2101.07758v1 [cs.LO] 17 Jan 2021

arXiv

Preprint manuscript No.
(will be inserted by the editor)

A bi-directional extensible interface
between Lean and Mathematica *

Robert Y. Lewis - Minchao Wu

Received: date / Accepted: date

Abstract We implement a user-extensible ad hoc connection between the Lean
proof assistant and the computer algebra system Mathematica. By reflecting the
syntax of each system in the other and providing a flexible interface for extend-
ing translation, our connection allows for the exchange of arbitrary information
between the two systems.

We show how to make use of the Lean metaprogramming framework to ver-
ify certain Mathematica computations, so that the rigor of the proof assistant is
not compromised. We also use Mathematica as an untrusted oracle to guide proof
search in the proof assistant and interact with a Mathematica notebook from
within a Lean session. In the other direction, we import and process Lean decla-
rations from within Mathematica. The proof assistant library serves as a database
of mathematical knowledge that the CAS can display and explore.

Keywords Proof assistant - Formalization - Computer algebra

1 Introduction

Many researchers have noted the disconnect between computer algebra and inter-
active theorem proving. In the former, one typically values speed and flexibility
over absolute correctness. To be more efficient or user-friendly, a computer algebra

* This paper expands on a workshop paper by the first author [26], which describes an early
version of one direction of the interface.

The first author receives support from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999,
Matryoshka) and from the Dutch Research Council (NWO) under the Vidi program (project
No. 016.Vidi.189.037, Lean Forward).

Robert Y. Lewis
Vrije Universiteit Amsterdam
E-mail: r.y.lewis@vu.nl

Minchao Wu
Australian National University
E-mail: logic. mcwu@gmail.com



2 Robert Y. Lewis, Minchao Wu

system (CAS) may blur the distinction between polynomial objects and polyno-
mial functions, assume that sufficiently small terms at the end of a series are zero,
or resort to numerical approximations without warning. Such simplifying assump-
tions often make sense in the context of computer algebra; the capability and
flexibility of these systems make them indispensable tools to many working math-
ematicians. These assumptions, though, are antithetical to the goals of interactive
theorem proving (ITP), where every inference must be justified by appeal to some
logical principle. The strict logical requirements and lack of familiar algorithms
discourage many mathematicians from using proof assistants. Conversely, the un-
reliability of many computer algebra systems, and their lack of proof languages
and proof libraries, often makes them unsuitable for mathematical justification.

Integrating computer algebra and proof assistants is one way to reduce this
barrier to entry to ITP and to strengthen the justificatory power of computer
algebra. Bridges between the two types of systems have been built in a variety of
ways. We contribute another such bridge, between the proof assistant Lean [30]
and the computer algebra system Mathematica [38]. Since Mathematica is one of
the most commonly used computer algebra systems, and a user with knowledge
of the CAS can extend the capabilities of our link, we hope that the familiarity
will lead to wider use. Our connection is inspired by the architecture described by
Harrison and Théry [23].

A number of features of our bridge distinguish it from earlier work. CAS results
imported into the proof assistant can be trusted, verified, or used ephemerally to
guide proof development. The translation can be extended in-line with library
development without modifying auxiliary dictionaries or source code. We are able
to simulate a Mathematica read—eval-print loop (REPL) in a Lean editor session,
which takes as input Mathematica expressions with arbitrary Lean expressions
inserted, evaluates these in Mathematica, and displays the result. The link works
bi-directionally using the same translation procedure, allowing Mathematica to
access Lean’s library and automation. The link requires no plugins or modified
source code: it is available as a standard Lean library.

Our link separates the steps of communication, semantic interpretation, and
verification: there is no a priori restriction on the type of information that can be
shared between the systems. With the proof assistant in the leading role, Lean
expressions are exported to Mathematica, where they can be interpreted and ma-
nipulated. The results are then imported back into Lean and reinterpreted. One
can then write scripts that verify properties of the translated results. This style of
interaction, where verification happens on a per-case basis after the computation
has ended, is called ad hoc.

By performing calculations in Mathematica and verifying the results in Lean,
we relax neither the rigor of the proof assistant nor the efficiency of the CAS.
Alternatively, we can trust the CAS as an oracle, or use it in a purely informa-
tive role, where its output does not appear in the final proof term. We provide
comprehensive tactics to perform and verify certain classes of computations, such
as factoring polynomials and matrices. But all the components of our procedure
are implemented transparently in Lean’s metaprogramming framework, and they
can easily be extended or used for one-off computations from within the Lean
environment.

This range of possibilities is intended to make our link attractive to multiple
audiences. The working mathematician or mathematics student, who balks at the



A bi-directional extensible interface between Lean and Mathematica * 3

restrictions imposed by a proof assistant, may find that full access to a familiar
CAS is worth the tradeoff in trust. Industrial users are often happy to trust both
large-kernel proof assistants and computer algebra systems, and the rigor of Lean
with Mathematica as an oracle falls somewhere in between. Certifiable algorithms
are still available to users who demand complete trust. The ease of metaprogram-
ming in Lean is another draw: users do not need to learn a new programming or
tactic language to write complicated translation rules or verification procedures.

The translation procedure used is symmetric and can be used for communica-
tion in the reverse direction as well. Mathematica has no built-in notion of proof,
although it does have head symbols that express propositions. Rather than estab-
lishing an entire proof calculus for these symbols within Mathematica, we export
theorem statements to Lean, where they can be verified in an environment de-
signed for this purpose. The resulting proof terms are interpreted in the CAS and
can be displayed or processed as needed. Alternatively, we can skip the verifica-
tion step and display lemmas that are likely to be relevant to Mathematica’s goal.
In some sense, the link allows Mathematica to “borrow” Lean’s semantics, proof
language, and proof library.

The source for this project, and supplementary documentation, is available
online.! In this paper, we use Computer Modern for Lean code and TeX Gyre Cursor
for Mathematica code.

2 System descriptions
2.1 Lean

Lean is a proof assistant developed at Microsoft Research [30]. It is based on the
Calculus of Inductive Constructions (CIC) [13,14], an extension of the lambda cal-
culus with dependent types and inductive definitions. There is a non-cumulative
hierarchy of type universes Sort u, u > 0, with abbreviations Prop = Sort 0 and
Type u = Sort (u+1). The bottom level Prop is impredicative and proof-irrelevant.
The Lean community develops mathlib, a rapidly growing library of verified math-
ematics, programming, and tactics; more details on Lean and its library can be
found in the mathlib system description [28].

Lean’s standard library uses type classes to implement an abstract algebraic
hierarchy. Arithmetic operations, such as 4+ and #*, and numerals are generic over
types that instantiate the appropriate classes. As an example, consider the signa-
ture of the addition operator:

add.{u} : IT {A : Type u} [has_add A], A — A — A

The notation {A : Type u} signals that the argument A is an implicit variable,
meant to be inferred from further arguments; has_add : Type u — Type u is a
type class, and the notation [has_add A] signals that a term of that type is to be
inferred using type class resolution. The universe argument u indicates that add is
parametric over one universe level.

The dependently typed language implemented in Lean is flexible enough to
serve as its own metaprogramming language [19]. Data types and procedures im-
plemented in Lean’s C++ code base are exposed as constants, using the keyword

! nttps://robertylewis.com/leanmm/


https://robertylewis.com/leanmm/

4 Robert Y. Lewis, Minchao Wu

meta to mark a distinction between the object language and this extension. Expres-
sions can be evaluated in the Lean virtual machine, which replaces these constants
with their underlying implementations. Meta-definitions permit unbounded recur-
sion but are otherwise quite similar to standard definitions.

Combined with the declaration of the types expr and pexpr, which expose
the syntax of elaborated and unelaborated Lean expressions in Lean itself, and
tactic_state, which exposes the environment and goals of a tactic proof, this
metaprogramming framework allows users to write complex procedures for con-
structing proofs. A term of type tactic A is a function

tactic_state — tactic_result A

where a result is either a success (pairing a new tactic_state with a term of type
A) or a failure. Proof obligations can be discharged by terms of type tactic unit.
Such a term is executed in the Lean virtual machine to transform the original
tactic_state into one in which all goals have been solved. More generally, we can
think of a term of type tactic A as a program that attempts to construct a term
of type A, while optionally changing the tactic state.

When writing tactics, the command do enables Haskell-like monadic syntax.
For example, the following tactic returns the number of goals in the current tactic
state. The type of get_goals is tactic (list expr), where list is the standard
(object-level) type defined in the Lean library.

meta def num_goals : tactic nat :=
do gs < get_goals,
return (length gs)

Lean allows the user to tag declarations with attributes, and provides an inter-
face name — tactic (list name) to retrieve a list of declarations tagged with a
certain attribute.

