Journal of Automated Reasoning (2022) 66:611-637
https://doi.org/10.1007/510817-022-09644-0

®

Check for
updates

A Formalization of Dedekind Domains and Class Groups of
Global Fields

1 2 3

Anne Baanen'(@® - Sander R. Dahmen“{® - Ashvni Narayanan>@® -
Filippo A. E. Nuccio Mortarino Majno di Capriglio?

Received: 10 September 2021 / Accepted: 7 August 2022 / Published online: 8 September 2022
© The Author(s) 2022

Abstract

Dedekind domains and their class groups are notions in commutative algebra that are essential
in algebraic number theory. We formalized these structures and several fundamental proper-
ties, including number-theoretic finiteness results for class groups, in the Lean prover as part
of the mathlib mathematical library. This paper describes the formalization process, noting
the idioms we found useful in our development and mathlib’s decentralized collaboration
processes involved in this project.

Keywords Formal math - Algebraic number theory - Commutative algebra - Lean - Mathlib

1 Introduction

In its basic form, number theory studies properties of the integers Z and its fraction field,
the rational numbers Q. For the sake of generalization, as well as for providing powerful
techniques to answer questions about the original objects Z and Q, it is worthwhile to study

Sander R. Dahmen, Ashvni Narayanan and Filippo A. E. Nuccio Mortarino Majno di Capriglio have
contributed equally to this study.

B<I Anne Baanen
t.baanen@vu.nl

Sander R. Dahmen
s.r.dahmen@vu.nl

Ashvni Narayanan
a.narayanan20@imperial.ac.uk

Filippo A. E. Nuccio Mortarino Majno di Capriglio

filippo.nuccio @univ-st-etienne.fr

Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
London School of Geometry and Number Theory, London, UK

4 Univ L}yon, Université Jean Monnet Saint—Etienne, CNRS UMR 5208, Institut Camille Jordan, 42023
Saint-Etienne, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-022-09644-0&domain=pdf
http://orcid.org/0000-0001-8497-3683
http://orcid.org/0000-0002-0014-0789
http://orcid.org/0000-0003-2777-4228
http://orcid.org/0000-0002-5318-9869

612 A.Baanen et al.

finite extensions of Q, called number fields, as well as their rings of integers (Sect. 2), whose
relations mirror the way QQ contains Z as a subring. In this paper, we describe our project
aiming at formalizing these notions and some of their important properties. Our goal is not
to get to the definitions and properties as quickly as possible; rather, we lay the foundations
for future work, as part of a natural and more general theory.

In particular, our project resulted in formalized definitions and elementary properties of
number fields and their rings of integers (Sect. 4.3), Dedekind domains (Sect. 5), and the
ideal class group and class number (Sect. 8). Apart from the very basics concerning number
fields, these concepts were not formalized before as far as we know. We note that a formal
definition of the class number is an essential requirement for the use of theorem provers in
modern number theory research. The main proofs that we formalized show that two definitions
of Dedekind domains are equivalent (Sect. 5.3), that the ring of integers of a number field is
a Dedekind domain (Sect. 7) and that the class group of the ring of integers of a number field
is finite (Sect. 8). In fact, most of our results for number fields are also obtained in the more
general setting of global fields.

Our work is developed as part of the mathematical library mathlib [31] for the Lean 3
theorem prover [15]. The formal system of Lean is a dependent type theory augmented with
quotient types and classical reasoning, both of which are commonly used in mathlib (Sect. 3).
As we finished parts of our work, we contributed these to mathlib. We, in turn, used results
contributed by others after the start of the project. At several points, we had just merged a
formalization into mathlib that another contributor needed, immediately before they con-
tributed a result that we needed. Due to the decentralized organization and fluid nature of
contributions to mathlib, its contents are built up of many different contributions from over
250 different authors. Attributing each formalization to a single set of main authors would not
do justice to all others whose additions and tweaks are essential to its current use. Therefore,
we will make clear whether a contribution is part of our project or not, but we will not stress
who we consider to be the main authors.

The source files of the formalization have been contributed to mathlib. We have preserved
the development branch that this paper is based on.! We also maintain a repository > containing
the source code referred to in this paper.

This paper is an extended version of a paper published in the ITP 2021 conference pro-
ceedings [3]. The additions to this paper, apart from several clarifications and enhancements
throughout the text, mainly concern the following.

e Code samples throughout have been updated to reflect parts of our formalization con-
tributed to mathlib after the previous publication and to incorporate changes in mathlib
after contribution.

o Instead of only considering class groups of Dedekind domains, we briefly describe class
groups for general domains; see the end of Sects. 2 and 8.1.

e Thenew Sect. 3 gives amore detailed explanation of Lean as used in mathlib, in particular
the use of typeclasses and bundling.

e We discuss definitional equality in Lean in the context of overlapping typeclass instances
in Sect. 4.1.

e The further evolution of fraction rings in mathlib is discussed at the end of Sect. 4.5.

e We elaborate on invertibility and unique factorization of ideals in Dedekind domains in
Sects. 5.2 and 5.4.

1 https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev.

2 https://github.com/lean-forward/class-number-journal.

@ Springer

https://github.com/leanprover-community/mathlib/tree/dedekind-domain-dev
https://github.com/lean-forward/class-number-journal

Dedekind Domains and Class Groups 613

e We give more details on the proof of finiteness of the class group and its formalization
in Sect. 8.2.

e We elaborate on future directions in Sect. 9.2, including research relying on the formal-
ization described here.

2 Mathematical Background

Let us now introduce some of the main objects we study, described informally. We assume
some familiarity with basic ring and field theory.

A number field K is a finite extension of the field Q, and as such has the structure of a
finite-dimensional vector space over Q; its dimension is called the degree of K. The easiest
example is Q itself, and the two-dimensional cases are given by the quadratic number fields
Q(d) ={a+bd:a,beQ},whered € Zisnota square. Similarly, adding a cubic root
Jd of some d € Z which is not a cube leads to the number field Q(+/d): it has degree 3 but not
all cubic number fields arise in this way. An example of a cubic number field that is not of this
form, and that will occupy us later for other interesting features, is Q(wg) = {a + by + ca% :
a,b,c € Q}, where « is the unique real number satisfying ag + aé — 200+ 8 = 0.1In
general, taking any root « of an irreducible polynomial of degree n over Q yields a number
field of degree n, namely Q(«) = {co+croe+ - - +co_10” 1 1 co, 1, ..., cne1 € Q}, and,
up to isomorphism, all number fields of degree » arise in this way.

The ring of integers Ok of a number field K is defined as the integral closure of Z in K,
namely

Ok :={x € K : f(x) = 0where f € Z[x] is a monic polynomial},

where we recall that a polynomial is called monic if its leading coefficient equals 1. While
it might not be immediately obvious that Ok is a ring, this follows from general algebraic
properties of integral closures. Some examples of rings of integers are the following. Taking
K = Q, we get Og = Z back. For K = Q) = Q(+/—1) we get that Ok is the ring of
Gaussian integers Z[i] = {a + bi : a,b € Z}. But for K = Q/5) we do not simply get
ZIN5] = {a + b5 : a, b € Z} as Ok, since the golden ratio ¢ := (1 + \[5)/2 ¢ Z[+/5]
satisfies the monic polynomial equation 9> — ¢ — 1 = 0; hence by definition, ¢ € Og. It
turns out that Ox = Z[¢] = {a + by : a, b € Z}. Finally, if K = Q(«g) with «g as before,
then Og = {a + bag + c(ao + aé)/2 :a, b, c € 7}, llustrating that explicitly writing down
Ok can quickly become complicated. Further well-known rings of integers are the Eisenstein
integers Z[(1 + «/3)/2] and the ring Z[+/2].

Thinking of O as a generalization of Z, it is natural to ask which of its properties still
hold in Ok and, when this fails, if a reasonable weakening does.

An important property of Z is that it is a principal ideal domain (PID), meaning that every
ideal is generated by one element. This implies that every nonzero nonunit element can be
written as a finite product of prime elements, which is unique up to reordering and multiplying
by £1. A ring where this holds is called a unique factorization domain, or UFD. For example,
6 can be factored in primes in 4 equivalent ways, namely 6 =2-3=3.2 = (-2) - (-3) =
(—=3) - (—2). In fact, the previously mentioned examples of rings of integers are UFDs, but
this is certainly not true for all rings of integers. For example, unique factorization does not
holdin Oy /=5, = Z[+/=5]: itis easy to prove that 6 = 2-3 and 6 = (1 ++/=5)(1 —/=5)
provide two essentially different’ ways to factor 6 into prime elements of Z[+/—35].

3 By “essentially different” we mean that one factorization cannot be obtained from the other via multiplication
by units.

@ Springer

614 A.Baanen et al.

As it turns out, there is a way to weaken this notion of unique factorization in a meaningful
way. Namely, by considering factorization of ideals instead of elements, given a number field
K, with ring of integers Ok, a beautiful and classical result by Dedekind shows that every
nonzero ideal of Ok can be factored as a product of prime ideals in a unique way, up to
reordering.

Although unique factorization in terms of ideals is of great importance, it is still interesting,
and sometimes necessary, to also consider factorization properties in terms of elements. We
have already mentioned that unique factorization in Z follows from the fact that every ideal
is generated by a single element. Now, it is convenient to extend the notion of ideals of Z
to that of fractional ideals. These are additive subgroups of Q of the form %I with [an
ideal of Z and d a nonzero integer. When the distinction is important, we refer to an ideal
I C Z as an integral ideal. The nonzero fractional ideals of Z naturally form a multiplicative
group (whereas, for instance, there is no integral ideal / € Z such that I * (2Z) = (1)).
The statement that every ideal is generated by a single element translates to the fact that the
quotient group of nonzero fractional ideals modulo Q* is trivial (where % € Q* corresponds

to éaZ, and the multiplicative group of invertible elements of a ring R is denoted by R*).

It turns out that this quotient group can be defined for every ring of integers Ok . The
fundamental theoretical notion beneath this construction is that of Dedekind domains: these
are integral domains D which are Noetherian (every ideal of D is finitely generated), integrally
closed (if an element x in the fraction field Frac D of D is a root of a monic polynomial with
coefficientsin D, then actually x € D), and of Krull dimension at most 1 (every nonzero prime
ideal of D is maximal). It can be proved that the nonzero fractional ideals of a Dedekind
domain D form a group under multiplication, and that the quotient of this group by the
image of the natural embedding of (Frac D)* is called the (ideal) class group Clp. For later
reference, fractional ideals generated by one element of Frac D are called principal fractional
ideals, so the image of the natural embedding of (Frac D)* consists exactly of the nonzero
principal fractional ideals.

