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Abstract
Computational methods for predicting ligand affinity where no protein structure is known
generally take the form of regression analysis based on molecular features that have only a
tangential relationship to a protein/ligand binding event. Such methods have utility in retrospective
rationalization of activity patterns of substituents on a common scaffold, but are limited when
either multiple scaffolds are present or when ligand alignment varies significantly based on
structural changes. In addition, such methods generally assume independence and additivity of
effect from scaffold substituents. Collectively, these non-physical modeling assumptions sharply
limit the utility of widely used QSAR approaches for prospective prediction of ligand activity. The
recently introduced Surflex-QMOD approach, by virtue of constructing physical models of
binding sites, comes closer to a modeling approach that is congruent with protein ligand binding
events. A set of congeneric CDK2 inhibitors showed that induced binding pockets can be quite
congruent with the enzyme’s active site but that model predictivity within a chemical series does
not necessarily depend on congruence. Muscarinic antagonists were used to show that the QMOD
approach is capable of making accurate predictions in cases where highly non-additive structure
activity effects exist. The QMOD method offers a means to go beyond non-causative correlations
in QSAR analysis.

Introduction
In our initial paper reporting the Surflex QMOD (Quantitative MODeling) method for
ligand-based binding affinity prediction, we showed accurate scaffold-independent affinity
predictions on a particularly challenging structure-activity data set [1]. Using just 20 ligands
of two relatively rigid scaffolds, accurate predictions were made on 35 molecules from
related series as well as on 17 compounds of widely varying structural types. This was done
by construction of a physical binding site made up of molecular fragments (a “pocketmol”)
such that the maximally active pose of each training ligand (measured using the Surflex-
Dock scoring function) yielded a score close to the experimental pKd. New molecules were
flexibly fit into the pocket, and the maximal score was the predicted pKd, with the
corresponding pose being the prediction of binding mode.

Figure 1 illustrates the process on a set of CDK2 inhibitors in a recently published modeling
study [2]. The process begins with structures and activities, develops a rough hypothesis for
relative alignments of ligands (many per ligand), generates a diverse set of possible binding
pocket fragments, and finally selects and refines a set of optimal fragments. Optimality
describes both the fit of the model to binding activity data as well as the fit of ligands into
the model: the model itself defines the preferred binding modes of the ligands. Building such
models requires a method for model derivation where the objects to be modeled have
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multiple possible instantiations and where choice among these is dependent on the evolving
model. The Compass method was the first to make an iterative refinement paradigm that
addressed this problem [3; 4; 5], and a formalization of this early work, termed multiple-
instance learning [6], has found applications in many areas of machine learning. We have
also used it in scoring function development for molecular docking [7; 8; 9].

There were four chief limitations of the initial QMOD approach. First, results for only a
single target were shown, albeit a challenging one. Second, the computational approach to
identifying pocket probe subsets (step E from Figure 1), was somewhat brittle, and, more
importantly, required specification of a single preferred pose for each training ligand rather
than choosing automatically from among the pool of many that exist for each ligand. Third,
solutions to the pocket induction problem for a given set of training molecules are
numerous, but we did not present a general method for model selection. Fourth, while we
showed the relationship of our induced physical model to a modeled structure of 5HT1a, we
were unable to make a direct comparison to a specific and relevant experimentally
determined crystal structure of the target. This paper addresses all of these limitations as
well as examining the theoretical basis for the superiority of physically sensible models over
purely empirical QSAR approaches.

Most QSAR approaches derive a mathematical relationship between molecular descriptors
and activity that is only tangentially related to the physical process of ligand binding. The
implications of these limitations on model predictivity were highlighted by Johnson [10],
focusing on the logical fallacy of assigning causality to correlated variables. In particular, it
was suggested that “Reliable prediction of future compounds requires that the model have
some basis in physical reality.” There are two central limitations of most QSAR approaches
relating to this issue of physicality. First, most QSAR methods make an implicit assumption
that the effects of substituent changes at different positions on the same scaffold will be
strictly additive, which is not physically realistic. Second, many such methods do not
depend on a prediction of ligand binding mode, and even for those that do, the “predicted”
ligand binding mode does not generally depend on the model or its parameters, which is also
non-physical. All non-3D approaches share the second limitation (since they do not depend
on molecular alignment at all), and those that are linear functions of molecular descriptors
generally share the first. The most widely used approaches for 3D QSAR (CoMFA and
related variants [11; 12; 13; 14]) have both limitations. Multi-point quantitative
pharmacophoric methods can theoretically address both issues [15], but they lack physically
realistic detail in hydrophobic binding pocket shape. In a historical sense, the present work
is also related to the pseudoreceptor concept, which addresses aspects of both limitations.
This work includes that of Snyder and Rao [16], further refinements including Vedani [17],
and the work of Zbinden with Vedani on PrGen [18]. See Tanrikulu and Schneider [19] for a
review and the initial report of the QMOD approach for additional discussion [1].