2.2 Mathematica

Mathematica is a popular symbolic computation system developed at Wolfram
Research, implementing the Wolfram Language [38]. Along with support for a vast
range of mathematical computations, Mathematica includes collections of data of
various types and tools for manipulating this data.

Mathematica provides comprehensive tools for rewriting and solving polyno-
mial, trigonometric, and other classes of equations and inequalities; solving dif-
ferential equations, both symbolically and numerically; computing derivatives and
integrals of various types; manipulating matrices; performing statistical calcula-
tions, including fitting and hypothesis testing; and reasoning with classes of special
functions.

This large library of functions is one reason to choose Mathematica for our
linked CAS. Another reason is its ubiquity: Mathematica is frequently used in
undergraduate mathematics and engineering curricula. Lean beginners who are
accustomed to Mathematica do not need to learn a new CAS language for the
advanced features of this link. The Wolfram language is a symbolic functional
language with a simple grammar, making it a good candidate for intertranslation
with Lean without having to represent low-level data structures.



A bi-directional extensible interface between Lean and Mathematica * 5

For those unfamiliar with the syntax of the Wolfram Language, we note some
features and terminology that will help to understand the code fragments in this

paper.

— Function application is written using square brackets, e.g. Plus[x, y]. Many
functions are variadic: that is, one can also write Plus[x, y, z]. Common
notation like x + y + z is also supported.

— Alternatively, one can write unary function application in postfix form:

x"2 - 2x + 1 // Factor is equivalent to Factor[x"2 - 2x + 1].

— In the expression Plus[x, y], we refer to Plus as the head symbol and x and
y as the arguments. Non-numeric atoms like P1lus, x, and y are called symbols.

— There is no strong distinction between defined and undefined symbols. The
user is free to introduce a new symbol and use it at will. The computational
behavior of a head symbol can be fully or partially defined via pattern matching
rules, such as F[x_,y_] := x+y. The underscores indicate that x_ and y_ are
patterns.

— The Wolfram Language is untyped, so head symbols such as Plus and Factor
can be applied to any argument or sequence of arguments. Evaluation is often
restricted to certain patterns. For example, Plus[2, 3] will evaluate to 5
but Plus [Factor, Plus] will not reduce. Nevertheless, both are well-formed
Mathematica expressions.

3 The translation procedure

Our bridge can be used to exchange information between Mathematica and Lean.
The logical foundations and semantics of the two systems are quite different, and
we should not expect a perfect correspondence between the two. However, in many
situations, an expression in Lean has a counterpart in Mathematica with a very
similar intended meaning. We can exploit these similarities by ignoring the un-
soundness of the translations in both directions and attempting to verify, post
hoc, that the resulting expression has the intended properties.
As a running example, suppose we want to show in Lean:

x :real - x"2-2x+12>0

Factoring the left-hand side of the inequality makes this a one-step proof (assuming
we’ve proven that squares are nonnegative). It is nontrivial to write a reliable
and efficient polynomial factoring algorithm, but luckily, one is implemented in
Mathematica. So we would like to do the following;:

Transform the Lean representation of z® — 2z + 1 into Mathematica syntax.
Interpret this as the Mathematica representation of the same polynomial.
Use Mathematica’s Factor function to factor the polynomial.

Transform this back into Lean syntax, and interpret it as a Lean polynomial.
Verify that the new expression is equal to the old.

Substitute this equality into the goal.

OOtk W

In Section 3.1 we describe steps 1, 2, and 4. Once we have a valid Mathematica
expression, step 3 is trivial. We discuss steps 5 and 6 in Section 4; since checking
that a polynomial has been factored correctly is much easier than factoring it in
the first place, these are handled easily by simplification and rewriting.



6 Robert Y. Lewis, Minchao Wu

meta inductive expr

| var : nat — expr

| sort : level — expr

| const : name — list level — expr

| mvar : name — eXpr — expr

| local_const : name — name — binder_info — expr — expr
| app : expr — expr — expr

| lam : name — binder_info — expr — expr — expr
| pi : name — binder_info — expr — expr — expr
| elet : name — eXpr — eXpr — expr — expr

| macro : macro_def — list expr — expr

Fig. 1: The Lean expression grammar is captured by the type expr. Every Lean
expression is uniquely expressed using one of these constructors.

It is worth emphasizing the modularity and extensibility of this approach. Both
directions of translation are handled independently, and the translation rules can
be extended or changed at will. Translation rules may be arbitrarily complex. Users
may choose to use alternate verification procedures, or to forgo the verification step
entirely.

3.1 Translating Lean to Mathematica

The Lean expression grammar is presented (in Lean syntax) in Figure 1. The type
expr is marked with the keyword meta because, during evaluation, the Lean virtual
machine replaces terms of this type with the kernel’s expression datatype. In the
explanation below, we focus on the parts of interest for our link. In particular we
will not discuss the macro constructor.

Each Lean expression exists in an environment, which contains the names,
types, and definitions of previous declarations. The const kind accesses a previous
declaration, instantiated to particular universe levels if the declaration is paramet-
ric. In addition to declarations in its environment, an expression may refer to its
local context, which contains variables and hypotheses of kind local_const. In the
toy example introduced above, x is a local constant. A local constant has a unique
name, a formatting name, and a type.

The expression kinds 1lam and pi respectively represent lambda-abstraction and
the dependent function type. (Non-dependent function types are degenerate cases
of pi types.) Each contains a name for the bound variable, the type of the variable,
and the expression body. Bound variables of kind var are anonymous within the
body, being represented by De Bruijn indices [29]. Application of one expression
to another is represented by the app kind.

Type universes are implemented by the expression kind sort. Metavariables
represent placeholders in partially constructed expressions; the mvar kind holds the
name and type of the placeholder. Let expressions (elet) bind a named variable
with a type and value within a body.

To represent this syntax in Mathematica, we define

mathematica_form_of_expr : expr — string



A bi-directional extensible interface between Lean and Mathematica * 7

by recursion over the expr datatype. We associate a Mathematica head symbol
LeanVar, LeanSort, LeanConst, etc. to each constructor of expr. Names, levels,
lists of levels, and binder information are also represented.

Some of the information contained in a Lean expression has little plausible
use in Mathematica, or is needlessly verbose: for example, it is hard to contrive a
scenario in which the full structure of a Lean name is used in the CAS. Nonetheless,
we do not strip any information at this stage, to preserve that an expression
reflected into and immediately back from Mathematica should translate to the
original expression without having to inject any additional information.

In our running example, we work on the expression z2 — 2z + 1. The fully
elaborated Lean expression and its Mathematica representation are too long to
print here, but they can be viewed in the supplementary documentation. Instead,
we consider the more concise example of x + x. If we use strings to stand in for
terms of type name, natural numbers in place of universe levels, and the string "bi"
in place of the default binder_info argument, and we abbreviate

X := local_const "x" "x" "bi" (comnst "real" []),

we can write the full form of x + x:

app (app (app (app (const "add" [0]) (const "real" []))
(const '"real.has_add" [1)) X) X

The corresponding Mathematica expressions are

X := LeanLocal["x", "x", "bi", LeanConst["real", {}1]

LeanApp [LeanApp [LeanApp [LeanApp [LeanConst ["add", {0}],
LeanConst ["real", {}11],
LeanConst["real.has_add", {}11, XI, X]

Since the head symbols LeanApp, LeanConst, etc. are uninterpreted in Math-
ematica, this representation is not yet useful. We wish to exploit the fact that
many Lean terms have semantically similar counterparts in Mathematica. For in-
stance, the Lean constants add and mul behave similarly to the Mathematica head
symbols P1lus and Times; both systems have notions of application, although they
handle the arity of applications differently; and Mathematica’s concept of a “pure
function” is analogous to lambda-abstraction in Lean.

We thus define a translation function LeanForm in Mathematica that attempts
to interpret the syntactic representation. Mathematica functions are typically de-
fined using pattern matching. The LeanForm function, then, will look for familiar
patterns (e.g. add A h x y, in Mathematica syntax) and rewrite them in trans-
lated form (e.g. Plus[LeanForm[x], LeanForm[y]]). Users can easily extend
this translation function by asserting additional equations; a default collection of
equations is loaded automatically.