What is arithmetically crucial is the theorem ensuring that the ring of integers Ok of
every number field K is a Dedekind domain, and that in this case the class group Clp, is
actually finite. In particular, Clp, can be seen as “measuring” how far ideals of Ok are from
being generated by a single element and, consequently, as a measure of the failure of unique
factorization. The order of Clo, is called the class number of K . Intuitively, then, the smaller
the class number, the fewer factorizations are possible. In particular, the class number of K
is equal to 1 if and only if Ok is a UFD.

The statements in the previous paragraph also hold for function fields, namely fields which
are finite extensions of IF, () = FracF,[¢], where [F,[t] stands for the ring of univariate
polynomials (in a free variable) with coefficients in a finite field F;, with g elements. Recall
that when ¢ is a prime number, [F;; is simply the field Z/g7Z. A field which is either a number
field or a function field is called a global field.

The concept of class group actually not only makes sense for Dedekind domains but
more generally for (at least) any integral domain R as follows. While the nonzero fractional
ideals of R in general need not be a group, they do form a commutative monoid. Hence, the
invertible fractional ideals of R form a group, and the class group of R (denoted Cl) is now
defined as the quotient of this group by the image of the natural embedding of (Frac R)*.

In the upcoming sections, we will describe the formalization of the above concepts as part
of mathlib.

@ Springer

Dedekind Domains and Class Groups 615

3 Lean and Mathlib

The formal system of Lean is a dependent type theory based on the calculus of inductive
constructions. This means that each element e has a unique type t, written e : t. The natural
number 0 has type N, and the rational 0 has type Q. One can then identify 0: N with 0: Q
using a map N — Q called a coercion (denoted by the arrow 4 or left implicit), thatis, (0:
Q) =1 (0: N). Types have types too, for example N : Type. The full hierarchy consists of
an impredicative universe Prop sitting at the bottom of a noncumulative chain Prop : Type
:Type 1:Type 2: ...;“an arbitrary Type u” is abbreviated as Type*. Propositions
correspond to elements of Prop, while a (verified) proof of the proposition P: Prop
corresponds to anelementp: P.Inaddition to these features commonly found in a dependent
type theory, Lean provides proof irrelevance, quotient types and classical reasoning. Proof
irrelevance means that for any proposition P: Prop, any two proofs p; p, : P are judged
equal by the system. These features are all commonly used in mathlib.

Lean uses typeclass inference to automatically infer properties of certain objects. If we
define a structure with the keyword class, then one can supply values for the class that Lean
will automatically infer, by tagging these with instance. As an example, consider aring R
with a subring S. The instance subring. to_ring says that S is also aring. Consequently,
one can now use lemmas about rings for S without having to invoke subring. to _ring.
We put the implicit arguments to be inferred by the typeclass system in square brackets. Other
implicit arguments remain in curly brackets, while explicit arguments go in round brackets.
As an example, consider:

theorem pow_succ {M : Type u} [monoid M] (a : M) (n : N)
a” (n+1) =a*a”™n

When invoking this theorem, one must provide the explicit arguments a, which has type M,
and a natural number n. As a result, Lean can determine the value of M through unification
and can then use the typeclass system to infer a value for [monoid M].

The flagship general-purpose mathematical library for Lean is mathlib; other libraries
are available for more specialized purposes. Organizationally, mathlib is characterized by a
distributed and decentralized community of contributors, a willingness to refactor its basic
definitions, and a preference for small, yet complete, contributions over larger projects added
all at once. In this project, as part of the development of mathlib, we followed this philosophy
by contributing pieces of our work as they were finished. In turn, we used other mathlib
contributors’ results as they were made available.

There is a variety of tactics available in mathlib such as simp (simplifies the main
goal target using lemmas tagged with the attribute [simp]), library _search (tries to
close the current goal by applying a lemma from the library), and ring (proves equality
of polynomial expressions over commutative (semi)rings). Lean uses these to simplify the
statement or to close the goal. These are very efficient when working with proofs that are
calculation heavy, or that follow from a small number of easy (or mathematically trivial)
steps.

3.1 Use of Typeclasses and Bundling
Typeclasses were originally introduced in Haskell as a mechanism for operator overload-

ing [34], and are used throughout Lean’s core library and mathlib to endow types with
mathematical structures consisting of both operators and their properties [31]. When the

@ Springer

616 A.Baanen et al.

elaborator sees a function with an instance parameter being applied, such as the [monoid
M] parameter of pow _succ a n, a Prolog-like search is started to automatically synthe-
size a suitable value for this parameter. Each of the local parameters and the declarations
marked as instance is tested in turn to see if their type matches the expected type of the
instance synthesis. All instance parameters of candidate instances are themselves recursively
inferred, until either a suitable term is constructed or no more candidates remain; an error
is raised in the latter case [2, Sect. 10]. Compared to Haskell’s, Lean’s typeclasses have few
structural restrictions: notably, classes and instances can depend on any term, instances may
overlap, classes can apply to multiple types, and can have functional dependencies.

In our development, we followed the common practice in mathlib of providing structure
on a type, whenever such a structure exists canonically, through typeclasses. The informal
notion of providing a certain mathematical structure on a type should not be confused with
the structure keyword formally declaring a structure type whose elements are tuples. To
confuse matters further, Lean implements typeclasses as structure types, where the typeclass
instances are tuples of the typeclass’s fields. Typeclasses provided us a way to treat uniformly
situations that are informally considered the same, as we discuss in Sects.4.1 and 4.2. Our
reliance on typeclasses did not cause any noticeable slowness in proof checking: there was
no instance that should be found but could not due to timeouts.

A central consideration in formalizing definitions for mathlib is choosing the appropriate
amount of bundling: determining whether information about an object should be carried by
the object itself (bundled), or passed as a separate value (unbundled) [4]. For example, the
is _number _field typeclass of Sect. 4 is considered to have unbundled inheritance from
the £ield class because instances of these classes are passed in separate parameters, while
it has bundled inheritance from char _zeroand finite _dimensional since both are
included as fields of the structure. Similarly, the formalization of admissible absolute values
discussed in Sect. 8.2 features a bundled structure absolute _value which includes a
map along with proofs stating that this map is an absolute value, and an unbundled structure
is _admissible which takes the absolute value map as a separate parameter.

Unbundling has an advantage in expressivity: because each property of an object is passed
in a separate parameter, modifying one hypothesis requires modifying one parameter. In
contrast, bundling hypotheses means that each subset of hypotheses requires its own structure
declaration; any results proved for a given structure have to be made available for other
structures manually or through automation such as typeclass inference. The advantage here
is that bundled structures result in simpler parameter lists, since fully unbundling the field
class would result in each of its 38 structure fields becoming a separate parameter.

Technical considerations play another important role in choosing the level of bundling:
bundled properties are easily found by automation compared to unbundled properties which
require a search of the local context, bundled inheritance between classes can only be applied
when the two classes have the same type parameters, while long unbundled inheritance chains
cause exponentially large terms, resulting in slowdowns and high memory consumption.
Although there is no general rule governing bundling, in general mathlib prefers to bundle
if possible, unbundling only when the additional properties are all Prop-valued and are not
involved in long inheritance chains.

4 Number Fields, Global Fields, and Rings of Integers
We refer the reader to Sect. 2 for the mathematical background needed in this section.

We formalized number fields as the following typeclass:

@ Springer

Dedekind Domains and Class Groups 617

class is_number_field (K : Type*) [field K] : Prop :=
[to_char_zero : char_zero K]
[to_finite_dimensional : finite_dimensional Q K]

The class keyword declares a structure type (in other words, a type of record) and enables
typeclass inference for terms of this type; we describe the use of typeclasses in mathlib
in Sect.3.1. Round brackets mark parameters that must explicitly be supplied by the user,
such as (K: Type*), while square brackets mark instance parameters inferred by the
typeclass system, suchas [field K].Thecondition [to _char _zero: char_zero
K] states that K has characteristic zero, so the unique ring homomorphism Z — K is
an embedding. This implies that there is a Q-algebra structure on K (found by typeclass
instance synthesis), endowing K with the Q-vector space structure used in the hypothesis
[to_finite _dimensional: finite _dimensional QK].
Similarly, we defined the class of function fields over a finite field F,; as

class function_field (Fg F : Type*) [field Fqg] [field F]

Prop :=
[to_algebra : algebra (ratfunc Fqg) F]
[to_finite_dimensional : finite_dimensional (ratfunc Fq) F]

The hypothesis [to _algebra: algebra (ratfunc [F,;) F] witnessesthat Fisa
field extension of the field IF; (#) of rational functions over F;, where I, is any field (although
in our applications we will insist that I, be actually finite). Again, the condition that this
extension is finite is written using the finite _dimensional typeclass. We present a
more detailed analysis of algebra in Sect.4.1 and of fraction fields including rat func in
Sect.4.5. For now, we point out that there are many fields K that are isomorphic to the field
of rational functions [, (¢); we provided a theorem function _field _iff that shows
that the choice of K does not matter. Note that there is no requirement that the field Fq is
finite, since this is not needed to state the conditions on F. We instead add a [fintype
Fqg] hypothesis only to those results that require finiteness.

4.1 Field Extensions

The definition of is _number _field illustrates our treatment of field extensions. A field
L containing a subfield K is said to be a field extension L/K . Often we encounter towers of
field extensions: we might have that Q is contained in K, K is contained in L, L is contained
in an algebraic closure K of K, and K is contained in C. We might formalize this situation
by viewing Q, K, L, and K as sets of complex numbers C and defining field extensions as
subset relations between these subfields. This way, no coercions need to be inserted in order
to map elements of one field into a larger field. Unfortunately, we can only avoid coercions
as far as we are able to stay within one largest field. For example, the definition of complex
numbers depends on many results for rational numbers, which would need to be proved again,
or transported, for the subfield of C isomorphic to Q.

Instead, we formalized results about field extensions through parametrization. The fields K
and L can be arbitrary types and the hypothesis “L is a field extension of K is represented
by an instance parameter [algebra K L] denoting a K-algebra structure on L. The
algebra structure provides us with a ring homomorphism algebra_mapKL: K — L;
this map is injective because K and L are fields. In other words, field extensions are given
by their embeddings.

@ Springer

618 A.Baanen et al.

There are multiple possible K -algebra structures for a field L and Lean does not enforce
uniqueness of typeclass instances, but the mathlib maintainers try to ensure all instances that
can be inferred are definitionally equal. Definitional equality is a syntactical notion of equality
found in dependent type theories that reflects the possibility of computation: for example,
the term 2 + 2: N is definitionally equal to 4. Whenever Lean can infer the definitional
equality of two terms (the terms are said to unify), one can be substituted for the other. Thus,
ensuring definitional equality for instances means that overlapping instances will not lead to
conflicts when one instance is expected and another is found.

