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Abstract
A public web server performing computational titration at the active site in a protein-ligand complex
has been implemented. This calculation is based on the Hydropathic INTeraction (HINT)
noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if
available), the server predicts the best combination of protonation states for each ionizable residue
and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized
protein-ligand complex. The 3D structure for the modified molecules is available as output. In
addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons,
can be obtained. This data may prove to be of use in preparing models for virtual screening and
molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational
titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an
improvement of 6.37 kcal mol−1 in the protein-ligand binding score. Protonation of Glu139 in mutant
HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that
increases the protein-ligand interaction score by 0.16 kcal mol−1. In human sialidase NEU2
complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that
protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the
positions of several other polar protons would increase the protein-ligand interaction score by 0.71
kcal mol−1.
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Introduction
Even if one has an “atomic resolution” crystal structure of a protein-ligand complex,
quantitatively modeling the Gibbs free energy of binding for the ligand can be challenging.
There are several reasons for this difficulty, many of which are associated with interpretation
of the crystal structure data. For example, the asparagine, glutamine and histidine functional
groups may be rotated incorrectly, because in a typical (1.8 Å resolution or poorer) crystal
structure hydrogen atoms are not visible and it is hard, if not impossible, to distinguish between
N and O of the amide group (Asn or Gln) and C and N atoms in the His imidazole ring unless
the interactions these functional groups make with neighboring residues are carefully
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considered. In fact, Weichenberger et al. argue that the average rate of Asp and Gln rotation
errors found in the current Protein Data Bank (PDB)1 is as high as 20%.2,3,4,5,6

An even greater challenge is the protonation state of the system. As noted above, most crystal
structures do not contain information on the positions of hydrogen atoms. This means that for
some (ionizable) groups, both on the protein and potentially on the ligand, it is hard to say
which protons are present, which ones are absent, and if they are present, to define their
orientation. These groups are by no means isolated from each other, but influence each other’s
states, such that their geometries and protonation states can not be evaluated independently of
each other. The number of model possibilities in this ensemble grows exponentially with the
number of ionizable groups in the active site. An active site can have several protonation states
that exist at equilibrium with each other that produce many energetically accessible models.
Water molecules present in the active site further complicate the problem because hydrogen
atoms on them can point in various directions. Water can mediate hydrogen bonds by acting
both as a Lewis base and/or as a Lewis acid (below, left) to convert a weakly repulsive polar
interaction into a strongly favorable interaction. Thus, a water molecule can “buffer” the active
site by rotating and changing its character from a donor to an acceptor when an interacting
functional group is protonated or deprotonated (below, right).

Scoring Functions for Protein-Ligand Associations
For a protein ligand complex where the geometry and the ionization state are known,
calculating the Gibbs free energy is still non-trivial.7,8,9,10,11 This is commonly referred to as
the “scoring function problem” and is the subject of intense research in computational
chemistry. Simply put, when most modeling packages report energy, they are reporting
enthalpy, not Gibbs free energy. One conventional approach to predicting the Gibbs free energy
of protein-ligand binding is using simplistic scoring functions calibrated against crystal
structures of protein-ligand complexes. These scoring systems are obtained by considering a
set of protein-ligand crystal structures for which the experimental dissociation constant is
known. Protein-ligand interactions are classified and counted for each structure and other
surface and flexibility-related properties can also be determined for each case. By assigning
relative contributions to these interaction and energy components, the sum of effects for each
complex results in a free energy “score” that should correlate with the energetics of protein-
ligand binding as encoded in the dissociation constant for the complex. Examples of such
scoring systems are SCORE1,12 SCORE213 and ChemScore.14 There are obviously a large
number of assumptions inherent in this approach, including additivity of contributions,15,16,
17 the radically different experimental conditions between a low-temperature crystallographic
experiment and room temperature solutions where association and dissociation measurements
are made.18 But also, these scoring functions are based on fairly small sets of data, usually on
the order of a hundred protein-ligand complexes, so they can be thrown off by interactions that
occur in the training set, but are rare in the real world, or vice versa. Most importantly, these
scoring systems often are quite poor for compounds that are very different from those in the
training set.11 Knowledge-based score systems, such as DrugScore,19 focus instead on
frequency of interaction types in known crystal structures using the assumption that the more
favorable the interaction is, the more frequently it will appear. Sophisticated, and more
computationally expensive, ways to find the free energy of binding in protein-ligand complexes
include the free-energy-perturbation (FEP)20,21 and linear response22,23 methods that rely on
statistical mechanics analysis of molecular dynamics or Monte Carlo simulations. These
methods can be somewhat compromised by errors from a variety of sources.24