For our factorization example, we want to convert Lean arithmetic to Mathe-
matica arithmetic. Among other similar rules, we will need the following:

LeanForm[LeanApp [LeanApp [LeanApp [LeanApp [
LeanConst ["add",_1, _1, _1, x_], y_11 :=
Inactive[Plus] [LeanForm[x], LeanForm[y]]

Note that this pattern ignores the type argument and type-class instance in the
Lean term. These arguments are irrelevant to Mathematica and can be inferred



8 Robert Y. Lewis, Minchao Wu

inductive mmexpr

| sym : string — mmexpr

| mstr : string — mmexpr

| mint : int — mmexpr

| app : mmexpr — list mmexpr — mmexpr
|

mreal : float — mmexpr

Fig. 2: The Mathematica expression grammar is captured by the type mmexpr. Ev-
ery Mathematica expression is uniquely expressed using one of these constructors.

again by Lean in the back-translation. We block Mathematica’s computation with
the Inactive head symbol; otherwise, Mathematica would eagerly simplify the
translated expression, which can be undesirable. The function Activate strips
these annotations, allowing reduction.

Numerals in Lean are type-parametric and are represented using the constants
zero, one, bit0, and bit1. To illustrate, the type signature of the latter is

bitl.{u} : TT {A : Type u}, [has_add A] — [has_one A] — A — A

and the numeral 6 is represented as bit0 (bitl one). The type of this numeral is
expected to be inferable from context. We can use rules similar to the above to
transform Lean numerals into Mathematica integers:

LeanForm[LeanApp [LeanApp [LeanApp [LeanApp [
LeanConst ["bitl", _1, _1, _1, _1, t_11 :=
2*LeanForm[t]+1

Applying LeanForm will not necessarily remove all occurrences of the head
symbols LeanApp, LeanConst, etc. This is not a problem: we only need to trans-
late the “concepts” with equivalents in Mathematica. Unconverted subterms—for
instance X, which contains applications of LeanLocal and LeanConst—will be
treated as uninterpreted constants by Mathematica, and the back-translation de-
scribed below will return them to their original Lean form.

In our running example (keeping the abbreviation x), applying the LeanForm
and Activate functions produces:

Plus([1l, Times[-2, X], Power[X, 2]]

Applying Factor produces Power [Plus[-1, X], 2].

3.2 Translating Mathematica to Lean

Mathematica expressions are composed of various atomic number types, strings,
symbols, and applications, where one expression is applied to a list of expressions.
We represent this structure in Lean with the data type mmexpr (Figure 2).

The result of a Mathematica computation is reflected into Lean as a term of
type mmexpr. This is analogous to the original export of our Lean expression into
Mathematica. It remains to interpret it as something meaningful.

A pre-expression in Lean is a term where universe levels and implicit arguments
are omitted. It is not expected to type-check, but one can try to convert it into a
type-correct term via elaboration. For instance, the pre-expression



A bi-directional extensible interface between Lean and Mathematica * 9

““(add nat.one nat.one)

elaborates to add.0 nat nat.has_add nat.one nat.one. The notation “(...) in-
structs Lean’s parser to interpret the quoted text as a term of type pexpr. Pre-
expressions share the same structure as expressions.

Mathematica expressions are analogous to pre-expressions. They may be type-
ambiguous and contain less information than their Lean counterparts. Thus we
normally expect to interpret terms of type mmexpr as pre-expressions, and to use
the Lean elaborator to turn them into full expressions. However, in rare cases an
mmexpr may already correspond to a full expression. The unmodified representation
of a Lean expression, sent back into Lean, should be interpreted as the original
expression. We provide two extensible translation functions, expr_of_mmexpr and
pexpr_of_mmexpr, to handle both of these cases. Since the implementations are
similar we focus our attention on the latter.

The function

pexpr_of_mmexpr : trans_env — mmexpr — tactic pexpr

takes a translation environment and an mmexpr, and, using the attribute man-
ager, attempts to return a pre-expression. (Since the tactic monad includes fail-
ure, the process may also fail if no interpretation is found.) Interpreting strings
as pre-expressions, or, indeed, as expressions, is straightforward. Since Mathemat-
ica integers may be used to represent numerals in many different Lean types,
expressions built with the mint constructor are interpreted as untyped numeral
pre-expressions.

The sym and app cases are more complex, since this part of the translation
procedure is extensible by the user. We define three classes of translation rules:

— A sym-to-pexpr rule, of type string x pexpr, identifies a particular Mathe-
matica symbol with a particular pre-expression. For example, the rule ("Real",
“(real)) instructs the translation to replace the Mathematica symbol Real
with the Lean pre-expression const "real".

— A keyed app-to-pexpr rule is of type

string X (trans_env — list mmexpr — tactic pexpr).

When the procedure encounters an mmexpr of the form app (sym head) args—
that is, the Mathematica head symbol head applied to a list of arguments
args—it will try to apply all rules that are keyed to the string head. The
rules for interpreting arithmetic expressions follow this pattern. For instance,
a rule keyed to the string "Plus" will interpret Plus([ti, ..., t,] by folding
applications of add over the translations of t; through t,.

— An unkeyed app-to-pexpr rule is of type
trans_env — mmexpr — list mmexpr — tactic pexpr. If the head of the ap-
plication is a compound expression, or if no keyed rules execute successfully,
the translation procedure will try unkeyed rules. One such rule attempts to
translate the head symbol and arguments independently, and fold applica-
tion over these translations. Another removes instances of the symbol Hold,
which blocks evaluation of sequences of expressions. The Lean translation of
Plus[Hold[x, vy, z]] should reduce to the translation of Plus[x, vy, zl,
but since Hold[x, vy, =z] translates to a sequence of expressions, this does not
match either of the previous rule types.



10 Robert Y. Lewis, Minchao Wu

Rules of these three types can be declared by the user and tagged with the
corresponding attribute. The translation procedure uses Lean’s caching attribute
manager to collect relevant rules at runtime. The mechanism for extending the
translation procedure is thus integrated into theory development. Translation rules
are first-class members of mathematical libraries, and any project importing a
library will automatically have access to its translation rules.

Returning to our example, we have translated the expression x*2 - 2x + 1 and
factored the result, to produce Power [Plus[-1, X], 2]. This is reflected as the
Lean mmexpr

app (sym "Power") [app (sym "Plus") [mint -1, X], mint 2]

where again:

X := app (sym "LeanLocal")
[str "17.27", str "x", str "bi",
app (sym "LeanConst") [str "real", []]]

Applying pexpr_of _mmexpr produces the pre-expression pow_nat (add (neg
one) x) (bit0 ome), which elaborates to the expression:
pow_nat real real_has_pow_nat (add real real_has_add (neg real

real_has_neg (one real real_has_one) x) (bitO nat nat_has_add one
nat nat_has_one) : real

Formatted with standard notation and implicit arguments hidden, we have
constructed the term

x : real - (x + -1)"2 : real

as desired.

3.3 Translating binding expressions

Lean’s expression structure uses anonymous bound variables to implement its pi,
lam, and elet binder constructs. Mathematica, in contrast, has no privileged notion
of a binder. The Lean pre-expression A x, x + x is analogous to the Mathematica
expression Function[x, x+x], but the underlying representation of the latter
is an application of the Function head symbol to two arguments, the symbol x
and the application expression Plus[x, x]. Structurally it is no different from
List[x, x+x].

To properly interpret binder expressions, both translation routines need a no-
tion of an environment. We extend the Mathematica function LeanForm with
another argument, a list of symbols env tracking binder depth. When the trans-
lation routine encounters a binding expression, it creates a new symbol, prepends
it to the env, and translates the binder body under this extended environment. A
bound variable Leanvar[i] is interpreted as the ith entry in env.

In the opposite translation direction, a translation environment is a map from
strings (names of symbols) to expressions, that is, trans_env := rb_map string
expr. The rb_map type implements such a map as a red-black tree. When translat-
ing a Mathematica expression such as Function[x, x+x], the procedure extends
the environment by mapping x to a placeholder variable, translates the body un-
der this extended environment, and then abstracts over the placeholder. Unlike in



A bi-directional extensible interface between Lean and Mathematica * 11

Lean, where pi, 1lam, and elet expressions are the only expressions that encode
binders, there are many Mathematica head symbols (e.g. Function, Integrate,
Sum) that must be translated this way.

4 Querying Mathematica from Lean

The translation described in Section 3 is bidirectional. Syntax from either system
can be embedded and interpreted in the other. In this section, we describe the
interface used for querying Mathematica from a Lean session, along with a number
of examples of how this interface is used.

4.1 Connection interface

Because of the cost of launching a new Mathematica kernel, it is undesirable to
do so every time Lean makes a query. Instead, we implement a simple server
in Mathematica, which receives requests containing expressions and returns the
results of evaluating these expressions. Lean communicates with this server by
calling a Python client script via its command line 10 interface. This short script
is the only part of the link that is implemented neither in Lean nor in Mathematica.