4.2 Scalar Towers

The main drawback of using arbitrary embeddings to represent field extensions is that we
need to prove that these maps commute. For example, we might start with a field extension
L/Q, then define a subfield K of L, resulting in a tower of extensions L /K /Q. In such a tower,
the map Q — L should be equal to the composition Q — K followed by K — L. Such an
equality cannot always be achieved by defining the map Q — L to be this composition: in
the example, the definition of the map Q — K depends on the map Q — L.

The solution in mathlib is to parametrize over all three maps, as long as there is also a proof
of coherence: a hypothesis of the form “L /K /F is a tower of field extensions” is translated
into three instance parameters [algebra F K], [algebra K L], and [algebra F
L], along with a parameter [is _scalar _tower F K L] expressing that the maps
commute.

The is _scalar _tower typeclass derives its name from its applicability to any three
types among which scalar multiplication operations exist:

class is_scalar_tower (M N a : Type*)
[has_scalar M N] [has_scalar N «] [has_scalar M o]
Prop :=
(smul_assoc : V(x : M) (y : N) (z : «),
(x-y) -z =x-(y - z))

For example, if R is aring, A is an R-algebra, and M is an A-module, we can state that M
is also an R-module by adding a [is _scalar _tower R A M] parameter. Since x - y
for an R-algebra A is defined as algebra map R A x * vy, applying smul _assoc
foreach x : K with y = (1 : L) and z = (1 : F) shows that the algebra _maps indeed
commute in a tower of field extensions L/K /F.

Common is _scalar _tower instances are declared in mathlib, such as for the maps
R — S — B when S is a R-subalgebra of A and B is an A-algebra such that is _scalar
_tower R A B;thisalsoimplies thatthe maps R — § — A form atower. The effectis that
almost all coherence proof obligations are automated through typeclass instance synthesis.
Only when defining a new algebra structure were we required to supply the is _scalar
_tower instances ourselves.

4.3 Rings of Integers

When K is a number field (defined as a field satisfying is _number _field), the ring Og
of integers in K is defined as the integral closure of Z in K. This is the subring containing
those x : K that are a root of a monic polynomial with coefficients in Z:

def number_field.ring of_integers (K : Type*) [field K]

@ Springer

Dedekind Domains and Class Groups 619

[is_number_field K] : subalgebra Z K :=
integral_closure Z K

where integral _closure was already defined in mathlib. When K is a function field
over the finite field IF;, we defined Ok analogously as integral _closure (I, [X])
K.

Since the integers Z are integrally closed in Q, this construction of the ring of integers
of the number field Q is isomorphic, but not definitionally equal, to Z. To avoid dealing
with these isomorphisms, and also to treat the two definitions of rings of integers on an equal
footing, we introduced atypeclass is _integral _closure A R Bstating that A is the
integral closure of R in B, and worked with a generic is _integral _closure instance
instead of the specific ring _of _integers construction when possible.

4.4 Subobjects

The ring of integers is one example of a subobject, such as a subfield, subring or subalgebra,
defined through a characteristic predicate. In mathlib, subobjects are “bundled,” in the form of
a structure comprising the carrier set and proofs showing the carrier set is closed under
the relevant operations. Bundled subobjects provide similar benefits to those of bundled
morphisms; the choice for the latter is explained in the mathlib overview paper [31]. Where
the algebraand is _scalar _tower typeclasses provide an interface generalizing over
multiple equivalent definitions, subobjects provide a specific implementation of that interface
in the form of a subtype.

Two new subobjects that we defined in our development were subfield as well as
intermediate _field. We defined a subfield of a field K as a subset of K that contains
0 and 1 and is closed under addition, negation, multiplication, and taking inverses. If L is
a field extension of K, we defined an intermediate field as a subfield of L that is also a K -
subalgebra: in other words, a subfield that contains the image of algebra_map K L. Other
examples of subobjects available in mathlib are submonoids, subgroups, and submodules
(with ideals as a special case of submodules); all of these are provided with an instance of
the set _like typeclass that supplies notation such as a membership relation “x € S.”

The new definitions found immediate use: soon after we contributed our definition of
intermediate _field to mathlib, the Berkeley Galois theory group used it in a for-
malization of the primitive element theorem. Soon after the primitive element theorem was
merged into mathlib, we used it in our development of the trace form. This anecdote illustrates
the decentralized development style of mathlib, with different groups and people building
on each other’s results in a collaborative process.

Through the set _like typeclass, subobjects can be coerced to types, by sending a
subobject S to the subtype of all elements of S. By putting typeclass instances on this subtype,
we could reason about inductively defined rings such as Z and subrings such as integral
_closure Z K uniformly. If § : subfield K, there is a ring embedding, the map that
sends x : S to K by “forgetting” that x € S, and we registered this map as an algebra
S K instance, also allowing us to treat field extensions of the form @ — C and subfields
uniformly. Similarly, for F' : intermediate_fieldXK L, we defined the corresponding
algebra K F,algebra F L,and is _scalar _tower K F L instances.

@ Springer

620 A.Baanen et al.

4.5 Fields of Fractions

The fraction field Frac R of an integral domain R can be defined explicitly as a quotient type
as follows: starting from the type of pairs (a, b) with a, b € R such that b # 0, one quotients
by the equivalence relation generated by (a, b) ~ (aw, ba) for all « # 0 : R, writing the
equivalence class of (a, b) as 7. It can easily be proved that the ring structure on R extends
uniquely to a field structure on Frac R; in mathlib this construction is called fraction
_ring R, and is used to define the field of rational functions K (X) = rat func K. When
R = Z, this yields the traditional description of QQ as the set of equivalence classes of
fractions, where % = :—‘6‘, etc.

The drawback of this construction is that there are many other fields that can serve as the
field of fractions for the same ring. Consider the field {z € C : Rz € Q, Iz € Q}, which
is isomorphic to Frac(Z[i]) but not definitionally equal to it. Indeed, the mathlib definition
of the rational numbers Q is a product type, not a quotient type, so we would not be able to
treat Q as the field of fractions of Z in this setup. Any properties proven for QQ would have
to be repeated for Frac(Z), using transfer lemmas stating these properties are preserved by
the isomorphism between Q and Frac(Z).

The strategy used in mathlib is to rather allow for many different fraction fields of our
given integral domain R—as fields K with a suitable [algebra R K] instance, where
the map algebra _map R K witnesses that all elements K are “fractions” of elements of
R—and to parametrize every result over the choice of K. The conditions on the R-algebra
structure on K are encoded as a typeclass is _fraction _ring R K. In the definition
used by mathlib, a fraction ring is a special case of a ring localization, which is defined
for any commutative ring R. Different localizations restrict the denominators to different
multiplicative submonoids of R \ {0}.

The conditions on algebra _map R Kimply that K is the smallest field, up to isomor-
phism, containing R, expressed by the following unique mapping property. If g: R — A is
an injective map to a ring A such that g(x) has a multiplicative inverse for all x # 0 : R,
then it can be extended uniquely to a map K — A compatible with algebra _map R
K and g. In particular, given is_fraction ringRK; and is_fraction_ringRKj,
we can derive an isomorphism K| =~ K. The construction of Frac R then results in a field
of fractions (with aninstance is _fraction_ring R (fraction_ring R))rather
than the field of fractions.

The above description of fraction fields is the third such formalization in mathlib. The
first version consisted of a quotient type quotient _ring R, constructed similarly to the
current definition of fraction_ring R.Due to the aforementioned drawback—namely,
that this provided no easy way to view Q as the field of fractions of Z, for instance—this was
refactored to use a characteristic predicate instead.

The second version defined K to be the field of fractions of R if there existed an injective
fractionmap f : R — K, which is a ring homomorphism witnessing that all elements of K
are “fractions” of elements of R; the map and its properties were bundled as atype fraction
_map R K. Results on fraction fields were parametrized over a choice of fraction map f.
This made it possible to view Q as the fraction field of Z, by providing a suitable map called
int.fraction _map: fraction _map Z Q. This came at a price: informally, at any
given stage of one’s reasoning, the field K is fixed and the map f: R — K is applied
implicitly, just viewing every x : R as x : K. It is now impossible to view R < K as an
inclusion of R-subalgebras, because the map f is needed explicitly to give the R-algebra
structure on K. As a workaround, mathlib used a type synonym codomain f:= K and
instantiated the R-algebra structure given by f on this synonym. Again we encountered a

@ Springer

Dedekind Domains and Class Groups 621

distinction between QQ “itself” and Frac(Z) = codomain int.fraction_map, still
requiring the transfer of results such as typeclass instances.

The most recent version is the one described above. Inspired by our success in using
the algebra typeclass to denote inclusions of rings, we unbundled the explicit (f:
fraction _map R K) parameters into an instance parameter [algebra R K] that
specifies the map, and an instance parameter [is _fraction_ring R K] that specifies
the conditions satisfied by the map. Separating out these parameters finally allowed us to
painlessly view Q as the fraction ring of Z while preserving the original Z-algebra structure

on Q.

4.6 Representing Monogenic Field Extensions

In Sect. 2, we have informally said that every number field K can be written as K = Q(«) for
aroot « of an irreducible polynomial P € Q[X]. This can be made precise in several ways.
For instance, one can consider a large field L (of characteristic 0) where P splits completely,
then choose a root @ € L and let K = Q() be the smallest subfield of L containing «. Or,
one can consider the quotient ring Q[X]/ P and observe that this is a field where the class X
(mod P) isarootof P. The assignment o — X (mod P) yields an isomorphism of the two
fields, but any other choice of aroot o’ € L leads to another isomorphism Q(a’) = Q[X]/P.
Although mathematically we often tacitly identify these constructions, there is no canonical
representation of the monogenic extensions of Q, those which can be obtained by adjoining
a single root of one polynomial.

The same continues to hold if we replace the base field Q with another field F, thus
considering extensions of the form F(«), now requiring that o be a root of some P € F[X].
Various constructions of F(«) have already been formalized in mathlib. The ability to switch
between these representations is important: sometimes K and F are fixed and we want an
arbitrary «; sometimes « is fixed and we want an arbitrary type representing F («).

To find a uniform way to reason about all these definitions, we chose to formalize the
notion of power basis to represent monogenic field extensions: this is a basis of the form
1,a,e?, ..., a" ! : K (viewing K asa F-vector space). We defined a structure type bundling
the information of a power basis. Omitting some generalizations not needed in this paper,
the definition reads:

structure power_basis (F K : Type*) [field F] [field K]
[algebra F K] :=

(gen : K) (dim : N) (basis : basis (fin dim) F K)

(basis_eq pow : V i, basis i = gen ©~ (i : N))

We formalized that the previously defined notions of monogenic field extensions are equiv-
alent to the existence of a power basis.

