
Formal Verification of Termination Criteria for
First-Order Recursive Functions
Cesar A. Muñoz #Ñ

NASA Langley Research Center,
Hampton, VA, USA

Mauricio Ayala-Rincón # Ñ

Departments of Computer Science and
Mathematics, Universidade de Brasília, Brazil

Mariano M. Moscato #

National Institute of Aerospace,
Hampton, VA, USA

Aaron M. Dutle # Ñ

NASA Langley Research Center,
Hampton, VA, USA

Anthony J. Narkawicz
Hampton, VA, USA

Ariane A. Almeida #

Department of Computer Science,
Universidade de Brasília, Brazil

Andréia B. Avelar
Faculdade de Planaltina,
Universidade de Brasília, Brazil

Thiago M. Ferreira Ramos #

Department of Computer Science,
Universidade de Brasília, Brazil

Abstract
This paper presents a formalization of several termination criteria for first-order recursive functions.
The formalization, which is developed in the Prototype Verification System (PVS), includes the
specification and proof of equivalence of semantic termination, Turing termination, size change
principle, calling context graphs, and matrix-weighted graphs. These termination criteria are defined
on a computational model that consists of a basic functional language called PVS0, which is an
embedding of recursive first-order functions. Through this embedding, the native mechanism for
checking termination of recursive functions in PVS could be soundly extended with semi-automatic
termination criteria such as calling contexts graphs.

2012 ACM Subject Classification Theory of computation → Models of computation; Software and
its engineering → Software verification; Computing methodologies → Theorem proving algorithms

Keywords and phrases Formal Verification, Termination, Calling Context Graph, PVS

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.27

Supplementary Material Other (NASA PVS Library): https://github.com/nasa/pvslib

Funding Mariano M. Moscato: corresponding author; research supported by the National Aeronaut-
ics and Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.
Anthony J. Narkawicz: At NASA at time of contribution.

1 Introduction

Advances in theorem proving have enabled the formal verification of algorithms used in
safety-critical applications. For instance, the Prototype Verification System (PVS) [11] is
extensively used at NASA in the verification of safety-critical algorithms of autonomous
unmanned systems.1 These algorithms are typically specified as recursive functions whose
computations are well-behaved, i.e., they terminate for every possible input. In computer
science, program termination is the quintessential example of a property that is undecidable.
Alan Turing famously proved that it is impossible to construct an algorithm that decides
whether or not another algorithm terminates on a given input [13]. Turing’s proof applies

1 For example, see https://shemesh.larc.nasa.gov/fm.

© Cesar A. Muñoz, Mauricio Ayala-Rincón, Mariano M. Moscato, Aaron M. Dutle,
Anthony J. Narkawicz, Ariane A. Almeida, Andréia B. Avelar, and Thiago M. Ferreira Ramos;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cesar.a.munoz@nasa.gov
https://shemesh.larc.nasa.gov/people/cam/
mailto:ayala@unb.br
https://www.mat.unb.br/ayala/
https://orcid.org/0000-0003-0089-3905
mailto:mariano.moscato@nianet.org
https://orcid.org/0000-0002-6468-9498
mailto:aaron.m.dutle@nasa.gov
https://shemesh.larc.nasa.gov/people/amd/
mailto:ariane.almeida@aluno.unb.br
mailto:tramos@aluno.unb.br
https://doi.org/10.4230/LIPIcs.ITP.2021.27
https://github.com/nasa/pvslib
https://shemesh.larc.nasa.gov/fm
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Formal Verification of Termination Criteria for First-Order Recursive Functions

to algorithms written as Turing machines, but the proof extends to other formalisms for
expressing computations such as λ-calculus, rewriting systems, and programs written in
modern programming languages.

As is the case for other undecidable problems, there are syntactic and semantic restrictions,
data structures, and heuristics that lead to a solution for subclasses of the problem. In Coq,
for example, termination of well-typed functions is guaranteed by the Calculus of Inductive
Constructions implemented in its type system [4]. Other theorem provers, such as ACL2,
have incorporated syntactic conditions for checking termination of recursive functions [7].
In the Prototype Verification System (PVS), the user needs to provide a measure function
over a well-founded relation that strictly decreases at every recursive call [11]. Despite the
undecidability result, termination is routine, but is often a tedious and time-consuming stage
in a formal verification effort.

This paper reports on the formalization of several termination criteria in PVS. In addition
to the proper mechanism implemented in the type checker of PVS to assure termination of
recursive definitions, this work also includes the formalization of more general techniques,
such as the size change principle (SCP) presented by Lee et. al. [9]. The SCP principle states
that if every infinite computation would give rise to an infinitely decreasing value sequence,
then no infinite computation is possible. Later, Manolios and Vroon introduced a particular
concretization of the SCP, namely the Calling Context Graphs (CCG) and demonstrated
its practical usefulness in the ACL2 prover [10]. Avelar’s PhD dissertation proposes an
improvement on the CCG technique, based on a particular algebra on matrices [3]. The
formalization reported in this paper includes all these criteria and proofs of equivalence
between them. While the formalization itself has been available for some time as part of the
NASA PVS Library, the goal of this paper is to report the main results. These results, which
have been used in other works such as [2] and [12], have not been properly published before.
Furthermore, this paper also presents a practical contribution: a mechanizable technique to
automate (some) termination proofs of user-defined recursive functions in PVS.

For readability, this paper uses a stylized PVS notation. The development presented in
this paper, including all lemmas and theorems, are formally verified in PVS and are available
as part of the NASA PVS Library.

2 PVS & PVS0

PVS is an interactive theorem prover based on classical higher-order logic. The PVS
specification language is strongly-typed and supports several typing features including
predicate sub-typing, dependent types, inductive data types, and parametric theories. The
expressiveness of the PVS type system prevents its type-checking procedure from being
decidable. Hence, the type-checker may generate proof obligations to be discharged by the
user. These proof obligations are called Type Correctness Conditions (TCCs). The PVS
system includes several pre-defined proof strategies that automatically discharge most of the
TCCs.

In PVS, a recursive function f of type [A→B] is defined by providing a measure function
M of type [A→T], where T is an arbitrary type, and a well-founded relation R over elements
in T . The termination TCCs produced by PVS for a recursive function f guarantee that the
measure function M strictly decreases with respect to R at every recursive call of f .

▶ Example 1. ackermann(m, n: N) : RECURSIVE N =
IF m = 0 THEN n+1
ELSIF n = 0 THEN ackermann(m-1,1)

C. A. Muñoz et al. 27:3

ackermann_TCC5: OBLIGATION
∀ (m,n: N): n ̸= 0 ∧ m ̸= 0 ⇒ lex2(m,n-1) < lex2(m,n)

ackermann_TCC6: OBLIGATION
∀ (m,n: N, f: [{z : [N× N] | lex2(z‘1, z‘2) < lex2(m, n)} → N]):
n ̸= 0 ∧ m ̸= 0 ⇒ lex2(m-1, f(m,n-1)) < lex2(m,n)

Figure 1 Termination-related TCCs for the Ackermann function in Ex. 1.

