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Abstract
This article is a tribute to the scientific legacy of automated reasoning pioneer and JAR
founder Lawrence T. (Larry) Wos. Larry’s main technical contributions were the set-of-
support strategy for resolution theorem proving, and the demodulation and paramodulation
inference rules for building equality into resolution. Starting from the original definitions
of these concepts in Larry’s papers, this survey traces their evolution, unearthing the often
forgotten trails that connect Larry’s original definitions to those that became standard in the
field.
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Prologue: LarryWos, A Recollection

Myfirst encounterwith LarryWos dates towhen Iwas a PhD student at the StateUniversity of
NewYork at StonyBrook andLarrywas the head of the theorem-proving group at theArgonne
National Laboratory. I had submitted to CADE (the international Conference on Automated
DEduction) a paper, co-authored with Siva Anantharaman of the Université d’Orléans, about
proving mechanically with the theorem prover SBR3 a theorem in Łukasiewicz many-valued
logic [2].

Łukasiewicz had conjectured that a set of five axioms, together with modus ponens,
constitutes an axiomatization of the many-valued logic [171] that would be later called after
him. The conjecture had been proved first by Wajsberg, and then independently by Rose and
Rosser [153] and by Chang [62, 64]. ThenMeredith [129] and Chang [63] also independently
had derived the fifth axiom from the other four. The latter problem had been brough to my
attention by Daniele Mundici of the Università degli Studi di Milano, as a challenge for
automated theorem provers. My CADE submission with Siva presented a mechanical proof
of the dependency of the fifth axiom in an equivalent equational formulation in Wajsberg
algebras, a class of algebras connected to Łukasiewicz many-valued logic [85, 152]. The
submission was rejected, and a referee report said that the reason for rejection was that they
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had given the problem to Otter, the theorem prover developed at Argonne, and Otter also
had succeeded. Siva and I continued the investigation of many-valued logic and Wajsberg
algebras, proving other problems with SBR3 [3].

Several months after the CADE rejection, I read in the Newsletter of the Association
for Automated Reasoning (AAR) an article by Larry Wos [182], presenting the dependency
of the fifth axiom, in both formulations, as a challenge for theorem provers, and citing my
unpublished work on the topic. After consulting with my advisor Jieh Hsiang, I wrote an
e-mail to Larry. To my great surprise, Larry called me on the phone, and we talked for quite
a while. Larry encouraged me to send to the AAR Newsletter my own presentation of both
original and equational formulations of the problem, which appeared several months later
[41]. Łukasiewicz many-valued logic became a source of challenge problems for theorem
provers at Argonne. Larry and I became friends with that phone call and remained friends
ever since.

When Bill McCune served on my PhD defense committee, he invited me to visit Argonne
during the interval between my departure from Stony Brook and the start of a postdoc at
INRIA Lorraine. During that visit I worked with Bill, but I often had the chance to go for
lunch or otherwise meet informally with Larry. Larry talked fondly and often of his wife
Nancy, who, like him, could not see. Larry loved to make fun of people around him, but
would never make fun of Bill. I thought that Larry had so much respect for Bill, as the author
of Otter, that he would not tease him. It is also possible that Larry knew that he would
not get much satisfaction out of Bill’s reserved personality. At times I was a bit worried that
Larry would tease me, but that never happened. Perhaps Larry guessed that I would have
neither reacted nor let my feelings show, and hence there was not much fun in trying, or else
he respected me for my conduct in relation to the events around the Łukasiewicz problem.

A few years later, when I was on the faculty of the University of Iowa, Larry invited me to
succeed Bob Veroff as Secretary of the AAR, a job that I was glad to accept. The following
summer I returned to Argonne to discuss research with Bill, but unfortunately I did not get
to meet with Larry. I was delighted when Larry resumed calling me on the phone to discuss
AAR matters, and all the more so because that was after I had moved to the Università degli
Studi di Verona: a different time zone was obviously no deterrent for Larry when he wanted
to talk on the phone. During one of these conversations he once told me: “Don’t you ever
leave CADE and the AAR: we can’t do it without you.” I knew it could not be true, but it is an
eloquent example of Larry’s style in letting people know how much they were appreciated.

My last interaction with Larry was when the late Mark Stickel and I took the initiative of
editing a volume in memory of Bill McCune: Mark and I were thrilled that Larry contributed
the opening chapter in the volume [183]. While Larry’s preference for the telephone over
e-mail was most likely due to the fact that he could not see, I think that it was also a kind of
wisdom, as e-mail lacks the information that the human voice can convey.

1 Introduction

Larry Wos broke new ground in the design of both fundamental components of a theorem-
proving strategy or proof procedure, namely the inference system and the search plan.
His seminal contributions include the set-of-support strategy for resolution-based theorem
proving [187], and the demodulation [188] and paramodulation [147] inference rules for
equational reasoning. Each of them had a profound impact on theorem proving.
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The idea of set of support was a primer in controlling resolution [149] with semantic
knowledge (i.e., that a part of the problem is satisfiable), opening the way to semantic or
semantically-guided, supported, and goal-sensitive strategies (e.g., [17, 59, 60, 140, 142,
161, 162]). The set-of-support strategy is also at the origin of the given-clause algorithm
implemented first in Otter (e.g., [127, 128]) and then in many theorem provers (e.g., [66,
96, 110, 146, 157, 159, 170, 175, 180]).

With demodulation, Larry Wos posed the problem of well-founded replacement of equals
by equals in theorem proving. With the concept of paramodulation, he challenged the field
with the Wos-Robinson conjecture on the refutational completeness of paramodulation with-
out paramodulating into variables and without functionally reflexive axioms. The successful
solution of these problems involved decades of research, leading to a merger of resolution-
based and completion-based [6–9, 54, 98, 101, 107] theorem proving that shaped the field of
theorem proving for first-order logic with equality. The resulting inference systems combine
resolution, paramodulation, superposition, well-founded demodulation, and subsumption
(e.g., [10, 99, 133, 154, 155]). These inference systems have been called completion-based,
rewrite-based, saturation-based, or ordering-based [45], given the key role played by well-
founded orderings on terms, literals, and clauses.

Larry was interested mainly in devising inference rules and search plans, and refining
them through experiments with the Argonne provers. Accordingly, this survey focuses on the
history of inference rules and search plans, and covers neither that of fundamental concepts
in theorem proving, such as completeness, fairness, saturation, redundancy, and canonicity,
nor that of completeness proof techniques, such as semantic trees, proof orderings, transfinite
semantic trees, and rewrite models.

Furthermore, this survey is about Larry Wos’ contributions, and hence it considers
resolution-based theorem proving and its extensions to equality reasoning leading to the
above mentioned ordering-based inference systems. There are several other fundamental
principles for theorem proving in first-order logic, including model elimination [118, 119],
matings [4] or connections [33], all three formalized as tableaux-based strategies (e.g., [18,
93, 114, 116]), instance-based methods (e.g., [15, 38, 88, 112]), tableaux with instance
generation (e.g., [14, 16, 20]), model evolution [21, 22], SGGS (Semantically-Guided Goal-
Sensitive reasoning) which is model-based, instance-based, and conflict-driven [59, 60], and
the list is certainly incomplete.

The interested reader can find complementary material in books (e.g., [34, 35, 65, 113,
120, 141, 163]), surveys about theorem proving in general (e.g., [37, 45, 48, 117, 136, 139]),
surveys about resolution, rewriting, and equational reasoning (e.g., [11, 12, 76, 78, 83, 130,
137]), and surveys of tableaux-based strategies (e.g., [18, 93, 114, 116]), instance-based
strategies (e.g., [103, 108]), model-based methods [51], and conflict-driven methods [47].
This article has historic contents, but given its focus on one scientist—Larry Wos—it cannot
be a well-rounded account of the early history of theorem proving. Sources dedicated to
the early history of the field (e.g., [36, 68, 185]) and to its roots in the general history of
mathematics and computer science (e.g., [69]) are available.

This article is organized as follows. Section 2 introduces the theorem-proving problem,
reconstructing the state of the art prior to Larry Wos’ work, and outlining some of his ideas
about the properties that inference rules, search plans, and proofs ought to have. Sections 3, 4,
and 5 are devoted to the set-of-support strategy, demodulation, and paramodulation, respec-
tively. For each of them, the main phases of their evolution from Larry’s time to their
standardization are outlined, showing the impact of Larry’s ideas. Section 6 discusses a
selection of subsequent research directions whose origins can be connected to Larry’s work.
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2 Setting the Stage: Resolution-based Theorem Proving

The theorem-proving problem is about determining whether a formula ϕ is a logical conse-
quence of a set of formulae H , written H |�? ϕ, or, equivalently, whether the formula H ⊃ ϕ

is valid, written |�? H ⊃ ϕ. Mechanical theorem proving approaches this problem refuta-
tionally, by trying to determine whether H ∪ {¬ϕ} is unsatisfiable, and in clausal form, by
turning H ∪ {¬ϕ} into an equisatisfiable set S of clauses. A clause is a disjunction of literals
with variables implicitly universally quantified. A set of clauses is understood logically as
their conjunction, where each clause has its own variables. A clause is a unit clause, if it
contains exactly one literal; it is a positive clause, if all its literals are positive; it is a negative
clause, if all its literals are negative; it is a Horn clause, if it contains at most one positive
literal. An ordering is a binary relation that is irreflexive and transitive. A quasi-ordering is
a binary relation that is reflexive and transitive. An ordering is well-founded, if it admits no
infinite descending chain.

2.1 Expansion and Contraction Inference Rules

In the context of refutational clausal theorem proving, an inference systemΓ is a collection of
inference rules that transform sets of clauses. In resolution-based theorem proving the most
important such rule is the binary resolution inference rule, that combines unification with
resolving upon literals of opposite sign [149]. According to [36], the idea of propositional
resolution appeared as early as 1937 [39], was rediscovered in 1955 [132], and applied to
theorem proving in the Davis-Putnam procedure [70] as well as in another procedure [82].
The basic idea of unification already appeared in the work of Herbrand [95] and Prawitz
[143]. Nonetheless, it was Alan Robinson who understood how to merge these two ideas in
the resolution principle for first-order theorem proving [149]. Binary resolution generates
from two clauses, termed parents, a new clause, termed binary resolvent, and adds it to the
set:

Binary Resolution : S ∪ {L1 ∨ C, L2 ∨ D}
S ∪ {L1 ∨ C, L2 ∨ D, (C ∨ D)σ } L1σ = ¬L2σ,

where L1 and L2 are the literals resolved upon that unify and have opposite sign, and C
and D are disjunctions of literals. Here, and in the sequel, unifiers are most general unifiers,
abbreviated mgu’s. Binary resolution is accompanied by factoring, which generates from a
clause, termed parent, a new clause, termed factor, and adds it to the set [149]:

Factoring : S ∪ {L1 ∨ . . . ∨ Lk ∨ C}
S ∪ {L1 ∨ . . . ∨ Lk ∨ C, (L1 ∨ C)σ } L1σ = L2σ = . . . = Lkσ.

In the original presentation [149], binary resolution and factoring were integrated in the
resolution inference rule, so that a resolvent of two clauses C and D is either a binary
resolvent of C and D, or a binary resolvent of a factor of C and D, or a binary resolvent of C
and a factor of D, or a binary resolvent of a factor of C and a factor of D [65]. Thus, factoring
only needs to be applied to resolution parents. Larry Wos propounded considering binary
resolution and factoring as distinct inference rules (e.g., [187]), so that binary resolution can
be called simply resolution, as we will do from now on.

If a parent is a unit clause, resolution is unit resolution, also a feature of the Davis-Putnam
procedure [70]. Unit resolution is advantageous, because the resolvent is one literal shorter
than the non-unit parent. In general, the resolvent inherits all the literals of its parents, except
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the two literals resolved upon, so that inferred clauses grow longer and longer, and hence
more expensive to process. This well-known disadvantage of resolution was later studied as
duplication by combination [138, 141].

Resolution and factoring are expansion inference rules, as they fit in the expansion infer-
ence scheme:

Expansion : S
S′ S ⊂ S′,

where S ⊂ S′ says that the existing set S of clauses is expanded by adding some clause.
Symmetrically, contraction inference rules are rules that contract the set of clauses, because
they delete clauses or replace them by smaller ones according to the contraction inference
scheme:

Contraction : S

S′
S � S′, S′ ≺mul S,

where S � S′ tells that something has been deleted, and S′ ≺mul S says that S′ is smaller
than S in the multiset extension [77] of a well-founded ordering ≺ on clauses. The multiset
extension of a well-founded ordering is also well-founded [77]. The double inference line
[49] emphasizes the diversity of contraction with respect to the traditional notion of inference
in logic (e.g., natural deduction). Contraction rules that only delete clauses are also called
deletion rules, whereas contraction rules that delete clauses and replace them by smaller ones
are also called replacement rules. Expansion rules and replacement rules together are called
generative inference rules [57], because they are those that generate clauses.

Assuming T h(S) = {C : S |� C}, a generative inference rule is sound, if S′ ⊆ T h(S):
whatever is added is a logical consequence ofwhat pre-existed. A contraction rule is adequate
[49], if S ⊆ T h(S′): whatever is deleted is a logical consequence of what remains. Adequacy
implies monotonicity [53]: a contraction rule is monotonic if T h(S) ⊆ T h(S′). Soundness
and adequacy together imply T h(S) = T h(S′). An inference systemΓ is sound and adequate
if its rules are.