With the power _basis structure, we gained the ability to parametrize our results, being
able to choose the F' and K in a monogenic field extension K/ F, or being able to choose the
o generating F (o) (by setting the gen field to «). To specialize a result from an arbitrary K
with a power basis over F to a specific construction of K = F(«), one can apply the result
to the power basis pb generated by « and rewrite power_basis.genpb = «.

@ Springer

622 A.Baanen et al.

5 Dedekind Domains

The right setting to study algebraic properties of number fields are Dedekind domains. We
formalized fundamental results on Dedekind domains, including the equivalence of two
definitions of Dedekind domains.

5.1 Definitions

There are various equivalent conditions, used at various times, for an integral domain D to
be a Dedekind domain. The following three have been formalized in mathlib:

e is _dedekind _domain D: D is a Noetherian integral domain, integrally closed in
its fraction field and has Krull dimension at most 1;

e is _dedekind _domain _inv D: D is an integral domain and nonzero fractional
ideals of D have a multiplicative inverse (we discuss the notion and formalization of
fractional ideals in Sect. 5.2);

e is _dedekind _domain _dvr D: D is a Noetherian integral domain and the local-
ization of D at each nonzero prime ideal is a discrete valuation ring.

Note that fields are Dedekind domains according to these conventions.

The mathlib community chose is _dedekind _domain as the main definition, since
this condition is usually the one checked in practice [28]. The other two equivalent definitions
were added to mathlib, but before formalizing the proof that they are indeed equivalent.
Having multiple definitions allowed us to do our work in parallel without depending on
unformalized results. For example, the proof of unique ideal factorization in a Dedekind
domain initially assumed is _dedekind _domain _inv D, and the proof that the ring
of integers Ok is a Dedekind domain concluded is _dedekind _domain (ring _of
_integers K). After the equivalence between is _dedekind _domain D and is
_dedekind _domain _inv D was formalized, we could easily replace usages of is
_dedekind _domain _inv with is _dedekind _domain.

The conditions is _dedekind _domainand is_dedekind_domain_invrequire
a fraction field K, although the truth value of the predicates does not depend on the choice
of K. For ease of use, we let the type of is _dedekind _domain depend only on the
domain D by instantiating K in the definition as fraction _ring D. From now on, we
fix a fraction field K of D.

class is_dedekind_domain (D : Type*)

[comm_ring D] [is_domain D] :=
(is_noetherian_ring : is_noetherian_ring D)
(dimension_le_one : dimension_le_one D)
(is_integrally_closed : is_integrally closed D)

Applications of is _dedekind _domain can choose a specific fraction field through
the following lemma exposing the alternate definition:

lemma is_dedekind_domain_iff [is_fraction_ring D K]
is_dedekind_domain D <
is_noetherian_ring D A dimension_le_one D A
V {x : K}, is_integral D x —
3 (y : D), algebra_ map D Ky = X

@ Springer

Dedekind Domains and Class Groups 623

We marked is _dedekind _domain as a typeclass by using the keyword class
rather than structure, allowing the typeclass system to automatically infer the Dedekind
domain structure when an appropriate instance is declared, such as for PIDs or for rings of
integers.

5.2 Fractional Ideals

The notion which is pivotal to the definition of the ideal class group of a Dedekind domain
is that of fractional ideals: given any integral domain R with a field of fractions F, we
define is _fractional as a predicate on R-submodules J of F, informally as “there is
an x : R with xJ € R.” For a Dedekind domain, nonzero fractional ideals form a group
under multiplication. As seen in Sect. 4.5, this notion depends on the field F as well as
on the embedding f := algebra _map R F. A more precise way of stating the above
condition is then f(x)J € f(R). We formalized the definition of fractional ideals of R
contained in F as a type fractional _ideal R F, whose elements consist of an R-
submodule of F along with a proof of is _fractional. The structure of fractional ideals
does not depend on the choice of a fraction field, which we formalized as an isomorphism
fractional _ideal.canonical _equiv between two types of fractional ideals on
R, corresponding to different fields of fractions.

We defined the addition, multiplication, and intersection operations on fractional ideals, by
showing that the corresponding operations on submodules map fractional ideals to fractional
ideals. We also formalized that these operations give a commutative semiring structure on
the type of fractional ideals. For example, multiplication of fractional ideals is defined as

lemma is_fractional.mul (I J : submodule R F)
is_fractional R I — is_fractional R J —
is_fractional R (I * J) := _ -- proof omitted

instance : has_mul (fractional_ideal R F) :=

(A, I J, (T * J : submodule R F,

is_fractional.mul I.is_fractional J.is_fractional))

Defining the quotient of two fractional ideals requires slightly more work. Consider any
R-algebra A and an injection R < A. Given ideals /, J < R, the submodule //J < A is
defined by the property

lemma submodule.mem div_iff_ forall mul_mem {x : A}
{I J : submodule R A}
xel/ J<«Vyed x*yel

Beware that the notation 1/7 might be misleading here: indeed, for general integral domains,
the equality / % 1/1 = 1 might not hold. As an example, one can consider the ideal (X, Y) in
C[X, Y], which is not a Dedekind domain: by definition, (X, ¥)‘1 consists of the elements
a= g: Frac(C[X, Y]) with the property thata x b € C[X, Y] for all b € (X, Y). This last
condition is equivalent to requiring that both a * X and a * Y are in C[X, Y] and thus the
denominator ¢ of a must be divisible both by X and by Y, so actually g € C*. It follows
that (X, Y)~! = C[X, Y], and in particular (X, Y) * (X,Y)"! = (X,Y) C 1 =C[X, Y].

On the other hand, we formalized that the equality /x1// = 1 holds for Dedekind domains
(Sect. 5.3) as the following lemma:

@ Springer

624 A.Baanen et al.

theorem fractional_ideal.mul_inv_cancel
[is_dedekind_domain D]
{I : fractional_ideal D F} (hne : T # 0) : I * (1 / I) =1

This justifies the notation /~! = 1/1. In fact, we define this notation even for the ideal 0,
by declaring that 0~! = 0. This fits the pattern of the typeclass group _with _zero in
mathlib, consisting of groups endowed with an extra element O whose inverse is again 0.

Moreover, mathlib used to define a/b := a % b~ ", but our definition of I ~! = 1/I would
cause circularity. This led us to a major refactor of this core definition. In particular, we
had to weaken the definitional equality to a proposition; this involved many small changes
throughout mathlib.*

5.3 Equivalence of the Definitions

We now describe how we proved and formalized that the two definitions is _dedekind
_domainand is _dedekind_domain _inv of being a Dedekind domain are equivalent.
Let D be a Dedekind domain, and let f: D — K a fraction map to a field of fractions K of
D.

To show that is _dedekind _domain _inv implies is _dedekind _domain, we
follow the proof given by Frohlich in [20, Chap. 1, Sect. 2, Proposition 1.2.1]. A constant
challenge that was faced while coding this proof was already mentioned in Sect.4.5, namely
the fact that elements of the domain must be traced along the inclusion into the chosen field
of fractions. The proofs for being integrally closed and of dimension being less than or equal
to 1 are fairly straightforward.

Formalizing the Noetherian condition was the most challenging. Frohlich considers ele-
ments a,...,a, € I and by, ..., b, € [} for any nonempty fractional ideal I, satisfying
Zi aib; = 1. Observe now that, in mathlib, the definition of the product A * B of two
fractional ideals A, B is a special case of the product of two submodules, and therefore it is
defined as

submodule.has_mul = {mul := A (A B : submodule D K),
|_| (a : A), submodule.map ((algebra.lmul D K) a.val) B}

Unraveling this definition, we see that it defines A x B as the smallest (i.e., the infimum with
respect to set-theoretic inclusion as order relation) submodule containing all submodules
a- B fora € A, where a - B is the range of the function A b: B, a xb. However, it is quite
challenging to formalize that an element of A * B must be a finite sum) _; a; * b;, fora; € A
and b; € B. Instead, we show that, for every element x € A % B, there are finite sets 7 C A,
T’ C Bsuchthat x € span (T * T’),formalized as submodule.mem _span _mul
_finite _of _mem _mul. Now considering a nonzero integral ideal / of the ring D, by
definition of invertibility we can write 1 € (1 : fractional _ideal D K) = I * I
—1 Hence, we obtain finite sets T I and T’ C 1! such that 1 is contained in the D-span
of T x T'. We used the norm _cast tactic [25] to resolve most coercions but this tactic did
not solve coercions coming from the inclusion algebra _map D K. With coercions, the
actual statement of the latter expression in Lean is 1T/ € 14 (4I) ~!, which reads

(T’ : set K) € (((I : fractional_ ideal D K)~! : submodule D
K) : set K)

4 The pull requests are available as https://github.com/leanprover-community/mathlib/pull/5302 and https://
github.com/leanprover-community/mathlib/pull/5303.

@ Springer

https://github.com/leanprover-community/mathlib/pull/5302
https://github.com/leanprover-community/mathlib/pull/5303
https://github.com/leanprover-community/mathlib/pull/5303

Dedekind Domains and Class Groups 625

From the existence of T and 7', we concluded that / is indeed finitely generated, thus finishing
the proof.

The theorem fractional _ideal.mul _inv_cancel proves the converse, namely
that is _dedekind _domain implies is _dedekind _domain _inv. The classical
proof consists of three steps: first, every maximal ideal M C D, seen as a fractional ideal, is
invertible; second, every nonzero ideal is invertible, using that it is contained in a maximal
ideal; third, the fact that every fractional ideal J satisfies xJ < [for a suitable element
x € D and a suitable ideal / € D implies that every fractional ideal is invertible, concluding
the proof that nonzero fractional ideals form a group. The third step was easy, building
upon the material developed for the general theory of fractional _ideal. Concerning
the first two, we found that passing from the case where M is maximal to the general case
required more code than directly showing invertibility of arbitrary nonzero ideals. The formal
statement reads

lemma coe_ideal _mul_inv [is_dedekind_domain D]
(I : ideal D) (hIO : I # 0)
(rr ~ (TI)f1 : fractional _ideal D K) =1

from where it becomes apparent that we had to repeatedly distinguish between I : ideal
D and its coercion 1T : fractional _ideal D K although these objects, from a math-
ematical point of view, are identical.