Placing Protons and Optimizing Ionization States
The problem of placing and optimizing polar protons has been of interest for some time and a
variety of methods have been used to correct ambiguous atom placement and assign protonation
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states and hydrogen orientations to ionizable residues in proteins. First, in terms of correcting
X-ray protein crystal structures for problems with Asn, Gln, His, etc., there are several web
applications available.25,26,27 For example, MolProbity26 can be used both for the placement
of hydrogen atoms and correction of errors in protein structures, while others, like NQ-Flipper,
25 ignore hydrogens altogether. Solutions to the more complex problems associated with
ionization state evaluation have previously not been made available in a web application, but
are available in a number of diverse tools. Quantum mechanics28 and quantum mechanics–
molecular mechanics29,30 approaches and methods based on molecular dynamics (MD)
simulations31,32,33 are available. However, most methods rely on solving the Poisson-
Boltzmann equation, e.g., DelPhi,34 to evaluate possible protonation states and hydrogen
positions.35,36,37,38,39,40,41 More recently, solving the Poisson-Boltzmann equation has been
combined with MD simulation.42,43,44,45,46 Alternatively, Mehler and Guarnieri quantitatively
characterize the hydrophilicity or hydrophobicity of the microenvironment aroundeach
titratable group instead of obtaining grid-based solutions to the Poisson-Boltzmann equation.
47 However, these methods pursue a different goal than the application described in this paper
in determining the protonation state and hydrogen geometry most commonly encountered for
a protein, such that the results are most often described as pKas for protein residues. Also, these
approaches do not generally focus on the key residues/functional groups leading to ligand
binding. Our web application is pursuing that goal – finding the protonation state and hydrogen
geometry for which the protein-ligand interaction is the strongest.

HINT
While clearly an empirical scoring function, with many of the inherent limitations described
above, the HINT (Hydropathic INTeractions) forcefield and scoring tool has a number of
advantages over other algorithms, particularly with respect to accounting for hydrophobic and
desolvation contributions to binding energy that are somewhat entropic in nature and otherwise
difficult to estimate. The HINT model calculates the free energies of association for non-
covalently bound organic and biological molecules through a summation of hydrophobic atom
constants that are derived from a large set of experimental partition coefficients of small
molecules between 1-octanol and water phases. Because these partition coefficients are
experimentally derived thermodynamic quantities, they directly correlate with the free energies
of interaction and contain information about all non-covalent interactions that are likely to be
encountered in biological environments. Solvation/desolvation energies are inherently
included in the parameterization of HINT, because molecules moving between 1-octanol and
water are at the heart of the partition coefficient, which is the free energy for solvent transfer.
HINT determines the Gibbs free energy of non-covalent interactions from partial contributions
of individual atoms to the partition coefficient and the distance between these atoms. The
interaction between two molecules is determined using the equation:

(1)

where bij represents the specific hydropathic (hydrophobic and polar) interaction between
atoms i and j. If bij > 0, the interaction if favorable. If bij < 0, the interaction is unfavorable.
a is a hydrophobic atom constant derived from partition coefficients, calculated in a manner
similar to the CLOG-P method of Hansch and Leo.48 S is the solvent-accessible surface area.
It represents the fact that the deeper the atom is buried inside a group, the harder it is for it to
interact with atoms from other groups and molecules. Tij is a function that differentiates
between favorable and unfavorable polar- polar interactions. Its value is +1 for acid-base/
hydrogen bonds and −1 for base-base and acid-acid interactions. Rij and rij are functions of the
distance between atoms i and j. The function rij represents repulsive and attractive van der
Waals interactions. The former interactions are perhaps most important as they dominate when
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the interacting molecules are too close to each other. HTOT, the HINT interaction score, a
cumulative sum of all atom-atom interactions, has been shown to have a linear correlation with
the Gibbs free energy of interaction.49

(2)

It should be noted that partition coefficients not only implicitly encode information about non-
bonded intermolecular interactions, but also about the difficulty of reaching those states
because the magnitude of partition coefficients correlates with formal charge (and hydrophobic
atom constants correlate with partial atomic charges).