The contraction inference rules for resolution-based theorem proving that were known
prior to Larry Wos’ contributions are tautology deletion, purity deletion, and subsumption,
all three deletion rules. Tautology deletion appeared in the Davis–Putnam procedure [70]:

Tautology Deletion : S ∪ {L ∨ ¬L ∨ C}
S

Purity deletion appeared first for propositional logic in the Davis-Putnam procedure [70],
and, according to [36], in the procedure in [81]. It was generalized to first-order logic by
integrating it with unification [149]:

Purity Deletion : S ∪ {L1 ∨ C}
S

if L1 is pure in S ∪ {L1 ∨ C},

where literal L1 is pure in S∪{L1∨C} if S contains no clause L2∨D such that L1σ = ¬L2σ .
Subsumption also appeared in [149]:

Subsumption : S ∪ {C, D}
S ∪ {C} Cσ ⊆ D, |C | ≤ |D|,

where σ is a matching substitution, ⊆ is the subset relation between clauses viewed as sets
of literals, and |C | is the number of literals in clause C . The original definition [149] did
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not require that |C | ≤ |D|, because factoring was integrated into resolution. If resolution
and factoring are treated as separate inference rules, either the |C | ≤ |D| condition must be
added, or clauses must be treated as multisets of literals, in order to prevent a clause from
subsuming its factors:

Subsumption : S ∪ {C, D}
S ∪ {C} Cσ ⊆ D,

where ⊆ is the subset relation between clauses viewed as multisets of literals. From now
on, clauses are considered as multisets of literals. On the other hand, a factor can subsume
its parent, and the combination of factoring and subsumption where a factor is generated
and then it subsumes its parent, is known as condensation [105, 127]. If C is a unit clause,
subsumption is called unit subsumption.

Subsumption and unit resolution can be combined into a replacement rule named Clausal
Simplification [155]:

Clausal Simplification : S ∪ {L1, L2 ∨ C}
S ∪ {L1, C} L1σ = ¬L2,

where the resolvent C , produced by unit resolution of L1 and L2 ∨C , subsumes its non-unit
parent L2 ∨C , because σ is a matching substitution that does not instantiate the variables in
the literals of C .

Contraction inference rules use matching, whereas expansion inference rules use uni-
fication. When contraction is applied to delete or simplify a newly generated clause with
respect to previously existing clauses, it is called forward contraction. When contraction
is applied to delete or simplify previously existing clauses by a newly generated clause, it
is called backward contraction. Showing his appreciation of the importance of contraction,
Larry Wos wrote that subsumption should have been considered even more important than
resolution among Alan Robinson’s contributions [186].

2.2 Derivations and Refutational Completeness

Given input set S of clauses and inference system Γ , a derivation by Γ , or Γ -derivation, is a
sequence of the form S0 �Γ S1 �Γ . . . Si �Γ Si+1 �Γ . . ., where S0 = S, and ∀i, i ≥ 0, Si+1

is derived by applying to Si an inference rule of Γ . An inference system discovers that S is
unsatisfiable, by showing that S is inconsistent, that is, by deriving from S a contradiction,
represented in clausal form by the empty clause, denoted with �. A derivation with input S
is a refutation of S, if there exists a k, k ≥ 0, such that � ∈ Sk . An inference system Γ is
refutationally complete, if for all unsatisfiable clause sets S given as input there exists at least
a Γ -derivation that is a refutation of S. A derivation is characterized by the set S∗ = ⋃

i≥0 Si

of all input or generated clauses and the set S∞ = ⋃
j≥0

⋂
i≥ j Si of all persistent clauses.

The latter set is called the limit of the derivation.
The inference system with resolution and factoring as expansion inference rules, and

tautology deletion, purity deletion, subsumption, and clausal simplification as contraction
inference rules, is sound and adequate, and it is refutationally complete [149], provided
forward subsumption is applied before backward subsumption [53, 111, 120]. As remarked
in [120], the reason for this proviso is that the subsumption ordering defined by C �__ D if
Cσ ⊆ D is not well-founded. More precisely, �__ is not an ordering, it is a quasi-ordering,
and the induced equivalence relation C

.= D if C �__ D and D �__ C admits equivalence
classes of infinite cardinality. Thus, a derivation can generate an infinite series of equivalent
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clauses and an infinite series of subsumption steps that preempt the resolution steps leading
to a contradiction. A solution is to restrict subsumption as follows (e.g., [155]):

Proper Subsumption : S ∪ {C, D}
S ∪ {C} C � D,

where the strict subsumption ordering �, defined by C � D if C �__ D and D ��__ C , is well-
founded. However, this solution prevents the inference system from subsuming one out of
two clauses C and D such that C

.= D. Such clauses can be similar clauses or variants. They
are similar [60], if Cσ ⊆ D and Dρ ⊆ C by substitutions σ and ρ that replace variables
by variables, possibly replacing distinct variables by the same. They are variants, if they are
equal up to variable renaming, that is, Cσ ⊆ D and Dρ ⊆ C by substitutions σ and ρ that
are variable renamings, meaning that they replace variables by variables, without replacing
distinct variables by the same. Similar clauses have factors that are variants.

Example 1 Clauses C = P(x)∨ P(y)∨ Q(y) and D = P(w)∨ Q(w)∨ Q(v) are similar as
they satisfyCσ ⊆ D with σ = {x ← w, y ← w} and Dρ ⊆ C with ρ = {w ← y, v ← y}).
Clauses P(x) ∨ Q(y) and P(w) ∨ Q(v) are variants.

Assume that all clauses in S∗ are given distinct increasing natural numbers as identifiers,
as it happens in implementations. For clauses C and D such that C

.= D, the solution is to
take the lexicographic combination of� and the ordering on the natural numbers and apply it
to pairs (C, n), where n is the identifier of clause C . This ordering is well-founded, because
a lexicographic combination of well-founded orderings is well-founded. Given pairs (C, n)

and (D, m) such that C
.= D, clause C subsumes D if n < m, that is, if C was generated

before D. Applying forward subsumption before backward subsumption implements this
concept.

2.3 Search Plans, Fairness, Strategies, and Proof Reconstruction

Given a set S of clauses and an inference system Γ , there is in general more than one way to
apply rules in Γ to S. This means that Γ is nondeterministic, so that the Γ -derivation with
input S is not unique. In order to obtain a deterministic procedure, Γ is coupled with a search
plan Σ that chooses at each stage of the derivation which rule to apply to which clauses. A
search plan Σ is fair for an inference system Γ , if for all input clause sets S, if there exist
refutations of S by Γ , the Γ -derivation driven by Σ is a refutation of S.

A theorem-proving strategy, or proof procedure, is a pair P = 〈Γ ,Σ〉, where Γ is an
inference system andΣ is a search plan. Given input set S of clauses,P generates the unique
Γ -derivation driven by Σ . A theorem-proving strategy P = 〈Γ ,Σ〉 is complete, if for all
unsatisfiable input clause sets S the Γ -derivation generated by P is a refutation of S. Thus, if
Γ is refutationally complete and Σ is fair, P = 〈Γ ,Σ〉 is complete, and it is a semidecision
procedure for validity in first-order logic.

As both S∗ and S∞ contain many clauses that are unrelated to the generation of �, when
� ∈ Sk , the strategy reconstructs the generated proof in the form of the ancestor-graph
[56] of �, denoted Π(�). The reconstruction starts from � and proceeds backward until it
reaches input clauses, following the applications of generative rules, whereas applications
of deletion rules do not appear in proofs. Since a clause may be used as premise more than
once, Π(C) is a tree, if different nodes are allowed to have the same clause as label, it is a
directed acyclic graph otherwise. The ancestor-graph Π(C) is defined for all C ∈ S∗. If C
is an input clause, Π(C) has one node labeled by C itself. If C is generated by a generative
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rule from premises D1, . . . , Dn , the ancestor-graph Π(C) has root labeled C and subtrees
Π(D1), . . . , Π(Dn). Since every clause has its own variables, and variants are treated as
distinct clauses, no clause is generated twice, and Π(C) is uniquely defined for all C ∈ S∗.

2.4 The Theorem Proving Challenge

Theorem proving is a challenging problem, because it requires to balance contrasting require-
ments. The theorem-proving strategy should be complete, but also efficient in the use of time
and memory, as Larry Wos emphasized in his seminal papers [147, 187]. Thus, the infer-
ence system should be refutationally complete, while featuring powerful contraction rules to
counter the combinatorial explosion of expansion inferences. The search plan should be fair,
but not exhaustive as in a breadth-first search. Achieving simultaneously completeness and
efficiency is so difficult in theorem proving, that not only in Larry Wos’ time, but also nowa-
days, it is standard practice to establish completeness in theory, and then include incomplete
strategies in implementations and experiments. Proving the refutational completeness of an
inference system is crucial to understand it, while playing with incomplete strategies allows
the experimenter to prove more theorems by machine and may give ideas for new, complete,
and more efficient strategies.

For theorem-proving strategies, LarryWos proposed sensitivity [187], later renamed goal-
sensitivity [141]. The transformation of a problem of the form H |�? ϕ into a problem of
the form S �?

Γ �, where S is the clausal form of H ∪ {¬ϕ}, loses the information about the
distinction between H and ϕ, information that may be useful for efficiency of the search. A
strategy is goal-sensitive, if it generates only, or preferably, clauses C such that at least a leaf
ofΠ(C) is labeled by a clause in the clausal formof¬ϕ. Since being goal-sensitivemay not be
beneficial for all problems, a strategy ought to be flexiblewith respect to goal-sensitivity [60].

For inference rules, Larry Wos suggested immediacy, convergence, and generality [147].
The first two properties mean that the inference rule generates neither intermediate results nor
their consequences, a requirement fulfilled by hyperinferences in Larry’s time, as we shall see
in the next section. The combined usage of most general unifiers in expansion inferences, and
a well-founded subsumption ordering for subsumption, fulfilled Larry’s notion of generality,
in the sense of avoiding reasoning with instances when it is possible to reason with more
general clauses.

For proofs, Larry Wos stressed brevity and naturalness [147, 186, 187]. The quest for
shorter proofs was a main driver of Larry’s experimental work with Otter, as described
in another article of this issue [25]. Naturalness means that the mechanical proof ought to
resemble a human proof.Although this is a recurring concern in the theoremproving literature
(e.g., [151]), the development of automated theorem proving has rather led to the discovery
of forms of mechanical reasoning that are different from human reasoning.

Larry Wos designed the set-of-support strategy [187], the demodulation inference rule
[188], and the paramodulation inference rule [147], to begin addressing some of these issues.
The following subsections present his ideas, connecting themwith the research that followed.

3 The Set of Support Strategy

The set-of-support strategy was motivated by the objective of reducing irrelevant inferences
[187] as advocated also in [67]. Larry Wos did not define formally in [187] the notion of
irrelevant inference, but most likely he meant inferences that do not appear in any proofs.
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The set-of-support strategy was inspired by theorem-proving problems H |�? ϕ where H
contains the axioms of a mathematical theory. Indeed, mathematics was Larry’s preferred
field of application for theoremproving. Since H is known to be satisfiable, generating logical
consequences of H alone cannot lead to the discovery of a contradiction. Therefore, the idea
of the set-of-support strategy is to forbid resolution inferences where both parents are in
the clausal form of H . While the original description and completeness proof of the set-of-
support strategy [187] were given for resolution and factoring only, in the next section the
set-of-support strategy is presented for an inference system including the contraction rules
encountered thus far, that are known to preserve the refutational completeness of resolution.

3.1 The Set of Support Strategy with Contraction

Given the input set S of clauses, obtained by transforming H ∪ {¬ϕ} into clausal form, the
set-of-support strategy partitions S into the set A of the clauses in the clausal form of H , and
the set SOS (acronym of set of support) of the clauses in the clausal form of ¬ϕ. Therefore,
one can write S = A � SOS, where � denotes the union of disjoint sets, or A = S \ SOS,
where \ denotes subtraction between sets. If H is satisfiable, hence consistent, so is A. If ϕ is
an implication ψ1 ⊃ ψ2, so that¬ϕ is ψ1∧¬ψ2, one can also put in SOS only the clauses in
the clausal form of ¬ψ2, leaving in A the clauses in the clausal form of H ∪ {ψ1}, provided
the resulting A is consistent [188]. Then, only resolution steps with at most one parent
from the complement of the set of support are allowed, so that the set-of-support strategy is
goal-sensitive. All resolvents are added to the set of support, leading to derivations of the
form:

(A0; SO S0)�
Γ
(A1; SO S1)�

Γ
. . . (Ai ; SO Si )�

Γ
(Ai+1; SO Si+1)�

Γ
. . . ,

where ∀i, i ≥ 0, Si = Ai � SOSi . For the first component, A0 = A and ∀i, i ≥ 0, Ai+1 is
derived from (Ai ; SOSi ) in one of the following ways:

– Add a factor of a clause in Ai ;
– Delete a clause in Ai by tautology deletion or by purity deletionwith respect to Ai�SOSi ;
– Subsume a clause in Ai by a clause in Ai � SOSi ;
– Apply clausal simplification to simplify a clause in Ai by a clause in Ai putting the

simplified clause in Ai+1.

For the second component, SOS0 = SOS and ∀i, i ≥ 0, SOSi+1 is derived from (Ai ; SOSi )

in one of the following ways:

– Add a resolvent of a clause in Ai and a clause in SOSi ;
– Add a resolvent of two clauses in SOSi ;
– Add a factor of a clause in SOSi ;
– Delete a clause in SOSi by tautology deletion or by purity deletion with respect to

Ai � SOSi ;
– Subsume a clause in SOSi by a clause in Ai � SOSi ;
– Apply clausal simplification to simplify a clause in SOSi by a clause in Si putting the

simplified clause in SOSi+1;
– Apply clausal simplification to simplify a clause in Ai by a clause in SOSi putting the

simplified clause in SOSi+1.