ELSE ackermann(m-1, ackermann(m,n-1))
ENDIF

MEASURE lex2(m,n) BY <

Example 1 provides a definiton of the Ackermann function in PVS. In this example, the
type A is the tuple [N× N] and the type B is N. The type T is ordinal, the type denoting
ordinal numbers in PVS. The measure function lex2 maps a tuple of natural numbers
into an ordinal number. Finally, the well-founded relation R is the order relation “<” on
ordinal numbers. The termination-related TCCs generated by the PVS type-checker for the
Ackermann function are shown in Figure 1. Since all the TCCs are automatically discharged
by a PVS built-in proof strategy, the PVS semantics guarantees that the function ackermann
is well defined on all inputs.

PVS0 is a basic functional language used in this paper as a computational model for
first-order recursive functions in PVS. More precisely, PVS0 is an embedding of univariate
first-order recursive functions of type [Val→Val] for an arbitrary generic type Val. The
syntactic expressions of PVS0 are defined by the grammar

e ::= cnst(v) | vr | op1(n, e) | op2(n, e, e) | rec(e) | ite(e, e, e),

where v is a value of type Val and n is a natural number. Furthermore, cnst(v) denotes a
constant with value v, vr denotes a unique variable, op1 and op2 denote unary and binary
operators respectively, rec denotes a recursive call, and ite denotes a conditional expression
(“if-then-else”). The first parameter of op1 and op2 is an index used to identify built-in
operators of type [Val→Val] and [[Val × Val] → Val], respectively. In the following, the
collection of PVS0 expressions is referred to as PVS0ExprVal, where the type parameter for
PVS0Expr is omitted when possible to lighten the notation. The PVS0 programs with values
in Val, denoted by PVS0Val, are 4-tuples of the form (O1, O2,⊥, e), such that

O1 is a list of unary operators of type [Val→Val], where O1(i), i.e., the i-th element of
the list O1, interprets the index i as referred by in the application of op1,
O2 is a list of binary operators of type [[Val×Val] →Val], where O2(i) interprets the
index i in applications of op2,
⊥ is a constant of type Val representing the Boolean value false in the conditional
construction ite, and
e is a expression from PVS0Expr: the syntactic representation of the body of the program.

Operators in O1 and O2 are PVS pre-defined functions, whose evaluation is considered to be
atomic in the proposed computational model. These operators make it easy to modularly
embed first-order PVS recursive functions in PVS0, while maintaining non-recursive PVS
functions directly available to PVS0 definitions. Henceforth, if p = (O1, O2,⊥, e) is a PVS0
program, the symbols pO1

, pO2
, p⊥, and pe denote, respectively, the first, second, third,

ITP 2021

27:4 Formal Verification of Termination Criteria for First-Order Recursive Functions

and fourth elements of the tuple. Since there is only one variable available to write PVS0
programs, arguments of binary functions such as Ackermann’s need to be encoded in Val,
for example using tuples as shown in Example 2.

▶ Example 2. The Ackermann function of Example 1 can be implemented as the PVS0[N×N]
program ack ≡ (O1, O2,⊥, e), where the type parameter Val of PVS0 is instantiated with
the type of pair of natural numbers, i.e., [N×N]. In this encoding, the first projection of
the result of the program represents the output of the function. The components of ack are
defined below.

O1(0)((m, n)) ≡ IF m = 0 THEN ⊤ ELSE ⊥ ENDIF .
O1(1)((m, n)) ≡ IF n = 0 THEN ⊤ ELSE ⊥ ENDIF .
O1(2)((m, n)) ≡ (n + 1, 0).
O1(3)((m, n)) ≡ IF m = 0 THEN ⊥ ELSE (max(0, m− 1), 1) ENDIF .
O1(4)((m, n)) ≡ IF n = 0 THEN ⊥ ELSE (m, max(0, n− 1)) ENDIF .
O2(0)((m, n), (i, j)) ≡ IF m = 0 THEN ⊥ ELSE (max(0, m− 1), i) ENDIF .
⊥ ≡ (0, 0), and for convenience ⊤ ≡ (1, 0).
e ≡ ite(op1(0,vr), op1(2,vr),

ite(op1(1,vr), rec(op1(3,vr)), rec(op2(0,vr,rec(op1(4,vr)))))).

Example 2 illustrates the use of built-in operators in PVS0. Any unary or binary PVS
function can be used as an operator in the construction of a PVS0 program. In order to show
that ack correctly encodes the Ackermann function, it is necessary to define the operational
semantics of PVS0.

2.1 Semantic Relation
Given a PVS0 program p, the semantic evaluation of a PVS0Expr expression ei is given by
the relation ε defined as follows. Intuitively, it holds when given a subexpression ei of a
program p, the evaluation of ei on the input value vi results in the output value vo.

▶ Definition 3 (Semantic Relation). Let p be a PVS0 program on a generic type Val, ei be an
expression in PVS0Expr, and vi, vo, v, v′, v′′ be values from Val. The relation ε(p)(ei, vi, vo)
holds if and only if

vo = v if ei = cnst(v)
vo = vi if ei = vr

∃ v′ : ε(p)(e1, vi, v′) ∧ vo = χ1(p)(j, v′) if ei = op1(j, e1)
∃ v′, v′′ : ε(p)(e1, vi, v′) ∧ ε(p)(e2, vi, v′′)

∧ vo = χ2(p)(j, v′, v′′) if ei = op2(j, e1, e2)
∃ v′ : ε(p)(e1, vi, v′) ∧ ε(p)(pe, v′, vo) if ei = rec(e1)
∃ v′ : ε(p)(e1, vi, v′) ∧ (v′ ̸= p⊥ ⇒ ε(p)(e2, vi, vo))

∧ (v′ = p⊥ ⇒ ε(p)(e3, vi, vo)) if ei = ite(e1, e2, e3)

where

χ1(p)(j, v) =
{

pO1
(j)(v) if j < |pO1

|
p⊥ otherwise.

χ2(p)(j, v1, v2) =
{

pO2
(j)(v1, v2) if j < |pO2

|
p⊥ otherwise.

C. A. Muñoz et al. 27:5

The following lemma states that the ack program encodes the function ackermann.

▶ Lemma 4. For all n, m, k ∈ N, ackermann(m, n) = k if and only if there exists i ∈ N such
that ε(ack)(acke, (m, n), (k, i)).

This lemma can be proved by structural induction on the definition of the function ackermann
and the relation ε. A proof of this kind of statement is usually tedious and long. However,
it is fully mechanizable in PVS assuming that the function and the PVS0 program share
the same syntactical structure. A proof strategy that automatically discharges equivalences
between PVS functions and PVS0 programs was developed. The following theorem shows
that the semantic relation ε is deterministic.

▶ Theorem 5. Let p be a PVS0 program. For any PVS0Expr expression ei and values
vi, v′

o, v′′
o ∈ Val, ε(p)(ei, vi, v′

o) and ε(p)(ei, vi, v′′
o) implies v′

o = v′′
o .