Figure 2 shows that the first assumption is false and illustrates why making ligand poses
dependent on models might offer a means to avoid the assumption in the first place. The
four muscarinic antagonists shown were synthesized as part of the same effort for
developing a treatment for urinary incontinence [20; 21]. While two single changes from the
parent compound yielded improvements over a full log unit in Kd, the combination of the
two changes was worse than either of the singly substituted compounds. One simple
physical explanation, that the pocket is too small to fit the largest of the four compounds
easily, is beyond the explanatory capability of many QSAR methods. This represents an
anti-additive effect. Generalizing this issue further, consider the case of a rigid protein and a
ligand whose substituents have minor effects on ligand conformational energetics. The best
possible outcome in the case of two separately favored substituents on a common scaffold is
that their combined effect is exactly additive in pKd. However, for this to be true, the two
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derivative with single substituents must have the same preference for the position of the
central scaffold when bound to the protein. In general, this is not to be expected; even small
changes in substitution pattern yield some variation in scaffold alignment. Non-additive
behavior is a natural and common consequence of the physical interplay between ligand
variants and a protein binding site. The ability to model and predict such effects is a natural
by-product of the Surflex-QMOD approach, since it constructs a physical binding pocket
that is analogous to a protein active site.

This paper reports improvements to the QMOD technique and expands the set of validation
cases to include a typical QSAR data set and a more challenging one. The former consisted
of 80 congeneric CDK2 inhibitors, split between 30 for training and 50 for testing. This set
offered the ability to consider the relationship between induced models and experimentally
determined protein binding pocket structure. The latter consisted of 25 muscarinic
antagonists, split between 22 for training and 3 for testing the highly non-additive structure-
activity effect shown in Figure 2. For the CDK2 set, the primary model showed a mean error
of prediction of 0.4 log units (approx. 0.5 kcal/mol), and highly significant rank correlations
were obtained (Kendall’s Tau 0.77, p ≪ 0.01, by permutation analysis). Of the top 10
predicted test ligands, 7 of the bona fide top 10 were identified (p ≪ 0.01, by exact
binomial). One surprising aspect of model-building for CDK2 was that models that were
congruent to the active site were not significantly more predictive than those that were not.
However, this was true only for molecules within the chemical series used for model
construction. When considering a diverse set of CDK2 inhibitors, the more geometrically
accurate model was more predictive. For the muscarinic case, the primary model accurately
ranked the potencies of the three substituted furans shown in Figure 2.

The methods and results presented here by no means represent a “solution” to the 3D QSAR
problem. However, the Surflex-QMOD approach can be seen to be both a practical and
theoretical improvement upon the status quo in a field built historically upon correlative
analysis that has been premised on non-causative observations.

All data and computational protocols are available for download (see http://www.jainlab.org
for details).

Methods and Data
The following describes the molecular data sets, computational methods, computational
procedures, and quantification of performance.

Molecular Data Sets
Two sets of ligands were used. The first, illustrated in Figure 3, consisted of 80 CDK2
inhibitors, ranging in pKi from 4.0–8.3. These were split randomly into a training set of 30
and testing set of 50 inhibitors. All molecules were N2, O6 substituted guanines and were
the subject of a recent modeling study [2]. In addition, for some model-building,
staurosporine was also used (structure shown in Figure 1), in order to yield a more accurate
representation of the absolute configuration of the ligands when bound to CDK2. In these
cases, the activity of staurosporine was specified as being greater than a pKi of 7.0. In
addition, a set of 67 PDB co-crystal structures of CDK2 bound to non-covalent inhibitors
was identified from Binding MOAD [22] and were mutually aligned in order to provide a
direct comparison between QMOD-generated models and the actual CDK2 binding site
under normal conformation variation.

The second set, illustrated in Figure 4, consisted of all furan-based quinuclidinene
muscarinic antagonists from two structure-activity studies, with the addition of two
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benzofuran compounds for testing non-additive predictions [20; 21]. The activity range was
pKd 5.0–8.0. These compounds were synthesized as part of an effort to produce a new
muscarinic antagonist with reduced dry-mouth side-effects that resulted in the drug
tolterodine [23]. To simulate a typical drug discovery effort focused on a single scaffold
(here the furan-based antagonists), models were constructed using known, potent ligands
(competitive scaffolds) along with 22 from the furan series. At the time, oxybutynin was a
competing therapeutic, atropine was one of the earliest known muscarinic antagonists, and
azatadine offered a relatively rigid example of a potent (but non-selective) muscarinic
antagonist. The three substituted furans shown at the bottom of Figure 2 were used to test
the final model. Of note, the 3-phenyl was the most potent of the series, and (as discussed
above) the phenyl-substituted benzofuran was much less active than one would expect based
on the activity of the other two test compounds. The split of 22 training and 3 testing ligands
was done specifically to illustrate the potential for accurate predictions of highly non-
additive effects that depend on molecular alignment.