HINT has been successfully applied to many problems: in a study of protein-protein
interactions in native and mutant hemoglobins, very good correlations were found between
HINT scores and the free energies of dimer-dimer association;50,51,52 interactions between
proteins and small molecules showed a rather good correlation between HINT score and the
ΔGbinding for 53 protein-ligand complexes;49 studies have also indicated that HINT analysis
is useful for understanding DNA-small molecule53,54,55,56 and DNA-protein57,58 interactions;
recently HINT was also used to study the effect of tyrosine nitration of IκBα on NF-κB
activation.59

Computational Titration
One key advantage of HINT is its speed. It can be used for evaluating large sets of data from
docking, virtual screening or other sources. This is a major advantage for examining and
evaluating the multitude of different protonation states and possible geometries in a protein-
ligand complex even when referencing a single high quality crystal structure of a protein-ligand
complex. We refer to the collection of molecular models that would fit within the experimental
electron density of a crystal structure, but differ in terms of proton placement or special
rotations (Asn, Gln, His, etc.), as being “isocrystallographic”. The speed of HINT thus allows
optimization of these ill-defined molecular features in a reasonable time frame. This process
encompasses the computational titration algorithm for which some aspects have been described
previously.60,61,62,63 In this report, we are describing an online version of the HINT-based
computational titration method, i.e., a free web service for studying protonation states and
Gibbs free energies of binding for protein-ligand complexes. This user-friendly web service
can be used to solve quite a few potential problems in protein-ligand structural models; namely:
questionable group rotations, optimized rotations for H-donor protons, and multiple interacting
protonation states. The algorithm calculates a HINT score-based free energy of binding for the
examined protein-ligand complex models. The server can be accessed at
http://hinttools.isbdd.vcu.edu/CT.

This service joins an ever expanding field of on-line tools for computational chemistry and
drug discovery. It is beyond the scope of this article to fully review this phenomenon, but a
few related servers of note are: 1) The Virtual Computational Chemistry Laboratory
(http://www.vcclab.org) that calculates logP using a variety of algorithms and pKa;64 2) The
quantum mechanics-based pKa (protonation states) prediction tool of Quantum
Pharmaceuticals
(http://www.q-pharm.com/home/contents/drug_d/order_form/online_services/
pka_prediction);65 3) H++ (http://biophysics.cs.vt.edu/H++/) that computes pK values of
ionizable groups in macromolecules and adds missing H atoms according to a specified pH;
66 and 4) PHEPS (pH-dependent Protein Electrostatics Server)
(http://pheps.orgchm.bas.bg/home.html) that performs local and global pH-dependent analysis
of the electrostatics in proteins.67
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Results and Discussion
The newly available computational titration web service is based on the computational titration
algorithm62 implemented in the HINT program. While a flow chart of this algorithm has
previously been published,60 Figure 1 contextualizes it within the web server. Computational
titration was used successfully in modeling binding affinities of neuraminidase–inhibitor
complexes where it confirmed the experimental observations that the binding in these
complexes depends on acidity, being the strongest at neutral pH.63 Computational titration has
also been applied to studies of the HIV-1 protease active site. First, the complex between the
peptide Glu-Asp-Leu and HIV-1 protease was examined68 and the experimental dependence
of binding on pH was computationally reproduced. In a second study, computational titration
experiments for HIV-1 protease with six small molecule inhibitors of this enzyme were
performed to optimize protonation state models. Binding energies for five ligands out of six
were within an average error of 2.5 kcal mol−1.62 Modeling these interactions with other
methods would have been very challenging, because these systems can assume many thousands
of different ionizations state combinations.69 In many such cases no single ionization state
dominates; rather hundreds of different ionization state ensembles are at equilibrium,
structurally similar49 and well within the expected 1 kcal mol−1 experimental error for binding
energy measurement. Thus, the “optimum” ionization state reported by computational titration
may not be the single best state, but one likely close to it in free energy.