This architecture ensures that a single Mathematica kernel will be used for as
long as possible, across multiple tactic executions and possibly even multiple Lean
projects. To preserve an illusion of “statelessness,” each Mathematica evaluation
occurs in a new context which is immediately cleared. While this avoids accidental
leaks of information, it is not a watertight seal, and users who consciously wish to
preserve information between sessions can do so.

The translation procedure is exposed in Lean using the tactic framework via

meta def mathematica.execute : string — tactic mmexpr

This tactic evaluates the input string in Mathematica and returns a term with
type mmexpr representing the result of the computation. From this basic tactic, it
is easy to define variants, e.g.:

run_command_using : (string — string) — expr — string — tactic
pexpr

The first argument is a Mathematica command, including a placeholder bound
variable, which is replaced by the Mathematica representation of the expr argu-
ment. The string argument is the path to a file which contains auxiliary def-
initions, usable in the command. This variant will apply the back-translation
pexpr_of_mmexpr to produce a pexpr.

Another variant, execute_global : string — tactic mmexpr, evaluates its in-
put in Mathematica’s global context.

Going back to our running example from Section 3, assuming e is the unfactored
expression, we would call

run_command_on (A s, s ++ " // LeanConvert // Activate // Factor") e

to produce a pre-expression representing the factored form of e. (Recall that the
Mathematica syntax x // £ reduces to £[x].) In fact, we can define



12 Robert Y. Lewis, Minchao Wu

meta def factor (e : expr) : tactic pexpr :=
run_command_on (A s, s ++ " // LeanConvert // Activate // Factor") e

or a variant that elaborates the result into an expr with the same type as e.

4.2 Verified interaction

So far we have described how to embed a Lean expression in Mathematica, ma-
nipulate it, and import the result back into Lean. At this point, the imported
result is simply a new expression: no connection has been established between the
original and the result. In our factoring example, we expect the two expressions to
be equal. If we were computing an antiderivative, we would expect the derivative
of the result to be equal to the original input. More complex return types can
lead to more complex relations. For example, an algorithm using Mathematica’s
linear programming tools to verify the unsatisfiability of a system of equations
may return a certificate that must be converted into a proof of falsity.

Users may simply decide to trust the translation and CAS computation and
assert without proof that the result has an expected property. An example using
this approach is given in Section 4.3. Of course, the level of trust needed to do this
is unacceptably high for many situations. We are often interested in performing
certifiable calculations in Mathematica, and using the certificates to construct
proofs in Lean.

It would be hopeless to expect one tool to verify all results. Rather, for each
common computation, we will have a tactic script that attempts to prove the
appropriate relation between input and output. “Uncommon” or one-off compu-
tations can be verified in-line by the user. This method of separating search (or
computation) and verification is discussed at length by Harrison and Théry [23]
and by many others. It turns out that a surprising number of algorithms are able
to generate certificates to this end.

The tactics used in this section, along with more examples, are available in
the supplementary information to this paper. These examples are not meant to
be exhaustive, but rather to illustrate the ease with which Mathematica can be
accessed: each is fairly simple to implement.

Factoring. In our running example, we have used Mathematica to construct the
Lean expression (x + -1)"2 : real. We expect to find a proof that x~2 - 2*x +
1 = (x + -1)~2. This type of proof is easy to automate with Lean’s ring normal-
ization tactic:

meta def eq_by_ring (1 r : expr) : tactic expr :=
do gl + mk_app ‘eq [1, rl,
mk_inhabitant_using gl ring
<|> fail "unable to simplify"

Using this machinery, we can easily write a tactic factor that, given a poly-
nomial expression, factors it and adds a constant to the local context asserting
equality. (The theorem pow_two_nonneg proves that the square of a real number is
nonnegative.)

example (x : R) : x"2-2"x+1 > 0 :=
by factor x"2-2"x+1 using q; rewrite q; apply pow_two_nonneg



A bi-directional extensible interface between Lean and Mathematica * 13

We provide more examples of this tactic in action in the supplementary mate-
rial, including one that factors x~10-y~10:
+-1"y) " x+y) " E4+-1"x3"y+x"2"y2+-1"x"
y3+y4)t (x4+x3 y+x"2 Ty 2+x " y3+yt4)

In general, factoring problems are easily handled by this type of approach, since
the results serve as their own certificates. Factoring integers is a simple example of
this: to verify, simply multiply out the prime factors. Dually, primality certificates
can be generated and checked [32].

Factoring matrices is slightly more complex. Mathematica implements a num-
ber of common matrix decomposition methods, whose computation can be verified
in Lean by re-multiplying the factors. We can use these tools to, e.g., define a tactic
lu_decomp which computes and verifies the LU decomposition of a matrix.

example : 4 1 u, is_lower_triangular 1

/\ is_upper_triangular u

A1 " uw=[I1, 2, 3], [1, 4, 9], [1, 8, 27]] :=
by lu_decomp

Solving polynomials. Mathematica implements numerous decision procedures and
heuristics for solving systems of equations. Many of these are bundled into its
Solve function. Over some domains, it is possible to verify solutions in Lean using
the simplifier, arithmetic normalization, or other automation. Lean’s norm_num
tactic, which reduces arithmetic comparisons between numerals, is well suited to
verifying solutions to systems of polynomial equations. The tactic solve_polys
uses Solve and norm_num to prove such theorems:

example : J xy : R, 99/20"y"2 - x"2"y + x*y = 0

A 2%y"3 - 2"x"2%y"2 - 2"x"3 + 6381/4 = 0 :=
by solve_polys

Users familiar with Mathematica may recall that Solve outputs a list of lists
of applications of the Rule symbol, each mapping a variable to a value. Each list of
rules represents one solution. A Rule has no general correspondent in Lean, and it
would involve some contortion to translate this output and extract a single solution
in the proof assistant. However, it is easy to perform this transformation within
Mathematica, and processing the result of Solve before transporting it back to
Lean makes the procedure much simpler to implement. This type of consideration
appears often: some transformations are more easily achieved in one system or the
other.

Linear arithmetic. Many proof assistants provide tools for automatically proving
linear arithmetic goals, or equivalently for proving the unsatisfiability of a set of
linear hypotheses. There are various approaches to this, including building proof
terms incrementally using Fourier—-Motzkin elimination [37]. Alternatively, linear
programming techniques can be used to generate certificates of unsatisfiability. A
certificate for the unsatisfiability of {p;(Z) < 0:0 < ¢ < n} is a solution to the
dual program, that is, a list of rational coefficients {¢; : 0 < i < n} such that
Y o<i<n Ci - Pi = q > 0 for some constant polynomial ¢q. Equivalently, this list
serves as a witness for Farkas’ lemma [34].



14 Robert Y. Lewis, Minchao Wu

The tactic linarith implemented in Lean’s mathlib is in effect a generic cer-
tificate checker for linear arithmetic. Given a function that implements a simple
certificate-finding interface, linarith will preprocess the context, retrieve a cer-
tificate, and convert the certificate into a proof of the goal. Unlike Coq’s similar
1ra [6], which reflexively calls a proven-correct certificate checker, 1inarith con-
structs a proof term from the certificate using ring normalization.

By default, linarith uses an unverified Fourier—-Motzkin solver implemented
in Lean to produce certificates. But this solver is a black box to the rest of the
tactic. It can be desirable on large problems to use a more efficient algorithm, for
instance one based on the simplex method, and linarith provides a configuration
option to change the search function.

We provide an alternate certificate oracle that uses Mathematica’s linear pro-
gramming functionality. It takes only 20 lines of Lean code to implement a full
drop-in replacement for the Fourier-Motzkin module. Most of this is string pro-
cessing to create the appropriate call to Mathematica; the certificate search is
summarized by

L = Part[#, 2]& /@
FindInstance[{cstrs}&&{nngs}t&&{pos}, {vars}, Rationals][[1]1];
(LCMQ@@Denominator@L) *L

where {cstrs}ss{nngs}ss{pos} is a system of linear constraints in variables
{vars} describing an appropriate solution to the dual problem. The final line
guarantees a solution in the nonnegative integers. This function produces a (Math-
ematica) list of integers, which our link reinterprets in Lean as a list of natural
numbers as required by the linarith oracle specification.