All ligand structures as well as preparation protocols are available for download (see
http://www.jainlab.org for details). Additional details regarding computational procedures
for training ligand alignment, model induction, and testing of novel ligands follows.

Computational Methods
The core computational methods for the Surflex-QMOD approach have been reported
previously [1], and the basic steps are summarized in Figure 1. The present work makes a
significant improvement to the initialization of a pocketmol and offers a validation
procedure to help select from multiple possible models, and these will be described in detail.
Overall, there are five steps to construct and employ a physical binding pocket for activity
prediction (a “pocketmol”):

1. Generation of an initial set of alignments for each training ligand.

a. Input: Structures of ligands, with 2 or 3 chosen to serve as the seed
alignment hypothesis.

b. Output: At least one pose for each training ligand, all of which are
plausible within the same mutual alignment. Typically, there are 100 poses
per ligand.

2. Generation of an initial set of molecular probes to form the binding pocket.

a. Input: All poses (optionally limited to some maximum number) for each
active training ligand, from the pool from Step 1.

b. Output: A large set of molecular probes surrounding the ligands, where
each probe makes a near-optimal interaction with at least one active
ligand’s pose. Typically, there are 1000–3000 such probes.

3. Selection of an optimal minimal pocketmol followed by augmentation to improve
the fit to data.

a. Input: The set of probes from Step 2, all poses for each training ligand
(actives and inactives), and activity values for each ligand specified as
exact values or inequalities.

b. Intermediate: A minimal set of probes such that nominal interaction
scores against this set lie within a specified accuracy (using the highest
scoring pose for each ligand).
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c. Output: A refined set of probes, a refined set of ligand poses (using the
refined probes), and a small set of additional probes that improve
pocketmol performance given the new ligand poses.

4. Refinement of the pocketmol by modifying probe positions interleaved with
refining ligand poses.

a. Input: The output pocketmol from Step 3, the full set of ligand poses for
all training ligands, and the molecular activities.

b. Output: A refined pocketmol with refined ligand poses such that further
local optimization of ligand poses against the pocketmol yields little
change in scores and where the final scores are close to the experimentally
measured ones.

5. Testing of new putative ligands within the pocketmol:

a. Input: A new molecular structure, the final pocketmol, and a selection of
optimal poses for training molecules for use in alignment of new
molecules.

b. Output: Predicted score and pose alternatives for the new ligand using a
procedure analogous to docking ligands into a protein active site.

This procedure will yield a single model, but steps 1 and 3 each generate ranked lists of
putative alignments (step 1) and putative initial minimal probe sets (step 3). For a particular
alignment, several different probe sets may yield models that fit the training data well.
Further, several such alignments may all yield plausible models, so there must be some
means to choose from among multiple models based only on training data. The following
two sections will describe the new pocketmol initialization approach as well as a model
selection approach.

Pocketmol Initialization—The input to the pocketmol initialization is a pool of poses for
each training ligand (typically 100 each) as well as a pool of pocketmol probes (typically
1000–3000). Our initial approach had relied upon a numeric programming method that
forced a choice of a single pose for each ligand prior to yielding a set of probes, and it also
made use of an ad hoc procedure for covering areas of the pocketmol that were too open [1].
The current approach makes use of a greedy algorithm that optimizes an objective function
that minimizes error in computed molecular activity and also minimizes probe density.
Deviation in computed activity is quantified as mean-squared difference between computed
and experimental pKd for all training molecules. Density is quantified based on the positions
of probes of like type. For each pair of like probes, the contribution to the density penalty is
a constant weight (default 2.0) multiplied by the amount that the RMSD between the probes
is closer than a set threshold (defaults are 3.5 for steric probes and 1.5 for polar probes).

