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Abstract Approximately 25 years ago the first computer

applications were conceived for the purpose of automated

‘de novo’ drug design, prominent pioneering tools being

ALADDIN, CAVEAT, GENOA, and DYLOMMS. Many

of these early concepts were enabled by innovative tech-

niques for ligand-receptor interaction modeling like GRID,

MCSS, DOCK, and CoMFA, which still provide the the-

oretical framework for several more recently developed

molecular design algorithms. After a first wave of software

tools and groundbreaking applications in the 1990s—

expressly GROW, GrowMol, LEGEND, and LUDI repre-

senting some of the key players—we are currently wit-

nessing a renewed strong interest in this field. Innovative

ideas for both receptor and ligand-based drug design have

recently been published. We here provide a personal per-

spective on the evolution of de novo design, highlighting

some of the historic achievements as well as possible future

developments of this exciting field of research, which

combines multiple scientific disciplines and is, like few

other areas in chemistry, subject to continuous enthusiastic

discussion and compassionate dispute.
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Introducton

Approximately 25 years ago the first computer applications

were conceived for the purpose of automated ‘‘de novo’’

drug design [1–4], prominent pioneering tools being

ALADDIN [5], CAVEAT [6, 7], GENOA [8], and DY-

LOMMS [9]. Many of these early concepts were enabled

by innovative techniques for ligand-receptor interaction

modeling like GRID [10], MCSS [11], DOCK [12], and

CoMFA [13], which still provide the theoretical framework

for several more recently developed molecular design

algorithms. After a first wave of software tools and

groundbreaking applications in the 1990s [14–18]—

expressly GROW [19], GrowMol [20], LEGEND [21, 22],

and LUDI [23, 24] representing some of the key players—

we are currently witnessing a renewed strong interest in

this field. Innovative ideas for both receptor- and ligand-

based drug design have recently been published [25, 26].

We here provide a personal perspective on the evolution of

de novo design, highlighting some of the historic

achievements as well as possible future developments of

this exciting field of research, which combines multiple

scientific disciplines and is, like few other areas in chem-

istry, subject to continuous enthusiastic discussion and

compassionate dispute.

Broadly speaking, the main scientific challenges for de

novo drug design are compound scoring (activity predic-

tion, DG� estimation), sampling (on-the-fly compound

assembly and navigation in search space), and the synthetic

accessibility of the designs [27]. In their pioneering study

from 1991 [19], Moon and Howe argued that: ‘‘Given

detailed structural knowledge of the target receptor, it

should be possible to construct a model of a potential

ligand, by algorithmic connection of small molecular

fragments, that will exhibit the desired structural and
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electrostatic complementarity with the receptor’’. At the

time, searching the space of candidate compounds was

considered the most critical issue of the design process, and

molecular fragments as building blocks were primarily

used to obtain a manageable search space. This was one

reason for choosing peptides and peptide-mimetics as a

preferred molecule class for exploration. Among the vari-

ous algorithms that have been employed for de novo design

ever since, the methods for navigation in chemical space

probably have diversified the most, ranging from exhaus-

tive product enumeration and deterministic combinatorial

approaches to stochastic sampling by evolutionary algo-

rithms and particle swarms, simulated annealing, and

Markov chains, to name just some of the prominent

examples [26]. By method transfer the field has massively

benefited from parallel developments in computer science

and engineering. Today, visualization of the multi-objec-

tive compound optimization progress and online structure–

activity landscape modeling can be used to observe and

potentially prevent premature convergence or misguided

design runs [28–30]. It is fair to say that one might consider

the task of chemical space navigation solved. With the first

structure-based de novo design study published in 1976

[31, 32], this is mirrored in the continuously increasing

number of successful compound designs that have been

published ever since (Fig. 1).