PVS0 enables the encoding on non-terminating functions. The predicate ε-determined,
defined below, holds when a PVS0 program encodes a function that returns a value for a
given input.

▶ Definition 6 (ε-determination). A PVS0 program p is said to be ε-determined for an input
value vi ∈ Val (denoted by Dε(p, vi)) when ∃vo ∈ Val : ε(p)(pe, vi, vo).

2.2 Functional Semantics
The operational semantics of PVS0 can be expressed by a function χ : [PVS0→ [PVS0Expr×
Val × N]→ Val ⊎ {♢}]. This function returns either a value of type Val or a distinguished
value ♢ ̸∈ Val. The natural number argument represents an upper bound on the number of
nested recursive calls that are to be evaluated. If this bound is reached and no final value
has been computed, the function returns ♢.

▶ Definition 7 (Semantic Function). Let p be a PVS0 program, ei a PVS0Expr expression, vi

a value from Val, n a natural number, v′ = χ(p)(e1, vi, n), and v′′ = χ(p)(e2, vi, n).

χ(p)(ei, vi, n) ≡



v if n > 0 and ei = cnst(v)
vi if n > 0 and ei = vr

χ1(p)(j, v′) if n > 0, ei = op1(j, e1), and v′ ̸= ♢
χ2(p)(j, v′, v′′) if n > 0, ei = op2(j, e1, e2),

v′ ̸= ♢, and v′′ ̸= ♢
χ(p)(e, v′, n− 1) if n > 0, ei = rec(e1), and v′ ̸= ♢
χ(p)(e2, vi, n) if n > 0, ei = ite(e1, e2, e3), v′ ̸= ♢,

and v′ ̸= p⊥

χ(p)(e3, vi, n) if n > 0, ei = ite(e1, e2, e3), v′ ̸= ♢,

and v′ = p⊥

♢ otherwise.

The following theorem states that the semantic relation ε and the semantic function χ

are equivalent.

▶ Theorem 8. For any PVS0 program p, vi, vo ∈ Val and ei ∈ PVS0Expr, ε(p)(ei, vi, vo) if
and only if vo = χ(p)(ei, vi, n), for some n ∈ N.

ITP 2021

27:6 Formal Verification of Termination Criteria for First-Order Recursive Functions

A program p is χ-determined for an input vi, as defined below, if the evaluation of p(vi)
produces a value in a finite number of nested recursive calls.

▶ Definition 9 (χ-determination). A PVS0 program p is said to be χ-determined for an input
value vi ∈ Val (denoted by Dχ(p, vi)) when there is an n ∈ N such that χ(p)(pe, vi, n) ̸= ♢.

As a corollary of Theorem 8, the notions of ε-determination and χ-determination coincide.

▶ Theorem 10. For all p ∈ PVS0Val and value vi : Val, Dε(p, vi) if and only if Dχ(p, vi).

In Definition 9, there may be multiple (in fact, infinite) natural numbers n that satisfy
χ(p)(pe, vi, n) ̸= ♢. The following definition distinguishes the minimum of those numbers.

▶ Definition 11 (µ). Let p be a PVS0 program and vi a value in Val such that Dχ(p, vi),
the minimum number of recursive calls needed to produce a result (denoted by µ(p, vi)) is
formally defined as min({n ∈ N | χ(p)(pe, vi, n) ̸= ♢}).

If p is χ-determined for a value vi, then for any n ≥ µ(p, vi) the evaluation of χ(p)(pe, vi, n)
results in a value from Val. This remark is formalized by the following lemma.

▶ Lemma 12. Let p be a PVS0 program and vi a value from Val such that Dχ(p, vi). For
any n ∈ N such that n ≥ µ(p, vi), χ(p)(pe, vi, n) = χ(p)(pe, vi, µ(p, vi)).

2.3 Semantic Termination
The notion of termination for PVS0 programs is defined using the notions of determination
from Section 2.2.

▶ Definition 13 (ε-termination and χ-termination). A PVS0 program p ∈ PVS0Val is said to
be ε-terminating (noted Tε(p)) when ∀vi ∈ Val : Dε(p, vi). It is said to be χ-terminating
(Tχ(p)) when ∀vi ∈ Val : Dχ(p, vi).

As a corollary of Theorem 10, the notions of ε-termination and χ-termination coincide.

▶ Theorem 14. For every PVS0 program p, Tε(p) if and only if Tχ(p).

Not all PVS0 programs are terminating. For example, consider the PVS0 program p′ with
body rec(vr). It can be proven that Dε(p′, vi) does not hold for any vi ∈ Val. Hence, Tε(p′)
does not hold and, equivalently, nor does Tχ(p′). Since terminating programs compute a value
for every input, the function χ can be refined into an evaluation function for terminating
programs that does not depend on the existence of a distinguished value outside Val, such
as ♢.

▶ Definition 15. Let PVS0↓ε
be the collection of PVS0 programs for which Tε holds, let

p ∈ PVS0↓ε
, and vi be a value in Val. The semantic function for terminating programs

ϵ : [PVS0↓ε
→ Val→ Val] is defined in the following way.

ϵ(p)(vi) ≡ ϵe(p)(pe, vi), where v′ = ϵe(p)(e1, vi), v′′ = ϵe(p)(e2, vi), and

ϵe(p)(ei, vi) ≡



v if ei = cnst(v)
vi if ei = vr

χ1(p)(j, v′) if ei = op1(j, e1)
χ2(p)(j, v′, v′′) if ei = op2(j, e1, e2)
ϵe(p)(e, v′) if ei = rec(e1)
ϵe(p)(e2, vi) if ei = ite(e1, e2, e3) and ϵe(p)(e1, vi) ̸= p⊥

ϵe(p)(e3, vi) if ei = ite(e1, e2, e3) and ϵe(p)(e1, vi) = p⊥

C. A. Muñoz et al. 27:7

Figure 2 Abstract syntax tree of the Ackermann function from Example 2.

▶ Theorem 16. For all terminating PVS0 program p, i.e., Tε(p) holds, and values vi, vo ∈ Val,
ε(p)(pe, vi, vo) holds if and only if ϵ(p)(vi) = vo.

While Tε and Tχ provide semantic definitions of termination, these definitions are im-
practical as termination criteria, since they involve an exhaustive examination of the whole
universe of values in Val. The rest of this paper formalizes termination criteria that yield
mechanical termination analysis techniques.