Clauses in
⋃

i≥0 SOSi are said to be supported, and a resolution inference is supported if at
least a parent is. In the original presentation of the set-of-support strategy [187], all the factors
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of clauses in A are added to A0 in a pre-processing step, so that ∀i, i ≥ 0, Ai = A0, and
only the set of support is expanded. Adding contraction while preserving the completeness
of the set-of-support strategy requires to distinguish between deletion rules and replacement
rules. The addition of a deletion rule is unproblematic: at any stage of the derivation a clause
in either the set of support or its complement can be deleted by the deletion rule. Since a
replacement rule is a generative rule, it can be added to the set-of-support strategy only in
a way that preserves the consistency of the complement of the set of support: for clausal
simplification this means that when applying L1 to simplify L2 ∨ C to C , the new clause C
can be placed in Ai+1 only if both L1 and L2 ∨ C are in Ai , and must be placed in SOSi+1

otherwise [55].
LarryWos suggested two incomplete refinements of the set-of-support strategy [187]: one

is based on a level bound and it forbids generating clause C if the depth of Π(C) is higher
than the bound; the other one is based on a literal bound and it forbids generating clause C
if |C | is higher than the bound.

3.2 Other Supported Strategies

Other supported strategies [45, 140, 141] can be obtained by giving different definitions of
the initial set of support SOS. In resolution with forward support SOS contains the positive
input clauses. Thus, A contains the non-positive input clauses and it is satisfied by the all-
negative interpretation I− that satisfies all negative literals. In resolution with backward
support SOS contains the negative input clauses. Thus, A contains the non-negative input
clauses and it is satisfied by the all-positive interpretation I+ that satisfies all positive literals.
In resolution with user support SOS contains any subset of S chosen by the user, provided
that its complement A is satisfiable. Larry Wos’ set-of-support strategy is an instance of
resolution with user support.

Supported strategies where the initial set of support is defined based on sign are related to
sign-based refinements of resolution. Positive resolution, also known as the P1-strategy [99,
148] or P1-deduction [141], requires that every resolution step has a positive parent.Negative
resolution, also known as all-negative-resolution [141], requires that every resolution step has
a negative parent. Positive resolution is more restrictive than resolution with forward support,
because the latter also allows resolutions between generated non-positive parents, as long as
at least one of them is supported. The same holds for negative resolution and resolution with
backward support, except in the special case of Horn clauses, because a resolution between
a negative clause and a non-negative Horn clause generates a negative clause, so that only
negative clauses are supported.

3.3 Semantic Strategies and Hyperinferences

The concept of not expanding a satisfiable subset of the set of clauses connects the set-of-
support strategy with semantic resolution [161]. Semantic resolution restricts resolution by
assuming a fixed interpretation I for semantic guidance. The input set S is partitioned into
the subset A = {C : I |� C} of clauses satisfied by I, and its complement SOS = S \ A,
called SOS by analogy with the set-of-support strategy. However, semantic resolution moves
the restriction from the parents (i.e., at most one from A) to the resolvent, by requiring that
no resolvent C such that I |� C is generated. Given a clause N = L1∨ . . .∨ Lk ∨C , termed
nucleus, and k clauses E1 = M1 ∨ D1, . . . , Ek = Mk ∨ Dk , termed electrons or satellites,
where C and Di , for i = 1 . . . k, are disjunctions of literals, if there is a simultaneous mgu σ
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such that Liσ = ¬Miσ for i = 1 . . . k, semantic resolution generates the semantic resolvent
R = (C ∨ D1 ∨ . . . ∨ Dk)σ :

Semantic Resolution : S ∪ {N , E1, . . . , Ek}
S ∪ {N , E1, . . . , Ek, R} I �|� R,

provided that I �|� R. Since it embeds multiple resolution steps, semantic resolution is a
hyperinference, and it fulfills Larry’s desiderata of immediacy and convergence [147], because
the intermediate resolvents are not generated.Hyperresolution [148] is an instanceof semantic
resolution. If I is I−, semantic resolution yields positive hyperresolution that resolves away
all negative literals in the nucleuswith positive satellites to generate a positive hyperresolvent.
If I is I+, semantic resolution yields negative hyperresolution that resolves away all positive
literals in the nucleuswith negative satellites to generate anegative hyperresolvent. Resolution
with set of support [187] does not work by hyperinferences, but it fits in the paradigm of
semantic resolution, assuming an ad hoc interpretation I such that I |� A and I �|� SOS.

Larry Wos recognized that semantic resolution is more restrictive than resolution with
set of support, and that completeness of the latter can be derived from completeness of the
former [188], but he was mostly concerned with the risk that neither hyperresolution nor
resolution with set of support suffice in practice [188]. He was interested in enlarging what
he called the unit sections [188] of a derivation, that is, the stretches of a derivation where
the resolution steps are unit resolution steps. He had already proposed the unit-preference
strategy [184], where unit resolution steps have priority over other resolution steps. The next
move was to devise an inference rule to generate unit clauses. To this end, LarryWos applied
the hyperinference concept towards a syntactic property (i.e., being a unit clause) rather than
a semantic one. The result was unit-resulting resolution [125, 188], or UR resolution for
short. UR resolution is a hyperinference geared to generate unit clauses. Given a nucleus
N = L1 ∨ . . .∨ Lk ∨ Lk+1 with k + 1 literals, and k unit satellites M1, . . . , Mk (k ≥ 1), UR
resolution generates a unit resolvent:

UR Resolution : S ∪ {N , M1, . . . , Mk}
S ∪ {N , M1, . . . , Mk, Lk+1σ } ∀i, 1≤i≤k, Liσ = ¬Miσ.

If literal Lk+1 is allowed to be absent, UR resolution is allowed to generate�. This inference
rule appears at the bottom of page 702 and is the main object of the first definition on page
703 of [188]. The name unit-resulting resolution appeared only much later [125], leading to
the erroneous belief (e.g., [36]) that UR resolution appeared for the first time in [125]. In
reality, and not surprisingly, UR resolution appeared in the same “milieu” of hyperresolution.
This is testified also by the footnote on page 702 of [188], which relates the concept of UR
resolution to that of clash in [150]. The term “clash” refers to the simultaneous resolution of
multiple literals as in hyperresolution and semantic resolution (e.g., it is used systematically
to present hyperinference rules in [65]).

According to [36], UR resolution was invented independently by Gerd Veenker in his PhD
thesis in 1966, and published the following year [173], the same year as [188]. While the
main contribution of Veenker’s thesis was a complete procedure that can be considered an
early forerunner of connection-based methods [4, 33, 34], Veenker also proposed a strategy,
that he called theNEU strategy, combining unit resolution andUR resolution as inWos’ work
[188]. An inference system including only unit resolution and UR resolution is incomplete,
something that was well-known to both Wos and Veenker. Nonetheless, UR resolution is
widely adopted as a useful enhancement, because it accelerates the generation of unit clauses
that trigger in turn unit subsumption inferences that eliminate clauses and unit resolution
inferences that generate shorter resolvents.
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3.4 The Given-Clause Algorithm

The set-of-support strategy is also at the origin of the main algorithm inside most resolution-
based theorem provers, up to those that represent the state of the art today (e.g., the E prover
[157, 159], Spass [180], Vampire [110, 146], Waldmeister [96], Zipperposition [66],
and GKC [170]). The reason is that the set-of-support strategy was built into the Argonne’s
proversAURA, LMA/ITP [122], andOtter [127, 128], andOtter’s main algorithm, called
the given-clause algorithm, inspired most subsequent developers.

The given-clause algorithm maintains two lists of clauses, originally named axioms
and sos. If axioms and sos are initialized with the clauses in A and SOS, respectively,
the given-clause algorithm implements the set-of-support strategy, and it satisfies the invari-
ant that no expansion inference whose premises are all in the initial axioms will ever be
performed. If axioms is initialized to be empty, and sos is initialized to contain all input
clauses, the given-clause algorithm performs all possible inferences, and it satisfies the above
invariant vacuously. Thus, the connection between the given-clause algorithm and the set-of-
support strategywas weakened by renamingaxioms asusable inOtter and its successor
Prover9 [126].

The given-clause algorithm executes a loop, exiting when either a proof is found, or sos
becomes empty, which means that the input set of clauses is satisfiable, or the prover hits a
predefined threshold of time or memory. At every iteration, the prover selects from sos a
clause, termed the given clause, moves it from sos to usable, and performs all applicable
expansion inferences having as premises the given clause and clauses in usable. The fact
that the given clause moves from sos to usable means that even if usable and sos
initially contain the clauses in A and SOS, respectively, the given-clause algorithm does not
maintain the invariant that the clauses in sos are supported and those in usable are not
supported, another reason for departing from the names axioms and sos.

If the given clause is the best clause according to some heuristic evaluation function,
the given-clause algorithm performs a best-first search. For example, the notion of weight
of a clause, defined as the sum of the user-defined weights of the symbols occuring in the
clause, was introduced for this purpose in Otter [127, 128]. Another feature of Otter
that became a fixture of the given-clause algorithm in most provers (e.g., [160]) is the
pick-given-ratio parameter, which allows the strategy to mix best-first and breadth-
first search. If the value of this parameter is k, the given-clause algorithm picks as given
clause the oldest rather than the best clause once every k + 1 choices. The description of the
given-clause algorithm will be extended to include contraction after introducing demodula-
tion.

4 The Demodulation Inference Rule

LarryWoswas very interested in applying theorem proving tomathematics, and since the vast
majority of such problems involves equality, he proposed demodulation [188] as a contraction
inference rule to replace equals by equals.

4.1 The Original Definition of Demodulation

Given an equality unit clause, or equation, l � r , and a clause C[lσ ] containing as subterm
an instance lσ of the side l of l � r , Larry Wos called C[rσ ] an immediate modulant of
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C[lσ ] [188]. Then a k-modulant, for k > 0, is the result of k such replacement steps, and
a modulant is any k-modulant [188]. As a clause has infinitely many modulants in general,
but only finitely many k-modulants for a fixed k, Larry Wos defined k-modulation as the
generation of a resolvent of parents Ck and Dk , where Ck and Dk are k-modulants of clauses
C and D [188].However, LarryWos also defineddemodulation as replacement by amodulant,
where each immediate modulant has strictly fewer symbols than its predecessor, and the final
modulant has no immediate modulant with fewer symbols [188]. Thus, we can formalize his
rule as follows:

Demodulation : S ∪ {l � r , C[lσ ]}
S ∪ {l � r , C[rσ ]} ‖C[lσ ]‖ > ‖C[rσ ]‖,

where l � r is called demodulant, ‖C ‖ is the number of symbols in C , and demodulation is
defined as performing only one equational replacement step, according to the standard style
for replacement rules. Subsequently, and especially in implementations, the name demodu-
lator was also used in place of demodulant.

However, the intended notion of number of symbols was not made explicit. If a term is
viewed as a string also parentheses contribute to the symbol count, whereas they do not if a
term is viewed as a tree. Also, number of symbols is ambiguous with respect to how to count
repeated occurrences of the same symbol.

The size of an atom is the number of occurrences of predicate, function, constant, and
variable symbols. For example, ‖ P( f (a), g(a))‖ = 5. Assume that the number of symbols
in a clause is defined as the sum of the sizes of the atoms that occur in the clause. Then,
the ordering whereby C is smaller than D if ‖ C ‖ < ‖ D ‖ is well-founded. The ordering
based on size was implemented in Otter, and remained available alongside with more
sophisticated orderings such as recursive path orderings [74] and Knuth-Bendix orderings
[107] that were introduced later (cf. Sect. 4.2). Since there are infinitely many variants of a
clause and they all have the same size, variants have to be eliminated by subsumption (cf.
Sect. 2.2). Indeed, theorem provers such as Otter apply subsumption before demodulation,
so that if two clauses are variants, one is deleted by subsumption.

Nonetheless, the size-based ordering does not allow the system to apply as demodulants
many equations that it would be useful to apply, because the two sides of the equation have the
same number of symbols. Also, this ordering may not allow the system to apply an equation
in the desired direction. For example, ‖ x ∗ (y + z)‖ = 5 and ‖ x ∗ y + x ∗ z ‖ = 7, so that
the distributivity law x ∗ (y + z) � x ∗ y + x ∗ z would be applied from right to left.

In summary, Larry Wos’ definition of demodulation is well-founded, but the problem of
well-founded demodulation, in the sense of finding more and better well-founded orderings
to enable the demodulation of clauses, remained open.

4.2 Well-Founded Demodulation by Rewrite Rules

The discovery of a solution to the problem of well-founded demodulation was advanced
significantly in the context of the Knuth–Bendix completion procedure [101, 107]. This
procedure works with rewrite rules, where a rewrite rule is an equation l � r that is written
l → r because l � r in a well-founded ordering � on terms. A rewrite rule reduces or
rewrites a term t[lσ ]u to t[rσ ]u , where σ is a substitution, the notation t[lσ ]u means that
lσ occurs as a subterm in t at position u, and t[rσ ]u is the term obtained by replacing the
occurrence of lσ at position u with rσ . Positions are strings of natural numbers: if terms
are viewed as trees and arcs are labeled with natural numbers, every subterm has a position
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defined as the string of natural numbers from the root to the subterm. From now on positions
are omitted for simplicity.