With few exceptions, the early design methods relied on

static X-ray structures providing the essential structural and

pharmacophoric feature constraints for in situ ligand

assembly. Evidently, rigid models of ligand-accommodating

receptor cavities cannot account for induced or flexible fit

phenomena that may be observed upon fragment binding,

which certainly has contributed to a somewhat curbed

enthusiasm and acceptance of de novo design by the

medicinal chemistry community at the time. Some of the

current molecular design tools explicitly allow for molecular

flexibility, albeit sometimes at the price of strongly increased

needs for computation time. Unrealistic CPU time require-

ment has been an argument repeatedly put forward by

molecular designers when applications were unsuccessful or

too demanding challenges were posed. While this argument

might have been acceptable in the past, it may no longer be

justified in light of continuously increasing capacity of

modern computers. From a technical point of view, it seems

realistic that GPU computing, cloud computing and other

massively distributed hardware solutions will provide the

necessary technological framework enabling sustained pro-

gress in de novo design. Still, we must not forget that our

Fig. 1 Selected computationally de novo designed or motivated

compounds that were synthesized and successfully tested for

bioactivity. 1: FKBP12 inhibitor [51]; 2: HIV-1 protease inhibitor

[52]; 3: thrombin inhibitor [53]; 4: pepsin inhibitor [54]; 5: DNA

gyrase inhibitor [55]; 6: Kv1.5 potassium channel blocker [56]; 7:

CDK4 inhibitor [57, 58]; 8: CYP51 inhibitor [59]; 9: HIV-1 reverse

transcriptase inhibitor [34]; 10: factor Xa inhibitor [60]; 11: HIV-1

protease inhibitor [61]; 12: DHODH inhibitor [62]; 13: HIV-1

reverse transcriptase inhibitor [63]; 14: Tat-TAR interaction inhib-

itor [64]; 15: Estrogen receptor ligand [65]; 16: Cdc25B phosphatase

inhibitor [66]; 17: CB1 inverse agonist [40]; 18: Plk1 type II

inhibitor [67]

116 J Comput Aided Mol Des (2012) 26:115–120

123



understanding of the physical forces governing ligand-

receptor interaction is incomplete, and gaining a decimal

point in computational precision is meaningless if insuffi-

cient models are used.

With the advent of reaction-driven compound fragmenta-

tion and assembly techniques (e.g. RECAP [33], virtual

organic synthesis approaches like SYNOPSIS [34] or TOPAS

[35]) and fast substructure-based prediction of ‘‘complexity’’

the issue of synthetic feasibility has been partially addressed.

Despite several convincing applications, the accurate com-

puter-based assessment of context-dependent building block

reactivity still remains profoundly challenging—in particular

when rapid estimations for high-throughput applications are

mandatory like in de novo compound construction.

The great importance of using a suitable set of frag-

ments for virtual compound generation is highlighted ex-

emplarily by three selected case studies. The first describes

the design of novel inhibitors of hepatitis C virus (HCV)

helicase. Brancale and coworkers equipped the receptor-

based de novo design software LigBuilder [36] with two

different sets of molecular building blocks, which resulted

in the initial designs A and B, respectively (Fig. 2) [37]. It

is evident that the highly complex compound A is an

attempt to fill the complete binding site, which most likely

is a consequence of poor scoring as larger compounds often

yield better scores. To some degree, such complex struc-

tural suggestions produced by de novo design software

have hampered acceptance of computer-based de novo

design by medicinal chemists in the past. Design B—

despite its nondrug-like structure—might be considered as

a prototype ligand of HCV helicase, which was actually

successfully converted into the chemically feasible inhib-

itor 19 (IC50 = 260 nM). Derivative molecules with such

changes still fit the in silico models but have improved

synthetic accessibility and more desirable physicochemical

properties.

A conceptually related ligand-based approach has been

presented by Feher et al. who used the Evolutionary

Algorithm Inventor (EAI) software together with a topo-

logical pharmacophore model for generating compound

modifications of inhibitors of the gonadotropin releasing

hormone (GnRH) receptor [38]. Basically, the software

suggested scaffolds and their decoration by suitable side-

chains that matched reference pharmacophore models.

Several potent combinatorial variations were synthesized,

one of which (compound 20) exhibited strong antagonistic

activity (Ki = 50 nM) on the GnRH receptor (Fig. 3) [39].

Tight interaction with medicinal chemists proved to be

essential for post hoc candidate selection and building

block prioritization.

A third example of compound optimization from a de

novo designed prototype to a potent lead structure is pre-

sented in Fig. 4. The software TOPAS produced a small

series of structural suggestions that were further optimized

as potent inverse agonists of cannabinoid receptor 1 (CB1)

[40]. A single known reference compound served as a

template for fragment-based virtual ligand assembly, gui-

ded by a topological pharmacophore model (CATS) [41].