3 Turing Termination Criterion

In contrast to the purely semantic notions of termination presented in Section 2, the so-
called Turing termination criterion relies on the syntactic structure of recursive programs.
In particular, this termination criterion uses a characterization of the input values that
lead to the evaluation of recursive call subexpressions, i.e., rec(e). In order to define such
a characterization, it is necessary to formalize a way to identify univocally a particular
subexpression of a given PVS0 program. Furthermore, the subexpression as well as its
actual position must be identified. If a given program body contains several repetitions
of the same expression, such as op2(0,rec(vr),rec(vr)), which has two occurrences of
rec(vr), the criterion needs them to be distinguishable from one another. Such a reference
for subexpressions can be formally defined using the abstract syntax tree of the enclosing
expression. To illustrate the idea, Figure 2 depicts a graphical representation of the abstract
syntax tree of the ack program. A unique identifier for a given subexpression can be
constructed by collecting all the numbers labeling the edges from the subexpression to the
root of the tree. For example, the sequence of numbers that identify the subexpression
rec(op1(4,vr)) is ⟨2, 0, 2, 2⟩. A syntax tree labeled using these sequences is called a labeled
syntax tree.

▶ Definition 17 (Valid Path). Let p be a PVS0 program, a finite sequence of natural numbers
p is a Valid Path of p if p determines a path in the labeled syntax tree of p from any node e

to the root of the tree. In that case, p is said to reach e in p.

The notion of path is strictly syntactic. Nevertheless, a semantic correlation is also needed
to state termination criteria focused on how the inputs change along successive recursive calls,
as is the case for Turing termination criterion. A semantic way to identify a subexpression e

of a given program p is to recognize all the values that exercise the particular subexpression
e when used as inputs for the evaluation of p. It is possible to characterize such values by
collecting all the expressions that act as guards for the conditional expressions traversed for
a given path reaching e.

ITP 2021

27:8 Formal Verification of Termination Criteria for First-Order Recursive Functions

Continuing the example based on the ack program, for the path ⟨2, 0, 2, 2⟩ reaching
rec(op1(4,vr)), such expressions would be op1(0,vr) and op1(1,vr). For that specific
path, the values to be characterized are the ones that falsify both guard expressions, i.e.,
the values for which both expressions evaluate to p⊥. Nevertheless, for the path ⟨1, 2⟩
reaching rec(op1(3,vr)), the collected expressions are the same, but it is necessary for the
latter not to evaluate to p⊥ in order to characterize the input values that would exercise
rec(op1(3,vr)).

The previous example shows that it is necessary not only to collect the guard expressions,
but also to determine whether each one needs to evaluate to p⊥ or not.

▶ Definition 18 (Polarized Expression). Given a PVS0Expr expression e, the polarized version
of e is a pair [PVS0Expr× {0, 1}] such that (e, 0), abbreviated as ¬e, indicates that e should
evaluate to p⊥ and the pair (e, 1), which is abbreviated simply as e, indicates the contrary.

For a given program p, an input value vi, and a polarized expression c = (e, b) with
b ∈ {0, 1}, c is said to be valid when the condition expressed by it holds. The predicate ε±
defined below formalizes this notion.

ε±(p)(c, vi) ≡
{

ε(p)(e, vi, p⊥) if b = 0,

¬ε(p)(e, vi, p⊥) otherwise.

The semantic characterization of a particular subexpression is formalized by the notion
of list of path conditions defined below.

▶ Definition 19 (Path Conditions). Let p be a valid path of a PVS0 program p and e the
subexpression of pe reached by p. The list of polarized guard expressions of p that are needed
to be valid in order for the evaluation of p to involve the expression e is called the list of path
conditions of p.

▶ Definition 20 (Calling Context). A calling context of a program p is a tuple (rec(e′), p, c)
containing: a path p, which is valid in p, a recursive-call expression rec(e′) contained in pe

and reached by p, and the list c of path conditions of p. The collection of all calling contexts
of p is denoted by cc(p).

The notion of calling context captures both the syntactic and the semantic characteriza-
tions of the subexpressions of a program that denote recursive calls.

▶ Example 21. The calling contexts for the ack function from Example 2 are:
(rec(op1(3,vr)), ⟨1, 2⟩, ⟨¬op1(0,vr), op1(1,vr)⟩),
(rec(op2(0,vr,rec(op1(4,vr)))), ⟨2, 2⟩, ⟨¬op1(0,vr),¬op1(1,vr)⟩), and
(rec(op1(4,vr)), ⟨2, 0, 2, 2⟩, ⟨¬op1(0,vr),¬op1(1,vr)⟩).

An input value vi is said to exercise a calling context cc = (e, p, c) in a program p when
ε±(p)(c, vi) holds. A program p is TCC-terminating if for each calling context cc in p and
every input value vi exercising cc, the value of the expression used as argument by the call
in cc is smaller than vi. In this context, a value is considered smaller than another one if the
former is closer to the bottom induced by a well-founded relation than the latter.

▶ Definition 22 (TCC-termination). A PVS0 program p is said to be TCC-terminating, or
Turing-terminating, on a measuring type M if there exist a function m : [Val→M] and a
well-founded relation <M on M such that for all calling context cc = (rec(e), p, c) among
the calling contexts of p, for all vi, vo ∈ Val, if ε±(p)(c, vi) and ε(p)(e, vi, vo) hold, then
m(vo) <M m(vi).

C. A. Muñoz et al. 27:9

The notion of TCC-termination on a program p is denoted by the predicate T
[M,<M ,m]
T (p),

which is parametric on the measure type M , the well-founded relation <M , and the measure
function m. TCC-termination is equivalent to ε-termination (and, therefore, to χ-termination)
as stated by Theorem 25 below. A key construction used in the proof of Theorem 25 is the
function Ω, defined as follows.

▶ Definition 23 (Ω). Let <p,m be a binary relation on Val defined as v1 <p,m v2 if and only
if m(v1) <M m(v2) and the evaluation of p with v2 as input reaches a recursive call rec(e)
such that ε(p)(e, v2, v1) holds. Then, Ωp,m(v) ≡ min({i : N+ | ∀ v′ ∈ Val : ¬(v′ <i

p,m v)})
where v′ <i

p,m v denotes a chain of i + 1 values related by <p,m with endpoints in v′ and v.

The following lemma states a relation between µ, the number of nested recursive calls in
the evaluation of a particular input v, and Ωp,m for the same input v.

▶ Lemma 24. Let p be a TCC-terminating PVS0 program, i.e., p satisfies T
[M,<M ,m]
T (p) for

a measure type M , a well-founded relation <M over M , and a measure function m. For any
value v ∈ Val, µ(p, v) ≤ Ωp,m(v).

▶ Theorem 25. Let p be a PVS0 program, Tε(p) holds if and only if there exist a measure
type M , a well-founded relation <M on M , and a measure function m such that T

[M,<M ,m]
T (p)

holds as well.

Proof. Assuming Tε(p), it can be proved that T
[N,<,µp]
T (p) holds, where µp(v) = µ(p, v).

The function µp(v) is well defined for every v since Tε(p) holds and then, by Theorem 14,
Dχ(p, v) holds as well. Following the definition of χ and the determinism of ε (Lemma 5),
it can be seen that µp(vo) < µp(vi) for each pair of values vi, vo such that ε±(p)(c, vi) and
ε(p)(e, vi, vo) for every calling context (rec(e), p, c) in p. The opposite implication can be
proved stating that if T

[M,<M ,m]
T (p) holds, for every v ∈ Val and any subexpression e of p,

there exists a natural number n ≤ Ωp,m(v) such that χ(p)(e, vi, n) ̸= ♢, which assures Tε(p)
by Theorem 14. The proof of such a property proceeds by induction on the lexicographic
order given by (m(v), |e|), where |e| denotes the size of the expression e. ◀

Theorem 25 can be used as a practical tool to prove ε-termination of PVS0 programs, as
illustrated by the following lemma.