Knuth and Bendix defined a well-founded ordering on terms, called since then the Knuth–
Bendix ordering orKBO for short [107, 121, 124].AKBOorders terms based on a precedence
and a weighting function. A precedence is an ordering on symbols that may be partial or
total. A weighting function assigns non-negative weights to symbols. Since the definition is
parametricwith respect to precedence andweighting function, it defines a family of orderings.

A KBO is a reduction ordering, meaning that it is well-founded, stable (t � u implies
tσ � uσ for all substitutions σ ), and monotonic (t � u implies c[t] � c[u] for all contexts
c, where a context is a term with a hole). Another reduction ordering is the recursive path
ordering [74], or RPO for short, that orders terms based on a precedence and a status (either
multiset [74] or lexicographic [106]) of every symbol. If the status is lexicographic for all
symbols, the ordering is called lexicographic path ordering, or LPO for short. Here too,
since the definitions are parametric with respect to precedence and status, one gets families
of orderings. The interested reader may find more information about orderings in surveys
on rewriting [75, 76, 78]. Since weights are non-negative, KBO’s correlate well with size,
and therefore incorporate the intuition in Larry Wos’ definition of demodulation, whereby
clauses are made simpler by reducing the number of symbols.

The Knuth–Bendix completion procedure was formalized as an inference system [6–8]
that transforms pairs (E; R), where E is a set of equations, and R is a set of rewrite rules, such
that for all rules l → r ∈ R it holds that l � r in a given reduction ordering � on terms. The
inference rules of completion are seen as transforming the equational proofs of the theorems
in T h(E ∪ R) with respect to a proof ordering, that is, a stable, monotonic (with respect to
replacement of subproofs), and well-founded ordering> on proofs [6–8, 49]. A key property
of completion is that the inference rules are proof-reducing [54] or good [49]: an inference
rule deriving (E ′; R′) from (E; R) is good, if for all theorems s � t ∈ T h(E ∪ R) and for
all proofs π of s � t in E ∪ R there exists a proof π ′ of s � t in E ′ ∪ R′ such that π ≥ π ′.

Since the state of the derivation is a pair (E; R), there are three contraction inference
rules that realize well-founded demodulation by reducing a side of an equation or a side of
a rewrite rule. Simplify reduces a side of an equation:

Simplify : (E ∪ {p[lσ ] � q}; R ∪ {l → r})
(E ∪ {p[rσ ] � q}; R ∪ {l → r})

where� is symmetric. Compose reduces the right-hand side of a rewrite rule, so that another
rewrite rule is produced:

Compose : (E; R ∪ {p → q[lσ ], l → r})
(E; R ∪ {p → q[rσ ], l → r})

Collapse reduces the left-hand side of a rewrite rule, so that an equation is produced:

Collapse : (E; R ∪ {p[lσ ] → q, l → r})
(E ∪ {p[rσ ] � q}; R ∪ {l → r}) p[lσ ] ·� l,

where ·� is the strict encompassment ordering on terms. If an equation in E has the form
s � s, the Delete inference rule removes it. If an equation p � q in E is such that p � q ,
the Orient inference rule removes p � q from E and adds p → q to R.

The encompassment ordering is obtained by combining the subterm ordering and the
subsumption ordering on terms. The subterm ordering is defined by t � s if s = c[t] for
some context c. The subsumption ordering on terms is defined by s �__ t if t = sϑ for
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some substitution ϑ . Terms s and t are variants, written s
.= t , if s �__ t and t �__ s. The

encompassment ordering is defined by t ·� s if t = c[sϑ] for some context c and substitution
ϑ . The strict encompassment ordering is defined by t ·� s if t ·� s and s � ·� t , that is, t = c[sϑ]
where either the context c is not empty or the substitution ϑ is not a variable renaming.

The purpose of the strict encompassment condition of the Collapse inference rule is to
prevent l → r from reducing p[lσ ] if l and p[lσ ] are variants. The reason is that such a step
is not good (in the above sense of proof-reducing) [6–8]. In the Knuth–Bendix procedure
the co-existence of two rewrite rules whose left-hand sides are variants is avoided by giving
Simplification higher priority than Orient. If p � q and l � r are two equations such that
p � q , l � r , and p

.= l, one of them, say p � q , gets oriented first into p → q , so that
p → q simplifies l � r to q � r before l � r may get oriented into l → r .

If an equation in E can be neither simplified, nor deleted, nor oriented, the procedure
fails. Thus, Knuth-Bendix completion provided only a partial solution to the problem of
well-founded demodulation.

4.3 Well-Founded Demodulation by Equations

Knuth–Bendix completion solved the problem of well-founded demodulation at the price
of considering as demodulants only those equations that can be oriented into rewrite rules
by the adopted ordering. This limitation was removed with the inception of unfailing [98]
or ordered [6, 7, 9] completion, henceforth completion for short. Completion allows the
inference system to use equations as demodulants provided the applied instance is oriented
by the ordering.

Completion is a theorem-proving strategy for problems of the form E |�? ∀x̄ .s � t ,
where E is a set of equations, the presentation of an equational theory, and x̄ is the vector
of all variables in s � t [9, 42, 52, 54, 98, 101]. The negation of the conjecture yields
ŝ �� t̂ , where ŝ and t̂ are s and t , respectively, with all the variables in x̄ replaced by Skolem
constants. The given ordering� on terms is assumed to be a reduction ordering [6, 7, 9], or a
complete simplification ordering (CSO) [98]. A simplification ordering is stable, monotonic,
and with the subterm property, which means that it includes the strict subterm ordering (i.e.,
p � l implies p � l). A simplification ordering is well-founded [74], hence it is a reduction
ordering. A complete simplification ordering is also total on ground terms. KBO’s, RPO’s,
and LPO’s are simplification orderings. KBO’s and LPO’s are CSO’s if the precedence is
total, but not all RPO’s are CSO’s [10].

As it is no longer necessary to separate equations and rewrite rules, and completion is seen
as theorem proving, the inference system can be written [42, 52, 54] as transforming pairs
(E; ŝ �� t̂), where ŝ �� t̂ is called the target. The inference rules of completion are good [49]
or proof-reducing [42, 54] with respect to all ground theorems, which is enough for theorem
proving, since the target is ground. The objective of the derivation is to reduce ŝ and t̂ to a
common form so as to discover a contradiction with x � x , the clausal form of the reflexivity
axiom for equality. Accordingly, one can distinguish between Simplification of the target:

(E ∪ {l � r}; ŝ[lσ ] �� t̂)

(E ∪ {l � r}; ŝ[rσ ] �� t̂)
lσ � rσ,
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and Simplification of the presentation:

(E ∪ {p[lσ ] � q, l � r}; ŝ �� t̂)

(E ∪ {p[rσ ] � q, l � r}; ŝ �� t̂)
lσ � rσ, (p[lσ ] ·� l ∨ q � p[rσ ]),

where l � r is called a simplifier, and the second condition incorporates the side condition
of Collapse. This side condition for simplification lets l � r simplify p[lσ ] � q when
p[lσ ] is a variant of l, but q is not a variant of r , provided that q � p[rσ ], or, equivalently,
q � rσ (if p[lσ ] .= l, the context p is empty, σ is a variable renaming, p[lσ ] = lσ ,
and p[rσ ] = rσ ). For example, simplifying f (e, x) � x by f (e, y) � y is not allowed;
simplifying f (e, x) � h(x) by f (e, y) � y is allowed as h(x) � x ; simplifying f (e, y) � y
by f (e, x) � h(x) is not allowed as y � h(y).

The next challenge was to generalize simplification to clauses, as intended in Larry Wos’
definition of demodulation, while preserving as much as possible the behavior of simplifi-
cation in completion. This requires to extend the ordering � beyond terms. A step in this
direction was achieved with the inference system in [155]. This system assumes that the
ordering � is a CSO on terms and atoms that satisfies two additional properties. First, for
all terms l, r , p, and q , such that l � r , and for all atoms A, (i) if l � A and the predicate
symbol of A is not �, then (l � r) ≺ A; and (ii) if l � p or l � q , then (l � r) ≺ (p � q).
Second, for all ground terms l, r , and s, and for all ground atoms A, if l � r , l � s, and
(l � r) ≺ A ≺ (l � s), then A has the form l � t for some ground term t .

This definition is illustrated in [155] with a predicate-first extension of a CSO� on terms
to atoms. It assumes a total precedence on predicate symbols such that � is the smallest
predicate symbol. Then, P(s1, . . . , sm) ≺ Q(t1, . . . , tn) holds if P is smaller than Q in
the precedence, or P = Q �= � and (s1, . . . , sm) ≺lex (t1, . . . , tn), or P = Q = � and
(s1, s2) ≺mul (t1, t2), where ≺lex and ≺mul are the lexicographc and multiset extensions of
≺, respectively.

The inference system in [155] includes a simplification inference rule that allows a sim-
plifier l � r to simplify a clause C[lσ ] to C[rσ ], if lσ � rσ and C[lσ ] contains an atom A
such that A � (lσ � rσ). While the simplification rule of [155] allows some simplification,
it does not preserve the behavior of simplification in completion.

Example 2 Given equations {(1) f (x) � g(x), (2) g(h(y)) � k(y)}, target theorem
f (h(b)) �� k(b), and precedence f > g > h > k > b, the Simplification rule of
completion allows equation (1) to simplify the target to g(h(b)) �� k(b), with matching
substitution σ = {x ← h(b)}, since f (h(b)) � g(h(b)) and f (h(b)) ·� f (x). Another
step by the same simplification rule applies equation (2) to simplify g(h(b)) �� k(b) to
k(b) �� k(b), with matching substitution ϑ = {y ← b}, since g(h(b)) � k(b) and
g(h(b)) ·� g(h(y)). On the other hand, the simplification rule of [155] cannot perform
these steps, and hence cannot yield a refutation by simplification. For example, for the first
step, { f (h(b)), k(b)} �mul { f (h(b)), g(h(b))} does not hold.

The footnote on page 2 of [10] says1 that the method of [155] “does discuss simplification
to some extent, but for practical purposes his simplification tecniques are inadequate even for
the very simplest case – completion of sets of universally quantified equations.” The issue is
the generalization of the ordering beyond terms. The inference system of the superposition
calculus [10]—henceforth SP—offered a solution with a systematic way to extend a reduc-
tion ordering on terms to atoms, literals, and clauses. The reduction ordering is assumed to

1 This footnote appears on page 2 of the technical report version of [10] available at https://pure.mpg.de.
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be complete or completable, which means it is included in a complete ordering. All RPO’s
are completable [10]. The first step is to treat non-equational literals as equational literals by
treating non-equational atoms like terms, and reading a positive literal L as L � � and a
negative literal ¬L as L �� �, where � is a new symbol such that t � � for all terms t .

The second step is to extend the ordering � on terms to literals. This can be done in one
of two ways. One way is to treat an equation p � q as the multiset {p, q}, a negated equation
p �� q as the multiset {p, p, q, q}, and compare literals in the multiset extension of the
ordering on terms. The other one is to treat an equation p � q as the multiset of multisets
{{p}, {q}}, a negated equation p �� q as the multiset of multisets {{p,⊥}, {q,⊥}}, where ⊥
is a new symbol such that t � ⊥ � � for all terms t , and compare literals by taking twice
the multiset extension of the ordering on terms. The third step is to extend the ordering on
literals to clauses by taking once more the multiset extension.

Simplification appears inSP as an instance of an inference rule called contextual reductive
rewriting [10]. If the simplifier is a unit equational clause, contextual reductive rewriting
yields the following rule:

Simplification : S ∪ {C[lσ ], l � r}
S ∪ {C[rσ ], l � r} lσ � rσ, C[lσ ] � (lσ � rσ).

The second side condition requires that the applied instance of the simplifier is smaller
than the clause it simplifies. This condition is only superficially similar to the one of the
simplification rule in [155] as the difference is in the ordering.

Example 3 Consider the problem in Example 2. The simplification rule of SP allows both
simplification steps, because { f (h(b)), f (h(b)), k(b), k(b)} �mul { f (h(b)), g(h(b))} holds
for the first step, and {g(h(b)), g(h(b)), k(b), k(b)} �mul {g(h(b)), k(b)} holds for the sec-
ond step.

However, Simplification of SP and Simplification of completion do not behave in general
in the same way in the purely equational case.

Example 4 If b � c, both the Collapse rule of Knuth-Bendix completion and the Simplifica-
tion rule of completion allow f (x) → b to simplify f (b) → c to b → c, with matching
substitution σ = {x ← b}, because f (b) � b and f (b) ·� f (x). On the other hand,
{ f (b), c} �mul { f (b), b} does not hold, so that Simplification of SP does not allow the step.

A comparison of the second condition for Simplification in completion with the second
condition for Simplification of SP explains the difference. Assume that the ordering on terms
is a CSO. The second condition for Simplification in completion is p[lσ ] ·� l ∨ q � p[rσ ].
The second condition for Simplification in SP when an equation l � r simplifies a unit
positive equational clause p[lσ ] � q is {p[lσ ], q} �mul {lσ, rσ }.

If the Simplification rule of completion applies because p[lσ ] ·� l holds as p is not
empty, we have p[lσ ] � lσ � rσ by the subterm property and the condition lσ � rσ in
both simplification rules. Thus, {p[lσ ], q} �mul {lσ, rσ } follows and Simplification of SP
applies.