While communication overhead makes this approach slightly slower than the
native Fourier—-Motzkin solver on small problems, the Mathematica oracle succeeds
on every linarith test case, e.g.:

example (x y z : Q) (hl : 2'x < 3"y) (h2 : -4"x + 2"z < 0)
(h3 : 12"y - 4" z < 0) : false :=
by linarith {oracle := mm_oracle}

4.3 Unverified interaction

The applications of CAS to interactive proving go beyond verified computations.
We emphasize the word “interactive” in the name of the field: proof assistant users
may want to query the CAS for guidance as they work on a proof on their own.
This requires a reasonable expectation of correctness from the CAS but no formal
verification. Other more credulous users may be willing to take the CAS at its
word and trust its output.

In this section we explain a number of ways that the results of Mathematica
computations can be used from within Lean without verification.

Error checking. Mathematica’s FindInstance function is a frontend for a collec-
tion of different solvers that try to find variable instantiations that satisfy a given
predicate. This function can be used from Lean to check whether a proof goal is in
fact provable. We define a tactic plausibility_check which fails if Mathematica



A bi-directional extensible interface between Lean and Mathematica * 15

begin_mm_block
"Solve[Sin[x] == 0 && 2 < x < 4, x, Reals][[11]1[[1]1]C[2]1]1";
"Factor ["(x"2-2%x+1)"]";

end_mm_block

Fig. 3: This code block can be inserted at any top-level position in a Lean source
file. It will evaluate the two Mathematica commands successively, and display the
output of each in the Lean editor. The input to Factor is an antiquoted Lean
expression, and the displayed output is also a Lean expression.

is able to find a variable assignment that satisfies the local hypotheses and the
negation of the current goal. This tactic is similar to a very lightweight version
of Isabelle’s Nitpick [7]. The first example below fails when Mathematica decides
that the goal does not follow; the second succeeds.

example (x : R) (hl : sin x = 0) (h2 : cos x > 0) : x =0 :=
by plausibility_check; admit

example (x : R) (hl : sin x = 0) (h2 : cos x > 0)
(h3 : -pi < x A x<pi) : x=0 :=
by plausibility_check; admit

Notebook-style interaction. The standard mode of interaction with Mathematica
and other CAS tools is through a notebook interface, similar to a read—eval—print
loop (REPL) with extra functionality for back references and displaying output.
This style encourages using the CAS as a tool for exploration, since the user can
interactively change and add to the system state and visualize the output of entries.
While some proof assistants do implement REPLs for constructing proofs via tactic
application or inspecting declarations in an environment, the notion of evaluation
is much more limited in a proof assistant than in a CAS, limiting the ways in which
one can use such an interface. Notebooks that support proof assistant languages,
such as Observable?, tend to be used only for small demonstrations.

The appeal of notebook-style interaction with a proof assistant grows with
access to the evaluation and visualization tools of a CAS. We have implemented a
top-level Mathematica code block command in Lean that approximates this kind
of interface (Figure 3). Inside a block of Mathematica code embedded in a Lean
file, the user can write arbitrary Mathematica commands, inserting antiquoted
Lean expressions at any point. Upon evaluation, these antiquoted expressions are
translated to Mathematica expressions. The result of the evaluation is translated
back to a Lean expression and displayed in the editor infoview.

One of Mathematica’s greatest strengths is its toolbox for generating plots,
graphs, and images. Our code embedding makes these available from within Lean
(Figure 4). Prefixing the Mathematica command with an annotation as image
requests that the output be displayed graphically instead of textually. Users can
access the full range of Mathematica’s visualization tools to plot and inspect Lean
terms.

2 https://observablehq.com/@bryangingechen/hello-lean-prover


https://observablehq.com/@bryangingechen/hello-lean-prover

16 Robert Y. Lewis, Minchao Wu

open real B ¥ Tactic state

. widget v
noncomputable def f : R - B := A x, sin x + cos x Mathematica sutput

1 1.5
begin_mm_block (unfolding f)

19

as image
"Plot3D[x"2-y, {x,-3,3}, {y,-3,3}]"; 05
as image

"Plot["(A y, (sin y)"2 - y)}"[x], {x,-10,10}]";

hs image
"Plot["f"[yl, {y,-2,2}]"; -1.0

end mm block
- b All Messages (2) 1

Fig. 4: This embedded Mathematica code block generates three images. The first
is given by a pure Mathematica command. The second and third plot antiquoted
Lean functions. The parameter (unfolding f) at the beginning of the block allows
Mathematica to “see through” the definition of £. The right hand pane of the editor
displays the third plot when the cursor hovers over that line.

The image display makes use of Ayers’ widget feature for Lean® which allows
metaprograms to display arbitrary HTML in the editor. The syntactical oddities
of embedding Mathematica code reflect limitations of the Lean 3 parser. Lean
4, under development at the time of submission of this paper, features a highly
customizable parser with precisely this kind of domain specific language embedding
in mind [36].

Axiomatized computations. Since it is possible to declare axioms from within the
Lean tactic framework, we can axiomatize the results of Mathematica computa-
tions dynamically. This allows us to access a wealth of information within Mathe-
matica, at least when we are not concerned about complete verification. One inter-
esting application is to query Mathematica for special function identities. While
these identities may be difficult to formally prove, trusting Mathematica allows us
to find some middle ground. The prove_by_full_simp tactic uses Mathematica’s
FullSimplify function to reduce the Bessel function expression on the left, and
after checking that it is equal to the one on the right, adds this equality as an
axiom in Lean:

example : V x, x"Bessel] 2 x + x"Bessel] 0 x = 2"BesselJ 1 x :=
by prove_by_full_simp

We can also define a tactic that uses Mathematica to obtain numerical approx-
imations of constants, and axiomatizes bounds on their accuracy:

approx (100 * BesselJ 2 (13 / 25)) (0.001 : R)

declares an axiom stating that

75977 / 23000 < 100 * BesselJ 2 (13 / 25)
A 100 * BesselJ 2 (13 / 25) < 76023 / 23000.

3 https://github.com/leanprover-community/lean/blob/master/library/init/meta/
widget/basic.lean


https://github.com/leanprover-community/lean/blob/master/library/init/meta/widget/basic.lean
https://github.com/leanprover-community/lean/blob/master/library/init/meta/widget/basic.lean

A bi-directional extensible interface between Lean and Mathematica * 17

5 Querying Lean from Mathematica

The use of computer algebra in mathematics is largely limited to exploration
and discovery. Finished proofs often avoid using these tools to justify claims or
even fail to mention them entirely. Outside of a few very specific domains, sys-
tems like Mathematica have no internal notion of proof or correctness. There are
many documented instances of bugs and unexpected behavior in computer al-
gebra systems [2], making concerns about this black-box nature more than just
theoretical. Even the semantics for certain computations can be vague: reducing
(x*2 - 1)/(x - 1) to x + 1 is correct when considered as polynomial division,
but computer algebra systems use this same notation to refer to a function of x.

Integrating a proof system into a mature CAS such as Mathematica is an enor-
mous engineering task. A more realistic approach is to use a translation procedure
to “borrow” a proof language and semantics from a proof assistant on translatable
domains. A proposition relating the input and output of a CAS evaluation can
be exported to and proved in the proof assistant, which can return a proof term.
This is morally similar to the ad hoc verification described in the previous section.
While no general guarantee is claimed, individual computations can be checked.

More generally, the exploratory uses of CAS tools rely on databases of defini-
tions and examples. Mathematica features enormous data sets, mathematical and
otherwise, but these mainly describe computational objects, with only a few ex-
amples from pure mathematics [20]. Connecting Lean to Mathematica allows the
Lean library mathlib to serve as a collection of definitions, theorems, and proofs
that the CAS can inspect and process.

5.1 Connection interface

We use Mathematica’s external command interface StartProcess to establish a
connection to Lean from a Mathematica notebook. The notebook communicates
with a Lean server session via the same interface used by Lean editors. All calls to
Lean are directed to a particular server process, which allows for the option to run
and query multiple server processes at once. The standard mode of interaction,
though, is to begin a session by defining a ProcessObject expression

Lean = LeanMode/[]

and to send all requests to this single ProcessObject. As in Section 4.1, this
server—client interface allows us to preserve Lean environment state as needed and
to avoid the cost of launching a new process for each query.

A low level communication function

SendToLeanServer [p_ProcessObject, content_String]

evaluates an arbitrary server request content in Lean process p. We build higher
level tools on top of this. For instance, a function

RunLeanTactic[p_ProcessObject, x_, t_String]

takes an arbitrary Mathematica expression x and a string t naming a Lean tactic,
and returns the result of calling t on the Lean interpretation of x. It does so by
constructing the top-level syntax needed to perform this operation and passing
this syntax to RunLeanTactic.