To date, the only practical way to use the computational titration algorithm was through a
Sybyl70,71 interface to HINT available in our local development platform. While Sybyl is
limited to only two platforms, Irix and Linux, we have been developing the underlying HINT
toolkit across a much broader set of platforms.72 However, providing HINT-based tools in a
usable form outside the Sybyl infrastructure and user interface has been a limiting factor. In
effect, very few users have had access to computational titration. Thus, we have chosen to
make it available online to a broader audience in the computational molecular design
community.

Implementation and Functional Usage
The computational titration service is implemented in several layers. The entire application is
controlled through a web server written in Python73 that can display static web pages, like the
front page, or pages generated by Python-based CGI scripts. These scripts serve several
purposes. They provide an easy-to use HTML interface for the HINT program. The
computational titration algorithm is implemented as a binary program written in C and linked
to the HINT toolkit. This program is the heart of the web application. In addition to this
application, for successful runs Python scripts also interact with Gnuplot74 to make plots of
the computational titration results (vide infra). Python CGI scripts are also used to catch a
variety of errors in input files and to provide an intuitive interface that helps users to monitor
their jobs.

The computational titration server protocol operates in several steps. In the first step the user
uploads the protein in PDB format, the ligand in Sybyl mol2 format, and optionally waters in
PDB format. The user also selects what types of protonation scenarios should be considered.
For example: within what distance from the ligand should the protonation states of protein
amino acids be varied, should the input water set be focused to the most relevant75 waters, and
whether one should consider ionization states where phenols are potentially deprotonated on
the ligand. A complete set of the current user titration options can be found in Table 1 for
protein residues and in Table 2 for the functional groups of the small molecule ligand. This
information is also available at http://hinttools.isbdd.vcu.edu/CT/help.html. Next, the server
enumerates the ensemble of all protonation state models to be considered and presents the user
with a choice of whether to go forward with the calculation, modify the options, proceed by

Bayden et al. Page 5

J Comput Aided Mol Des. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://hinttools.isbdd.vcu.edu/CT/help.html


sampling the ensemble, or stop. At times, depending on the complexity of the active site
environment, the number of protonation states can be unreasonably high. Following this step,
the calculation exhaustively evaluates all (or randomly samples) the protonation state models
found by the previous step. Each ensemble model has a specific and unique list of atoms to be
protonated or deprotonated. After these changes are made to each model, the relevant hydrogen
coordinates are exhaustively61 optimized on the protein, ligand and waters, if present, to get
the geometry with the best possible interaction between the protein and the ligand. A key
assumption of CT is that differences in these interactions are the primary source of free energy
differences between the ensemble models, i.e., other, largely intramolecular, contributions are
not considered in the current algorithm. We also need to point out that the exhaustive
optimization is a particularly significant feature as it circumvents the possibility of rotatable
polar hydrogens, e.g., as in R-OH, R-NH2 or water, being trapped in local minima and not
achieving optimal hydrogen bonding geometry. The Gibbs free energy of binding for each such
geometry is calculated from the HINT score, a measure of non-bonding interactions between
the molecules that is linearly correlated with their Gibbs free energy of binding (see eq. 2).
Finally, the results of the computational titration are output in several forms: 1) PDB files of
the protein and water set and a Sybyl mol2 file of the ligand, representing the molecular
ionization state ensemble and geometry with the best interaction between the protein and the
ligand; 2) the HINT score and the Gibbs free energy of the protein-ligand interaction for this
best model; and 3) a table of normal average, Boltzmann averages, maximum and minimum
values of Gibbs free energies of all protonation states at different charges of the active site;
and 4) a plot of HINT score and Gibbs free energy plotted as a function of the charge in the
active site charge (see Figure 5). All evaluated protonation ensembles are plotted on this graph,
and for each charge, the normal and the Boltzmann averages of Gibbs free energies of all
protonation state ensembles associated with that charge are plotted. This plot can help the user
to understand how the protein-ligand binding changes with pH or acidity. It also convincingly
illustrates how little energy difference exists between many of the models in the protonation
ensemble and that there is not one true ionization state ensemble, but a family of coexisting
closely related states through the exchange of fairly fluid protons.