If the Simplification rule of completion applies because p[lσ ] ·� l does not hold (p is
empty and σ is a variable renaming) and q � p[rσ ] holds, we have p[lσ ] = lσ , p[rσ ] = rσ ,
and hence q � rσ , so that {p[lσ ], q} �mul {lσ, rσ } follows and Simplification ofSP applies.

If the Simplification rule of completion applies because p[lσ ] ·� l holds as p is empty, but
σ is not a variable renaming, and q � p[rσ ] does not hold, then {p[lσ ], q} �mul {lσ, rσ }
does not follow, and Simplification of SP does not apply. Example 4 illustrates this situation,
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where completion lets a simplifier (i.e., f (x) → b) rewrite a proper instance of its left-hand
side (i.e., f (b)) even if the right-hand side of the simplifier (i.e., b) is larger than the right-hand
side of the rewrite rule to be simplified (i.e., c).

It is also interesting to see how simplification is implemented. For instance, the E prover
[157] distinguishes between Simplification of negative literals and Simplification of positive
literals. The former is

S ∪ {p[lσ ] �� q ∨ D, l � r}
S ∪ {p[rσ ] �� q ∨ D, l � r} lσ � rσ,

because lσ � rσ implies {p[lσ ], p[lσ ], q, q} �mul {lσ, rσ }. Indeed, if p is not empty,
{p[lσ ], p[lσ ], q, q} �mul {lσ, rσ } follows from p[lσ ] � lσ � rσ as discussed above. If
p is empty, {lσ, lσ, q, q} �mul {lσ, rσ } follows from lσ � rσ . Thus, it suffices to consider
the literal being rewritten to establish the second condition of Simplification of SP . On the
other hand, Simplification of positive literals embeds conditions from the inference rules of
completion:2

S ∪ {p[lσ ] � q ∨ D, l � r}
S ∪ {p[rσ ] � q ∨ D, l � r}

lσ � rσ,

(∃M∈D.M�(p[lσ ] � q)) ∨ p[lσ ] � q ∨ p[lσ ] ·� l.

Consider the second condition. If the first disjunct is true, either {M,�} �mul {p[lσ ], q} or
{M, M,�,�} �mul {p[lσ ], q}. Either way, M � p[lσ ] and M � q , so that M � p[lσ ] �
lσ � rσ holds. Thus, either {M,�} �mul {lσ, rσ } or {M, M,�,�} �mul {lσ, rσ } holds
and the second condition of Simplification of SP is fulfilled. If the second disjunct p[lσ ] � q
is true, the step is an instance of Simplify or Compose. If the third disjunct p[lσ ] ·� l is true,
the step is an instance of Collapse. Although the second disjunct q � p[rσ ] in the second
condition of Simplification in completion does not appear, this confirms that the conditions
for simplification from completion are important in the practice.

Larry Wos’ intuition of demodulation as comprising multiple steps, until no further step
can be applied, was captured in the context of completion and rewriting with the notion of
normalization, or reduction to normal form. A clause C is in normal form with respect to a
set S of clauses, if no unit equational clause in S can simplify it; equivalently,C is irreducible
with respect to S, or S-irreducible. The normal form of C with respect to S is denoted C ↓S ,
where C ↓S = C if C is S-irreducible.

4.4 Demodulation and the Given-Clause Algorithm

Larry Wos was interested in the application of demodulation in the context of the set-
of-support strategy [188], which leads to the more general issue of the application of
demodulation in the given-clause algorithm. The goal is to ensure that the given-clause
algorithm implements an eager-contraction search plan, namely one where contraction has
priority over expansion (e.g., [56]). In other words, the objective is to prevent a clause that
can be deleted or replaced from playing the role of parent in an expansion inference.

In the given-clause algorithm,when a new clauseC is generated by expansion,C is subject
to forward contraction, that is, contraction with respect to a set S of already existing clauses.
The prover tries first the deletion rules. Thus, C may be deleted by tautology deletion, or by
purity deletion, or by subsumption by a clause in S (forward subsumption), or because it is
a unit equational clause s � s.

2 The inference rule in [157] is reproduced assuming that there is no selection function: the interested reader
may find more details in [10, 157].

123



Set of Support, Demodulation, Paramodulation:... 481

If clause C survives these tests, the prover tries the replacement rules. Thus, C may be
simplified by clausal simplification by a clause in S, or reduced to C ↓S by demodulation
with the demodulants in S. Let C ↓S represent the final result of the application of all
applicable replacement rules. If C , and hence C ↓S , is an equation, the test to determine
whether it can be oriented is applied to C ↓S . Thus, the implementation of contraction
respects the requirement from completion of orienting equations only after their sides have
been normalized (cf. Sect. 4.2).

Only at this stage clause C ↓S gets an identifier and is appended to the sos list. Therefore,
forward contraction is part of the generation of a new clause. Indeed, in Otter this phase is
called preprocessing of a clause. Also the test for the generation of the empty clause happens
during preprocessing: if C ↓S is a unit clause the prover tests whether it generates the empty
clause with a unit clause in usable or sos. This is because one wants to get the empty
clause as soon as possible. Thus, the test for a contradiction is applied as soon as a unit clause
is generated, without waiting until it is selected as given clause.

For backward contraction the prover tests whether C ↓S can contract a previously existing
clause D ∈ S. In Otter this phase is called post-processing of a clause. For all D ∈ S for
which this is the case, D is treated like if it were a newly generated clause, and subjected
to forward contraction as described above. The resulting D ↓S gets a new identifier and is
appended to the sos list. Thus, a clause generated by backward contraction is treated as a
clause generated by expansion.

There are two versions of the given-clause algorithm, named from theOtter prover [127,
128] and the E prover [73, 157–159], respectively. The two versions differ primarily in the
implementation of backward contraction. In both versions the set S of clauses in the above
description of forward contraction is given by usable∪sos, meaning the union of the set
of clauses in usable and the set of clauses in sos. On the other hand, the set S of clauses
in the above description of backward contraction is usable ∪ sos in the Otter version,
whereas it is usable in the E version.

The Otter version of the given-clause algorithm aims at maintaining the set usable ∪
sos inter-reduced or, more generally, contracted [49]. Suppose that the expansion inferences
between a given clause C and the clauses in usable generate a bunch of new clauses, each
of whom is subjected to forward contraction as described above, so that clauses C0, . . . , Ck

get appended to sos. In the Otter version, the prover tests whether Ci , for all i , 0 ≤ i ≤ k,
can backward-contract any clause in usable ∪ sos. Suppose that for all i , 0 ≤ i ≤ k,
backward-contraction by Ci appends clauses Di

0, . . . , Di
ni
to sos. Then, for all i , 0 ≤ i ≤ k,

for all j , 0 ≤ j ≤ ni , the prover tests whether D j can backward-contract any clause in
usable ∪ sos. The process continues until no more contraction applies.

Example 5 Suppose that sos contains (1) f (g(x)) � b and (2) h( f (y)) � c, and Otter
derives g(z) � z by some inference and appends it to sos as (3) g(z) � z. Otter applies
(3) to back-demodulate (1) to f (x) � b, removes (1), and appends (4) f (x) � b to sos.
Then Otter applies (4) to back-demodulate (2) to h(b) � c, removes (2), and appends
(5) h(b) � c to sos.

The E version of the given-clause algorithm aims at maintaining usable contracted.
The prover tests whether a clause C can backward-contract any clause in usable only
when C is selected as given clause and moved from sos to usable. As usable may
have changed since the time when C was subjected to forward contraction, the prover first
applies the clauses in usable to contract C , and then applies C to contract the clauses in
usable, before trying the expansion inferences between C and clauses in usable. If a
clause in usable is removed by backward contraction, its descendants in sos are deleted
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as orphans. Except for orphan deletion, all backward contraction happens in usable. The
rationale is that maintaining usable contracted is good enough, because the premises of
expansion inferences come from usable.

Example 6 Given the initial situation as in Example 5, E applies no backward demodulation
in sos. Suppose that E selects (3) g(z) � z as given clause before (1) and (2). Thus, (3)
moves from sos to usable. E applies (3) to back-demodulate (1) f (g(x)) � b only
when (1) is selected as given clause and joins (3) in usable. As a result, E deletes (1) and
appends (4) f (x) � b to sos. Suppose that E selects (4) as given clause before (2), so that
(4) moves from sos to usable. E applies (4) to back-demodulate (2) h( f (y)) � c only
when (2) is selected as given clause and joins (4) in usable. As a result, E deletes (2) and
appends (5) h(b) � c to sos. If E selects (2) as given clause before (4), E applies (4) to
back-demodulate (2) only when (4) is selected as given clause and joins (2) in usable. As
a result, E deletes (2), appends (5) h(b) � c to sos, and deletes any orphan of (2) in sos.

In the E version of the given-clause algorithm the lists usable and sos were renamed
active and passive, respectively. The E version was born primarily from a concern that
the cost of backward contraction as in the Otter version could outweight its benefits. For
example, it may happen that the prover spends a lot of time doing backward contraction, when
it would be more beneficial to go ahead with expansion, because an expansion inference with
the next given clause would generate a unit clause that yields the contradiction. On the other
hand, the delay in backward contraction in the E version may cause the passive list to
grow toomuch, reaching a memory limit, or it may delay finding a proof. For example, it may
happen that the prover goes ahead to domore expansion, postponing backward demodulation
steps in sos that would generate a unit clause that yields the contradiction.

In practice, most clauses that get deleted are deleted by forward contraction. Then, expan-
sion and backward demodulation can be seen as two ways to generate clauses that need to be
balanced. One could say that theOtter version leans toward prioritizing backward demodu-
lation and the E version leans toward prioritizing expansion. There is no conclusive evidence
that one is better than the other in general. Most theorem provers feature both versions of the
given-clause algorithm, because one pays off on some problems and the other on others.

5 The Paramodulation Inference Rule

Adding demodulation to resolution does not suffice for refutational completeness in first-
order logic with equality. Larry Wos started the research on paramodulation [147], precisely
to complement resolution and demodulation with an expansion inference rule for equality
that would yield a refutationally complete inference system for first-order logic with equality.
This quest turned out to be one of the most fascinating in the history of automated theorem
proving.

5.1 The Original Definition of Paramodulation

Prior to the inception of paramodulation, the only way to reason about equality in resolution-
based theorem proving was to add to the input set the clausal form of the axioms of equality:

x � x (Reflexivity)

x �� y ∨ y � x (Symmetry)
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x �� y ∨ y �� z ∨ x � z (Transitivity)
n∨

i=1

xi �� yi ∨ f (x̄) � f (ȳ) (Function Substitutivity)

n∨

i=1

xi �� yi ∨ ¬P(x̄) ∨ P(ȳ) (Predicate Substitutivity)

for all function symbols f and predicate symbols P of arity n, where x̄ and ȳ stand for
x1, . . . , xn and y1, . . . , yn , respectively. It soon emerged that these axioms are so general
that their presence causes resolution to generate so many clauses that the efficiency of the
inference system is unbearably compromised in most cases. Thus, George A. Robinson and
Larry Wos introduced paramodulation [147] as a generalization of resolution with equality
built-in:

Paramodulation : S ∪ {l � r ∨ C, M[t] ∨ D}
S ∪ {l � r ∨ C, M[t] ∨ D, (C ∨ M[r ] ∨ D)σ } lσ = tσ,

where � is regarded as symmetric, σ is the mgu of a side l of the equation l � r and a
subterm t of a literal M in a clause M[t] ∨ D, and C and D are disjunctions of literals.
Clause l � r ∨ C is called the clause paramodulated from, or para-from clause for short,
and l � r is the literal paramodulated from, or para-from literal for short. Clause M[t] ∨ D
is called the clause paramodulated into, or para-into clause for short, and M[t] is the literal
paramodulated into, or para-into literal for short. The generated clause (C ∨ M[r ] ∨ D)σ

is termed a paramodulant.
While the appearance of paramodulation represented a breakthrough, a proof of refuta-

tional completeness could be obtained only under the assumption that the input set includes
not only x � x , but also the functionally reflexive axioms, that is, the instances of reflexivity
of the form f (x̄) � f (x̄), for all function symbols f . Furthermore, the original paramodula-
tion inference rule is very prolific, because the term t paramodulated into can be a variable,
which unifies with any term. However, paramodulation into variables could not be excluded,
because it was necessary to prove a paramodulation lifting lemma [147] analogous to the
lifting lemma used in the proof of completeness of resolution [65, 149]. In order to show
that to every paramodulation between ground instances of clauses corresponds a paramod-
ulation between the general clauses themselves, paramodulation into variables was needed,
because the ground term paramodulated into could be the instance of a variable. The conjec-
ture that paramodulation is refutationally complete without the functionally reflexive axioms
and without paramodulating into variables became known as the Wos–Robinson conjecture.

A first step towards settling the Wos–Robinson conjecture was represented by the mod-
ification method [61]. This method consists of pre-processing the input set of clauses with
respect to the equality axioms (the “modification” in the name), and then applying reso-
lution and factoring to the modified set of clauses, without including axioms other than
x � x . The completeness of resolution, factoring, and paramodulation without functionally
reflexive axioms follows via a simulation argument, provided some paramodulations into
variables are allowed. The Wos-Robinson conjecture was still considered open, because a
direct proof of the refutational completeness of resolution, factoring, and paramodulation,
without functionally reflexive axioms, and with no paramodulation into variables, was not
given. Another challenge that remained open was to prove refutational completeness in the
presence of demodulation and other contraction inference rules.
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5.2 Superposition Between Rewrite Rules or Equations

Unaware of paramodulation,3 Knuth and Bendix coined the name superposition for a related
inference rule, which is the main mechanism of the Knuth-Bendix completion procedure
[101, 107]. In the formalization of completion as an inference system [6–8], derivation states
have the form (E; R), where E is a set of equations, and R is a set of rewrite rules oriented
by a reduction ordering� on terms (cf. Sect. 4.2). Then, superposition is defined as follows:

Superposition : (E; R ∪ {l → r , p[t] → q})
(E ∪ {p[r ]σ � qσ }; R ∪ {l → r , p[t] → q}) t /∈ X , lσ=tσ,

where σ is the mgu of the left-hand side l of a rewrite rule and a non-variable subterm t of
the left-hand side of another rewrite rule, X is the set of variable symbols, and the generated
equation p[r ]σ � qσ is called a critical pair. If the critical pair cannot be simplified, deleted,
or oriented, the procedure fails.