18 Robert Y. Lewis, Minchao Wu

Iniil= GetLeanInfo[Lean, "nat.exists_infinite_primes"]
Category Theorem
Type v (n:M, 3 (p:hiy,n=paAnat.prime p

oujel- [Description | ¥ Documentation
Euclid's theorem. There exist infinitely many prime numbers.
Here given in the form: for every 'n’, there exists a prime number 'p = n’.

Fig. 5: Retrieving the declaration information from nat.exists_infinite_primes.

5.2 Applications

Querying about certain declarations. Mathematica contains many databases rang-
ing over a huge variety of topics. A major motivation to connect Lean to Mathe-
matica is to treat the proof assistant library as another such database. As a simple
example of this kind of use, we implement a function

GetLeanInfo[p_ProcessObject, decl_String]

that displays information about the declaration named decl found in the Lean
process p (Figure 5). This information includes the declaration’s category (is it an
axiom, a definition, a theorem?), its type, and any documentation associated with
it. The natural language description in this output is taken from the same source
as the mathlib API documentation [18].

By default, GetLeanInfo returns a structure whose fields are strings, as this
is most convenient to print and display. But it is very easy to instead retrieve
the type as an expression. While an arbitrary mathlib declaration is unlikely to
fully translate to a Mathematica counterpart, one may wish to perform further
processing on the syntax tree of the type. It is also a simple matter to retrieve the
body of the declaration, as we do in some examples below.

Displaying propositional proofs. Mathematica’s TautologyQ and FullSimplify
functions serve as complete SAT solvers. However, both are black boxes, in that
they produce no certificate or justification. Indeed, the system has no established
proof language for propositional logic. On the other hand, Lean comes equipped
with a number of proof-producing decision procedures for this domain. For this
example, we use intuit, as it uses a small grammar of proof rules.

We define a minimal propositional proof calculus in Mathematica that mirrors
the calculus in Lean. That is, we introduce head symbols AndIntro, OrIntroLeft,
FalseElim, etc., and add LeanForm translation rules that map Lean’s and.intro,
or.inl, false.elim, etc. to their corresponding symbols. We can then state a
propositional theorem in Mathematica, prove it in Lean, and interpret the resulting
proof term in our calculus. While it would certainly be possible to implement the
Lean proof search procedure in Mathematica directly, this approach ensures that
the proof is correct, as it has been checked by Lean.

We emphasize here that the input formula is a pure Mathematica object, for
example Tmplies[Or [P, Q], Not[And[Not[P], Not[Q]]]]. Generating these
proofs does not require any knowledge of Lean syntax or the encoding of Mathe-
matica syntax in Lean.



A bi-directional extensible interface between Lean and Mathematica * 19

Hyp: h Hyp: h The resulting Mathematica proof object
SPACQ "PA-Q can be computed with in any number of
ways. We implement a function which dis-

plays the proof as a natural deduction di-

agram (Figure 6). There is no fundamen-

;yﬁ : 5 :E; :E-S tal reason why this approach cannot be ex-
tended to richer logics such as first-order

. P logic. The difficulties lie in representing a
calculus for these logics in Mathematica and

VvE generating proofs in Lean that can be trans-
False lated to such a calculus. (Many proof tools
in Lean use higher-order constructs that may
be difficult to directly translate.)
=1 [h]

“("PA-Q) Displaying arbitrary proofs. Natural deduc-
tion-style proofs are most commonly seen in
pure propositional and first-order logic, mak-
ing the diagrams of the previous section par-

=1 [a]

ticularly familiar. However, the presentation
style can be adapted to richer logics. Lean’s
#explode command, implemented in mathlib,
formats a Lean proof term in a way resem-
bling a Fitch natural deduction diagram.

Natural deduction proofs are not known
for their brevity. The textual output of
#explode, viewed in a Lean editor session,
can be overwhelmingly long. It is much more
enlightening to be able to expand and fold the output. We implement a function
GetLeanProof [p_ProcessObject, decl_String] in Mathematica that retrieves
the exploded output of the Lean declaration named decl from the Lean process
p and formats it as an interactive object in the Mathematica notebook. Users
can drill down into the details of the proof as deep as needed to understand its
structure.

Figure 7 displays the beginning of an exploded proof of the fact that there are
infinitely many primes. At each node of the diagram there appears a goal, labeled
with a unique index. The goal may be referenced by this index in subsequent
nodes. Each node is justified by the application of a particular rule: the original
goal is proved by an application of universal introduction, after which we intro-
duce a fresh variable n by the assumption rule. Some nodes are justified by the
application of library lemmas, for instance node 29, in which the goal n! + 1 # 1
is justified by applying the lemma ne_of_gt. Depend on the rule applied, a node
may have arguments, represented as nodes themselves. An application of universal
introduction takes two arguments, the newly introduced variable and a proof of
the remaining goal; introducing this variable is an atomic step with no arguments.

Due to the Curry—Howard correspondence, the same technique can be used to
inspect data-valued expressions, e.g. to unfold parts of a declaration defining a
natural number.

This application demonstrates how mathematicians can use our link to explore
the proof assistant library without leaving the CAS. It takes advantage of Math-

PVQ=>-("PAQ)

Fig. 6: A natural deduction di-
agram generated from a Lean
proof term.



20 Robert Y. Lewis, Minchao Wu

In[f]= GetLeanProof[Lean, "nat.exists_infinite_primes"]

Goal v n: My, 3 (p:My, n=pasnat.prime p
ID 31
Rule LA

Proofs | ¥ Arguments

Goal n:®
1D @
Rule |Assumption

Goal 3 (p:My, n=pannat.prime p
IDp 30
- Rule vE
. Proofs | ¥ Arguments
Goal |n.fact + 1+ 1 - (3 (p: M), n=pnsnat.prime p)
ID 26
Rule w1
Proofs > Arguments
Goal |n.fact + 1 # 1
ID 29
Rule ne_of _gt

Proofs > Arguments

Fig. 7: An expandable Fitch-style diagram generated from a Lean proof term.

ematica’s highly developed user interface to visualize the details of arguments in
a way that is nearly impossible to do from within Lean, especially for proofs that
use substantial automation or that do not have easily legible proof scripts.

Proving Mathematica goals. As with the examples from propositional logic, the
Wolfram Language is rich enough to express some propositions that can be proved
in Lean. We implement a function

ProveUsingLeanTactic[p_ProcessObject, x_,t_String]

that takes an arbitrary Mathematica expression x and a Lean tactic string t
and tries to translate and prove the Mathematica expression, finally displaying
the exploded proof. While in principle this accepts any tactic proof, it is not
convenient to interactively write a proof from the Mathematica notebook, and so
this is typically used for statements that can be solved with one or two lines.

As mentioned at the beginning of this section, we see this as informally lending
the semantics of Lean to Mathematica expressions. The semantic value of the
proposition x in Mathematica is merely if and whether it simplifies to True or
False. With our translation and link, we provide a true proof language for some
subset of these expressions.

Displaying significant proof steps. The full output of #explode may sometimes
contain too much detail, as the logical steps like universal introduction may be
unenlightening. An alternate way to visualize a proof is to identify and display
important lemmas or relevant steps used within. Lean’s simplifier, heuristic quan-
tifier instantiation procedure, and other general-purpose proof tactics search for



A bi-directional extensible interface between Lean and Mathematica * 21

lemmas in the Lean library to solve a goal. It is possible to inspect the proof
terms generated by these tactics and extract theory lemmas, or in some cases, to
implement versions of these tactics that produce a list of lemmas used. The types
of the instances of these lemmas appearing in a proof term can be interpreted in
Mathematica and displayed. Finding all and only the “interesting” lemmas is a
difficult and poorly specified problem, but it is reasonable to implement a first-pass
heuristic.

As an example, we do so in the context of set normalization. Mathematica
has no built-in handling for arbitrary sets, but proofs of propositions such as
AN(BUA) = ANB are easily found with Lean’s simplifier. Noting that the relevant
lemmas used by simp state that A N (B U -A) = (ANB) U (AN=-A),AN-A=
0, and (A N B) U @ = A N B, we can return these lemmas to Mathematica and
display them as a “proof sketch.” Note that there is no need to add translation
rules for these lemmas themselves; alignments between the constants for union,
intersection, complement, and equality are enough. This limits the need for a long
list of translations and makes the procedure relatively robust to the introduction
of new simplifier rules.

A similar application involves the use of a relevance filtering algorithm. Given
a target expression, such an algorithm will return a list of declarations in the
environment that, heuristically, may be useful to prove the target. Both symbolic
and probabilistic relevance filters have been implemented in other systems and are
used for lemma selection for tools such as Isabelle’s Sledgehammer [8]. We have
implemented a rudimentary relevance filter in Lean. Using this tool, one can state
a conjecture in Mathematica and receive a list of facts that may be of use to prove
it, without depending on automation in Lean to actually find a proof.