The formal proof of this result relies on the lemma exists not _mem_one _of _ne
_bot, which says that for every nontrivial ideal 0 C I C D, there exists an element in the
field K which is not integral (so, notin 1: fractional _ideal D K) butliesin 11
The proof begins by invoking that every nonzero ideal in the Noetherian ring D contains a
product of nonzero prime ideals. This result was not previously available in mathlib. The
dimension condition shows its full force when applying this lemma: each prime ideal in the
product 7 % I~!, being nonzero, will be maximal because the Krull dimension of D is at
most 1; from this, exists _not _mem _one _of _ne _bot follows easily. Having the
above lemma at our disposal, we were able to prove that every ideal I # 0 is invertible by
arguing by contradiction: if / « I~ # D, we can find an element x € K\D which is in
(I %« I"Y~! thanks to exists _not _mem _one _of _ne _bot; some easy algebraic
manipulation then implies that x is actually integral over D. Since D is integrally closed,
x € D, contradicting the construction of x. Combining these results gives the equivalence
between the two conditions for being a Dedekind domain.

5.4 Unique Ideal Factorization

As briefly indicated before, we also formalized a proof that in a Dedekind domain every
nonzero ideal can be expressed as a product of prime ideals in a unique way up to the order
of the factors. In fact, for an integral domain, every nonzero ideal is a product of prime ideals
if and only if all nonzero fractional ideals are invertible; the uniqueness follows separately.
We have formalized one direction of this equivalence, a proof of the converse can be found
in [36, Chap. 5, Sect. 6, Theorem 10].

We formalized the unique ideal factorization property of a Dedekind domain D by instan-
tiating a unique factorization monoid structure on its ideals.

instance ideal.unique_factorization_monoid
unique_factorization_monoid (ideal D)

@ Springer

626 A.Baanen et al.

In mathlib, unique factorization domains are actually a special case of unique factorization
monoids (UFMs). A commutative monoid R with an absorbing element 0 and injective
multiplication is defined to be a UFM, if the relation “x properly divides y” is well-founded
(implying that every element can be factored as a product of irreducibles) and an element of
R is prime if and only if it is irreducible (implying uniqueness of the factorization). Examples
in mathlib of UFMs are the unique factorization domains N and Z as well as, for any UFM
o, the quotient of « by the subgroup of invertible elements associates «. With much of
the necessary definitions and properties already formalized, the formalization of this unique
factorization result has been done in well under 100 lines of Lean code. One of the main
mathematical ingredients (interesting in its own right) is that for ideals in a Dedekind domain,
to divide is to contain:

lemma ideal.dvd_iff le {I J : ideal D} : (I | J) < J < I

Similarly, to strictly contain is to properly divide, so the well-foundedness condition of
UFMs is exactly the property that a Dedekind domain is Noetherian. In order to show that
all irreducible elements of the monoid of nonzero prime ideals in D are prime elements, we
formalized that irreducible ideals in a Dedekind domain are maximal and therefore prime
(note that prime ideals of a Dedekind domain D coincide with prime elements of the monoid
of its nonzero ideals); the converse holds in every monoid.

We note that the unique factorization result, or actually an easy corollary thereof, is an
important ingredient in our finiteness proof for the class group of rings of integers, as we will
elaborate on in Sect. 8.2.

6 Principal Ideal Domains are Dedekind

As an example of our definitions, we discuss in some detail our formalization of the fact
that a principal ideal domain is a Dedekind domain. In the same way that unique factor-
ization domains are generalized in mathlib to unique factorization monoids, there is no
explicit definition of PIDs in mathlib. Rather, it is split up into multiple hypotheses. One
uses [comm_ring R] [is_domain R] [is_principal _ideal _ring R] to
denote a PID R, where is _domain is a typeclass asserting that the ring is nontrivial and
there are no zero divisors, and is _principal _ideal _ringis atypeclass defined for
all commutative rings:

class is_principal_ideal_ring (R : Type*) [comm_ring R] :=
(principal : V (I : ideal R), is_principal I)

Our proof that the hypotheses [comm_ring R] [is_domain R] [is_principal
_ideal _ring R] imply is _dedekind _domain R was relatively short:

instance principal_ideal_ring.to_dedekind_domain (R : Type*)
[comm_ring R] [is_domain R] [is_principal_ideal_ring R]
is_dedekind_domain R :=
(principal_ideal_ring.is_noetherian_ring,
dimension_le_one.principal_ideal_ring R,
unique_factorization_monoid.is_integrally_closed)

The Noetherian property of a Dedekind domain followed easily by the previously defined
lemma principal _ideal _ring.is _noetherian _ring, since, by definition,
each ideal in a principal ideal ring is finitely generated (by a single element).

@ Springer

Dedekind Domains and Class Groups 627

We proved the lemma dimension _le_one.principal _ideal _ring, whichis
an instantiation of the existing result is _prime.to _maximal _ideal, showing that
a nonzero prime ideal in a PID is maximal. The latter lemma uses the characterization that
I is a maximal ideal if and only if any strictly larger ideal J 2 [is the full ring R. If I is
a nonzero prime ideal and J 2 [in the PID R, we see that a generator j of J is a divisor
of any generator i of /. Since [is prime, this implies that either j € I, contradicting the
assumption that J D I, or i = 0, contradicting that / is nonzero, or finally that j is a unit,
implying J = R as desired.

The final condition of a PID being integrally closed was the most challenging.
We used the previously defined instance principal _ideal _ring.to _unique
_factorization _monoid to deduce that a PID is a unique factorization monoid
(UFM), to instantiate our proof that every UFD is integrally closed. In a PID, the Noethe-
rian property implies that the division relation is well-founded, and principal _ideal
_ring.irreducible_iff_ prime shows thatirreducible elements and prime elements
coincide. To prove that an irreducible element p is prime, the proof uses that prime elements
generate prime ideals and irreducible elements of a PID generate maximal ideals. Since all
maximal ideals are prime ideals, the ideal generated by p is maximal, hence prime, thus p
is prime. We proved the lemma irreducible _of _prime, which shows the converse
holds in any commutative monoid with zero.

To show that a UFM is integrally closed, we first formalized the Rational Root Theorem,
named denom _dvd _of _is _root, which states that for a polynomial p : R[X] and an
element of the fraction field x : Frac R such that p(x) = 0, the denominator of x divides the
leading coefficient of p. If x is integral with minimal polynomial p, the leading coefficient
is 1, therefore the denominator is a unit and x is an element of R. This gave us the required
lemma unique _factorization _monoid.integrally _closed, which states
that the integral closure of R in its fraction field is R itself.

7 Rings of Integers are Dedekind Domains

An important classical result in algebraic number theory is that the ring of integers of a number
field K, defined as the integral closure of Z in K, is a Dedekind domain. We formalized a
stronger result: given a Dedekind domain D and a field of fractions F, if K is a finite separable
extension of F, then the integral closure of D in K is a Dedekind domain with fraction field
K. Our approach was adapted from Neukirch [28, Theorem 3.1]. Throughout this section,
let D be a Dedekind domain with a field of fractions F, K a finite, separable field extension
of F and let S denote the integral closure of D in K.

The first step was to show that K is a field of fractions for the integral closure, namely, that
there is an instance is _fraction _ring _of _finite _extension D F K: is
_fraction _ring S K. The main content of is _fraction _ring _of _finite
_extension consisted of showing that all elements x : K can be written as y/z for elements
y € S,z € D C §; the standard proof of this fact (see [16, Theorem 15.29]) formalized
readily.

We could then show that the integral closure of D in K is a Dedekind domain, by proving
it is integrally closed in K, has Krull dimension at most 1, and is Noetherian. The fact that
the integral closure is integrally closed was immediate.

To show the Krull dimension is at most 1, we needed to develop basic going-up theory
for ideals. In particular, we showed that an ideal / in an integral extension is maximal if it

@ Springer

628 A.Baanen et al.

lies over a maximal ideal, and used a result already available in mathlib that a prime ideal /
in a ring extension lies over a prime ideal.

lemma is_maximal_of_is_integral_of_is_maximal_comap
[algebra R S] (hRS : algebra.is_integral R S)
(I : ideal S) [is_prime I]

(hI : is_maximal (comap (algebra_map R S) I))
is_maximal I
theorem is_prime.comap (f : R —-+* S) (I : ideal S)
[hI : is_prime I] : is_prime (comap f I)

The final condition, that the integral closure S of D in L is a Noetherian ring, required the
most work. We started by following the first half of Dummit and Foote [16, Theorem 15.29],
so that it sufficed to find a nondegenerate bilinear form B such that all integral x, y : K satisfy
B(x,y) € integral_closure D K. We then formalized the results in Neukirch [28,
Sects. 2.5-—2.8] to show that the trace form is a bilinear form satisfying these requirements.

7.1 The Trace Form

In the notation from the previous section, consider the bilinear map lmul:= A x vy : K,
x * y. The trace of the linear map 1mul x is called the algebra trace Trg ;r(x) of x. We
defined the algebra trace as a linear map, in this case from K to F:

noncomputable def trace : K—; [F] F :=
linear_map.comp (linear_map.trace F K)
(to_linear_map (lmul F K))

This definition was marked noncomputable since 1inear _map.trace makes a case
distinction on the existence of a finite basis, choosing an arbitrary finite basis if one exists
(since the value of 1inear _map.trace does not depend on this choice) and returning 0
otherwise. This latter case did not occur in our development.

We defined the trace form to be an F-bilinear form on K, mapping x, y : K to Trg/r(xy).

noncomputable def trace_form : bilin_form F K :=
{ bilin := A x y, trace FK (x * y), .. /- proofs omitted -/
}

In the following, let L/ K/ F be a tower of finite extensions of fields, namely we assume
[algebra F K] [algebra K L] [algebra F L] [is _scalar _tower F
K L], as described in Sect. 4.2.

The value of the trace depends on the choice of F and K; we formalized this as lemmas
trace _algebra map x: trace F K (algebra map F K x) = finrank
F K * xaswellastrace_trace x:trace F K (trace (K L X)) = trace
F L x;here finrank F Kisthedegree ofthefield extension K /F. These results followed
by direct computation.

To compute Trg ,r (x), it therefore suffices to consider the trace of x in the smallest field
containing x and F, which is the monogenic extension F(x) discussed in Sect.4.6. There
is a nice formula for the trace in F(x), although the terms in this formula are elements in
a larger field L (such as the splitting field of minpoly F x, the minimal polynomial of
x over F). In formalizing this formula, we first mapped the trace to L using the embedding
algebra_map F L, which gave the following statement:

@ Springer

Dedekind Domains and Class Groups 629

lemma power_basis.trace_gen_eq sum_roots
(pb : power_basis F K)
(h : polynomial.splits (algebra_map F L)
(minpoly F pb.gen))
algebra_map F L (trace F K pb.gen) =
sum (roots (map (algebra_map F L) (minpoly F pb.gen)))

We formulated the lemma in terms of the power basis, since we needed to use it for F(x)
here and for an arbitrary finite separable extension L/K later in the proof.