As with demodulation, unfailing [98] or ordered [6, 7, 9] completion removed the limita-
tion of working only with rewrite rules, leading to Superposition of equations:

E ∪ {l � r , p[t] � q}
E ∪ {l � r , p[t] � q, p[r ]σ � qσ } t /∈ X , lσ=tσ, lσ � rσ, p[t]σ � qσ,

where E is a set of equations, and the equations l � r and p[t] � q are allowed to super-
pose only if their instances according to the mgu σ are either orientable (i.e., lσ � rσ ) or
uncomparable (i.e., lσ � rσ ∧ rσ � lσ ∧ lσ �= rσ , abbreviated lσ # rσ ). The ordering
� on terms is a CSO [98] or a reduction ordering [6, 7, 9].

This superposition inference rule is less general than paramodulation, as it applies only to
unit equational clauses, but it avoids superposition into variables, is restricted by the ordering,
and is refutationally complete for problems of the form E |�? ∀x̄ .s � t also in the presence
of contraction. The contraction rules of completion are deletion of equations of the form
s � s, simplification, subsumption, and another subsumption rule for equations based on the
encompassment ordering [98]:

Functional Subsumption : E ∪ {l � r , p � q}
S ∪ {l � r} (p � q) ·� (l � r),

where (p � q) ·� (l � r) if p = c[lϑ], q = c[rϑ], and either the context c is not empty or
the substitution ϑ is not a variable renaming.

A challenge related to the Wos-Robinson conjecturewas how to obtain an inference system
for first-order logic with equality that avoids paramodulating or superposing into variables,
is restricted by the ordering, is refutationally complete also in the presence of contraction,
and reduces to completion if given an input of the form E ∪ {ŝ �� t̂}.

5.3 Paramodulation and Superposition

The next step towards settling the Wos-Robinson conjecture and related challenges was a
proof that an inference system with resolution, factoring, paramodulation, subsumption, and
simplification is refutationally complete for first-logic with equality, without adding equality
axioms other than x � x and without paramodulating into variables [133]. A key feature of
this approach is a CSO on terms and atoms that is order-isomorphic to the positive integers.

3 Mark E. Stickel, personal communication, October 1996.
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This ordering is used for simplification, and, in the proof of completeness, to build semantic
trees based on an enumeration of the Herbrand base, where an equation l � r appears before
any atom that l � r can simplify. The issue encountered by Wos and Robinson with the
paramodulation lifting lemma is solved by showing that it suffices to consider substitutions
that replace variable by irreducible terms, so that the substitution cannot replace a variable
with a ground term that can be simplified, or, equivalently, paramodulated into [99, 133, 154,
155].

A KBO is order-isomorphic to the positive integers, provided weights are positive [133],
but RPO’s and most other orderings are not. Thus, the Wos-Robinson conjecture was con-
sidered truly solved only when this requirement on the ordering was lifted. This result
was reached with the proof of refutational completeness of an inference system called the
ordered-literal strategy [99, 154, 155]. The ordered-literal strategy, or, rather, the ordered-
literal inference system features resolution, factoring, paramodulation, and superposition
as expansion inference rules, and tautology deletion, subsumption, clausal simplification,
demodulation, and functional subsumption as contraction inference rules.

A key characteristic of this inference system, and the reason for its name, is that the
expansion inference rules are restricted to work on literals that are strictly maximal in a CSO
on terms and atoms. Since clauses are multisets of literals, a literal L is maximal in a clauseC
if ¬(∃M ∈ C . M � L), or, equivalently, ∀M ∈ C . L ⊀ M . In other words, the other literals
can only be smaller, equal, or uncomparable. A literal L is strictly maximal in a clause C if
¬(∃M ∈ C . M � L), or, equivalently, ∀M ∈ C . L � M . In other words, the other literals
can only be smaller or uncomparable. If the ordering is defined on atoms as in [99, 154,
155], literals are identified with their atoms when applying the ordering. The proof that the
ordered-literal inference system is refutationally complete without adding equality axioms
other than x � x , without paramodulating into variables, and without the requirement that
the CSO on terms and atoms is order-isomorphic to the positive integers, was obtained by
working with transfinite semantic trees [99, 154, 155].

Resolution and factoring are restricted to resolve upon strictly maximal literals:

Resolution : S ∪ {L1 ∨ C, L2 ∨ D}
S ∪ {L1 ∨ C, L2 ∨ D, (C ∨ D)σ } L1σ = ¬L2σ, (1), (2)

Factoring : S ∪ {L1 ∨ . . . ∨ Lk ∨ C}
S ∪ {L1 ∨ . . . ∨ Lk ∨ C, (L1 ∨ C)σ } L1σ = L2σ = . . . Lkσ, (1)

where (1) is ∀M ∈ C . L1σ � Mσ and (2) is ∀M ∈ D. L2σ � Mσ . These ordering-based
restrictions to resolution and factoring appeared in [99] and have remained in the subsequent
ordering-based inference systems, including the superposition calculusSP where a reduction
ordering on terms is extended to literals as seen in Sect. 4.3.

For paramodulation and superposition, the challenge of solving the Wos–Robinson con-
jecture was intertwined with the challenge of obtaining inference rules for first-order logic
with equality that reduce to the superposition rule of completion in the purely equational
case. In completion superposition is restricted to work on maximal sides of equations (cf.
Sect. 5.2). Thus, collecting the restrictions on literals and those on sides of equational literals,
one gets four ordering-based conditions. In order to state them, we recall some terminology
and notation that applies to all versions of paramodulation and superposition in this section.
The para-from clause is written l � r ∨ C , where l � r is the para-from literal. The para-
into clause is written M[t] ∨ D, where M[t] is the para-into literal. If the inference system
distinguishes the case where the para-into literal is an equational literal, the para-into clause
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is written p[t] � q ∨ D or p[t] �� q ∨ D, where p[t] � q or p[t] �� q is the para-into
literal, respectively. One can also say superposed-from and superposed-into with the anal-
ogous meanings. The subterm t is not a variable (i.e., t /∈ X where X is the set of variable
symbols), and the substitution σ is the mgu of the terms l and t (i.e., lσ = tσ ).

The four ordering-based conditions involved in restricting paramodulation and superpo-
sition are the following:

(i) The para-from literal is strictly maximal in the instance of the para-from clause:
∀Q ∈ C . (l � r)σ � Qσ ;

(ii) The left-hand side of the para-from literal is strictly maximal in the instance of the
para-from literal: lσ � rσ ;

(iii.a) The para-into literal is strictly maximal in the instance of the para-into clause: ∀Q ∈
D. M[t]σ � Qσ or ∀Q ∈ D. (p[t] � q)σ � Qσ ;

(iii.b) If the para-into literal is a negative equational literal p[t] �� q , it is maximal in the
instance of the para-into clause: ∀Q ∈ D. (p[t] �� q)σ ⊀ Qσ ;

(iv) If the para-into literal is a positive equational literal p[t] � q , its left-hand side is
strictly maximal in the instance of the para-into literal: p[t]σ � qσ .

The ordered-literal inference system in [99] added to resolution and factoring as above
the following Paramodulation inference rule:

S ∪ {l � r ∨ C, M[t] ∨ D}
S ∪ {l � r ∨ C, M[t] ∨ D, (C ∨ M[r ] ∨ D)σ } (i), (i i), (i i i .a).

Similar to the original paramodulation inference rule (cf. Sect. 5.1), this inference rule does
not distinguish whether the para-into literal is equational or not. The requirement that t /∈ X
and three ordering-based conditions out of four represented major restrictions with respect
to the paramodulation inference rule of Robinson and Wos.

Aiming at the challenge of lifting to first-order logic superposition as in completion,
the inference system of [155] replaced the paramodulation inference rule of [99] with two
rules, one called superposition and one called paramodulation. Superposition applies if the
para-into literal is a positive equational literal:

S ∪ {l � r ∨ C, p[t] � q ∨ D}
S ∪ {l � r ∨ C, p[t] � q ∨ D, (C ∨ p[r ] � q ∨ D)σ } (i i), (i i i .a), (iv).

Paramodulationwas used if the para-into literal M[t] is a non-equational literal or a negative
equational literal:

S ∪ {l � r ∨ C, M[t] ∨ D}
S ∪ {l � r ∨ C, M[t] ∨ D, (C ∨ M[r ] ∨ D)σ } (i i), (i i i .a).

Thus, Superposition has Conditions (i i) and (iv) from superposition in completion
(cf. Sect. 5.2), but both rules had to dropCondition (i). The inference system in [155] includes
the contraction inference rules.4 However, as discussed in Sect. 4.3, due to the choice of the
ordering, demodulation as in [155] does not reproduce the behavior of the simplification rule
of completion in the equational case. Therefore, the inference system of [155] generalized
completion only as far as the superposition inference rule is concerned.

The conjecture as to whether an ordering-based inference system is still refutationally
complete, if all four ordering-based conditions are imposed remained open. It was answered

4 The inference system in [99] does not list the contraction inference rules referring to [154] for contraction.
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affirmatively with the development of the superposition calculus SP [10]. As already dis-
cussed in Sect. 4.3 for demodulation, a basic, but crucial, ingredient is the appropriate
extension of the ordering on terms to literals. Another key ingredient is the addition of a
new expansion inference rule [10, 130]:

Equational Factoring
C ∨ u � s ∨ u′ � s′

(C ∨ s �� s′ ∨ u � s′)σ uσ = u′σ, uσ � sσ, (v),

where Condition (v) is ∀Q ∈ C ∪ {u′ � s′}. (u � s)σ ⊀ Qσ . This rule is a generalization
of factoring that can be seen as a conditional factoring rule. If it holds that uσ = u′σ and
sσ = s′σ , that is (u � s)σ = (u′ � s′)σ , factoring can be applied. Equational factoring
tests only uσ = u′σ , provided uσ � sσ , and adds sσ � s′σ as a condition, hence negated,
in the generated clause.

The superposition calculus SP uses only the name superposition [10, 130]. In SP even
resolution becomes a special case of superposition, because all literals are transformed into
equational literals as seen in Sect. 4.3. However, for continuity, we refrain from subsuming
resolution into superposition, and we still use the name paramodulation when the para-into
literal is not equational. For Paramodulation the three applicable ordering-based conditions
are restored:

S ∪ {l � r ∨ C, M[t] ∨ D}
S ∪ {l � r ∨ C, M[t] ∨ D, (C ∨ M[r ] ∨ D)σ } (i), (i i), (i i i .a).

Superposition affords all four ordering-based conditions:

S ∪ {l � r ∨ C, p[t] � q ∨ D}
S ∪ {l � r ∨ C, p[t] � q ∨ D, (C ∨ p[r ] � q ∨ D)σ } (i), (i i), (i i i .a), (iv),

S ∪ {l � r ∨ C, p[t] �� q ∨ D}
S ∪ {l � r ∨ C, p[t] �� q ∨ D, (C ∨ p[r ] �� q ∨ D)σ } (i), (i i), (i i i .b), (iv),

with the weaker version of the third one (Condition (i i i .b) in place of Condition (i i i .a))
when the para-into literal is negative. These versions of paramodulation and superposition,
together with resolution, factoring, equational factoring, tautology deletion, subsumption,
and simplification form the refutationally complete inference system SP for first-order logic
with equality. The proof of refutational completeness was obtained by an approach based on
rewrite models [10] that became a standard (e.g., [123]) and was reformulated also in terms
of semantic trees [92].

In summary, the superposition calculus [10–12] imposed the strongest known ordering-
based restrictions on expansion rules, and met the challenge of getting a refutationally
complete inference system for first-order logic with equality that reduces to completion
if the input is purely equational. 5 For these reasons, the superposition calculus became the
standard ordering-based inference system.

6 Discussion

With set of support [187], demodulation [188], and paramodulation [147], Larry Wos con-
tributed three fundamental ideas that have nurtured research on theorem proving for decades,
and are still fruitful today.

5 Modulo the discrepancies between simplification in completion and simplification in SP in the purely
equational case as seen in Sect. 4.3.
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The set-of-support strategy influenced both search plan design, as witnessed by the given-
clause algorithm [127, 128], and inference rule design, beginning with semantic resolution
[161]. Since the given-clause algorithm is at the heart of contemporary provers (e.g., [66, 96,
110, 159, 170, 180]), it continues to be an object of study. The design of heuristic evaluation
functions for the selection of the given clause has been an active research topic (e.g., [1, 44,
71, 72, 127, 128, 160]). For example, the search may employ multiple evaluation functions
by maintaining multiple priority queues with either parallel search [46] or interleaving [159].
Theweight of clauses can be used to break tieswhen the best clause according to an evaluation
function is not unique [91].