It should be noted that the computational titration algorithm optimizes the local environment
of affected residues and ligand functional groups, but does not energy minimize the active site
as a whole. Also, the tool that protonates amines and phosphines can assign unrealistic bond
angles for the hydrogens it adds to these groups if the nitrogen or phosphorus is not or poorly
puckered. The user should examine the geometry of the generated models and (generally)
subject them to hydrogen-only molecular mechanics minimization to finalize the model.
Further revisions of the program will likely include some molecular mechanics cleanup of the
output models.

The computational titration server is currently a sgi Altix 350 system with multiple processor
queuing and can thus execute many jobs at the same time. The queuing system is intuitive and
allows users to view the progress of their jobs.

Computational Titration Case Studies
One of the difficulties encountered in virtual screening is that often there is a mismatch between
the ionization state(s) of the active site residues and proposed incoming ligand if both molecules
are modeled as “pH 7”. For example, if a putative ligand placed a carboxylate next to a
deprotonated Asp or Glu residue, it would be rejected because of highly unfavorable
interactions. Protonating either the ligand carboxylate or the acid residue could in many cases
produce a strong hydrogen bond between the species. Thus, it would seem that performing
virtual screening based on a crystal structure of a known protein-ligand complex, successfully
identifying all potential leads would be enhanced if the hydrogen atoms in the active site are
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assigned correctly both in terms of protonation state and orientation. In this section we describe
a few examples where either assignment of hydrogen atom configuration is not trivial, or the
orientation of Asn, Gln or His residues may have been assigned incorrectly. We applied the
automated computational titration analysis described above to these structures and report the
results here. It should be noted that our application simultaneously varies protonation states on
the ligand and in the protein active site. Many of the results we obtained show protonation
states different from those typically encountered at pH 7, anomalies caused by the very specific
nanoenvironments at the protein active sites.

The first example is an X-ray crystal structure of β secretase (BACE-1) complexed with the
inhibitor (6R)-2-amino-6-[2-(3′-methoxybiphenyl-3-yl)ethyl]-3,6-dimethyl-5,6-
dihydropyrimidin-4(3H)-one (see Figure 2).76 This structure is stored in the Protein
Databank1 with the code 2va7. Computational titration makes several changes to the structure
of this complex. First, it rotates two amide groups (Asn37 and Gln12). In the original structure
the side chain of Asn37 was engaged in highly unfavorable acid-acid and base-base interactions
with the backbone of Arg128. Our application flipped the amide group on the side chain of
Asn37 and transformed these interactions into hydrogen bonds (Figure 2a). Also, in the original
structure the side chain amide group of Gln12 made unfavorable contacts with the amine of
Lys9, which was repaired by flipping the Gln12 amide group (Figure 2b). The program also
protonated the primary amine on the ligand and increased the strength of favorable interactions
between the ligand and protein residues Asp32 and Asp228 by adding a charge-charge
interaction to the existing hydrogen bonds (Figure 2c). The positions of hydrogens on many
waters and alcohols were also adjusted. For example the alcohol group on Thr231 was rotated
to form a hydrogen bond with the carboxyl of Asp32 (Figure 2c). The HINT score for the
nominal “pH 7” model, even after molecular mechanics energy minimization, was −2236
(−1.18 kcal mol−1), while that of the optimized (titrated) and energy minimized model is 1031
(−7.55 kcal mol−1), if the free energy is calculated using eq. 2.