▶ Lemma 26. The PVS0 program ack from Example 2 is ε-terminating, i.e., Tε(ack) holds.

Proof. In order to use the Theorem 25, it is necessary to prove first that there exist a
measure type M , a well-founded relation <M over M , and a measure function m such
that T

[M,<M ,m]
T (ack) holds. Let M be the type of pairs of natural numbers [N× N], m the

identity function, and <M the lexicographic order on [N× N], i.e., (a, b) <lex (c, d) ≡ a <

c ∨ (a = c ∧ b < d) where < is the less-than relation on natural numbers. To prove that
T

[[N×N],<lex,id]
T (ack) holds, it suffices to check that for every input pair vi, leading to any of

the recursive-call subexpressions rec(e) in ack, vi is such that for every pair vo satisfying
ε(ack)(e, vi, vo), vo <lex vi.

There are only three recursive calls in ack (see Example 2), namely: rec(op1(3,vr)),
rec(op1(4,vr)), and rec(op2(0,vr,rec(op1(4,vr)))). Each of them determines a case in
the proof. For the first subexpression, note that any input value vi leading to rec(op1(3,vr))
must be such that π1(vi) ̸= 0 and π2(vi) = 0, in order to falsify the guard in the outermost
if-then-else and validate the guard in the innermost conditional. Because of the function
O1(3) used to interpret op1(3, ·), for every vo such that ε(ack)(e, vi, vo) holds, π1(vo) must be
equal to π1(vi)−1; hence, vo <lex vi holds. For the other recursive-call subexpressions in ack,

ITP 2021

27:10 Formal Verification of Termination Criteria for First-Order Recursive Functions

the values vi that lead to them satisfy π1(vi) ̸= 0 and π2(vi) ̸= 0. In particular, for the case
of rec(op1(4,vr)), the function O1(4) forces any vo for which ε(ack)(e, vi, vo) holds, to be
equal to (π1(vi), π2(vi)− 1), satisfying vo <lex vi as well. Finally, for the values vi reaching
rec(op2(0,vr,rec(op1(4,vr)))) and because of O2(0), the first coordinate of vo must be
π1(vi) − 1, which is enough to conclude that vo <lex vi holds. Then, T

[[N×N],<lex,id]
T (ack)

holds and, by Theorem 25, Tε(ack) holds as well. ◀

The inequalities of the form vo <lex vi that are proved in Lemma 26 correspond to the
actual termination correctness conditions generated by the PVS type checker for the function
ackermann defined in Example 1.

4 Calling Context Graphs

The Size Change Principle (SCP) states that “a program terminates on all inputs if every
infinite call sequence (following program control flow) would cause an infinite descent in
some data values” [9]. Calling Context Graphs is a technique that implements the SCP [10].

▶ Definition 27 (Valid Trace). Given p ∈ PVS0, an infinite sequence cc = ⟨rec(ei), pi, ci⟩i∈N
of calling contexts of p, and an infinite sequence of values v from Val, cc and v are said to
form a valid trace of calls if the following predicate τ holds.2

τp(cc, v) ≡ ∀(i : nat) : (ε±(p)(ci, vi) ∧ ε(p)(ei, vi, vi+1)).

▶ Definition 28 (SCP-Termination). A PVS0 program p is said to be SCP-terminating,
denoted by TSCP (p), if there are no infinite sequence cc of calling contexts of p and no
infinite sequence v of values in Val such that τ(cc, v) holds.

▶ Theorem 29. For all p ∈ PVS0, Tε(p) if and only if TSCP (p).

Proof. By Theorem 25 it is enough to prove that TT (p) and TSCP (p) are equivalent. Proving
TSCP (p) given TT (p) is straightforward. To prove the other direction, it is necessary to use
Ωp,m. Since one has TSCP (p), it is possible to provide a relation between parameters and
arguments of recursive calls and prove that it is well-founded. Similarly to the proof of
Theorem 25, the closure of this relation is then used to parametrize the function Ωp,m, which
provides the height of the tree of evaluation of recursive calls as the needed measure. ◀

▶ Definition 30. Let < be a well-founded relation over Val, SCP<(p) holds if for all infinite
sequence cc of calling contexts of p and for all infinite sequence v of values in Val such that
τ(cc, v) holds, v is a decreasing sequence on <, i.e., for all i ∈ N, vi+1 < vi.

▶ Theorem 31. For all p ∈ PVS0Val, TSCP (p) if and only if SCP<(p) for a well-founded
relation < over Val.

The proof of Theorem 31 uses the fact that every well-founded order provides a non-infinite
decreasing sequence of elements.

▶ Definition 32. A Calling Context Graph of a PVS0 program p (p ∈ PVS0Val) is a directed
graph Gp = (V, E) with a node in V for each calling context in p such that given two calling
contexts of p (rec(ea), Pa, Ca) and (rec(eb), Pb, Cb), if

∃(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ∧ ε±(p)(Cb, vb),

2 Since ε± can be straightforwardly extended to lists of polarized expressions, the same symbol is used
for both versions along the text.

C. A. Muñoz et al. 27:11

cc1

�� ��

cc2

FF

55

,, cc3

XX

ll
ii

cc1 = (ack(m− 1, 1), m ̸= 0 ∧ n = 0)
cc2 = (ack(m− 1, ack(m, n− 1)), m ̸= 0 ∧ n ̸= 0)
cc3 = (ack(m, n− 1), m ̸= 0 ∧ n ̸= 0)

Figure 3 A possible CCG for the Ackermann function.

then the edge ⟨(rec(ea), Pa, Ca), (rec(eb), Pb, Cb)⟩ ∈ E.

The condition on the edges admits any fully connected graph of calling contexts to be
considered a CCG. For the sake of exemplification, another possible CCG for the Ackermann
function as defined in the Example 1 is depicted in the Figure 3, where the calling contexts
from Example 21 are abbreviated to improve readability. The lack of the loop on cc1 does not
prevent the graph to be considered a CCG because there exist no tuples (a, b), (c, d) ∈ [N×N]
such that ε±(ack)(Ccc1 , (a, b)) ∧ ε(ack)(ecc1 , (a, b), (c, d)) ∧ ε±(ack)(Ccc2 , (c, d)), since this
formula can be expanded to (a ̸= 0 ∧ b = 0) ∧ (c = a− 1 ∧ d = 1) ∧ (c ̸= 0 ∧ d = 0).