Theelementsof roots (map (algebra_map F L) (minpoly F pb.gen))
are called conjugates of x in L. Each conjugate of x is integral since it is a root of the
same monic polynomial, and integer multiples and sums of integral elements are integral.
Combining trace _gen_eq_sum_rootsand trace_algebra_map showed that the
trace of x is an integer multiple (namely finrank F(x) L) of a sum of conjugate roots,
hence we concluded that the trace (and trace form) of an integral element is also integral.

Finally, we showed that the trace form is nondegenerate, following Neukirch [28, Propo-
sition 2.8]. Since K/ F is a finite, separable field extension, it has a power basis pb generated
by an element x : K. Letting x; denote the k-th conjugate of x in an algebraically closed
field L/K /F, the main difficulty was in checking the equality >, x,iﬂ = Trg, r(xith).
Directly applying trace _gen _eq_sum_roots was tempting, since we had a sum over
conjugates of powers on both sides. However, the two expressions did not precisely match:
the left-hand side is a sum of conjugates of x, where each conjugate is raised to the power
i + j, while the conclusion of trace _gen _eq _sum _roots resulted in a sum over
conjugates of x/*/.

Instead, the paper proof switched here to an equivalent definition of conjugate: the con-
jugates of x in L are the images (counted with multiplicity) of x under each embedding
o: F(x) — L that fixes F. This equivalence between the two notions of conjugate was
contributed to mathlib by the Berkeley group in the week before we realized we needed
it. Mapping trace _gen _eq _sum _roots through the equivalence gave Trg r(x) =
3", o x. Since each o is a ring homomorphism, o x'*/ = (o x)'*/, so the conjugates of
x*J are the (i + j)-th powers of conjugates of x, which concluded the proof.

8 Class Group and Class Number
8.1 The Class Group

Recall from Sect. 2 that the ideal class group Clp of a Dedekind domain D is the quotient of
the group of nonzero fractional ideals of D by the nonzero principal fractional ideals. More
generally, given an integral domain R with fraction field K, we can define the class group Clg
as the quotient of the invertible fractional ideals by the nonzero principal fractional ideals.
We formalized this in Lean by first defining a map to_principal _idealRK : K* —
(fractional_ideal RK) *, and defined the class group as

def class_group (R K : Type*) [comm_ring R] [is_domain R]
[field K] [algebra R K] [is_fraction_ring R K] :=
(fractional_ideal R K)* / (range (to_principal_ideal R K))

Here, R* for a semiring R denotes the multiplicative group of its invertible elements.
Recall from Sect. 5.2 that in the general case of an integral domain R the type of fractional

@ Springer

630 A.Baanen et al.

ideals of R is endowed with the structure of a commutative semiring. Therefore, the quotient
of the abelian group (fractional_ideal RK)* by the subgroup of nonzero principal
fractional ideals is well defined. In the case where R is a Dedekind domain, we provided a
map class _group.mkO sending nonzero integral ideals of R to the corresponding class
in the class group.

8.2 Finiteness Results

In general, Dedekind domains can have infinite class groups: in fact, a celebrated result
by Claborn shows that for every abelian group G, there exists a Dedekind domain D with
Clp = G (see [11, Theorem 7]). For an extreme—but somewhat classical—example, the
Dedekind domain

D=C[X,Y]/X¥?=X>—X—1)

has class group isomorphic to C/Z?. However, as discussed in Sect. 2, the rings of integers
of global fields have finite class groups.

We let K be a number field and let K’ be a function field, with ring of integers Og and
Ok (we fix a choice of a model I, [¢]), respectively. Most proofs of the finiteness of Clo,
available in a modern textbook (see [28, Theorems 4.4, 5.3, 6.3]) depend on Minkowski’s
lattice point theorem, a result from the geometry of numbers (which has been formalized in
Isabelle/HOL [18]). Extending this proof to show the finiteness of Clo,, is quite involved
and does not result in a uniform proof for Clo, and Clo,, . Our formalization instead adapted
and generalized a classical approach to the finiteness of Clo, , where the use of Minkowski’s
theorem is replaced by the pigeonhole principle. We have made available online an informal
writeup of the proof, used in the formalization efforts.’ The classical approach seems to go
back to Kronecker and can be found, for instance, in [23]. We note that some other “uniform”
approaches can be found in [1] and [30].

Let D be an Euclidean domain: in particular, it will be a PID and hence a Dedekind domain.
Given a fraction field F of D, let K be a finite separable field extension of F. We formalized,
in the theorem class _group.fintype _of _admissible _of _finite, that the
integral closure S of D in K has a finite class group whenever D has an “admissible” absolute
value abs. This notion originated in our project from the adaptation and generalization of
the classical finiteness proof in interaction with the formalization efforts. Very informally,
the admissibility conditions require that the remainder operator % produces values that are
not too far apart. More precisely, and in more “ordinary” mathematical notation, writing
mod instead of % and x — |x| for the absolute value function D — Z, the latter is called
admissible if both:

e we have a function card : R.g — N;
e foralle € R.g, b € D — {0}, and finite subsets A C D, we can partition A into at most
card(e) parts, such that all x, y € A in the same part satisfy

|x mod b — y mod b| < €|b|.

To formalize this, we made minor modifications like turning card into a total function on R
and turning A into an n-tuple (noting that in this setting there is no need to forbid repetition of
elements within the n-tuple). This resulted in the following predicate classifying admissible
absolute values abv:

5 https://github.com/lean-forward/class-number-journal/blob/jar-reviews/FiniteClassGroup.pdf .

@ Springer

https://github.com/lean-forward/class-number-journal/blob/jar-reviews/FiniteClassGroup.pdf

Dedekind Domains and Class Groups 631

structure is_admissible (abv : absolute_value D Z)
extends is_euclidean abv :=
(card : R— N) (exists_partition’
V(n:N) {¢ : R} (he : 0<¢g) {b: D} (hb: b # 0)
(A : finn —- D), 3 (t : fin n — fin (card ¢g)),
V ig i1,t ig=t i1 —
(abv (A 1% b - A i9g% b) : R) < abv b - ¢)

The is _euclidean abv predicate asserts that the absolute value abv : D — Z respects
the remainder operator of the Euclidean domain D, in particular abv (a % b) <abv b.

The above condition formalizes and generalizes an intermediate result in paper proofs of
the finiteness of the class group; the different proofs for number fields and function fields
(still assuming K /F separable) become the same after this point. The direct consequence
(by the pigeonhole principle) of admissibility of x — |x|, applied in practice, is that for all
€ € R.g, b € D— {0}, n € N, and all subsets A € D" containing more than card(¢)"
elements, there exist distinct x, y € D" such that foralli = 1, ..., n we have |x; mod b —
yi mod b| < €]b|. We used division with remainder to replace the fractional part operator on
F in the classical proof, which was essential to incorporate function fields, and at the same
time allowed our proof to stay entirely within D to avoid coercions.

In a similar way to the algebra trace of Sect.7.1, we defined the norm of an element x :
S as the determinant of the linear map 1mul x. We used the admissibility of abs to find a
finite set finset _approx of elements of D, such that the following generalization of [23,
Theorem 12.2.1] holds.

theorem exists_mem_finset_approx’ (a b : S) (hb : b # 0)
3 (g : S) (r € finset_approx),
abv (algebra.norm D (r - a - g * b)) < abv (algebra.norm D
b)

Translated back into more “ordinary” mathematical notation, this theorem tells us that, for
all a, b € S with b nonzero, there exist ¢ € S and r € finset_approx, such that

[Norms,p(ra — gb)| < [Normg,p(D)|.

After this, the classical approach mentioned above formalized smoothly: we show that
each class in Clg contains an ideal J with M € J, where M is the product of all elements of
finset _approx, hence M is nonzero. Since the ideals of the Dedekind domain S have
unique factorization, the nonzero ideal (M) spanned by M has only finitely many divisors.
To contain is to divide in Dedekind domains, so there are only finitely many ideals J with
M € J. Thus, we concluded that Clg is finite under the condition of the existence of an
admissible absolute value on D.

It remained to define an admissible absolute value for Z and F,[¢]. On Z, the usual
Archimedean absolute value fulfills the requirements by setting card € to be é, rounded up.
Since remainders mod b can be chosen to lie in the interval [0, b[, partitioning this interval
into card € intervals of length €b induces the desired partition.

For F,[t], we showed that | flgeg = qdee f for f € Fy4lt] is an admissible absolute
value. Fix a polynomial b € F,[] and a set A C I, [#] of remainders modulo b. Since
the coefficients of polynomials in I, [¢] are elements of a finite set of cardinality ¢, and the
degree of each f € A’ is strictly less than deg b, for each c there are only ¢ distinct values
for the c coefficients of the monomials of degree degb — c up to degb — 1. If the highest
coefficients of f, g € A’ coincide, then |(f — &)ldeg < gdegb—c = q~°|b|geg. By setting

@ Springer

632 A.Baanen et al.

carde = [— log, €—| so that ¢~ °4€ < ¢, we can partition A’ into card € subsets based on
highest coefficients, so that elements of each partition are within distance €|b]|geg as desired.

We concluded that when K is a global field, restricting to separable extensions of [F (t)
in the function field case (but see the remark below), the class group is finite:

noncomputable instance : fintype
(class_group (number_field.ring_of_integers K) K) :=
class_group.fintype_of_admissible_of_finite Q K
absolute_value.abs_is_admissible

noncomputable instance : fintype
(class_group (function_field.ring of_integers Fg F) F) :=
class_group. fintype_of_admissible_of_finite (ratfunc Fqg) F
polynomial.card_pow_degree_is_admissible

Finally, we defined number _field.class_numberand function_field.class
_number as the cardinality of the respective class groups.

We remark that it is possible to get rid of the [is _separable F K] assumption
above. For instance, using that any function field K, given as finite extension of F,(z),
contains an s € K such that K /F,(s) is a finite and separable extension; see for example
[24, Corollary 4.4 in Chap. VIII] (noting that I, is perfect and K has transcendence degree
1 over IF;). One then also needs to show that the finiteness of the class group of the integral
closure of IF,[s] in K is preserved upon replacing F,[s] by F,[¢]. A trivial way to get rid
of the assumption in the statement above is to simply move it to our definition of function
field. While this would be mathematically consistent by the result just cited, we did not opt
to do this (for instance showing a finite extension of a function field is a function field would
become nontrivial). Alternatively, one could aim at dropping the separability condition in the
formalized result mentioned in the first paragraph of Sect. 7. Having a formalization of this
generalization would be interesting in its own right. This approach would also still need the
adaptation of some of the details in the final steps for the finiteness of the class group in the
admissible case.

