013)
43. Manes, E.G.: Predicate Transformer Semantics. Cambridge University Press, Cambridge (1992)
44. Meijer, E., Fokkinga, M.M., Paterson, R.: Functional programming with bananas, lenses, envelopes and

barbed wire. In: Functional Programming Languages and Computer Architecture 1991, volume 523 of
LNCS. Springer (1991)

45. Mitsch, S., Huerta yMunive, J.J., Jin, X., Zhan, B., Wang, S., Zhan, N.: ARCH-COMP20 category report:
Hybrid systems theorem proving. In: ARCH20, pp. 141–161 (2019)

46. Platzer, A.: The structure of differential invariants and differential cut elimination. In: LMCS, vol. 8, no.
4 (2008)

123

https://isa-afp.org/entries/KAD.html
https://isa-afp.org/entries/Hybrid_Systems_VCs.html
https://isa-afp.org/entries/Ordinary_Differential_Equations.html
https://isa-afp.org/entries/Ordinary_Differential_Equations.html

Predicate Transformer Semantics for Hybrid Systems 139

47. Platzer, A.: Logical Analysis of Hybrid Systems. Springer, New York (2010)
48. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason.

59(2), 219–265 (2017)
49. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, New York (2018)
50. Platzer, A.: Differential game logic. Archive of Formal Proofs (2019). https://isa-afp.org/entries/

Differential_Game_Logic.html
51. Platzer, A., Tan, Y.K.: Differential equation axiomatization: the impressive power of differential ghosts.

In: LICS, pp. 819–828. ACM (2018)
52. Preoteasa, V.: Algebra of monotonic Boolean transformers. Archive of Formal Proofs (2011). https://isa-

afp.org/entries/MonoBoolTranAlgebra.html
53. Preoteasa, V.: Algebra of monotonic boolean transformers. In: Archive of Formal Proofs (2011)
54. Rebiha, R., Moura, A.V., Matringe, N.: Generating invariants for non-linear hybrid systems. Theor. Com-

put. Sci. 594, 180–200 (2015)
55. Rosenthal, K.I.: The Theory of Quantaloids. Chapman and Hall/CRC, London (1996)
56. Rosenthal, K.L.: Quantales and Their Applications. Longman Scientific & Technical, Essex (1990)
57. Rouhling, D.: A formal proof in Coq of a control function for the inverted pendulum. In: CPP 2018, pp.

28–41. ACM (2018)
58. Sassi, M. A. B., Girard, A., Sankaranarayanan, S.: Iterative computation of polyhedral invariants sets for

polynomial dynamical systems. In: CDC 2014, pp. 6348–6353. IEEE (2014)
59. Slagel, J.T., White, L., Dutle, A.: Formal verification of semi-algebraic sets and real analytic functions.

In: CPP 21, pp. 278–290. ACM (2021)
60. Sogokon, A.,Mitsch, S., Tan, Y.K., Cordwell, K., Platzer, A.: Pegasus: A framework for sound continuous

invariant generation. In: FM 2019, LNCS, pp. 138–157. Springer (2019)
61. Struth, G.: On the expressive power of Kleene algebra with domain. Inf. Process. Lett. 116(4), 284–288

(2016)
62. Struth, G.: Hoare semigroups. Math. Struct. Comput. Sci. 28(6), 775–799 (2018)
63. Struth, G.: Properties of orderings and lattices. In: Archive of Formal Proofs (2018)
64. Struth, G.: Quantales. In: Archive of Formal Proofs (2018)
65. Struth, G.: Transformer semantics. Archive of Formal Proofs (2018). https://isa-afp.org/entries/

Transformer_Semantics.html
66. Teschl, G.: Ordinary Differential Equations and Dynamical Systems. AMS (2012)
67. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theorem prover for hybrid systems.

In: ICFEM 2015, pp. 382–399 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://isa-afp.org/entries/Differential_Game_Logic.html
https://isa-afp.org/entries/Differential_Game_Logic.html
https://isa-afp.org/entries/MonoBoolTranAlgebra.html
https://isa-afp.org/entries/MonoBoolTranAlgebra.html
https://isa-afp.org/entries/Transformer_Semantics.html
https://isa-afp.org/entries/Transformer_Semantics.html

	Predicate Transformer Semantics for Hybrid Systems
	Verification Components for Isabelle/HOL
	Abstract
	1 Introduction
	2 Kleene Algebra
	3 Modal Kleene Algebra
	4 Modal Kleene Algebra, Predicate Transformers and Invariants
	5 Predicate Transformers à la Back and von Wright
	6 Predicate Transformers from the Powerset Monad
	7 Assignments
	8 Ordinary Differential Equations
	9 Evolution Commands for Lipschitz Continuous Vector Fields
	10 Evolution Commands for Continuous Vector Fields
	11 Invariants for Evolution Commands
	12 Derivation of dmathcalL Inference Rules
	13 Isabelle Components for MKA and Predicate Transformers
	14 Isabelle Components for ODEs and Orbits
	15 Isabelle Components for Hybrid Programs
	16 Isabelle Support for dmathcalL-Style Reasoning
	17 Verification Examples
	18 Outlook: A Flow-Based Verification Component
	19 Related Work
	20 Conclusion
	Acknowledgements
	A Cross-References to Isabelle Lemmas
	References