The following standard notions from Graph Theory will be used in the definitions below.
A walk of Gp is a sequence cci1 , . . . , ccin of calling contexts such that for all 1 ≤ j < n there
is an edge between ccij

and ccij+1 . The collection of all walks of a given graph G is denoted
by WalkG. A circuit is a walk cci1 , . . . , ccin

, with n > 1, where cci1 = ccin
. A cycle is an

elementary circuit, i.e., a circuit cci1 , . . . , ccin
where the only repeating nodes are cci1 and

ccin
. The notation |w| will be used in the following to denote the length of a walk w and

|G| to denote the size of a graph G. Additionally, if w = cc1, · · · , ccn the expression w[a..b]
will denote the walk cca, · · · , ccb when 1 ≤ a ≤ b ≤ n.

▶ Definition 33. Let M be a family of N measures µk : Val → M , with 1 ≤ k ≤ N ,
and < be a well-founded relation over M . A measure combination of a sequence of call-
ing contexts cci1 , . . . , ccin

is a sequence of natural numbers k1, . . . , kn, with 1 ≤ kj ≤ N

representing measure µkj
, such that for all 1 ≤ j < n, v, v′ ∈ Val, ε±(p)(Cj , v) ∧

ε(p)(ej , v, v′) implies µkj
(v) ▷j µkj+1(v′), where ccij

= (rec(ej), Pj , Cj) and ▷j ∈ {>,≥}.
A measure combination is descending if at least one ▷j is >.

▶ Definition 34. Let Gp be a CCG of a PVS0 program p ∈ PVS0Val and let M be a family
of measures for a well-founded relation < over a type M . The graph Gp is said to be CCG
terminating (denoted by TCCG(Gp)) if for all circuits cci1 , . . . , ccin

in WalkGp there is a
descending measure combination k1, . . . , kn, with k1 = kn.

▶ Theorem 35. For all p ∈ PVS0Val, TSCP (p) if and only if TCCG(Gp) for some CCG Gp

of p and some family of measures M.

Since the number of circuits in a CCG is potentially infinite, CCG termination does not
directly provide an effective procedure to check termination. Even though the number of
cycles in a graph is indeed finite, it is not enough to check for decreasing measure combinations
in cycles (see [3] for details).

5 Matrix-Weighted Graphs

Matrix-Weighted Graphs is a technique to check for descending measure combinations in a
CCG using an algebra over matrices [3]. Let M be a family of N measures, every edge in
the CCG is labeled with a matrix of dimension N ×N and values in {−1, 0, 1}. The type of
these matrices will be denoted by MN

3 .

ITP 2021

27:12 Formal Verification of Termination Criteria for First-Order Recursive Functions

cc1

M1

��

M1

��

cc2M2
55

M2 ,,

M2

FF

cc3

M3

XX

M3
ll M3

ii

M1 =
[

1 0
−1 −1

]
M2 =

[
1 −1
−1 −1

]
M3 =

[
0 −1
−1 1

]

Figure 4 A MWG for the p program for the Ackermann function, where the family of measures
M is composed by µ1(m, n) = m and µ2(m, n) = n.

▶ Definition 36 (Matrix Weighted Graph). Let p be a PVS0 program in PVS0Val and M be a
family of N measures {µi}N

i=1. A matrix-weighted graph W M
p of p is a CCG Gp = (V, E)

of p whose edges are correctly labeled by matrices in MN
3 .

An edge (cca, ccb) ∈ E is said to be correctly labeled by a matrix Mab when for all
1 ≤ i, j ≤ N ,

if Mab(i, j) = 1, for all va, vb ∈ Val, ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies µi(va) >

µj(vb).
if Mab(i, j) = 0, for all va, vb ∈ Val, ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) implies µi(va) ≥
µj(vb).

An entry Mab(i, j) = −1 provides no information about va, vb ∈ Val with respect to µi and
µj .

The Figure 4 depicts a possible MWG for the p program implementing the Ackermann
function.

The algebra of matrices used to define the notion of MWG termination is given by the
following operations. Multiplication of matrices with values in {−1, 0, 1} is defined as usual,
where addition and multiplication of such values is defined below. Let x, y ∈ {−1, 0, 1},

x× y =


−1 if min(x, y) = −1,

1 if min(x, y) ≥ 0 ∧max(x, y) = 1,

0 otherwise,

x + y = max(x, y).

▶ Definition 37 (Weight of a Walk). Let p be a PVS0 program, Wp a MWG for p, and
wi = cci1 , . . . , ccin

a walk in such graph, the weight of wi, noted by w(wi), is defined as
Πn−1

j=1 Mijij+1 . A weight w(wi) is positive if there exists 1 ≤ i ≤ N such that w(wi)(i, i) > 0.

▶ Example 38. Continuing the example in Figure 4, the weights for walks w1,3 = cc1, cc3
and w2,3 = cc2, cc3 are shown below. Both of them are positive.

w(w1,3) =
[

1 1
−1 −1

]
w(w2,3) =

[
1 −1
−1 −1

]
The lemma below states a useful property about walk weights.

▶ Lemma 39. Let Wp be an MWG for a PVS0 program p and w = cc1, · · · , ccn be a walk
of Wp, then w(w) = w(cc1, · · · , cci)× w(cci, · · · , ccn).

As in the case of the calling context graphs, a walk in a MWG represents a trace of
recursive calls. Hence, circuit denotes a trace ending at the same recursive call where it
starts. In line with the notion of CCG termination, a MWG is considered terminating when,
for every possible circuit, the matrix representing its weight has at least one positive value in
its diagonal.

C. A. Muñoz et al. 27:13

▶ Definition 40 (Matrix-Weighted Graph Termination). Let p a PVS0 program and let Wp be
a MWG of p. The graph Wp is said to be MWG terminating (denoted by TMW G(Wp)) when
for every circuit wi of Wp, w(wi) is positive.

The equivalence between the notions of termination for CCG and MWG is stated by
Theorem 41 below.

▶ Theorem 41. Let M be a family of N measures for a well-founded relation < over a type
M . For all p ∈ PVS0Val, TCCG(CM

p) for some CCG CM
p if and only if TMW G(W M

p) for
some MWG W M

p .

Proof. This theorem follows from the fact that circuits in Wp, built from Gp using the same
measures, have positive weights if and only if there exist corresponding descending measure
combinations. This property is proved by induction in the length of circuits in Gp. ◀

As pointed out in the previous section, a digraph such as any CCG or MWG can have
infinitely many circuits. Nevertheless, since the information used to check MWG termination
is the weight of the circuits and, for a fixed number N of measures, there are only finitely
many possible weights, a bound on the length of the circuits to be considered can be safely
imposed as shown in the lemma below.

▶ Lemma 42. Let p be a PVS0 program and Wp a MWG for it. If for all circuit w in Wp

such that |w| ≤ |Wp| · 3N2 + 1, w(w) is positive, then Wp is MWG terminating.

Proof. In order to prove TMW G(Wp), it is necessary to show that every circuit of Wp has
positive weight. For every circuit w = cc1, · · · , ccn of Wp, if n ≤ |Wp| · 3N2 + 1, then w(w)
is positive by hypothesis. Otherwise, it can be proved that there exists another circuit w′

such that w(w) = w(w′) and |w′| ≤ |Wp| · 3N2 + 1. Hence, by hypothesis, w(w)′ is positive
and then w(w) is positive too.