6 Concluding thoughts
6.1 Related work

The following discussion is not meant to be comprehensive, but rather to indicate
the many ways in which one can approach connecting I'TP and computer algebra.
Harrison and Théry [23] describe a “skeptical” link between HOL and Maple
that follows a similar approach to our bridge. Computation is done in a standard,
standalone version of the CAS and sent to the proof assistant for certification. The
running examples used are factorization of polynomials and antiderivation. The
discussion is accompanied by an illuminating comparison of proof search to proof
checking, and the relation to the class NP. Delahaye and Mayero [16] provide a
similar link between Coq and Maple, specialized to proving field identities. Both
projects tackle only the scenario in which the proof assistant drives the CAS.
This skeptical approach is also taken in some projects that require one spe-
cific type of computer algebra computation instead of a generic link. Harrison [22]
computes Wilf-Zeilberger certificates in Maxima and verifies them in HOL Light.
While this work does establish an interface between the two systems, Harrison
notes the convenience of a “manual” version, where users generate certificates
in Maxima and transfer them to HOL Light by hand. Chyzak, Mahboubi, Sibut-
Pinote, and Tassi [12,27] use certificates from Maple in the verification of a critical



22 Robert Y. Lewis, Minchao Wu

lemma for proving the irrationality of {(3). Here the CAS results are only trans-
ferred manually. These instances of manual translation between a CAS notebook
and a proof assistant suggest future work on an integrated user interface, described
in the final section of this paper.

Ballarin and Paulson [4] provide a connection between Isabelle and the com-
puter algebra library X' [10] that is more trusting than the previous skeptical
approach. They distinguish between sound and unsound algorithms in computer
algebra: roughly, a sound algorithm is one whose correctness is provable, while
an unsound algorithm may make unreasonable assumptions about the input data.
Their link accepts sound algorithms in the CAS as oracles. A similarly trustful
link between Isabelle and Maple, by Ballarin, Homann, and Calmet [3], allows the
Isabelle user to introduce equalities derived in the CAS as rewrite rules. A third
example by Seddiki, Dunchev, Khan-Afshar, and Tahar [35] connects HOL Light
to Mathematica via OpenMath, introducing results from the CAS as HOL axioms.

A related, more skeptical, approach is to formally verify CAS algorithms and
incorporate them into a proof assistant via reflection. This approach is taken by
Dénes, Mortberg, and Siles [17], whose CogEAL library implements a number of
algorithms in Coq.

Kerber, Kohlhase, and Sorge [25] describe how computer algebra can be used
in proof assistants for the purpose of proof planning. They implement a minimal
CAS which is able to produce high-level sketch information. This sketch can be
processed into a proof plan, which can be further expanded into a detailed proof.

Alternatively, one can build a CAS inside a proof assistant without reflection,
such that proof terms are carried through the computation. Kaliszyk and Wiedijk
[24] implement such a system in HOL Light, exhibiting techniques for simplifica-
tion, numeric approximation, and antiderivation.

Going in the opposite direction, CAS users may want to access ATP or ITP
systems. Adams et al. [1] use PVS to verify side conditions generated in compu-
tations in Maple; Gottliebsen, Kelsey, and Martin [21] make use of similar ideas.
Systems such as Analytica [5] and Theorema [11] provide ATP- or ITP-style be-
havior from within Mathematica. Axiom [15] and its related projects provide a
type system for computer algebra, which is claimed to be “almost” strong enough
to make use of the Curry—Howard correspondence.

6.2 Future work

There is much room for an improved interface under the current ITP—CAS rela-
tionship. We imagine a link integrated with Lean’s supported editors, where the
user can communicate with Mathematica in true notebook style with access to
the environment at a particular point in a Lean file. In the imagined Mathematica
notebook, quoted Lean pre-expressions will be elaborated in the environment at
the demarcated point in the Lean file, and then reflected and processed in Math-
ematica. The results can then be easily exported to the Lean file. The notebook
is a standard way of interacting with computer algebra systems and contributes
to their utility in exploration and discovery. While the embedded Mathematica
code blocks described in Section 4.3 are a first-degree approximation to this kind
of interaction, a full-fledged notebook interface is more natural to use. Our link



A bi-directional extensible interface between Lean and Mathematica * 23

implements all the translation and communication features needed for such an
integration but substantial Ul engineering is needed to make it a reality.

The server interface described in Section 4.1 only supports sequential eval-
uation of Mathematica commands. Both systems support parallel computation,
and integrating the two could increase the utility of this link for large projects.
Improvements to the foreign function interface in Lean 4 may allow the physical
connection to be made more robust.

With the exception of the server running in Mathematica, the components of
this link are generally adaptable to other computer algebra systems. More broadly,
we see this project as part of a general trend. The various computer-based tools
used in mathematical research, by and large, are independent of each other. It
requires quite a lot of copying, pasting, and translating to, for example, compute
an expression in Magma [9], verify its side conditions in Z3 [31], visualize the results
in Mathematica, and export relevant formulas to I#TEX. Unified frameworks have
been proposed and implemented [33] but are not widely used. Because they provide
a strict logical foundation, precise semantics, and possibility of verification, proof
assistants are strong candidates to center translation networks between systems.

Acknowledgements We acknowledge Jeremy Avigad, Jasmin Blanchette, Ian Ford, Jo-
hannes Holzl, José Martin-Garcia, Leonardo de Moura, James Mulnix, Michael Trott, and
the Lean community for help, suggestions, and support.

References

1. Adams, A., Dunstan, M., Gottliebsen, H., Kelsey, T., Martin, U., Owre, S.: Computer
algebra meets automated theorem proving: Integrating Maple and PVS. In: Proceed-
ings of the 14th International Conference on Theorem Proving in Higher Order Log-
ics, TPHOLs ’01, pp. 27-42. Springer-Verlag, London, UK, UK (2001). URL http:
//dl.acm.org/citation.cfm?id=646528.695189

2. Bailey, D.H., Borwein, J.M., Kapoor, V., Weisstein, E.W.: Ten problems in experimental
mathematics. American Mathematical Monthly 113(6), 481-509 (2006)

3. Ballarin, C., Homann, K., Calmet, J.: Theorems and algorithms: An interface between
Isabelle and Maple. In: Proceedings of the 1995 International Symposium on Symbolic
and Algebraic Computation, ISSAC 95, pp. 150-157. ACM, New York, NY, USA (1995).
DOI 10.1145/220346.220366. URL http://doi.acm.org/10.1145/220346.220366

4. Ballarin, C., Paulson, L.C.: A pragmatic approach to extending provers by computer
algebra. Fund. Inform. 39(1-2), 1-20 (1999). Symbolic computation and related topics in
artificial intelligence (Plattsburg, NY, 1998)

5. Bauer, A., Clarke, E., Zhao, X.: Analytica — an experiment in combining theorem proving
and symbolic computation. Journ. Autom. Reas. 21(3), 295-325 (1998). DOI 10.1023/A:
1006079212546. URL http://dx.doi.org/10.1023/A:1006079212546

6. Besson, F.: Fast reflexive arithmetic tactics the linear case and beyond. In: T. Altenkirch,
C. McBride (eds.) Types for Proofs and Programs, pp. 48—62. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

7. Blanchette, J., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. Interactive Theorem Proving pp. 131-146 (2010)

8. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. Jour-
nal of Formalized Reasoning 9(1), 101-148 (2016)

9. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system i: The user language.
J. Symb. Comput. 24(3—4), 235-265 (1997). DOI 10.1006/jsc0.1996.0125. URL https:
//doi.org/10.1006/jsco.1996.0125

10. Bronstein, M.: git—a strongly-typed embeddable computer algebra library. In: Interna-
tional Symposium on Design and Implementation of Symbolic Computation Systems, pp.
22-33. Springer (1996)


http://dl.acm.org/citation.cfm?id=646528.695189
http://dl.acm.org/citation.cfm?id=646528.695189
http://doi.acm.org/10.1145/220346.220366
http://dx.doi.org/10.1023/A:1006079212546
https://doi.org/10.1006/jsco.1996.0125
https://doi.org/10.1006/jsco.1996.0125

24

Robert Y. Lewis, Minchao Wu

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

Buchberger, B., Jebelean, T., Kutsia, T., Maletzky, A., Windsteiger, W.: Theorema 2.0:
Computer-assisted natural-style mathematics. Journal of Formalized Reasoning 9(1), 149—
185 (2016). DOI 10.6092/issn.1972-5787/4568. URL https://jfr.unibo.it/article/
view/4568