The second example is the crystal structure of L100I mutant HIV-1 reverse transcriptase in
complex with the S-DABO analogue GW420867X inhibitor (PDB code 2opq) (Figure 3). For
this structure the computational titration application suggests that the ligand binds best when
Glu139 is protonated. Most often when a carboxylate group is protonated to an acid, the
hydrogen points forward as it is stabilized by interacting with the other (carbonyl) oxygen of
the same group. However, in this case the hydrogen of the protonated carboxylate on Glu139
is turned away, towards water1025, making a new hydrogen bond. The usual orientation for
this hydrogen would have produced highly unfavorable interactions with the amine group of
Lys101. In this model, water1025 serves as a bridge between Glu139 and the ligand’s two
carbonyl groups by accepting a proton from Glu139 and donating its protons to the ligand. For
this case, the HINT score for the nominal, energy minimized, “pH 7” model was 229 (−5.99
kcal mol−1), while for the optimized and minimized model the HINT score is 310 (−6.15 kcal
mol−1). While this is not a large score difference, understanding the role of the bridging water
could open up possibilities for displacing it through ligand design.75

We should point out that a prototropic (keto-enol) tautomeric change in the ligand was not
considered for this protein-ligand complex because the resulting enol would not have been
isocrystallographic with the ketone. (If this tautomerization occurs, the formed double bond
would force the ethyl into the plane of the ring system, which would be observed in a relatively
high resolution X-ray structure).

Computational titration produced dramatic results for the crystal structure of the human
sialidase NEU2 in complex with the isobutyl ether mimetic inhibitor (R)5-Acetylamino-(S)4-
hydroxy-(R)6-isobutoxy-5,6-dihydro-4H-pyran-2-carboxylic acid (below) (PDB code 2f11).
This structure is a refinement of 1snt.77 If all ionizable residues within 6 Å of the ligand were
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chosen to define the active set, 944,784 configuration models would have to be analyzed, too
many for completion in a reasonable amount of time. A number of options for reducing the
scale of this problem are available, including random sampling and calculation for a fraction
of models, eliminating functional groups and/or residue types from the titratable set, and
reducing the volume of the titratable active set. In this case, we have adjusted the settings by
reducing the contact cutoff distance from 6 Å to 4 Å, and eliminated the possibility of tyrosine
and cysteine ionizations, i.e., these residues were not titrated. This reduced the number of
models in the set to 2187. (In fact, no cysteine residues were present in or around the active
site.)

Figure 4 illustrates the active site environment for 2f11. Although the overall resulting change
in HINT scores was modest, 1879 (−9.21 kcal mol−1) to 2245 (−9.92 kcal mol−1), a number
of significant (balanced between favorable and unfavorable) adjustments in the active site,
highlighted in yellow and purple, were proposed by the computational titration algorithm that
are instructive for understanding the ligand binding. The first, somewhat unexpected, result
was that in the best model Glu218 was protonated. This protonation serves two purposes: first,
it reduces the unfavorable interactions between Glu218 and the hydrophobic part of the ligand;
second, this protonation influences the geometry of the neighboring residue, Tyr334. In the
absence of the ligand, Glu218 would likely have been deprotonated, forming a hydrogen bond
with Tyr334; in the presence of the ligand, the hydrogen of the tyrosine hydroxyl group can
interact favorably with the ligand’s carboxyl group (H…O, 2.52 Å; H…C, 2.40 Å), the
heterocyclic oxygen (H…O, 2.62 Å) and the double bond of the ligand (H…C=C, 2.32 Å).
The hydrogen donated by the protonated Glu218 helps keep the hydroxyl group of Tyr334
oriented properly for these favorable interactions with the ligand (see Figure 4, A and B).

While it is debatable whether such a change would occur because of the rather unfavorable
pKb for guanidinium,78 to avoid unfavorable interactions with the hydrophobic part of the
ligand, this model suggests that Arg237 is deprotonated, which in turn leads to flipping the
amide group on the side chain of Gln270, so that the amide nitrogen of Gln270 can hydrogen
bond donate to the (now) deprotonated nitrogen of Arg237 (H…N, 2.25 Å) (see Figure 4, C
and D). On the other side of the Gln270 amide the oxygen forms a favorable interaction with
one hydrogen of water55 (H…O, 2.50 Å). The other hydrogen of water55 forms a favorable
interaction with the carboxylate group of the ligand (H…O, 2.07 Å). Thus, water55 serves as
bridge between Gln270 and the carboxylate group of the ligand. Another bridging water
molecule is water3. It forms one hydrogen bond by donating to the oxygen atom on the side
chain of Asn86 and also hydrogen bonds by donating to Glu39. Water3 also forms a hydrogen
bond by accepting from the ligand’s hydroxyl group; thus, it significantly increases the strength
of favorable interactions between the protein and the ligand.