Given a particular probe set, interaction scores for each molecule are computed by
considering each of the molecule’s poses and taking the maximal computed interaction
score. So, a “perfect” pocketmol will yield the experimental pKd for each training molecule
and will have no probe pairs that are closer than the selected RMSD thresholds. The
algorithm for greedily growing an optimal probe set makes multiple random starts (default
100), each time identifying N probes (default 2) to initialize a pocketmol. Then an iterative
process begins, seeking to add a single probe to the existing pocketmol that makes the
largest improvement in the objective function. The process stops when no probe can be
added that improves the objective function. In Figure 1, this corresponds to the selection that
takes place between Panels D and E.
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Typically at this point, the nominal computed molecule scores deviate from experimental
ones by less than 0.5 log units. However, if one now optimizes the poses of the ligands in
order to maximize their interactions with the pocketmol, deviations increase to values of 2–6
log units. This occurs for two reasons. First, probe positions are identified based on the static
initial alignments of the ligands. Second, the probe subset that comprises the pocketmol is
selected based on the static initial ligand alignments. There is no reason to believe that either
the composition of the pocketmol or the precise positions of its probes are truly optimal
when considering ligand movement. Inactive molecules, in particular, when given the
opportunity to make optimal interactions with the pocketmol can “evade” the constraints of
the physical pocket. In order to ensure that the pocketmol can capture the important
interactions (both positive and negative), two short iterations of probe refinement followed
by pose refinement are carried out. This results in slightly modified positions of the initial
pocketmol as well as an increased ligand pose pool that includes optimal poses with respect
to this modified pocketmol. The probe addition procedure is run again, adding probes that
improve the combined objective function. In Figure 1, Panel F shows the modified
pocketmol along with the added probes (some highlighted with arrows). The probe addition
step typically adds 10–25% more probes to the initial pocketmol.

Model Selection—The most critical aspect governing the predictive behavior of the final
model is the ligand pose pool and initial pocketmol that result from the preceding step. As
mentioned above, many such combinations will yield models that have a good fit to the
training data, some of which may look rather different from one another, especially if they
result from divergent initial alignment hypotheses. The models will vary in predictive
ability, even if they nominally fit the training data equally well. In order to select which final
model to use for prospective predictions, QMOD makes use of a modified cross-validation
procedure, constructing multiple fully refined models (default 6), where each model is
refined using a different subset of the training ligands. In each iteration, the training ligands
not used for model refinement are tested against the refined model. The set of such training
set predictions is used to identify the fully trained model that is most likely to be predictive.
To validate this approach, multiple models were constructed for the 5HT1a set from the
original QMOD publication using the methods described above. Of 23 models constructed
(each with its own 6-fold cross-validation), the top 8 selected by Kendall’s Tau rank
correlation from the training set validation identified all of the top 5 most predictive models
on the blind test set (p = 0.01).

Two details bear further discussion. This is not a true cross-validation. The full set of
training ligands is used to identify the initial probe subset and to produce the augmented
pocketmol that serves as input to this validation procedure. So, information from the
“holdout” ligands has been used, in part, prior to full refinement and testing of the holdouts.
This is necessary since one must evaluate the specific probe set that will be used for final
model building. Were the holdout molecules fully held out, the resulting pockets would have
different compositions, and the results of the validation procedure would have little bearing
on the predictivity of a pocket with a new composition. This contamination effect is
ameliorated by restricting the pose pool at the start of each validation model refinement to
the naïve poses from the initial similarity-based ligand alignments, thus reducing the amount
of information leakage from the full training set into the training subsets. This procedure is
only used as a heuristic for model selection, so the information leakage does not contaminate
predictions outside the training set.

Computational Procedures
Detailed scripts for generating the results presented here are available in the data archive
associated with this paper. Surflex-QMOD version 1.011 and Surflex-Sim version 2.512
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were used. A single command (“ sf-qmod.exe runsetup SetupFile”) produces a
script that will generate initial alignment hypotheses, full alignments of training ligands,
results for internal validation tests, and final pocketmols. The setup file contains information
on pathnames to training ligands and their activities, which ligands to use for hypothesis
generation, and modifications to default parameters for model building if desired. A typical
example is shown here:

# This is a QMOD run setup file.
QMODPath: ../Paper-v1011/Code/Surflex-QMOD-v1011/sf-qmod.exe
SIMPath: ../bin/surflex-sim-v2512.exe
RunPrefix: runa
# Required: Training molecule path. This file contains pathnames to
# training molecules, activity constraints, and pKd as follows:
# mols/m5.mol2 = 7.5
# By convention, the first N mols in the list will be used as the to
# produce the hypothesis for alignment.
TrainPath: TrainMols
# Required: Number of mols for hypothesis.
NHypoMols: 2
# The parameters that control initial probe placement:
Srms: 0.7
Prms: 0.2
NPoses: 5
Minact: 6.5
# The parameters that control pocketmol model generation:
ModelProbeTries: 4
ModelSrms: 1 3.5
ModelPrms: 1 1.5
ModelPenRms: 1 2.0
# Initial refinement control:
InitEpoch: 10
InitIter: 2
# Cross validation for model selection:
Xval: 6

The final pocketmols can be selected on the basis of the validation results. Testing on a list
of new ligands requires a single command (“ sf-qmod.exe scorepocketmol
TestLigList align-targets.mol2 pocketmol.mol2 logscore”). This procedure
makes use of an all-atom optimization procedure, so ligand strain enters into the pose
optimization process explicitly and prevents excessive deformation of ligands. The final
scores represent the intermolecular interaction energy along with entropic fixation terms and
do not include internal strain directly.