Chyzak, F., Mahboubi, A., Sibut-Pinote, T., Tassi, E.: A computer-algebra-based formal
proof of the irrationality of ¢(3). In: G. Klein, R. Gamboa (eds.) Interactive Theorem
Proving, pp. 160-176. Springer International Publishing, Cham (2014)

Coquand, T., Huet, G.: The Calculus of Constructions. Inform. and Comput. 76(2-3),
95-120 (1988). DOI 10.1016/0890-5401(88)90005-3. URL http://dx.doi.org/10.1016/
0890-5401(88)90005-3

Coquand, T., Paulin, C.: Inductively defined types. In: COLOG-88 (Tallinn, 1988),
Lec. Notes in Comp. Sci., vol. 417, pp. 50-66. Springer, Berlin (1990). DOI 10.1007/
3-540-52335-9_47. URL http://dx.doi.org/10.1007/3-540-52335-9_47

Daly, T.: Axiom: The 30 year horizon. Lulu Incorporated (2005)

Delahaye, D., Mayero, M.: Dealing with algebraic expressions over a field in Coq using
Maple. Journal of Symbolic Computation 39(5), 569 — 592 (2005). DOI http://dx.doi.org/
10.1016/j.jsc.2004.12.004. URL http://www.sciencedirect.com/science/article/pii/
S0747717105000283. Automated Reasoning and Computer Algebra Systems (AR-CA)
Dénes, M., Mortberg, A., Siles, V.: A refinement-based approach to computational algebra
in Coq. In: Interactive theorem proving, Lecture Notes in Comput. Sci., vol. 7406, pp.
83-98. Springer, Heidelberg (2012). DOI 10.1007/978-3-642-32347-8_7. URL http://dx.
doi.org/10.1007/978-3-642-32347-8_7

van Doorn, F., Ebner, G., Lewis, R.Y.: Maintaining a library of formal mathematics. In:
C. Benzmiiller, B. Miller (eds.) Intelligent Computer Mathematics, pp. 251-267. Springer
International Publishing, Cham (2020)

Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming frame-
work for formal verification. Proceedings of the ACM on Programming Languages
1(ICFP), 34 (2017)

Ford, I.: Semantic representation of general topology in the wolfram language. In: H. Geu-
vers, M. England, O. Hasan, F. Rabe, O. Teschke (eds.) Intelligent Computer Mathematics
- 10th International Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceed-
ings, Lecture Notes in Computer Science, vol. 10383, pp. 163-177. Springer (2017). DOI
10.1007/978-3-319-62075-6\-12. URL https://doi.org/10.1007/978-3-319-62075-6_12
Gottliebsen, H., Kelsey, T., Martin, U.: Hidden verification for computational mathemat-
ics. Journal of Symbolic Computation 39(5), 539 — 567 (2005). DOI https://doi.org/
10.1016/j.jsc.2004.12.005. URL http://wuw.sciencedirect.com/science/article/pii/
S0747717105000295. Automated Reasoning and Computer Algebra Systems (AR-CA)
Harrison, J.: Formal proofs of hypergeometric sums. J. Autom. Reason. 55(3),
223-243 (2015). DOI 10.1007/s10817-015-9338-0. URL https://doi.org/10.1007/
s10817-015-9338-0

Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. J. Automat.
Reason. 21(3), 279-294 (1998). DOI 10.1023/A:1006023127567. URL http://dx.doi.
org/10.1023/A:1006023127567

Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive theorem
prover. In: Proceedings of the 14th Symposium on Towards Mechanized Mathematical
Assistants: 6th International Conference, Calculemus 07 / MKM 07, pp. 94-105. Springer-
Verlag, Berlin, Heidelberg (2007). DOI 10.1007/978-3-540-73086-6-8. URL http://dx.
doi.org/10.1007/978-3-540-73086-6_8

Kerber, M., Kohlhase, M., Sorge, V.: Integrating computer algebra into proof planning.
J. Automat. Reason. 21(3), 327-355 (1998). DOI 10.1023/A:1006059810729. URL http:
//dx.doi.org/10.1023/A: 1006059810729

Lewis, R.Y.: An extensible ad hoc interface between Lean and Mathematica. In: C. Dubois,
B.W. Paleo (eds.) Proceedings of the Fifth Workshop on Proof eXchange for Theorem
Proving, PxTP 2017, Brasilia, Brazil, 23-24 September 2017, EPTCS, vol. 262, pp. 23-37
(2017). DOI 10.4204/EPTCS.262.4. URL https://doi.org/10.4204/EPTCS.262.4
Mahboubi, A., Sibut-Pinote, T.: A formal proof of the irrationality of {(3) (2019)

The mathlib Community: The Lean mathematical library. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020,
p. 367-381. Association for Computing Machinery, New York, NY, USA (2020). DOI
10.1145/3372885.3373824. URL https://doi.org/10.1145/3372885.3373824


https://jfr.unibo.it/article/view/4568
https://jfr.unibo.it/article/view/4568
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1016/0890-5401(88)90005-3
http://dx.doi.org/10.1007/3-540-52335-9_47
http://www.sciencedirect.com/science/article/pii/S0747717105000283
http://www.sciencedirect.com/science/article/pii/S0747717105000283
http://dx.doi.org/10.1007/978-3-642-32347-8_7
http://dx.doi.org/10.1007/978-3-642-32347-8_7
https://doi.org/10.1007/978-3-319-62075-6_12
http://www.sciencedirect.com/science/article/pii/S0747717105000295
http://www.sciencedirect.com/science/article/pii/S0747717105000295
https://doi.org/10.1007/s10817-015-9338-0
https://doi.org/10.1007/s10817-015-9338-0
http://dx.doi.org/10.1023/A:1006023127567
http://dx.doi.org/10.1023/A:1006023127567
http://dx.doi.org/10.1007/978-3-540-73086-6_8
http://dx.doi.org/10.1007/978-3-540-73086-6_8
http://dx.doi.org/10.1023/A:1006059810729
http://dx.doi.org/10.1023/A:1006059810729
https://doi.org/10.4204/EPTCS.262.4
https://doi.org/10.1145/3372885.3373824

A bi-directional extensible interface between Lean and Mathematica * 25

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

McBride, C., McKinna, J.: Functional pearl: I am not a number—I am a free variable. In:
Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell 04, pp. 1-9. ACM,
New York, NY, USA (2004). DOI 10.1145/1017472.1017477. URL http://doi.acm.org/
10.1145/1017472.1017477

de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean theorem
prover. http://leanprover.github.io/files/system.pdf (2014)

de Moura, L.M., Bjgrner, N.: Z3: An Efficient SMT Solver. In: TACAS, pp. 337-340 (2008)
Pratt, V.R.: Every prime has a succinct certificate. SIAM Journal on Computing 4(3),
214-220 (1975)

Rabe, F.: The MMT API: a generic MKM system. In: International Conference on Intel-
ligent Computer Mathematics, pp. 339-343. Springer (2013)

Schrijver, A.: Theory of linear and integer programming. Wiley-Interscience Series in
Discrete Mathematics. John Wiley & Sons Ltd., Chichester (1986). A Wiley-Interscience
Publication

Seddiki, O., Dunchev, C., Khan-Afshar, S., Tahar, S.: Enabling Symbolic and Nu-
merical Computations in HOL Light, pp. 353-358. Springer International Publishing,
Cham (2015). DOI 10.1007/978-3-319-20615-8_27. URL https://doi.org/10.1007/
978-3-319-20615-8_27

Ullrich, S., de Moura, L.: Beyond notations: Hygienic macro expansion for theorem proving
languages. In: N. Peltier, V. Sofronie-Stokkermans (eds.) Automated Reasoning, pp. 167—
182. Springer International Publishing, Cham (2020)

Williams, H.: Fourier’s method of linear programming and its dual. The American Math-
ematical Monthly 93(9), 681-695 (1986)

Wolfram, S.: An Elementary Introduction to the Wolfram Language. Wolfram Media,
Incorporated (2015). URL https://books.google.com/books?id=efIvjgEACAAJ


http://doi.acm.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
https://doi.org/10.1007/978-3-319-20615-8_27
https://doi.org/10.1007/978-3-319-20615-8_27
https://books.google.com/books?id=efIvjgEACAAJ

	1 Introduction
	2 System descriptions
	3 The translation procedure
	4 Querying Mathematica from Lean
	5 Querying Lean from Mathematica
	6 Concluding thoughts