The ideas in the set-of-support strategy and in semantic resolution were generalized and
developed into notions of semantic guidance, goal-sensitivity, and hyperinference, that had
an impact also beyond resolution-based theorem proving, including tableaux-based methods
(e.g., [14, 17, 19]), instance-based methods (e.g., [142]), and SGGS [59, 60] (see [51] for a
survey with an emphasis on these features).

The challenge of getting the theorem-proving strategy to focus on the conjecture to be
proved, that Larry Wos meant to address with the set-of-support strategy, is more relevant
than ever, given the growth of large and very large knowledge bases, inmathematics and other
domains (e.g., [145, 172]). The existence of such knowledge bases also poses the problem
of applying theorem proving to check their consistency: the meaning and impact of semantic
guidance and goal-sensitivity for this problem is still uncharted territory.

Larry’s concept of irrelevant, or, dually, relevant, inference and clauseswas formalized and
generalized [94], and his notion that inferences should be general resurfaced in investigations
of abstraction in resolution theorem proving (e.g., [135]). The already mentioned instance-
based methods (see [45, 51, 103, 108] for surveys) explore a complementary direction that
is often most fruitful for model building given a satisfiable input.

Larry’s UR resolution hyperinference rule [188] became a standard feature of resolution-
based theorem provers and beyond. For example, UR resolution was used to generate unit
lemmas for PTTP (Prolog Technology Theorem Proving) provers [167] that implemented
model elimination [118, 119] on top of a Prolog engine such as the Warren Abstract Machine
[179]. A similar idea was pursued in a parallel setting [169]. Both sequential and parallel
tableaux-based theorem provers such as SEtheo [115] and CPtheo [86] preprocessed the
input with respect to UR resolution, unit resolution, and unit subsumption.

The thread of research that Larry Wos opened with the notion of demodulation has been
a major one in theorem proving and continues to the present. Well-founded demodulation
is a fundamental inference rule for equality in all reasoning contexts. Under the name of
simplification or rewriting, it was generalized to conditional rewriting, or reasoning in Horn
equational logic (e.g., [10, 50, 109]), and to contextual rewriting (e.g, [90, 97, 181, 189]),
with applications also beyond theorem proving. Furthermore, Larry’s notion of applying the
rule for a predefined number k of steps, as in k-modulation, may still be useful in practice.
For example, it may be employed as a form of pre-processing when no suitable well-founded
ordering orients defining equations in the desired direction [174].

The efficient implementation of demodulation, andmore generally contraction, is an active
research topic, because theorem provers may spend a lot of time performing contraction (e.g,
[97]).As it is typical in theoremproving, the issue is one of finding a good balance between the
eagerness and the cost of contraction. For example, one can distinguish between full-fledged
contraction and cheap simplification (e.g., demodulation by rewrite rules) [158, 159] or light
simplification (e.g., demodulation by ground rewrite rules) [80] that are less expensive and
can be applied more eagerly. If given clause C generates a set N of new clauses, immediate
simplification [80] consists of inter-reducing N and then applying it to backward-contract
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the clauses in usable. If clause C itself is deleted in the process, all clauses in N can be
deleted as orphans, except those that justify the deletion of C .

Larry Wos pioneered a paramodulation principle for building equality into resolution,
that many other researchers, over several decades, endeavoured to bring to maturity, merging
it successfully with completion-based theorem proving (e.g., [6, 7, 9, 49, 54, 98, 101, 107]).
The resulting ordering-based inference systems (e.g., [10, 99, 133, 155]) are refutationally
complete, combining expansion inference rules such as resolution, factoring, paramodulation,
and superposition, with contraction inference rules such as subsumption and well-founded
demodulation or simplification. The number of years and people involved, starting from
different angles andwith differentmotivations, shows the greatness ofLarry’s original insight.

Subsumption and simplification are based on distinct well-founded orderings. An abstract
framework to treat in a unified manner these two contraction principles was developed [178].
Another area of investigation is the reproduction and verification of the proofs of refutational
completeness of ordering-based inference systems (e.g., [12]) in proof assistants [156, 178].

Ordering-based inference systems were implemented first in the Otter theorem prover
[127, 128], that Larry used for his experiments throughout his long career, and then in most
subsequent resolution-based theorem provers, up to those that represent the state of the art
for first-order logic with equality (e.g., the E prover [159], Spass [180], Vampire [110],
Waldmeister [96], Zipperposition [174], and GKC [170]). The growth of superposition-
based theoremprovingwas amain reason for the evolution of the given-clause algorithm from
an implementation of the set of support strategy into a general algorithm for implementing
multiple strategies. Indeed, the set-of-support strategy is not complete in general for either
ordered resolution in first-order logic, or paramodulation and superposition in first-order
logic with equality, unless the complement of the set of support is saturated with respect to
the inference system in a preprocessing phase [10], which defeats the spirit of the strategy.
Making reasoning goal-sensitive, or target-oriented, is more challenging in the presence of
equality [54].

The power and flexibility of ordering-based inference systems is witnessed by the fact that
they allow some theory reasoning (e.g., [13, 54, 79, 89, 100, 104, 134, 166, 168, 177]) yield
decision procedures (e.g., [5, 84, 87, 102, 164, 165]), get interfaced with other reasoning
paradigms (e.g., [23, 58, 80, 144]), form the basis of approaches to parallel theorem proving
(e.g., [42, 43, 46, 53] and [48] for a survey), and are generalized to higher-order logic as
in lambda-superposition [24, 26–28, 40, 131, 175, 176] and in combinatory superposition
[29–32].
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In: Fontaine, P. (ed.) Proceedings of 27th International Conference on Automated Deduction (CADE).
Lecture Notes in Artificial Intelligence, vol. 11716, pp. 55–73. Springer, Berlin (2019)

29. Bhayat, A., Reger, G.: Set of support for higher-order reasoning. In: Konev, B., Rümmer, P., Urban,
J. (eds.) Proceedings of 6th Workshop on Practical Aspects in Automated Reasoning (PAAR), CEUR
Workshop Proceedings, vol. 2162, pp. 2–16 (2018)

30. Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.) Proceedings of 27th
International Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence,
vol. 11716, pp. 74–93. Springer, Berlin (2019)

31. Bhayat, A., Reger, G.: A combinator-based superposition calculus for higher-order logic. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) Proceedings of 10th International Joint Conference on Automated
Reasoning (IJCAR), Lecture Notes in Artificial Intelligence, vol. 12166, pp. 278–296. Springer, Berlin
(2020)

32. Bhayat, A., Reger, G.: A Knuth-Bendix-like ordering for orienting combinator equations. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) Proceedings of 10th International Joint Conference on Automated
Reasoning (IJCAR), Lecture Notes in Artificial Intelligence, vol. 12166, pp. 259–277. Springer, Berlin
(2020)

33. Bibel, W.: On matrices with connections. J. ACM 28(4), 633–645 (1981)
34. Bibel, W.: Automated Theorem Proving, 2nd edn. Friedr. Vieweg & Sohn, Braunschweig (1987)
35. Bibel, W.: Deduction: Automated Logic. Academic Press, New York (1993)
36. Bibel, W.: Early history and perspectives of automated deduction. In: Hertzberg, J., Beetz, M., Englert,

R. (eds.) Proceedings of 31st German Annual Conference on Artificial Intelligence (KI), Lecture Notes
in Artificial Intelligence, vol. 4667, pp. 2–18. Springer, Berlin (2007)

37. Bibel, W., Eder, E.: Methods and calculi for deduction. In: Gabbay, D.M., Hogger, C.A., Robinson, J.A.
(eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. I: Logical Foundations,
pp. 68–183. Oxford University Press, Oxford (1993)

38. Billon, J.P.: The disconnectionmethod. In:Miglioli, P.,Moscato,U.,Mundici, D.,Ornaghi,M. (eds.) Pro-
ceedings of 5th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX). Lecture Notes in Artificial Intelligence, vol. 1071, pp. 110–126. Springer,
Berlin (1996)

39. Blake, A.: Canonical expressions in Boolean algebras. Ph.D. thesis, University of Chicago (1937)
40. Blanchette, J., Fontaine, P., Schulz, S., Waldmann, U.: Towards strong higher-order automation for fast

interactive verification. In: Reger, G., Treytel, D. (eds.) Proceedings of 1st Workshop on Automated
Reasoning: Challenges, Applications, Directions, Exemplary Achievements (ARCADE), EPiC Series
in Computing, vol. 51, pp. 16–23. EasyChair (2017)

41. Bonacina,M.P.: Problems in Łukasiewicz logic. Newsletter of theAssociation forAutomatedReasoning,
No. 18, pp. 5–12 (1991). http://aarinc.org/Newsletters/018-1991-06.pdf

42. Bonacina, M.P.: Distributed automated deduction. Ph.D. thesis, Department of Computer Science, State
University of New York at Stony Brook (1992)

43. Bonacina, M.P.: On the reconstruction of proofs in distributed theorem proving: a modified Clause-
Diffusion method. J. Symb. Comput. 21(4–6), 507–522 (1996)

44. Bonacina, M.P.: Mechanical proofs of the Levi commutator problem. In: Baumgartner, P., Furbach, U.,
Kohlhase, M., McCune, W.W., Reif, W., Stickel, M.E., Uribe, T. (eds.) Proceedings of CADEWorkshop
on Problem Solving Methodologies with Automated Deduction, pp. 1–10 (1998)

123

https://doi.org/10.1007/s10817-022-09620-8
http://aarinc.org/Newsletters/018-1991-06.pdf


492 M. P. Bonacina

45. Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Wooldridge, M.J., Veloso, M. (eds.)
Artificial Intelligence Today-Recent Trends and Developments. Lecture Notes in Artificial Intelligence,
vol. 1600, pp. 43–84. Springer, Berlin (1999)

46. Bonacina, M.P.: Combination of distributed search and multi-search in Peers-mcd.d. In: Gore, R.P.,
Leitsch,A.,Nipkow,T. (eds.) Proceedings of 1st International Joint Conference onAutomatedReasoning
(IJCAR), Lecture Notes in Artificial Intelligence, vol. 2083, pp. 448–452. Springer, Berlin (2001)

47. Bonacina, M.P.: On conflict-driven reasoning. In: Shankar, N., Dutertre, B. (eds.) Proceedings of 6th
Workshop on Automated Formal Methods (AFM) May 2017, Kalpa Publications, vol. 5, pp. 31–49.
EasyChair (2018)

48. Bonacina,M.P.: Parallel theorem proving. In: Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint
Reasoning, chap. 6, pp. 179–235. Springer, Berlin (2018)

49. Bonacina, M.P., Dershowitz, N.: Abstract canonical inference. ACM Trans. Comput. Log. 8(1), 180–
208 (2007)

50. Bonacina, M.P., Dershowitz, N.: Canonical ground Horn theories. In: Voronkov, A., Weidenbach, C.
(eds.) ProgrammingLogics: Essays inMemory ofHaraldGanzinger. LectureNotes inComputer Science,
vol. 7797, pp. 35–71. Springer, Berlin (2013)

51. Bonacina,M.P., Furbach,U., Sofronie-Stokkermans,V.:Onfirst-ordermodel-based reasoning. In:Martí-
Oliet, N., Olveczky, P., Talcott, C. (eds.) Logic, Rewriting, and Concurrency: Essays Dedicated to José
Meseguer. Lecture Notes in Computer Science, vol. 9200, pp. 181–204. Springer, Berlin (2015)

52. Bonacina, M.P., Hsiang, J.: Completion procedures as semidecision procedures. In: Okada, M., Kaplan,
S. (eds.) Proceedings of 2nd InternationalWorkshop on Conditional and Typed Term Rewriting Systems
(CTRS 1990). Lecture Notes in Computer Science, vol. 516, pp. 206–232. Springer, Berlin (1991)

53. Bonacina, M.P., Hsiang, J.: On subsumption in distributed derivations. J. Autom. Reason. 12, 225–240
(1994)

54. Bonacina, M.P., Hsiang, J.: Towards a foundation of completion procedures as semidecision procedures.
Theoret. Comput. Sci. 146, 199–242 (1995)

55. Bonacina, M.P., Hsiang, J.: On semantic resolution with lemmaizing and contraction and a formal
treatment of caching. New Gener. Comput. 16(2), 163–200 (1998)

56. Bonacina, M.P., Hsiang, J.: On the modelling of search in theorem proving - towards a theory of strategy
analysis. Inf. Comput. 147, 171–208 (1998)

57. Bonacina, M.P., Johansson, M.: Interpolation systems for ground proofs in automated deduction: a
survey. J. Autom. Reason. 54(4), 353–390 (2015)

58. Bonacina, M.P., Lynch, C.A., de Moura, L.: On deciding satisfiability by theorem proving with specu-
lative inferences. J. Autom. Reason. 47(2), 161–189 (2011)

59. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model representation. J.
Autom. Reason. 56(2), 113–141 (2016)

60. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: inference system and
completeness. J. Autom. Reason. 59(2), 165–218 (2017)

61. Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4(4), 412–430 (1975)
62. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490 (1958)
63. Chang, C.C.: Proof of an axiom of Łukasiewicz. Trans. Am. Math. Soc. 87, 55–56 (1958)
64. Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans. Am. Math. Soc. 93,

74–80 (1959)
65. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, New

York (1973)
66. Cruanes, S.: Extending superposition with integer arithmetic, structural induction, and beyond. Ph.D.

thesis, École Polytechnique, Université Paris-Saclay (2015)
67. Davis, M.: Eliminating the irrelevant from mechanical proofs. In: Proceedings of 15th Symposium for