Results and Discussion
The goals of the Surflex-QMOD approach include accurate prediction of ligand activity, but
they also include prediction of ligand binding modes and rationalization of activity across
chemical scaffolds that allows information learned from one series to be transferred to
another. The CDK2 set offers a means to further validate predictive capacity and to explore
the relationship between learned models and actual experimentally determined enzyme
structures. The muscarinic set offers a means to assess a pocketmol’s ability to extrapolate
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and to see whether construction of physical models can address the fundamental problem of
non-additivity and the interplay of molecular pose with predicted activity.

Performance on CDK2: Ligand-based modeling with staurosporine
Using the initial alignment shown in Figure 1 (which was the single highest scoring
alignment hypothesis), three models were generated. The models resulted from the top three
initial probe sets from the pocketmol initialization procedure described earlier. All three
models yielded highly significant rank correlations in the six-fold cross-validation tests
(ranging from 0.53–0.66), and all three showed excellent predictive performance on the test
set (Tau of 0.62–0.77). Figure 5 shows plots of the performance for the model that both fit
the training data best as well as yielded the best performance on the test data. This was the
model derived from the single best scoring initial pocketmol. All three models were similar
in composition and in terms of the preferred binding poses of the training ligands; in what
follows the model corresponding to Figure 5 will be discussed.

Figure 6 illustrates the congruence between the pocketmol and the structure of CDK2. Of 67
mutually aligned structures of CDK2 bound to inhibitors, three (1H01, 1E9H, and 1H00)
showed particularly close correspondence to the derived pocketmol. Two of the three
important hinge-binding elements were closely matched, and the aspartic acid critical for
explaining the activity of the amines in the modeled chemical series was also closely
matched. The hydrophobic surface comprised of two leucine residues was mimicked by two
hydrophobic methane probes in the pocketmol. Other probes served to construct a surface
that was concordant in many respects to the experimentally determined structures. However,
Figure 7 shows that the portion of the pocketmol that was congruent to CDK2 was not
sufficient to adequately enclose the series being modeled. A small number of probes did not
correspond to any structural aspects of CDK2’s binding pocket variants. Consequently,
some known inhibitors would simply not fit the induced model of the binding site (cyan area
marked with an arrow in Figure 7). This is a primary limitation of the QMOD approach.
Lack of diversity in training data, particularly with respect to ligand scaffolds, will generally
be reflected by degeneracies in the induced physical models.

Parsimony and Confidence
In the foregoing, we discussed the use of cross-validation for model selection. In the case of
CDK2, in contrast to experiments on more structurally diverse data sets, all of the derived
models yielded excellent performance in internal validation tests. This raises the question of
how one might choose from among models that seem equally likely to be predictive. Since
the approach includes predictions of optimal training molecule poses, we can assess the
extent that a model is quantitatively parsimonious. That it, if two molecules have similar
activity, and if it is possible to explain their binding in geometrically similar ways, we
should prefer models that make that choice over models that do not. This is expressible in
terms of a weighted sum of pairwise similarities of all final ligand poses, where molecule
pairs with similar activity receive higher weight than those with different activity values.
Figure 8 shows the final optimal training ligand poses from three models derived from the
initial alignment shown in Figure 1. By eye, it is clear that the top model is the most
coherent in terms of commonality of binding modes. Using a quantitative measure of
parsimony (scale 0–1, with 1 being most parsimonious), the scores were 0.76, 0.72, and 0.69
(top to bottom, respectively). This measurement captures the intuitive notion of which
model seems the most “compact” in an explanatory sense and also correctly identified the
model with the best performance on the test set (Tau of 0.77).

A related idea allows one to define a simple measure of confidence in a prediction on a new
molecule using molecular similarity. If a predicted pose of a test molecule based purely on
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the pocketmol is quantitatively similar to the optimal pose of a training ligand, one has
higher confidence in a prediction than otherwise. For the 67 diverse CDK2 ligands with
known bound configuration, 14 had high confidence (similarity greater than 0.7 to an
optimal pose of a training molecule). Among these 14, the rank correlation of predicted
compared with experimental pKi was 0.44 (p = 0.02), but the average error of prediction was
1.0 log units (significantly worse than within the congeneric test series). The mean RMS
deviation of the best of the top 5 poses for each of these 14 ligands was 2.1Å. Among the 30
ligands with moderate to high confidence (similarity ≥ 0.60), rank correlation was lower
(Tau of 0.30) but still statistically significant (p < 0.01). The mean RMS deviation for these
30 ligands was 2.5Å. Among the 37 ligands with low confidence (similarity < 0.60), mean
RMS deviation was 5.5Å, the rank correlation was lower still (Tau of 0.09), and the
correlation was not statistically significant. Note that all test ligands from the substituted
guanines had high-confidence predictions.