The existence of the circuit w′ can be shown by constructing a sequence of pairs
⟨(cci, w(cc1, · · · , cci))⟩ni=1, where for each 1 ≤ i ≤ n, the vertex cci is the ith vertex in
w and it is paired with the weight of the prefix of w of length i. By a simple counting
argument, it can be seen that there cannot exist more than |Wp| ·3N2 of these pairs. Since n >

|Wp| ·3N2 +1, there are two indices i, j such that (cci, w(cc1, · · · , cci)) = (ccj , w(cc1, · · · , ccj))
and i ̸= j. Without loss of generality, it can be assumed that i < j. Then, the walk
w′′ = cc1, · · · , cci−1, ccj , ccj+1, · · · , ccn is a circuit, since cci = ccj and cc1 = ccn, and it is
shorter than w. To calculate the length of w′′, first it should be noted that, by Lemma 39,
w(cc1, · · · , cci, ccj+1, · · · , ccn) = w(cc1, · · · , cci−1, ccj)× w(ccj , ccj+1, · · · , ccn). Since cci =
ccj and w(cc1, · · · , cci) = w(cc1, · · · , ccj), w(w′′) = w(cc1, · · · , ccj)× w(ccj , ccj+1, · · · , ccn),
which by Lemma 39 again is equal to w(w).

If the length of w′′ is at most |Wp| · 3N2 + 1, it can be taken to be w′. Otherwise, the
same procedure can be repeated to shorten the circuit even further. Since this procedure
removes at least one vertex each time, eventually a circuit shorter than |Wp| · 3N2 + 1 and
with the same weight than w will be obtained. ◀

Lemma 42 allows for the definition of a procedure to check termination on a matrix-
weighted graph. This procedure is referred to as Dutle’s procedure. Given a MWG W M

p =
(V, E) on a family of N measuresM for a PVS0 program p, the general idea of this procedure
is to build sequentially a family of functions fi : V → list[MN

3] with 1 ≤ i ≤ |Wp| · 3N2 + 1.
These functions are such that for each vertex cc ∈ V and every circuit w in W M

p starting
at cc and |w| <= i, there is a weight M ∈ fi(cc) for which M ≤ w(w). If for some i there

ITP 2021

27:14 Formal Verification of Termination Criteria for First-Order Recursive Functions

terminating?(Wp: MWG): bool =
LET f1 ← expandWeightLists(Wp, λ(v : VWp) : null)
IN terminatingAt?(Wp, 1, f1)

terminatingAt?(Wp: MWG, i : N, fi : [VWp → list[MN
3]]): bool =

i ≥ |Wp| · 3N2 + 1 OR
LET fi+1 ← expandWeightLists(Wp, fi) IN
IF ∃ (cc ∈ VWp , M ∈ fi+1(cc)) : ¬ positive?(M) THEN FALSE
ELSE fi = fi+1 OR terminatingAt?(Wp, i + 1, fi+1) ENDIF

expandWeightLists(Wp: MWG, fi : [VWp → list[MN
3]]): [VWp → list[MN

3]] =
λ(v : VWp): map(expandPartialWeight(fi), allCyclesAt(Wp,v))

expandPartialWeight(fi : [VWp → list[MN
3]]): [WalkWp → list[MN

3]] =
λ(w : WalkWp):

LET l ← cons(id×, fi(w[0]))
IN IF |w| = 1 THEN l

ELSE LET l1 ←map(λ (M : MN
3) : M ∗ w(w[0..1]))(l),

l2 ← expandPartialWeight(w[1 .. |w| − 1], fi)
IN pairwiseMultiplication(l1,l2) ENDIF

Figure 5 Dutle’s procedure to check termination on matrix-weighted graphs.

is vertex cc and a weight M such that M ∈ fi(cc) and M is not positive, then it can be
concluded that W M

p is not terminating, since there is a circuit whose weight is not positive.
On the contrary, if the algorithm reaches the point where i = |Wp| · 3N2 + 1 with positive
matrices in the range of fi(cc) for each i, W M

p can be safely declared as terminating thanks
to Lemma 42.

Figure 5 depicts a pseudocode for Dutle’s procedure. The function terminatingAt?
implements the rough idea described in the previous paragraph. The auxiliary function
expandWeightLists computes fi+1 given its predecessor fi. Hence, for instance, f1 contains
lower bounds for the weight of each cycle in the graph Wp. Starting from there, in every
recursive call to terminatingAt?, for each vertex cc in Wp, fi+1(cc) grows with respect to
fi(cc) by incorporating lower bounds for the circuits passing through cc that are longer that
the ones considered in fi(cc) by a complete cycle each. Then, fi provides information about
a lower bound on each walk of length at most i as previously stated, but it also contains
information about longer circuits. Hence, a guard that checks saturation of such functions
(fi+1 = fi) is also included to prematurely end the recursion if possible.

In the pseudocode, cons(x, l) denotes the list constructed from the element x and the
list l, null denotes the empty list, and map(f, l) is used to denote the list formed by the
application of the function f to each element in l. Furthermore, positive?(M) checks if a
matrix M is positive in the sense of Definition 37, allCyclesAt(G, v) returns the list of all
the cycles in the graph G passing through node v (if any), id× denotes the matrix weight that
acts as multiplicative identity, and pairwiseMultiplication(l1, l2) is the funtion that given
two lists l1, l2 of matrices in MN

3 returns the list resulting from the pairwise multiplication of
the elements in those lists.

C. A. Muñoz et al. 27:15

Dutle’s Procedure is a sound and complete procedure to decide positive weight of all
circuits in a matrix-weighted graph and hence to check termination on MWG. This procedure
has been formally verified in PVS as part of this work. The performance of the procedure
can be improved in both execution time and used storage space. For example, the function
expandWeightLists keeps enlarging the lists on the range of each fi+1 (with respect to its
predecessor fi), while it is enough to keep such lists minimal, for instance by adding a new
weight M to a list l only if there are no M′ in l already such that M′ ≤M.

The notion of Matrix Weighted Termination can be used to define a procedure to
automatically prove termination of certain recursive functions in PVS. Such a procedure
consist of the steps described below.

1. Extract the calling contexts from the PVS program definition. The set of calling contexts
is finite and can be extracted from the program by syntactic analysis.

2. Generate a sound CCG for the program.
A fully connected CCG is sound (the more edges the more inefficient the method).
The theorem prover itself can be used to soundly remove edges from the graph, i.e., an
edge cca, ccb can be removed if ⊢ ∀(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒
¬ ε±(p)(Cb, vb) can be discharged.
In order to select measures to form the family M, the following heuristics can be used.