One of the initial designs (21) had poor activity (Ki =

1,500 nM) but was chosen for subsequent optimization

Fig. 2 De novo designed inhibitors of hepatitis C virus (HCV)

helicase. Designs A and B were suggested by the software using

different sets of fragments for compound generation. Bioactive

compound 19 was developed from Design B as a starting point for

optimization

Fig. 3 Combinatorial design of GnRH receptor ligands. Several

potent hits were obtained by in silico side-chain optimization
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through iterative modeling, synthesis, and testing, which

via intermediate compound 22 (Ki = 13 nM) eventually

led to the benzodioxole 23 (Ki = 4 nM) exhibiting desired

in vivo efficacy [42].

These selected examples confirm that profound chemi-

cal understanding is essential for successful application of

computer-based de novo design tools. One cannot expect

that these software tools deliver potent leads from scratch.

Future drug design tools should incorporate as much

medicinal chemistry knowledge as possible to facilitate

candidate selection and increase their acceptance and uti-

lization for drug discovery.

The greatest remaining challenge is activity prediction—

not just for individual targets but also whole target panels

aiming at polypharmacology predictions guiding automated

computer-based molecular design. Since the early days

fragment growing and linking has become a recurring

scheme pursued by the majority of de novo design approa-

ches. When fragment contributions to the free energy of

ligand-receptor binding are of an approximately additive

enthalpic nature, even computationally demanding methods

may be employed for energy estimation. Despite its appeal

building block additivity cannot be assumed a priori. Irre-

spective of such considerations, we are still far from being

able to reliably estimate entropic contributions to ligand-

receptor complex formation. With few exceptions, scoring

of de novo designed compounds usually ignores or

explicitly avoids attempts of entropy calculation. Here, we

see a massive demand for innovative concepts and approa-

ches before significant progress will be possible for de novo

design. Similar to structure sampling, the field might benefit

from intensified crosstalk and interaction between drug

designers, theoretical chemists and physicists.

‘‘Top-down’’ machine learning models complement the

‘‘bottom-up’’ scoring concepts and have found productive

application in de novo design software. For example, dif-

ferent types of artificial neural networks and kernel-based

regression models have replaced the early QSAR models.

A particular appeal lies in their speed of calculation and

adaptability to new data, without the need for explicit

energy computation. Possibly the machine-learning para-

digm offers a temporary solution to the scoring problem, by

providing ‘‘knowledge-based’’, target-specific models

instead of ‘‘global’’ energy computation. A major limita-

tion of these methods is their need for training data, which

are available in great amounts for massively researched

targets only. The most simplistic approach to compound

scoring is offered by methods based on chemical similarity.

Here, the objective is to maximize similarity between the

de novo designs and reference compound(s) with known

activity. This technique may be considered as similarity

searching in virtual chemical space. Again, the concept

does not apply to novel targets or pockets, but has been

successfully employed for the purpose of scaffold-hopping

and bioisosteric replacement.

We expect immediate progress for receptor-based de

novo design from a combination of flexible pocket models

with advanced methods for shape and pharmacophore

matching. Such a scoring scheme would include extended

pharmacophoric features allowing, e.g., for ‘‘strong’’,

‘‘medium’’ and ‘‘weak’’ hydrogen bridges, better consid-

eration of arene–arene interactions and geometries, as well

as explicit solvent molecules, and would allow for mod-

erate pocket and ligand adaptation during the actual ligand

construction, thereby possibly avoiding artifact ligand

poses [43]. With continuously better scoring functions

available, de novo designed compounds will have a greater

chance of exhibiting the desired activity and property

profile, and due to increased ‘‘chemical attractiveness’’

getting accepted for synthesis.

With high-throughput screening and fragment-based

approaches fuelling today’s drug discovery pipelines,

computer-assisted de novo design plays an increasing role in

this game [25, 44, 45]. It will be most interesting to see how

this situation will develop during the next decade [46–48].

Structural novelty combined with synthetic feasibility might

be more important for a de novo design than actual bioac-

tivity, which can often be increased by means of medicinal

chemistry [49]. In 1987, Sheridan et al. wrote [50]: ‘‘Only a

few novel bond ‘frameworks’ in which important

Fig. 4 De novo designed hCB1 inverse agonists. The original design

(21) was step-wise optimized to become a potent lead structure with

desired in vivo efficacy
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pharmacophore atoms are held in the proper arrangement

need to be found to suggest new areas for drug design and

synthesis.’’ This statement is true today as it was in the early

days of computer-based drug design. The primary aim of de

novo design tools is to fuel the creativity of chemists by

making surprising and innovative suggestions.
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