There is a clear relationship between the similarity-based measure of confidence and the
predictive performance of the QMOD pocketmol, both in terms of quantitative affinity
prediction and binding mode prediction. Figure 9 shows examples of 4 molecules from this
set, including two with scaffold variations beyond the substituted guanines of the training
set. In each case, while the predicted pose was not perfect in any case, the correct
correspondence of ligand and protein/pocket interactions was present, which would support
structure-guided ligand design. It is important to note that the scaffold variation exhibited in
Figure 9 is still significant, and reliable predictive generalization in 3D QSAR of this
magnitude would be useful in lead optimization.

Performance on CDK2: Modeling without staurosporine
In the foregoing, we established that CDK2 models constructed with the benefit of
staurosporine in addition to the guanine-based series were predictive both in terms of
affinity and binding mode. The presence of staurosporine forced a choice of the absolute
configurations available to the QMOD procedure, since the protonated amine of
staurosporine has a fixed geometric relationship to its hinge-binding moieties. Models were
also constructed by omitting staurosporine but using otherwise identical procedures. Figure
10 shows the alignment hypothesis along with performance on the 50 molecule test set. The
best alignment corresponded to an extended conformation, which is clearly incorrect in
terms of what is known about the bound state of these ligands (see 2G9X in Figure 9).
However, the performance on the congeneric series of test molecules was roughly equivalent
to that shown earlier. The reason for the apparent lack of dependence of predictive
performance on model “correctness” stems from the fact that the test molecules fall into the
same chemical series as the training molecules, so the relative alignment of the predicted
compounds is very similar independent of the absolute configuration of the model. That is,
the correspondence of parts among ligands and their relative relationship to entities in the
pocketmols is similar.

However, when considering predictions on the diverse set of 67 molecules for which bound
configurations and binding affinities were known, predictions using the “extended” model
(derived without staurosporine) are significantly worse than for the compact model. In 56/67
cases, predictions from the former model had larger errors than the latter one (p ≪ 0.001 by
exact binomial). The mean error for ligands predicted with low confidence for the extended
model was 3.1 log units, but for the compact model was 1.6 log units. Interestingly,
predictions for both models on high confidence ligands was statistically indistinguishable,
but these ligands shared conformational flexibility in places that allowed maintenance of the
correct correspondence of parts despite inaccurate absolute configurations.
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Models that describe active site configurations that are more closely related to physical
reality will generalize better to structurally diverse ligands than models with limited
congruence to true binding sites. The practical aspect of this observation is that multiple
active scaffolds should be used to help derive physically accurate models. In the case of
CDK2, the addition of staurosporine was enough to make a large impact on model
generalizability.

Performance on the Muscarinic Set
The muscarinic example shown in Figure 2 is a hard and relevant case. The design of this
test included multiple diverse active ligands (see Figure 4) that were known at the time that
the furan scaffold was being explored. Of eight models constructed, two had good internal
validation performance (Tau of 0.5 in both cases), and the one with the highest parsimony
was selected (0.80 vs. 0.72) for testing. Figure 12 shows this pocketmol along with predicted
binding modes and activity values for the four compounds from Figure 2. The 3-phenyl
substituent yielded a predicted increase of 1.6 log units relative to the furan (experimental
was an increase of 1.7). The benzofuran yielded a predicted increase of 1.2 (experimental:
1.1). The di-substituted compound showed a predicted decrease in activity compared with
the 3-phenyl of 0.4 log units (experimental: 0.9) and the same predicted potency compared
with the benzofuran (experimental: 0.2 log unit decrease). The ligand required a significant
shift in alignment in order to fit into the pocket, preventing optimal interactions with the
cluster of carbonyl probes that interact with the protonated amines in the series. If the model
were to have made a linear additive prediction for this compound, the predicted activity
would have been a pKd of 8.4, incorrectly identifying it as the most active compound. The
actual predicted activity was 1.4 log units less than the additive assumption would have
dictated. The changes in substituents yielded predicted potencies that were accurate with
alignments that were explanatory.

The presence of quartets of molecules like those in Figures 2 and 12 is relatively rare in
medicinal chemistry lead optimization data sets. Such examples will frequently lead to non-
additive SAR, which by its nature requires modeling of the linkage between binding mode
and predicted activity. Such quartets are actively avoided by a common strategy in lead
optimization that is well-exemplified by the CDK2 guanine series. As can be seen in Figure
3, the O6 substituent was systematically varied with no N2 substituent. Then, with the O6
substituent fixed (see Fig. 3: top four compounds), the N2 substituent was varied. No
examples of “non-optimal” O2 substituents were tried with N2 substituents at all, the
implicit assumption being that optimization at a single scaffold position can be done
independently of other positions. This assumption is wrong, based both on first principles as
well as the data shown in Figure 2. A second, related, design strategy hinges on the incorrect
presumption of additivity. Imagine that in a lead optimization exercise that the furan of
Figures 2 and 12 was discovered first, followed by synthesis of the benzofuran and the 3-
phenyl benzofuran. Seeing that the phenyl group at position 3 marginally decreased activity,
many chemistry teams would not support synthesis of the 3-phenyl furan, which is the most
active compound in the series. The 3-phenyl modification was of no value in one particular
context, but one cannot conclude that the 3-phenyl has no value in other contexts.