Applied Mathematics, pp. 15–30 (1963). Also in J. Siekmann and G. Wrightson (Eds.) Automation of
Reasoning 1 – Classical Papers on Computational Logic 1957-1966, 315–330, Springer, Berlin 1983

68. Davis, M.: The prehistory and early history of automated deduction. In: Siekmann, J., Wrightson, G.
(eds.) Automation of Reasoning 1 - Classical Papers on Computational Logic 1957–1966, pp. 1–28.
Springer, Berlin (1983)

69. Davis, M.: The Universal Computer. The Road from Leibniz to Turing. Mathematics/Logic/Computing
Series. CRC Press, Taylor and Francis Group (2012). Turing Centenary Edition

70. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)
71. Denzinger, J., Fuchs, M.: Goal-oriented equational theorem proving using Team-Work. In: Nebel, B.,

Dreschler-Fischer, L. (eds.) Proceedings of 18th German Conference on Artificial Intelligence (KI).
Lecture Notes in Artificial Intelligence, vol. 861, pp. 343–354. Springer, Berlin (1994)

123



Set of Support, Demodulation, Paramodulation:... 493

72. Denzinger, J., Fuchs, M.: A comparison of equality reasoning heuristics. In: Bibel, W., Schmitt, P.H.
(eds.) Automated Deduction - A Basis for Applications, Applied Logic Series, vol. II: Systems and
Implementation Techniques, chap. 13, pp. 361–382. Kluwer Academic Publishers, Dordrecht (1998)

73. Denzinger, J., Kronenburg, M., Schulz, S.: Discount: a distributed and learning equational prover. J.
Autom. Reason. 18(2), 189–198 (1997)

74. Dershowitz, N.: Orderings for term-rewriting systems. Theoret. Comput. Sci. 17(3), 279–301 (1982)
75. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3, 69–116 (1987)
76. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical

Computer Science, vol. B, pp. 243–320. Elsevier, Amsterdam (1990)
77. Dershowitz, N.,Manna, Z.: Proving terminationwithmultiset orderings. Commun.ACM 22(8), 465–476

(1979)
78. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Auto-

mated Reasoning, vol. 1, chap. 9, pp. 535–610. Elsevier, Amsterdam (2001)
79. Dohan, K., Lynch, C.: Equational theorem proving modulo. In: Platzer, A., Sutcliffe, G. (eds.) Proceed-

ings of 28th International Conference on Automated Deduction (CADE). Lecture Notes in Artificial
Intelligence, vol. 12699, pp. 166–182. Springer, Berlin (2021)

80. Duarte, A., Korovin, K.: Implementing superposition in iProver. In: Peltier, N., Sofronie-Stokkermans,
V. (eds.) Proceedings of 10th International Joint Conference on Automated Reasoning (IJCAR). Lecture
Notes in Artificial Intelligence, vol. 12167, pp. 388–397. Springer, Berlin (2020)

81. Dunham,B., Fridshal,R., Sward,G.L.:Anon-heuristic program for proving elementary logical theorems.
In: Proceedings of 1st International Conference on Information Processing, pp. 282–285. UNESCO
House (1960). Also in J. Siekmann and G. Wrightson (Eds.) Automation of Reasoning 1 – Classical
Papers on Computational Logic 1957-1966, 93–98, Springer, Berlin 1983

82. Dunham, B., North, J.H.: Theorem testing by computer. In: Proceedings of Symposium, pp. 173–177.
Polytechnic Press (1963). Also in Siekmann, A.J., Wrightson, G. (Eds.) Automation of Reasoning 1 –
Classical Papers on Computational Logic 1957-1966, 173–177, Springer, Berlin 1983

83. Eisinger, N., Ohlbach, H.J.: Deduction systems based on resolution. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. I:
Logical Foundations, pp. 184–273. Oxford University Press, Oxford (1993)

84. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. Math. Comput.
Sci. 6(4), 409–425 (2012)

85. Font, J.M., Rodríguez, A.J., Torrens, A.: Wajsberg algebras. Stochastica 8(1), 5–31 (1984)
86. Fuchs, M., Wolf, A.: Cooperation in model elimination: CPtheo. In: Kirchner, C., Kirchner, H. (eds.)

Proceedings of 15th International Conference on Automated Deduction (CADE). Lecture Notes in
Artificial Intelligence, vol. 1421, pp. 42–46. Springer, Berlin (1998)

87. Ganzinger, H., deNivelle, H.: A superposition decision procedure for the guarded fragmentwith equality.
In: Proceedings of 14th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE (1999)

88. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proceedings of
18th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 55–64. IEEE (2003)

89. Ganzinger, H., Waldmann, U.: Theorem proving in cancellative Abelian monoids. In: McRobbie, M.A.,
Slaney, J.K. (eds.) Proceedings of 13th International Conference on Automated Deduction (CADE).
Lecture Notes in Artificial Intelligence, vol. 1104, pp. 388–402. Springer, Berlin (1996)

90. Gleiss, B., Kovàcs, L., Rath, J.: Subsumption demodulation in first-order theorem proving. In: Peltier,
N., Sofronie-Stokkermans, V. (eds.) Proceedings of 10th International Joint Conference on Automated
Reasoning (IJCAR), Lecture Notes in Artificial Intelligence, vol. 12166, pp. 297–315. Springer, Berlin
(2020)

91. Gleiss, B., Suda,M.: Layered clause selection for theory reasoning (short paper). In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Proceedings of 10th International Joint Conference on Automated Reasoning
(IJCAR), Lecture Notes in Artificial Intelligence, vol. 12166, pp. 402–409. Springer, Berlin (2020)

92. Goubault-Larrecq, J., Jouannaud, J.P.: The blossom of finite semantic trees. In: Voronkov, A., Weiden-
bach, C. (eds.) ProgrammingLogics: Essays inMemory ofHaraldGanzinger. LectureNotes inComputer
Science, vol. 7797, pp. 90–122. Springer, Berlin (2013)

93. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Auto-
mated Reasoning, chap. 3, pp. 101–178. Elsevier, Amsterdam (2001)

94. Haifani, F., Tourret, S.,Weidenbach, C.: Generalized completeness for SOS resolution and its application
to a new notion of relevance. In: Platzer, A., Sutcliffe, G. (eds.) Proceedings of 28th International
Conference on Automated Deduction (CADE). Lecture Notes in Artificial Intelligence, vol. 12699, pp.
327–343. Springer, Berlin (2021)

95. Herbrand, J.J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, École Normale Supérieure,
Université de Paris (1930). Published in Travaux Soc. Sciences et Lettres Varsovie, Cl. 3 (Mathem.

123



494 M. P. Bonacina

Phys.), 1930, and in Engl. transl. in W. D. Goldfarb (Ed.) Logical Writings of Jacques Herbrand, Reidel,
Dordrecht 1968

96. Hillenbrand, T.: Citius, altius, fortius: lessons learned from the theorem prover waldmeister. In: Dahn,
I., Vigneron, L. (eds.) Proceedings of 4th InternationalWorkshop on First-Order TheoremProving (FTP),
Electronic Notes in Theoretical Computer Science, vol. 86. Elsevier, Amsterdam (2003)

97. Hillenbrand, T., Piskac, R., Waldmann, U., Weidenbach, C.: From search to computation: redundancy
criteria and simplification at work. In: Voronkov, A.,Weidenbach, C. (eds.) Programming Logics: Essays
in Memory of Harald Ganzinger. Lecture Notes in Computer Science, vol. 7797, pp. 169–193. Springer,
Berlin (2013)

98. Hsiang, J., Rusinowitch, M.: On word problems in equational theories. In: Ottman, T. (ed.) Proceedings
of 14th International Colloquium on Automata, Languages, and Programming (ICALP), Lecture Notes
in Computer Science, vol. 267, pp. 54–71. Springer, Berlin (1987)

99. Hsiang, J., Rusinowitch, M.: Proving refutational completeness of theorem proving strategies: the trans-
finite semantic tree method. J. ACM 38(3), 559–587 (1991)

100. Hsiang, J., Rusinowitch, M., Sakai, K.: Complete inference rules for the cancellation laws. In: Proceed-
ings of 10th International Joint Conference on Artificial Intelligence (IJCAI), pp. 990–992 (1987)

101. Huet, G.: A complete proof of correctness of the Knuth-Bendix completion algorithm. J. Comput. Syst.
Sci. 23(1), 11–21 (1981)

102. Ihlemann,C., Jacobs, S., Sofronie-Stokkermans,V.:On local reasoning in verification. In:Ramakrishnan,
C.R., Rehof, J. (eds.) Proceedings of 14th Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Lecture Notes in Computer Science, vol. 4963, pp. 265–281. Springer,
Berlin (2008)

103. Jacobs, S., Waldmann, U.: Comparing instance generation methods for automated reasoning. J. Autom.
Reason. 38, 57–78 (2007)

104. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput.
15(4), 1155–1194 (1986)

105. Joyner, W.H., Jr.: Resolution strategies as decision procedures. J. ACM 23(3), 398–417 (1976)
106. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering. Unpublished note, Department

of Computer Science, University of Illinois at Urbana-Champaign (1980)
107. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Proceedings

of Conference on Computational Problems in Abstract Algebras, pp. 263–298. Pergamon Press, Oxford
(1970)

108. Korovin, K.: An invitation to instantiation-based reasoning: from theory to practice. In: Schmidt, R.A.
(ed.) Proceedings of 22nd International Conference on Automated Deduction (CADE). Lecture Notes
in Artificial Intelligence, vol. 5663, pp. 163–166. Springer, Berlin (2009)

109. Kounalis, E., Rusinowitch, M.: On word problems in Horn theories. J. Symb. Comput. 11(1–2), 113–128
(1991)

110. Kovàcs, L., Voronkov, A.: First order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.)
Proceedings of 25th International Conference on Computer-Aided Verification (CAV). Lecture Notes in
Computer Science, vol. 8044, pp. 1–35. Springer, Berlin (2013)

111. Kowalski, R.A.: Studies in the completeness and efficiency of theorem proving by resolution. Ph.D.
thesis, University of Edinburgh (1970)

112. Lee, S.J., Plaisted, D.A.: Eliminating duplication with the hyperlinking strategy. J. Autom. Reason. 9,
25–42 (1992)

113. Leitsch, A.: The Resolution Calculus. Springer, Berlin (1997)
114. Letz, R.: Clausal tableaux. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduction - A Basis for Appli-

cations, vol. I: Foundations - Calculi and Methods, chap. 2, pp. 43–72. Kluwer Academic Publishers,
Dordrecht (1998)

115. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SEtheo: a high performance theorem prover. J. Autom.
Reason. 8(2), 183–212 (1992)

116. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In: Robinson, J.A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, chap. 28, pp. 2015–2114. Elsevier, Amsterdam (2001)

117. Lifschitz, V., Morgenstern, L., Plaisted, D.A.: Knowledge representation and classical logic. In: van
Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 1, pp. 3–88.
Elsevier, Amsterdam (2008)

118. Loveland, D.W.: A simplified format for the model elimination procedure. J. ACM 16(3), 349–363
(1969)

119. Loveland, D.W.: A unifying view of some linear Herbrand procedures. J. ACM 19(2), 366–384 (1972)
120. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland, Amsterdam (1978)

123



Set of Support, Demodulation, Paramodulation:... 495

121. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like properties.
In: Dershowitz, N., Voronkov, A. (eds.) Proceedings of 14th International Conference on Logic, Pro-
gramming and Automated Reasoning (LPAR). Lecture Notes in Artificial Intelligence, vol. 4790, pp.
348–362. Springer, Berlin (2007)

122. Lusk, E., McCune,W.W., Overbeek, R.: ITP at Argonne National Laboratory. In: Siekmann, J. (ed.) Pro-
ceedings of 8th International Conference on Automated Deduction (CADE). Lecture Notes in Computer
Science, vol. 230, pp. 697–698. Springer, Berlin (1986)

123. Lynch, C.A.: Constructing Bachmair-Ganzinger models. In: Voronkov, A., Weidenbach, C. (eds.) Pro-
gramming Logics: Essays in Memory of Harald Ganzinger. Lecture Notes in Computer Science, vol.
7797, pp. 285–301. Springer, Berlin (2013)

124. Martin, U.: How to choose the weights in the Knuth-Bendix ordering. In: Lescanne, P. (ed.) Proceedings
of 2nd International Conference on Rewriting Techniques and Applications (RTA). Lecture Notes in
Computer Science, vol. 256, pp. 42–53. Springer, Berlin (1987)

125. McCharen, J.,Overbeek,R.,Wos, L.: Problems and experiments for andwith automated theorem-proving
programs. IEEE Trans. on Computers C–25(8), 773–782 (1976)

126. McCune, W.W.: Prover9 and Mace4. See http://www.cs.unm.edu/~mccune/prover9/
127. McCune, W.W.: Otter 3.3 reference manual. Tech. Rep. ANL/MSC-TM-263, Mathematics and Com-

puter Science Division, Argonne National Laboratory (2003)
128. McCune, W.W., Wos, L.: Otter - the CADE-13 competition incarnations. J. Autom. Reason. 18(2),

211–220 (1997)
129. Meredith, C.A.: The dependence of an axiom of Łukasiewicz. Trans. Am. Math. Soc. 87, 54–54 (1958)
130. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A.

(eds.) Handbook of Automated Reasoning, vol. 1, chap. 7, pp. 371–443. Elsevier, Amsterdam (2001)
131. Nummelin, V., Bentkamp, A., Tourret, S., Vukmirović, P.: Superposition with first-class Booleans and
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