The order relation < over natural numbers is usually a good starting point.
Since CCG allows for a family of measures, it is sound to add as many measures as
possible (of course the more measures the more inefficient the method).
Predefined functions can be used, e.g., parameter projections (in the case of natural
numbers), natural size of parameters (in the case of data types), maximum/minimum
of parameters, etc. More complex recursions may need heuristics based on static
analysis.

3. Construct a MWG for the program based on the CCG defined in the previous step in the
following way: all edges starting in a given calling context cca can be labeled with the
same matrix Ma. It is sound to set all its entries to -1. The theorem prover can then be
used to soundly set the entries in Ma(i, j) to either 0 or 1 as follows,

If ⊢ ∀(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ µi(va) > µj(vb) can be
proved, set Ma(i, j) to 1.
If ⊢ ∀(va, vb : Val) : ε±(p)(Ca, va) ∧ ε(p)(ea, va, vb) ⇒ µi(va) ≥ µj(vb) can be
proved, set Ma(i, j) to 0.

4. Use Dutle’s procedure to check termination on the MWG.

6 Conclusion, Related and Future Work

The termination of programs expressed in a language such as PVS0 can be guaranteed by
providing a measure on a well-founded relation that strictly decreases at every recursive
call. This criterion can be traced back to Turing [14]. A related practical approach was
further proposed by Floyd [6]. The inputs and outputs of program instructions are enriched
with assertions (Floyd-Hoare first-order well-known pre- and post-conditions) so that if the
pre-condition holds and the instruction is executed the post-condition must hold. To verify
termination, these assertions are enriched with decreasing assertions that are built using
a well-founded ordering according to some measure function on the inputs and outputs of
the program. This approach can also be used in recursive functions as shown by Boyer and
Moore [5]. In this case, a measure is provided over the arguments of the function. The
measure must strictly decrease at every possible recursive call. The conditions to effectively

ITP 2021

27:16 Formal Verification of Termination Criteria for First-Order Recursive Functions

check if a recursive call is possible or not are statically given by the guards of branching
instructions that lead to the function call. In the case of PVS, as in many other proof
assistants, the user provides a measure function and a well-founded relation for each recursive
function. The necessary conditions that guarantee termination are built during type checking.
In this paper, these conditions are referred to as termination TCCs and the process that
generates termination TCCs for PVS0 is formally verified against other termination criteria.

The functional language Agda tries to automatically check termination of programs
by finding a lexicographic order on the parameters of the functions participating in the
recursive-call chain [1]. This technique operates on multi-graphs whose edges are labeled
with matrices, but they differ from the graphs and matrices used in this paper in several
aspects. In that paper, each node represents a function instead of a calling context, each edge
represents a call, and the matrices labeling the edges relate the arguments used in each call
under the same order relation, instead of different measures as in the technique presented in
this paper. Closer to the work in this paper, Krauss formalizes the size-change termination
principle in Isabelle/HOL [8]. He also developed a technology based on this principle and the
dependency pair criterion to verify the termination of a class of recursive functions specified
in Isabelle/HOL. CCGs are implemented in ACL2s by Manolios and Vroon, where they
report that “[CCG] was able to automatically prove termination for over 98% of the more
than 10,000 functions in the regression suite [of ACL2s]” [10]. In his PhD thesis, Vroon
provides a pencil and paper proof of the correctness of his method based on CCGs [15].

The formalization presented in this paper includes proofs of equivalence among several
termination criteria. Other related formalizations that use or connect to the one presented
in this paper have been previously presented. For example, Alves Almeida and Ayala-Rincón
formalized a notion of termination for term rewriting systems based on dependency pairs
and showed how it can be related to the notions explained in this paper [2]. Also, Ferreira
Ramos et. al. have presented a proof of termination undecidability constructed on the
model language PVS0 [12]. The Matrix Weighted Graphs algebraic approach, which is an
implementation of the CCG technique, was first presented in Avelar’s PhD along with its
formalization in PVS [3]. That formalization does not include Dutle’s procedure. The authors
are currently working on the implementation of proof strategies, based on computational
reflection, that use the CCG/MWG technique to automate termination proofs of PVS
recursive functions.

7 Bibliography

References

1 Andreas Abel. foetus–termination checker for simple functional programs. Programming Lab
Report 474, LMU München, 1998. URL: http://www.cse.chalmers.se/~abela/foetus/.

2 Ariane Alves Almeida and Mauricio Ayala-Rincón. Formalizing the dependency pair criterion
for innermost termination. Sci. Comput. Program., 195:102474, 2020. doi:10.1016/j.scico.
2020.102474.

3 Andréia B. Avelar. Formalização da automação da terminação através de grafos com matrizes
de medida. PhD thesis, Universidade de Brasília, Departamento de Matemática, Brasília,
Distrito Federal, Brasil, 2015. In Portuguese.

4 Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Springer-Verlag Berlin Heidelberg, 2004.
doi:10.1007/978-3-662-07964-5.

5 Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press, 1979.

http://www.cse.chalmers.se/~abela/foetus/
https://doi.org/10.1016/j.scico.2020.102474
https://doi.org/10.1016/j.scico.2020.102474
https://doi.org/10.1007/978-3-662-07964-5

C. A. Muñoz et al. 27:17

6 Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on Applied
Mathematics, 19:19–32, 1967.

7 Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

8 Alexander Krauss. Certified size-change termination. In Frank Pfenning, editor, Automated
Deduction – CADE-21, pages 460–475, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

9 Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for
program termination. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 81–92, 2001. doi:
10.1145/360204.360210.

10 Panagiotis Manolios and Daron Vroon. Termination analysis with calling context graphs.
In Thomas Ball and Robert B. Jones, editors, Computer Aided Verification, pages 401–414,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

11 Sam Owre, John Rushby, and Natarajan Shankar. PVS: A prototype verification system.
In Proceedings of CADE 1992, volume 607 of Lecture Notes in Artificial Intelligence, pages
748–752. Springer, 1992.

12 Thiago Mendonça Ferreira Ramos, César Muñoz, Mauricio Ayala-Rincón, Mariano Moscato,
Aaron Dutle, and Anthony Narkawicz. Formalization of the undecidability of the halting
problem for a functional language. In Lawrence S. Moss, Ruy de Queiroz, and Maricarmen
Martinez, editors, Logic, Language, Information, and Computation, pages 196–209, Berlin,
Heidelberg, 2018. Springer Berlin Heidelberg.

13 Alan Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. of the London Mathematical Society, 42(1):230–265, 1937.

14 Alan Turing. Checking a large routine. In Report of a Conference High Speed Automatic
Calculating-Machines, pages 67–69. University Mathematical Laboratory, 1949.

15 Daron Vroon. Automatically Proving the Termination of Functional Programs. PhD thesis,
Georgia Institute of Technology, 2007.

ITP 2021

https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210

	1 Introduction
	2 PVS & PVS0
	2.1 Semantic Relation
	2.2 Functional Semantics
	2.3 Semantic Termination

	3 Turing Termination Criterion
	4 Calling Context Graphs
	5 Matrix-Weighted Graphs
	6 Conclusion, Related and Future Work
	7 Bibliography