The QMOD method can learn non-additive behavior based on its representation of the
QSAR model as a physically interpretable binding pocket as opposed to a purely
mathematical construct linking descriptors to activities via a regression formula. Induction
of such models is dependent on sufficient training data, especially in the sense of geometric
diversity, in order to produce models close to those that are physically responsible for ligand
binding.
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Conclusions
The logical fallacy “cum hoc ergo propter hoc” (with this, therefore because of this) lies at
the heart of the failure of many QSAR approaches to be prospectively predictive [10].
Simple statistical correlations between molecular features and molecular activities arise for
many reasons, but many of these reasons are not related to the causal effects linking
molecular structure to activity. The problem is made more serious since medicinal chemistry
lead optimization often implicitly assumes that chemical substitutions on a scaffold will
yield independent and additive effects. The assumption leads to serial optimization of
substituents and to overgeneralization of context-specific information regarding the
suitability of particular moieties. Consequently, many SAR data sets can be modeled
retrospectively using purely correlative analyses, and therefore many QSAR methods appear
to yield predictive models. Such models are challenged when there are notable non-additive
effects within a single chemical series or when molecular conformation and alignment
questions are non-trivial. Data sets that exhibit these effects are not difficult to find, but they
are seldom seen, either in QSAR reports or in medicinal chemistry reports focused purely on
structure-activity relationships.

The Surflex-QMOD approach addresses the physical linkage between activity model and
molecular binding mode with pockets having detailed structure comparable to true protein
binding sites. Because the model building process results in a model that selects ligand
alignments based on mutual interaction, there is a direct correspondence between the
physical process of protein/ligand binding and the act of prediction. Consequently, making
use of multiple diverse ligand scaffolds is both possible and preferable to modeling
congeneric series, leading to more accurate and predictive models. Notions of model
parsimony and prediction confidence are intuitively related to physical notions of shared
ligand binding modes and appear to bear directly on the quality of predictions. As the
approach is further validated on more systems, generalization of the parsimony concept to
become part of the model-building process is likely to improve the performance of Surflex-
QMOD further.