However, it should be made clear that the model described above and shown in Figure 4 is by
no means the dominant protonation model for this system. There are many other models that
are energetically quite similar to this one. Figure 5 is a graph of HINT score as a function of
site charge for the 2187 models examined by computational titration for this complex. Each
red circle represents an individual model at calculated site charge and HINT score (left axis).
The right axis indicates the free energy of binding for the ligand as calculated from the HINT
score using eq. 2. The labeled “Best Model” and “pH 7 Model” are those illustrated in Figure
4. This graph also indicates the average HINT score for each site charge and the Boltzmann
weighted energy for each site charge. The Boltzmann term is calculated using eq. 2 to convert
HINT score to free energy. It should be noted that eq. 2 is a “generic” conversion scheme with
an uncertainty of ± 2.5 kcal mol−1.49 We have shown that scoring functions specifically
calibrated to convert HINT score to free energy for particular protein targets are more robust
and can have uncertainties of around 1.0 kcal mol−1 or less.79,80 The Boltzmann-weighted
average shows a maximum (highest binding energy) at a site charge of −2. This value may be
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interpreted as an expectation value for experimental measurement of binding energy, where
many energetically similar states may be occupied. Likewise, it is apparent from this graph
that many models are energetically similar. In fact, the difference in energy between the pH 7
Model and the Best Model is only about 0.71 kcal mol−1, and neither are of the same binding
site charge as the maximum in the Boltzmann-weighted energy curve.

Conclusions
We have implemented the computational titration algorithm as a freely available web service
at http://hinttools.isbdd.vcu.edu/CT. This web server is designed to be an intuitive tool that
can help users improve their models of protein-ligand interactions as well as calculate the Gibbs
free energies of binding for protein-ligand complexes at various acidities. The basis of free
energy scoring for computational titration is the HINT program. While this scoring function
is simplistic, it has been fruitfully used in a number of studies of protein-ligand interactions,
and is rapid enough to make computational titration practical. It should be emphasized that
absolute free energies of binding are difficult to calculate, but the relative energies and ordering
between protonation models should be fairly reliable. The goal of this modeling tool, and in
general most modeling tools, is to facilitate visualization of complex phenomena. The myriad
of protonation ensembles in a protein-ligand complex is particularly challenging, so we feel
that the computational titration tool will be of benefit to the modeling community. We should
note that, because the user selects which residue types are subject to the titration protocol, the
user is controlling a crucial aspect of the algorithm. In particular this is, in effect, allowing the
user to decide which ionizations he believes are germane to the system. If ionization of tyrosine
is selected, some models will be created with tyrosinate. We are exploring automation of this
aspect, i.e., incorporating modeled pKas for each ionizable functional group in the
computational titration algorithm as an intramolecular contribution to free energy that may be
significant in some cases, but at present this is not available.

We are currently developing additional functionality for computational titration and will make
it available as it is coded and validated. In particular we are considering: 1) improved
optimization of protonated amines and phosphines. The current algorithm for adding protons
in such cases is purely geometric, whereas more reasonable conformations would be obtained
by a molecular mechanics approach; 2) support for titrating additional functional groups such
as phosphates and sulfates; 3) support for titrating nucleotide backbone phosphates and sugars;
and 4) implementation of stochastic optimization algorithms to find the best protonation state
in cases where the number of potential models is exceedingly large. Nonetheless, even in its
current implementation, computational titration should be a useful tool for creating starting
ionization state models for protein-ligand complexes.
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Figure 1.
Flow chart for the Computational Titration algorithm. Steps performed by C program are
enclosed in box; remainder is the performed by Python script/web server.
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Figure 2.
Structural elements of the x-ray crystal structure of liganded β secretase (BACE-1, PDB code
2va7) as modified by computational titration. All residues with ionizable functional groups
within 6 Å of the ligand were included in the titratable pool. Water molecules within 4 Å of
atoms in both the ligand and protein were selected for optimization. a) The amide group of
Asn37 is flipped 180° – improving its contact with backbone atoms of Arg128. b) Flipping the
amide of Gln12 improves its interaction with Lys9. c) Protonating the ligand’s amine improves
its interactions with both Asp32 and Asp228.