We rounded off our development by determining the class number in the simplest possible
case: the rational numbers Q. First, we formalized the theorem class _number _eq_one
_iff, stating that the class number of K is 1 if and only if O is a principal ideal domain.
After defining the isomorphism rat.ring _of _integers _equiv showing Og is Z,
we could use the fact that Z is a PID to conclude that the class number of Q is equal to 1:

theorem rat.class_number : number_field.class_number Q = 1

class_number_eq one_iff .mpr
(is_principal_ideal_ring.of_surjective _
rat.ring_ of_integers_equiv.symm.surjective)

@ Springer

Dedekind Domains and Class Groups 633

9 Discussion
9.1 Related Work

Broadly speaking, one could see our formalization work as part of number theory. There are
several formalization results in this direction. Most notably, Eberl formalized a substantial
part of analytic number theory in Isabelle/HOL [19]. Narrowing somewhat to a more algebraic
setting, Cano, Cohen, Dénes, Mortberg, and Siles formalized in Coq constructive definitions
in ring theory, with a particular focus on factorization properties and with applications to
algebraic notions like well-founded divisibility and Krull dimension [8]. Moreover, de Lima,
Galdino, Borges Avelar, and Ayala-Rincén recently formalized in PVS basic notions regard-
ing ring theory, with a particular focus on quotients: isomorphism theorems, the Chinese
remainder theorem, and the definitions of prime and maximal ideals [14]. We are not aware
of any other formal developments of fractional ideals, Dedekind domains or class groups of
rings of integers.

There are many libraries formalizing basic notions of commutative algebra such as field
extensions and ideals, including the Mathematical Components library in Coq [26], the alge-
braic library for Isabelle/HOL [5], the set . mm database for MetaMath [27], and the Mizar
Mathematical Library [22]. The field of algebraic numbers, or more generally algebraic clo-
sures of arbitrary fields, are also available in many provers. For example, Blot [6] formalized
algebraic numbers in Coq, Cohen [12] constructed the subfield of real algebraic numbers
in Coq, Thiemann et al. [33] formalized algebraic numbers in Isabelle/HOL, Carneiro [9]
in MetaMath, and Watase [35] in Mizar. To our knowledge, the Coq Mathematical Compo-
nents library is the only formal development beside ours specifically dealing with number
fields [26, field/algnum.v].

Apart from the general theory of algebraic numbers, there are formalizations of spe-
cific rings of integers. For instance, the Gaussian integers Z[i] have been formalized in
Isabelle/HOL by Eberl [17], in MetaMath by Carneiro [10] and in Mizar by Futa et al. [21].
Eberl’s Isabelle/HOL formalization deserves special mention in this context since it intro-
duces techniques from algebraic number theory, defining the integer-valued norm on Z[i]
and classifying the prime elements of Z[i].

An application of our work is the formalization of the adelic ring of a global field in Lean
(Maria Inés de Frutos-Fernandez [13]). In particular, the author formalized adic valuations on
Dedekind domains, and also proved a correspondence between idele and ideal class groups.
Our work on Dedekind domains and class groups was an essential building block for this
project.

Finally, since our project became available in the mathlib library, a team led by Brasca
has begun formalizing Fermat’s Last Theorem for regular primes. Fermat’s Last Theorem is
the assertion that, for all integers n > 3,

Vx,y,2€4, x"+y'=7"=x-y-z2=0. (FLT,)

It is immediate to see that, for positive integers n and m, if n divides m, then the validity of
(FLT,) implies that of (FLT,,). Therefore, also taking into account that (FLT4) was already
dealt with by Fermat himself, it suffices to only consider exponents that are odd prime
numbers.

Now, an odd prime number p is said to be regular if it does not divide the order of the
class group Clg(;,) of the number field obtained by adjoining to Q a primitive pth root of

@ Springer

634 A.Baanen et al.

unity £p; the latter means that ;‘5 = 1 and ¢, # 1 or, equivalently, that ¢, is a root of the
irreducible polynomial

XP—1

X -1
A classical result, due to Kummer’s work in 1847, is that (FLT) is true for every regular
prime number p. This is the result Brasca and his team have begun formalizing in Lean 3
in the on-going work [7], and it evidently requires the finiteness of the class group in order
to define the notion of a regular prime as above®. Moreover, most arguments occurring in

Kummer’s proof pertain to the structure of the ring of integers Z[¢,,] = Og(¢,,) as a Dedekind
domain, and our work lies at the core of the formalization of these structures.

:prl_'_X]’*Z_i._...—{—X—f—l.

9.2 Future Directions

Having formalized various basic results of algebraic number theory, there are several natural
directions for future work, including formalizing some of the following results.

e The group of units of the ring of integers O in a number field K is finitely generated,
or even Dirichlet’s unit theorem [28, Theorem 7.4], stating that O,X(hasrank r +s — 1
and that its torsion subgroup is the cyclic group of roots of unity in K. Here r denotes
the number of real embeddings of K and s the number of conjugate pairs of complex
nonreal embeddings of K. The finite generation result also holds in function fields, again
with a precise description of the rank and of the torsion.

e Other finiteness results in algebraic number theory, most notably Hermite’s theorem
about the existence of finitely many number fields, up to isomorphism, with bounded
discriminant [28, Theorem 2.16]. While this could be done without interpreting the primes
dividing the discriminant as the primes that ramify in the number field, it would certainly
be interesting to set up some basic ramification theory: on the one hand, this would also
prove essential for many other developments and, on the other, it would allow to prove
a version of Hermite’s theorem stating that, up to isomorphism, there are only finitely
many number fields with bounded degree and restricted ramification. As usual, there are
analogous results in the function field setting, though they are less straightforward. One
reason for this is that the nondegeneracy of the trace form from Sect. 7.1 does not hold
any more when the separability condition is dropped.

e Class number computations, starting with, say, quadratic number fields. This could be
a step towards the verification of correctness of number-theoretic software, such as
KASH/KANT [29] and PARI/GP [32]. Along the same lines, unit group computations
would also be of much interest, most notably the explicit computation of » +s — 1 genera-
tors for the free part of O . Restricting to quadratic fields, we see that the rank is positive
(and equal to 1) if and only if the field is of the shape Q(+/d) for some positive integer
d that is not a square. Finding a generator can be done by using continued fractions, of
which the basics are already implemented in Lean by Kevin Kappelmann, though cer-
tifying that a given (perhaps externally computed) element is indeed a generator could
also be done without continued fractions.

e Applications of algebraic number theory to solving Diophantine equations, such as deter-
mining all pairs of integers (x, y) such that y> = x3 4 D for some nonzero D € Z. It

6 Itis actually possible to simply define a regular prime only in terms of divisibility of some Bernoulli numbers,
instead of mentioning class groups. But this definition would at any rate need to be translated in terms of class
numbers in order to implement Kummer’s proof.

@ Springer

Dedekind Domains and Class Groups 635

would be interesting to deal with some values of D where no elementary techniques are
available and where factorization in the ring of integers of Q(+/ D), along with informa-
tion about the class number, could solve the equation.

9.3 Conclusion

In this project, we confirmed the rule that the hardest part of formalization is to get the
definitions right. Once this is accomplished, the paper proof (sometimes first adapted with
formalization in mind) almost always translates into a formal proof without too much effort.
In particular, we regularly had to invent abstractions to treat instances of the “same” situation
uniformly. Instead of fixing a canonical representation, be it ¥ € K C L as subfields or
the field of fractions Frac R, or the monogenic K («), we found that making the essence of
the situation an explicit parameter, as in is _scalar _tower, is _fraction _ring
or power _basis, allows to treat equivalent viewpoints uniformly without the need for
transferring results.

The formalization efforts described in this paper cannot be cleanly separated from the
development of mathlib as a whole. The decentralized organization and highly integrated
design of mathlib meant that we could contribute our formalizations as we completed them,
resulting in a quick integration into the rest of the library. Other contributors building on
these results often extended them to meet our requirements, before we could identify that
we needed them, as the anecdote in Sect. 4.4 illustrates. In other words, the low barriers for
contributions ensured mutually beneficial collaboration.

Quantifying the ratio between the length of our formal proofs and their paper counterparts
in an accurate and meaningful way will be very difficult as background assumptions and levels
of detail varied significantly. We actually did not always literally follow some written text,
but deviated from the paper mathematics (often discussed orally, on blackboards, through
Zulip, etc.) on many occasions. An important aspect we had to take into account was to
consistently combine different descriptions of mathematical objects from different sources.
The formalization project described in this paper resulted in the contribution of thousands
of lines of Lean code involving hundreds of declarations. A rough estimate concerning the
former would be that about five thousand lines of project-specific code were added, and about
half of that number of lines of more generic background code. We validated existing design
choices used in mathlib, refactored those that did not scale well, and contributed our own
set of designs. The real achievement was not to complete each proof, but to build a better
foundation for formal mathematics.

Acknowledgements We would like to thank Jasmin Blanchette and the anonymous reviewers for useful
comments on previous versions of the manuscript, which found their way into this paper. A. N. would like to
thank Prof. Kevin Buzzard for his constant support and encouragement, and for introducing her to the other
co-authors. A. N. and F. N. wish to express their deepest gratitude to Anne Baanen for the generosity shown
along all stages of the project. Without Anne’s never-ending patience, it would have been impossible for them
to contribute to this project, and to overcome several difficulties. Finally, we would like to thank the whole
mathlib community for invaluable advice all along the project.

Author Contributions All authors contributed to the formalization project as well as to the extended version.
All authors commented on previous versions of the manuscript.

Funding Anne Baanen was funded by NWO Vidi Grant No. 016.Vidi.189.037, Lean Forward. Sander R.

Dahmen was funded by NWO Vidi Grant No. 639.032.613, New Diophantine Directions. Ashvni Narayanan
was funded by EPSRC Grant EP/S021590/1 (UK).

@ Springer

636 A.Baanen et al.

Data Availability See Code availability.

Code Availability Full source code of the formalization is maintained as part of mathlib, https://github.com/
leanprover-community/mathlib. Copies of the source files relevant to this paper are available in a separate
repository at https://github.com/leanforward/class-number-journal.