Challenges remain, especially in cases where reliance on molecular similarity to guide initial
ligand alignment results in incorrect relative alignments or when the protein pocket
undergoes extensive rearrangement on binding different ligands. In the former case, the
likely outcome is a model that essentially embeds a disjunction where one series of ligands
productively interacts with one set of probes and the other series interacts with a different
set. Predictions within each series may be reasonably accurate, but predictions for ligands
that combine parts of each scaffold will likely not be. The hope is that such ligands could be
used to provide data to refine the model. With respect to the latter issue, the approach
explicitly models some receptor flexibility, with multiple probe positions covering a degree
of conformational variation of the protein binding pocket. However, large rearrangements
require both detection that the phenomenon is occurring and possibly multiple model
pockets in order to appropriately predict activity. The multiple-instance formalism can easily
model simultaneous construction and refinement of several models. But the bigger challenge
may be to know when different subsets of ligands engender large changes in binding pocket
geometry. This case, in an abstract sense, is quite similar to the problem of partially
overlapping ligand binding modes, where detection of the problem may occur when poor
predictions are made based on synthesis of hybrid ligands. In such cases, accurate prediction
of activity may depend on a correct absolute relationship of ligand atoms with protein
binding pocket atoms.
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FIGURE 1.
Derivation of a pocketmol. Panel A: A 3D similarity-based alignment hypothesis of active
ligands. B: Each training ligand is aligned to the hypothesis, resulting in 100–200 initial
poses. C: Each training ligand has many poses, resulting in uncertainty as to where the
interacting parts of the pocket might be. D: Interacting probes are placed that make a
favorable interaction with at least one pose of each active training ligand. E: Activity data
are used to identify a subset of probes that yield a good fit to binding data. F: Partial
refinement of the pocketmol includes addition of new probes (some marked with yellow
arrows) along with changes to ligand poses. G: Final refinement yields an optimal pocket
with optimal poses for each training ligand. H: The final pocket forms a partial enclosure
with hydrophobic and charged surfaces. I: New molecules are docked into the pocket and
scored, yielding predictions of activity and binding mode.
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FIGURE 2.
Four muscarinic antagonists whose activity pattern shows a strong non-additive effect. A
change from the furan to 3-phenyl or to the benzofuran yielded a significant improvement in
Kd. However, combining the two changes yielded a compound with poorer Kd than either
single change. One simple explanation for the effect is that the di-substituted compound is
slightly too large to accommodate both substituents, with the corollary effect that each
mono-substituted compound has slightly different preferences in binding mode.
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FIGURE 3.
Examples of typical ligands from the training set for CDK2. All compounds were N2, O6
substituted guanines. Activity ranged from pKi of 8 (top row) down to 4 (bottom row). The
top two compounds (boxed) were used in the initial alignment hypotheses. Test compounds
were of similar structural variety (training and test compounds were partitioned 30/50
randomly from a full set of 80).
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FIGURE 4.
Examples of ligands from the training set of muscarinic antagonists (top) and the test
compounds (bottom). The top row include (left to right): azatadine, atropine, tolterodine,
and oxybutynin (all of which were indicated to have pKd > 7.0). The boxed molecules
formed the initial alignment hypothesis. The test ligands included a substituted furan more
active than any training furan (bottom right) as well as one showing strong non-additive
behavior (bottom middle).
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FIGURE 5.
Plots of training performance (left) and test molecule performance (right). The top ten
predicted test molecules (of 50 total) included 7/10 of the most potent compounds. The top
half of the predicted test compounds were correctly identified. Kendall’s Tau rank
correlation for the training set fit was 0.68, with a mean error of 0.56. For the test set, Tau
was 0.77 (p ≪ 0.01) and mean error 0.43.
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FIGURE 6.
Comparison of commonalities between CDK2 conformational variants (thin sticks at left,
blue surface at right) and the derived pocketmol (thick sticks, green surface). In particular,
there is very good correspondence between polar probes and two hinge-binding elements:
the carbonyl and N-H of LEU-83 (marked as 1 and 2). There is also good correspondence to
the carboxylate of ASP-86 (marked as 3). There is also good correspondence between two
steric probes and the sidechains of LEU-83 and LEU-134 (marked as 4). Note that the
hinge-binding aspect of GLU-81 is missed (marked as 5).
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FIGURE 7.
Panel A shows the portion of the learned pocketmol (green, with probes in sticks) with close
correspondence to the CDK2 active site along with the surface of the union of training
ligand final poses (orange). Panel B shows the entire pocketmol, which includes several
probes that DID NOT correspond closely with any CDK2 conformational variants
(highlighted with red arrows), and these can be seen to help “lock down” the training
ligands. However, as can be seen in panel C, the envelope of diverse CDK2 inhibitors with
known bound structure (cyan surface) intersects with volume that was incorrectly learned on
the bases of a single congeneric series (red arrow).
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FIGURE 8.
The three panels show final poses of the 30 training ligands from models of decreasing
parsimony, all based on the initial alignment from Figure 1. The model in panel A
(parsimony score of 0.76/1.0) shows a single binding mode, panel B shows alternate binding
modes for the guanine (parsimony of 0.72), and panel C shows multiple binding modes for
both the guanine and for the pendant substitutions (parsimony 0.69). The most parsimonious
model was more predictive on the test set than the other two.
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FIGURE 9.
The four panels show the best predicted and known bound conformations of four of the
ligands for which crystal structures were available (labels are PDB-code: RMSD, predicted
activity [experimental activity]). These were predicted with high confidence, based on
molecular similarity to training ligands. They included two novel scaffolds: a
triazolopyrimidine (bottom left) and an oxindole-based compound (bottom right). Note that
the incorrect orientation of the oxindole of 1KE5 was influenced by the conservative
enclosure of the binding site (see Figure 7).
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FIGURE 10.
Plot test molecule performance using an alignment hypothesis generated without the benefit
of staurosporine. The primary difference in the ligand poses compared with the model
shown previously involves a flip of the bond indicated by the red arrow. For the 50 molecule
test set, Tau was 0.63 (p ≪ 0.01) and mean error was 0.38.
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FIGURE 11.
The plot shows the comparison in absolute errors of prediction on 67 diverse CDK2 ligands
between the pocketmol derived with the benefit of staurosporine (compact model) and the
pocketmol that employed just the substituted guanines for learning. Green X’s were ligands
predicted with high confidence by the compact model, and red plus signs with low to
medium confidence. Four cases were highlighted, all of which had binding mode prediction
accuracies in the compact model of 2.5Å RMSD or better. Regardless of confidence, 76% of
the compact model’s predictions were within 2 log units of experimental values, compared
with just 45% of the extended model’s predictions.
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FIGURE 12.
The four panels show the predicted bound conformations of four muscarinic antagonists,
three of which were used as tests for predictions involving non-additive substituent
behavior. Predicted pKd values are listed after an indication of whether a molecule was used
for training (A) or testing (B-D) the model, and bracketed numbers indicate experimentally
determined pKd. For clarity, the pocketmol is shown with hydrogens on methane probes
hidden.
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