Bayden et al. Page 14

J Comput Aided Mol Des. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Active site optimized through computational titration for 2opq. All residues with ionizable
functional groups within 6 Å of the ligand were included in the titratable pool. Water molecules
within 4 Å of atoms in both the ligand and protein were selected for optimization. Notably,
Glu139 is protonated to the acid form and the proton is turned towards water 1025 forming a
water mediated hydrogen bond with the ligand.
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Figure 4.
A comparison between two models of the crystal structure of human sialidase NEU2 in
complex with an isobutyl ether mimetic inhibitor (PDB 2f11). In one model hydrogen atoms
for ionizable polar atoms were assigned conventionally (H atoms colored cyan and purple),
using protonation states that are typically assumed for a neutral solution. In the other model
both the protonation state for the ionizable polar groups and the resulting positions of ionizable
hydrogens were optimized with computational titration. In both models the positions of
hydrogens were energy minimized with molecular mechanics. Atoms colored yellow (added)
and purple (deleted) indicate differences between the two models as labeled: A) Glu218 is
protonated; B) the hydroxyl group on Tyr334 is rotated about 180°; C) Arg237 is deprotonated;
and D) the amide group on the side chain of Gln270 is flipped.
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Figure 5.
Titration curve for 2f11. The best model and pH 7 models as shown in Figure 4 are indicated.
See text for more information.
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Table 1
Protein residue-specific optimization actions available in computational titration.

Residue Action Details

Asn, Gln Check amide orientation Check if
amide O and
NH2 atoms
are correctly
assigned in
the structure.

Asp, Glu

Titrate acid Find the best
ionization
state for acid
residues.

Optimize R-OH rotation If residue in
acid form,
exhaustively
optimize
rotation of –
OH.

His

Check ring orientation Check if
CD1, NE1,
ND2 and CE2
atoms are
correctly
assigned in
the structure.

Titrate base Find the best
ionization
state for
imidazole
ring of His
residue.
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Residue Action Details

Lys

Titrate base Find the best
ionization
state for
amine of Lys
residue.

Optimize R- NH2 rotation Exhaustively
optimize the
rotation of –
NH2 in
neutral Lys
residues.
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Residue Action Details

Arg

Titrate base Find the best
ionization
state for
guanidine of
Arg residue.

Optimize R=NH rotation If Arg is
deprotonated,
optimize the
rotation angle
of imine NH.

Tyr Titrate phenol Find the best
ionization
state for Tyr
residues.

Cys Titrate thiol Find the best
ionization
state for Cys
residues.

Cys, Ser,
Thr, Tyr

Optimize R-XH (X=O,S)
rotation

(X = O, S)

Exhaustively
optimize the
rotation of –
XH for Cys,
Ser, Thr and
Tyr residues.

C-terminus

Titrate C-term acid Find the best
ionization
state for the
C-terminus
acid.
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Residue Action Details

Optimize R-OH rotation If C-terminus
in acid form,
exhaustively
optimize
rotation of –
OH.

N-terminus

Titrate base Find the best
ionization
state for the
protein N-
terminus
amine.
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Residue Action Details

Optimize R-NH2 rotation Exhaustively
optimize the
rotation of –
NH2 in
neutral N-
termini.
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Table 2
Ligand-specific optimization actions available in computational titration.

Functional Group Action Details

amine, phosphine

Titrate base

(X = N, P)
(R = H, R)

Find the best
ionization
state for
ligand
amine.

Optimize R-XH2 rotation

(X = N, P)

Exhaustively
optimize the
rotation of –
NH2 in
primary
amine

phenol Titrate phenol Find the best
ionization
state for
aromatic
alcohol in
ligand.

Thiol Titrate thiol Find the best
ionization
state for
ligand thiol.
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Functional Group Action Details

hydroxyl, thiol Optimize R-XH rotation

(X = O, S)

Exhaustively
optimize the
rotation of –
XH in
ligand.

carboxylic acid

Titrate acid Find the best
ionization
state for
carboxylic
acid in
ligand.

Optimize R-OH rotation If in acid
form,
exhaustively
optimize
rotation of –
OH.
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