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Artin, E., Whaples, G.: Axiomatic characterization of fields by the product formula for valuations. Bull.
Am. Math. Soc. 51(7), 469-492 (1945)

2. Avigad, J., de Moura, L., Kong, S.: Theorem Proving in Lean. Carnegie Mellon University, Pittsburgh,
PA, USA (2021). Release 3.23.0, https://leanprover.github.io/theorem_proving_in_lean/

3. Baanen, T., Dahmen, S.R., Ashvni N., Nuccio Mortarino Majno di Capriglio, FA.E.: A Formalization
of Dedekind Domains and Class Groups of Global Fields. In: Cohen, L., Kaliszyk, C. (eds.) ITP 2021.
LIPIcs, vol. 193, pp. 5-1519. Schloss Dagstuhl—Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany
(2021). https://doi.org/10.4230/LIPIcs.ITP.2021.5. https://drops.dagstuhl.de/opus/volltexte/2021/13900

4. Baanen, T.: Use and abuse of instance parameters in the Lean mathematical library. CoRR abs/2202.01629
(2022) arxiv:2202.01629. Accepted for publication at ITP 2022, Haifa, Israel

5. Ballarin, C., Aransay, J., Baillon, M., de Vilhena, P.E., Hohe, S., Kammiiller, F., Paulson, L.C.: The
Isabelle/HOL Algebra Library. http://isabelle.in.tum.de/dist/library/HOL/HOL- Algebra/index.html

6. Blot, V.: Basics for algebraic numbers and a proof of Liouville’s theorem in C-CoRN. MSc internship
report (2009)

7. Brasca, R., etal.: The ring of integers of a cyclotomic field. https://leanprover-community.github.io/blog/
posts/the-ring-of-integers-of-a-cyclotomic-field/. Accessed 20 June 2022

8. Cano, G., Cohen, C., Dénés, M., Mortberg, A., Siles, V.: Formalized linear algebra over elementary divisor
rings in Coq. Logical Methods in Computer Science 12(2) (2016). https://doi.org/10.2168/LMCS-12(2:
7)2016

9. Carneiro, M.: Definition df -aa. http://us.metamath.org/mpeuni/df-aa.html

10. Carneiro, M.: Definition df-gz. http://us.metamath.org/mpeuni/df-gz.html

11. Claborn, L.: Every abelian group is a class group. Pac. J. Math. 18(2), 219-222 (1966)

12. Cohen, C.: Construction of real algebraic numbers in Coq. In: Beringer, L., Felty, A.P. (eds.) ITP 2012.
Lecture Notes in Computer Science, vol. 7406, pp. 67-82. Springer, Cham (2012). https://doi.org/10.
1007/978-3-642-32347-8_6

13. de Frutos-Fernandez, M.I.: Formalizing the Ring of Adeles of a Global Field. arXiv (2022). https://doi.
org/10.48550/ARXIV.2203.16344. arxiv:2203.16344

14. de Lima, T.A., Galdino, A.L., Avelar, A.B., Ayala-Rincén, M.: Formalization of ring theory in PVS:
isomorphism theorems, principal, prime and maximal ideals. Chinese remainder theorem. J. Automat.
Reason. 65(8), 1231-1263 (2021). https://doi.org/10.1007/s10817-021-09593-0

15. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean theorem prover (system
description). In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction - CADE-25. LNCS, vol. 9195,
pp. 378-388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_26

16. Dummit, D.S., Foote, R.M.: Abstract Algebra, 3rd edn., p. 932. Wiley, Hoboken (2004)

@ Springer

https://github.com/leanprover-community/mathlib
https://github.com/leanprover-community/mathlib
https://github.com/leanforward/class-number-journal
http://creativecommons.org/licenses/by/4.0/
https://leanprover.github.io/theorem_proving_in_lean/
https://doi.org/10.4230/LIPIcs.ITP.2021.5
https://drops.dagstuhl.de/opus/volltexte/2021/13900
http://arxiv.org/abs/2202.01629
http://isabelle.in.tum.de/dist/library/HOL/HOL-Algebra/index.html
https://leanprover-community.github.io/blog/posts/the-ring-of-integers-of-a-cyclotomic-field/
https://leanprover-community.github.io/blog/posts/the-ring-of-integers-of-a-cyclotomic-field/
https://doi.org/10.2168/LMCS-12(2:7)2016
https://doi.org/10.2168/LMCS-12(2:7)2016
http://us.metamath.org/mpeuni/df-aa.html
http://us.metamath.org/mpeuni/df-gz.html
https://doi.org/10.1007/978-3-642-32347-8_6
https://doi.org/10.1007/978-3-642-32347-8_6
https://doi.org/10.48550/ARXIV.2203.16344
https://doi.org/10.48550/ARXIV.2203.16344
http://arxiv.org/abs/2203.16344
https://doi.org/10.1007/s10817-021-09593-0
https://doi.org/10.1007/978-3-319-21401-6_26

Dedekind Domains and Class Groups 637

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Eberl, M.: Gaussian integers. Archive of Formal Proofs (2020). https://isa-afp.org/entries/Gaussian_
Integers.html, Formal proof development

Eberl, M.: Minkowski’s theorem. Archive of Formal Proofs (2017). https://isa-afp.org/entries/
Minkowskis_Theorem.html, Formal proof development

Eberl, M.: Nine chapters of analytic number theory in Isabelle/HOL. In: Harrison, J., O’Leary, J., Tolmach,
A. (eds.) ITP 2019. LIPIcs, vol. 141, pp. 16-11619. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.16

Frohlich, A.: Local fields. In: Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pp.
1-41. Thompson, Washington, D.C. (1967)

Futa, Y., Mizushima, D., Okazaki, H.: Formalization of Gaussian integers, Gaussian rational numbers,
and their algebraic structures with Mizar. In: 2012 International Symposium on Information Theory and
Its Applications, pp. 591-595 (2012)

Grabowski, A., Kornilowicz, A., Schwarzweller, C.: On algebraic hierarchies in mathematical reposi-
tory of Mizar. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Proceedings of the 2016 Federated
Conference on Computer Science and Information Systems. ACSIS, vol. 8, pp. 363-371 (2016)
Ireland, K., Roosen, M.: A Classical Introduction to Modern Number Theory, 2nd edn. Springer, Cham
(1990)

Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211, p. 914. Springer, Cham (2002).
https://doi.org/10.1007/978-1-4613-0041-0

Lewis, R.Y., Madelaine, P.: Simplifying casts and coercions (extended abstract). In: Fontaine, P., Korovin,
K., Kotsireas, I.S., Riimmer, P., Tourret, S. (eds.) Practical Aspects of Automated Reasoning. CEUR
Workshop Proceedings, vol. 2752, pp. 53—-62. CEUR-WS.org, Aachen, Germany (2020). http://ceur-ws.
org/Vol-2752/paper4.pdf

Mahboubi, A., Tassi, E.: The Mathematical Components Libraries. Zenodo, Geneve (2017). https://doi.
org/10.5281/zenodo.4457887

Megill, N.D., Wheeler, D.A.: Metamath: A Computer Language for Mathematical Proofs. Lulu Press,
Morrisville, NC, USA (2019). http://us.metamath.org/downloads/metamath.pdf

Neukirch, J.: Algebraic Number Theory. Fundamental Principles of Mathematical Sciences, vol. 322, p.
571. Springer, Cham: Translated from the 1992 German original and with a note by Norbert Schappacher.
With a foreword by G. Harder (1999). https://doi.org/10.1007/978-3-662-03983-0

Pohst, M.E., et al.: The Computer Algebra System KASH/KANT. http://www.math.tu-berlin.de/~kant
Stasinski, A.: A uniform proof of the finiteness of the class group of a global field. Am. Math. Monthly
128(3), 239-249 (2021). https://doi.org/10.1080/00029890.2021.1855036

The mathlib Community: the Lean mathematical library. In: Blanchette, J., Hritcu, C. (eds.) CPP 2020,
pp- 367-381. ACM, New York, USA (2020). https://doi.org/10.1145/3372885.3373824

The PARI Group: PARI/GP Version 2 .11 . 2. Univ. Bordeaux (2019). The PARI Group. http://pari.math.
u-bordeaux.fr/

Thiemann, R., Yamada, A., Joosten, S.: Algebraic numbers in Isabelle/HOL. Archive of Formal Proofs
(2015). https://isa-afp.org/entries/ Algebraic_Numbers.html, Formal proof development

Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Principles of Programming
Languages. POPL 89, pp. 60-76. ACM, Austin, TX, USA (1989). https://doi.org/10.1145/75277.75283
Watase, Y.: Algebraic numbers. Formaliz. Math. 24(4), 291-299 (2016). https://doi.org/10.1515/forma-
2016-0025

Zariski, O., Samuel, P.: Commutative Algebra, Volume I. The University Series in Higher Mathematics,
p- 329. D. Van Nostrand Company, Inc., Princeton, NJ, USA (1958)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://isa-afp.org/entries/Gaussian_Integers.html
https://isa-afp.org/entries/Gaussian_Integers.html
https://isa-afp.org/entries/Minkowskis_Theorem.html
https://isa-afp.org/entries/Minkowskis_Theorem.html
https://doi.org/10.4230/LIPIcs.ITP.2019.16
https://doi.org/10.1007/978-1-4613-0041-0
http://ceur-ws.org/Vol-2752/paper4.pdf
http://ceur-ws.org/Vol-2752/paper4.pdf
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.5281/zenodo.4457887
http://us.metamath.org/downloads/metamath.pdf
https://doi.org/10.1007/978-3-662-03983-0
http://www.math.tu-berlin.de/~kant
https://doi.org/10.1080/00029890.2021.1855036
https://doi.org/10.1145/3372885.3373824
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
https://isa-afp.org/entries/Algebraic_Numbers.html
https://doi.org/10.1145/75277.75283
https://doi.org/10.1515/forma-2016-0025
https://doi.org/10.1515/forma-2016-0025

	A Formalization of Dedekind Domains and Class Groups of Global Fields
	Abstract
	1 Introduction
	2 Mathematical Background
	3 Lean and Mathlib
	3.1 Use of Typeclasses and Bundling

	4 Number Fields, Global Fields, and Rings of Integers
	4.1 Field Extensions
	4.2 Scalar Towers
	4.3 Rings of Integers
	4.4 Subobjects
	4.5 Fields of Fractions
	4.6 Representing Monogenic Field Extensions

	5 Dedekind Domains
	5.1 Definitions
	5.2 Fractional Ideals
	5.3 Equivalence of the Definitions
	5.4 Unique Ideal Factorization

	6 Principal Ideal Domains are Dedekind
	7 Rings of Integers are Dedekind Domains
	7.1 The Trace Form

	8 Class Group and Class Number
	8.1 The Class Group
	8.2 Finiteness Results

	9 Discussion
	9.1 Related Work
	9.2 Future Directions
	9.3 Conclusion

	Acknowledgements
	References

